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Abstract
In this paper we study ideals of points lying on rational normal curves defined in projective
plane and projective 3-space. We give an explicit formula for the value of Castelnuovo–
Mumford regularity for their ordinary powers. Moreover, we compare the m-th symbolic
and ordinary powers for such ideals in order to show whenever the m-th symbolic defect is
non-zero.
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1 Introduction

Studying Castelnuovo–Mumford regularity reg(I ) of a homogeneous ideal I ⊆
K[x0, . . . , xn] has a long story starting from the paper of Mumford [15], who introduced
the concept of m-regularity for an ideal I , i.e. the number m for which all i-th syzygies of
I are generated in degrees not greater than m + i , for all i . Bayer and Stillman in [1]went
on with Mumford’s ideas by showing an explicit criterion form-regularity. They also proved
an equality between reg(I ) and the regularity of initial ideal of I with respect to the reverse
lexicographic order in any characteristic ofK. A connection between Castelnuovo–Mumford
regularity and syzygies of given ideal I justifies why reg(I ) can be viewed as a measure of
complexity of I and also explain unflagging interests in this subject.
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Swanson in [16] analysed r -th ordinary powers I r of homogeneous ideals I , showing that
these powers can be expressed in terms of primary decomposition of I r . As an additional
result, it has been proved that reg(I r ) is bounded above by some linear functions which
depend on r . As a consequence, a new way of investigation of reg(I r ) has begun. In [9]
Cutkosky, Herzog, and Trung, building upon papers of Swanson and the paper of Bertram,
Ein and Lazarsfeld [2], introduced a new asymptotic invariant, the so-called asymptotic
regularity areg(I ) of a homogeneous ideal I . Later, the work on regularity of homogeneous
ideals and their powers was significantly improved in [7, 11], for instance for the case of
Gorenstein and zero dimensional ideals.

One of the best known classes of curves in projective spaces P
n are rational normal curves

and they have been studied widely, see [4–6, 8]. Studying schemes of fat points lying on
rational normal curves has its own long history. In [6] Catalisano and Gimigliano gave an
algorithm for computing the Hilbert function for fat point schemes lying on a twisted cubic
curve and they extended the work for rational normal curves in P

n together with Ellia [5]. At
the same time, Conca in [8] described the Hilbert function and resolution of symbolic and
ordinary powers of ideals of rational normal curves.

Our motivation for this work is computing the regularity of powers of ideals of points on
two types of rational normal curves, conic and twisted cubic curve. The main results of this
paper concerning the regularity of powers of such ideals are Theorems 3.4 and 4.5 which can
be summed up as follows:

Theorem Let n ∈ {2, 3} and let C ⊂ P
n be a rational normal curve. Denote by ID j the ideal

defining a set of s general points on C. Let 0 ≤ j < n be such that s = nd − j , then

reg(I rD j
) =

{
rd + 1 if j = 0

rd if 0 < j < n.

The paper is organized as follows. In Sect. 2 we recall all needed definitions and prove
basic facts that are used through the paper. The first non-trivial case of a rational normal curve
is a conic inP

2.We dedicated Sect. 3 to this case. It culminates with the proof of Theorem 3.4.
Section4 is devoted to the study of twisted cubic curves and the culmination of this section is
Theorem 4.5. The last section is a small step towards understanding the structure of symbolic
powers of ideals ID j . We prove that for all integers m ≥ 3 there is I (m)

Dj
� ImDj

, and state a
conjecture about the relation between symbolic and ordinary powers of ideals ID j .

2 Preliminary

Let S = K [x0, . . . , xn] be the graded ring of polynomials over an algebraically closed field
K . Let

M =
(
x0 x1 · · · xn−1

x1 x2 · · · xn

)
.

Denote by I = I2(M) be the ideal generated by the 2-minors of M (known as the Hankel
matrix). It is known that the ideal I defines the rational normal curve (RNC for short) in P

n ,
which we denoted by C , the Veronese embedding of

νn : P
1 ↪→ P

n, [s : t] �→ [sn : sn−1t : · · · : stn−1 : tn]. (2.1)

Recall that for any homogeneous ideal J the Hilbert function HF(S/J , t) of S/J , for
t ∈ N ∪ {0}, is the dimension over K of degree t homogeneous part of S/J .
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510 I. B. Jafarloo, G. Malara

Remark 2.1 For the ideal I = I2(M) the Hilbert function of S/I is known to be

HF(S/I , t) = n(t + 1) − (n − 1), for t ≥ 0.

Let J ⊂ S be any homogeneous ideal. We denote by βi j (J ) the (i, j)-th Betti number of
J , i.e. the dimension of TorSi (J , K ) in degree j . By definition, the Castelnuovo–Mumford
regularity reg(J ) of J is

reg(J ) = max
{
j − i : βi j (J ) 
= 0

}
.

It is convenient to write β(J ) and α(J ) for the maximum and the minimum degree of
the minimal set of generators of J , respectively. In general, we have reg(J ) ≥ β(J ) and
reg(S/J ) = reg(J ) − 1.

Remark 2.2 It is known that for a zero-dimensional ideal J , if t ≥ 0 is the least value such
that �HF(S/J , t) = HF(S/J , t) − HF(S/J , t − 1) = 0, then reg(J ) = t .

Definition 2.3 Let J ⊂ S be a homogeneous ideal. Then the asymptotic regularity of J is
the real number

areg(J ) = lim
r→∞

reg(Jr )

r
.

At it was shown in [9, Theorem 1.1], we always have areg(J ) = β(Jr )
r , since it is known that

β(Jr ) is linear function which depends on r for all r � 0.
Let Dj ⊂ C be a set of nd − j general points on the rational normal curve C ⊂ P

n for
integers d ≥ 2 and 0 ≤ j ≤ n − 1. Denote by ID j the ideal defining the set Dj . In the
following we study the ideal ID j and the next lemma is an observation that we need in order
to prove that the forms of order rd does not vanish in I rD j

.

Lemma 2.4 Let D j be a set of nd − j points on rational normal curve C. Then, β(I rD j
) =

rβ(ID j ) = rd.

Proof The proof directly follows from [10, Exercise A2.21, d]. More precisely, ID j is an
ideal in the symmetric algebra S/I (the coordinate ring of C) generated at most in degree d .

�
Proposition 2.5 Let D j be as in Lemma 2.4. If r ≥ 2 and d ≥ 2, then

rd ≤ reg(I rD j
) ≤ reg(ID j ) + (r − 1)d.

Proof On the one hand from Lemma 2.4 and the fact that β(I rD j
) ≤ reg(I rD j

), we have
rd ≤ reg(I rD j

). On the other hand since ID j is a zero-dimension ideal generated at most in
degree d , therefore from [11, Corollary 7.9] we have that reg(I rD j

) ≤ reg(ID j ) + (r − 1)d .
Hence,

rd ≤ reg(I rD j
) ≤ reg(ID j ) + (r − 1)d.

�
Lemma 2.6 The set {xd−1

0 − xd−1
n = 0} and C meet each other exactly at n(d − 1) distinct

points.
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Proof One can see that

xd−1
0 − xd−1

n =
d−1∏
i=1

(x0 − ξi xn),

where ξi is the i-th primitive root of unity for i = 1, . . . , d − 1. By (2.1) we have that

d−1∏
i=1

(x0 − ξi xn) =
d−1∏
i=1

(sn − ξi t
n) =

d−1∏
i=1

(ζ n − ξi ).

It follows that {xd−1
0 − xd−1

n = 0} intersects C at n(d − 1) distinct points, therefore the
desired result follows. Moreover, we conclude that no two hyperplanes {x0 − ξαxn = 0} and
{x0 − ξβxn = 0}, with α 
= β, intersect C at the same point for all α, β ∈ {1, 2, . . . , d − 1}.

�
In the following sections, we study the regularity of I rD j

where Dj lies on a conic in P
2, or

on a twisted cubic curve (TCC) in P
3. Since we are considering these points in two separate

sections, we agree to use the same notation of C for both, conic and TCC.

3 Regularity of points on a conic

This section is devoted to study the regularity of I rD j
where Dj ⊂ C ⊂ P

2. By the definition
of ideal I , we have that

I = det

(
x0 x1
x1 x2

)
= 〈

x21 − x0x2
〉 = 〈Q〉 .

Lemma 3.1 Let D j be a set of 2d − j distinct points in P
2 lie on C for d ≥ 2 and j ∈ {0, 1}.

Then its defining ideal can be represented as:

ID j =
⎧⎨
⎩
I +

〈
x1(x

d−1
0 − xd−1

2 )
〉
, if j = 0

I +
〈
x1(x

d−1
0 − xd−1

2 ), x0(x
d−1
0 − xd−1

2 )
〉
, if j = 1.

Proof We proceed as follows:

• Let j = 0. By Lemma 2.6 one can see that {x1 = 0} ∩ {x0 − ξαx2 = 0} ∩ C = ∅ for
α = 1, 2, . . . , d − 1. Since the line {x1 = 0} does not contain any tangent line to C ,
therefore the intersection of {x1(xd−1

0 − xd−1
2 ) = 0} and C is a set 2(d − 1) + 2 = 2d

distinct points.
• Let j = 1. Since the point {〈x1, x0〉} /∈ {xd−1

0 − xd−1
2 = 0}, the desired result follows

from Lemma 2.6.

�
Proposition 3.2 Let D j be as in Lemma 3.1. Then

reg(ID j ) =
{
d + 1, if j = 0,

d, if j = 1.
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512 I. B. Jafarloo, G. Malara

Proof Let j = 0. Then the syzygy matrices of S/ID0 are as follows

A1 = (
Q x1(x

d−1
0 − xd−1

2 )
)
, A2 =

(
x1(x

d−1
0 − xd−1

2 )

−Q

)
.

Therefore, we have its minimal free resolution

0 −→ S(−d − 2)
A2−→ S(−2) ⊕ S(−d)

A1−→ S −→ S/ID0 −→ 0,

and from that reg(S/ID0) = d . Accordingly, reg(ID0) = d + 1
Similarly, for j = 1, we compute the syzygy matrices for S/ID1 ,

A1 = (
Q x1(x

d−1
0 − xd−1

2 ) x0(x
d−1
0 − xd−1

2 )
)
, A2 =

⎛
⎝ 0 xd−1

0 − xd−1
2

x0 −x1
−x1 x2

⎞
⎠ .

Hence,

0 −→ S2(−d − 1)
A2−→ S(−2) ⊕ S2(−d)

A1−→ S −→ S/ID1 −→ 0.

We see that reg(S/ID1) = d − 1 and, consequently, reg(ID1) = d . �
Lemma 3.3 Let D0 be as in Lemma 3.1. Then, reg(I rD0

) ≥ rd + 1 for r ≥ 2.

Proof Set G = x1(x
d−1
0 − xd−1

2 ). Directly from the definition of ordinary power I rD0
=〈{

Qr−t Gt
}r
t=0

〉
. Hence, the first syzygy matrix of S/I rD0

is

A1 = [
Qr Qr−1G Qr−2G2 · · · Q2Gr−2 QGr−1 Gr

]
.

It is a straightforward computation that the second syzygymatrix can be expressed as follows:

A2 =

A21⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G 0 0 0 · · ·
Q −G 0 0 · · ·
0 Q −G 0 · · ·
0 0 Q −G · · ·
0 0 0 Q · · ·
0 0 0 0 · · ·
...

...
...

... · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S(−(2r+1))···

· · ·

A22⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
...

−G
Q
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S(−(rd+1))

· · ·

A23⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
...

0
−G
Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S(−(rd+2))

.

This proves that reg(S/I rD0
) ≥ rd , in consequence reg(I rD0

) ≥ rd + 1. �
Theorem 3.4 Let D j be as in Lemma 3.1. If r ≥ 2, then

(1) reg(I rD0
) = rd + 1,

(2) reg(I rD1
) = rd.

Proof The case (1) follows from Propositions 2.5, 3.2 and Lemma 3.3. The proof of (2)
follows directly from Propositions 2.5 and 3.2. �
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4 Regularity of points on a TCC

Let n = 3. In this section we study the reg(I rD j
), where Dj is a set of 3d − j points which

lie on the twisted cubic curve C defined by the ideal

I = 〈
x22 − x1x3, x1x2 − x0x3, x

2
1 − x0x2

〉 = 〈Q1, Q2, Q3〉 .

Lemma 4.1 the ideal ID j defines the set D j of 3d − j distinct points on C for j = 0, 1, 2.

ID j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
I +

〈
(x2 − x1)(x

d−1
0 − xd−1

3 )
〉
, if j = 0

I +
〈
x2(x

d−1
0 − xd−1

3 ), x1(x
d−1
0 − xd−1

3 )
〉
, if j = 1

I +
〈
x2(x

d−1
0 − xd−1

3 ), x1(x
d−1
0 − xd−1

3 ), x0(x
d−1
0 − xd−1

3 )
〉
, if j = 2.

Proof We divide the proof into three cases as follows.

• Let j = 0. By Lemma 2.6, an elementary calculation shows that planes {x2 − x1 = 0}
and {x0 − ξαx3 = 0} do not meet C at the same point for α = 1, 2, . . . , d − 1. Since
the plane {x2 − x1 = 0} does not contain any tangent line to C , we conclude that
{(x2 − x1)(x

d−1
0 − xd−1

3 ) = 0} intersects C at 3(d − 1) + 3 = 3d points.
• Let j = 1. We have

〈x2(xd−1
0 − x .

3d − 1), x1(x
d−1
0 − xd−1

3 )〉 = 〈x2, x1〉〈xd−1
0 − xd−1

3 〉.
One can see that the line {〈x2, x1〉} is not tangent to C , moreover by Lemma 2.6, we have
{〈x2, x1〉} ∩ {xd−1

0 − xd−1
3 = 0} ∩C = ∅. Therefore, {〈x2, x1〉〈xd−1

0 − xd−1
3 〉} intersects

C at 3(d − 1) + 2 = 3d − 1 points.
• Let j = 2. Since the point 〈x2, x1, x0〉 /∈ {xd−1

0 − xd−1
3 = 0}, therefore by Lemma 2.6

the desired result follows.

This completes the proof. �
Proposition 4.2 Let D j be as in Lemma 4.1. Then,

reg(ID j ) =
{
d + 1, if j = 0, 1

d, if j = 2.

Proof We are looking for minimal free resolutions of the form

0 −→ F3
A3−→ F2

A2−→ F1
A1−→ F0 −→ R/ID j −→ 0

for any ideal ID j . Since for any j we know the generators of ideals ID j , we can write matrices
Ai explicitly.

For the sake of the completeness, denote by H the form xd−1
0 − xd−1

3 . With some aid of
any algebraic software program, such as Macaulay2 [14], we compute the syzygy matrices
of S/ID j . In case of j = 0 we have

A1 = [
Q1 Q2 Q3 (x2 − x1)H

]
,

A2 =

⎡
⎢⎢⎣

x1 x0 x2x
d−1
3 −x2x

d−1
3 0

−x2 −x1 x2(H − xd−2
0 x1) x1(H − xd−2

0 x2) 0
x3 x2 xd−2

0 x22 − x3H xd−2
0 x22 − x3H (x1 − x2)H

0 0 −Q1 −Q1 − Q2 −Q1

⎤
⎥⎥⎦ ,
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514 I. B. Jafarloo, G. Malara

A3 =

⎡
⎢⎢⎢⎢⎣

x2H x0H
−xd−2

0 x1x2 −x1H − x2x
d−1
3

x1 + x2 x0 + x1
−x2 −x1
x3 x2

⎤
⎥⎥⎥⎥⎦ .

Therefore the minimal free resolution of ID0 is

0 −→ S2(−d − 3)
A3−→ S2(−3) ⊕ S3(−d − 2)

A2−→ S3(−2) ⊕ S(−d)
A1−→ S −→ S/ID0 −→ 0.

While for j = 1, there is

A1 = [
Q1 Q2 Q3 x2H x1H

]
,

A2 =

⎡
⎢⎢⎢⎢⎣

x1 0 x0 −xd−1
3 0

−x2 0 −x1 xd−2
0 x1 0

x3 0 x2 −xd−2
0 x2 H

0 x1 0 −x2 x0
0 −x2 0 x3 −x1

⎤
⎥⎥⎥⎥⎦ , A3 =

⎡
⎢⎢⎢⎢⎣

x1H
−Q2

−xd−2
0 x21 + x2x

d−1
3−Q3

Q1

⎤
⎥⎥⎥⎥⎦ .

Thus

0 −→ S(−d − 3)
A3−→ S2(−3) ⊕ S3(−d − 1)

A2−→ S3(−2) ⊕ S2(−d)
A1−→ S −→ S/ID1 −→ 0.

For the last remaining case, j = 2, the matrices are the following

A1 = [
Q1 Q2 Q3 x2H x1H x0H

]
,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 0 x0 0 0 −xd−1
3 0 0

−x2 0 −x1 0 0 xd−2
0 x1 H 0

x3 0 x2 0 0 −xd−2
0 x2 0 H

0 x1 0 x0 0 −x2 0 0
0 −x2 0 0 x0 x3 −x2 −x1
0 0 0 −x2 −x1 0 x3 x2

⎤
⎥⎥⎥⎥⎥⎥⎦

, A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 H
x0 0 −x2
0 xd−1

3 −xd−2
0 x1

−x1 x2 0
x2 −x3 0
0 x0 −x1
0 −x1 x2
0 x2 −x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence we can write

0 −→ S3(−d − 2)
A3−→ S2(−3) ⊕ S6(−d − 1)

A2−→ S3(−2) ⊕ S3(−d)
A1−→ S −→ S/ID2 −→ 0,

By a straightforward calculation from the definition of regularity, we get the desired assertion.
�

The minimal free resolution of ID1 , calculated in the previous theorem, gives us immediately
the following corollary.

Corollary 4.3 The ideal ID1 is a Gorenstein ideal.

Lemma 4.4 Let D0 be as in Lemma 4.1. Then, reg(I rD0
) ≥ rd + 1 for r ≥ 2.

Proof Set G = (x2 − x1)(x
d−1
0 − xd−1

3 ). The r -th power of ID0 is as the following

I rD0
=

〈
Qr

1, Q
r−1
1 Q2, · · · , Q1G

r−1, · · · , Q2G
r−1, · · · , Q3G

r−1,Gr
〉
.
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Consider the 0-dimensional ideal J = 〈Q1, Q2, Q3,Gr 〉. Since I rD0
⊂ J , therefore we

have the following exact sequence:

0 → I rD0
→ J → J

I rD0

→ 0. (4.1)

Hence we have

reg(J ) ≤ max

{
reg

(
J

I rD0

)
, reg(I rD0

)

}
.

We claim that reg(J ) = rd + 1. Since IC ⊂ J we have [IC ]t = [J ]t for t ≤ rd − 1, and it is
known that HF(S/IC , t) = 3t + 1 for t ≥ 0. Therefore HF(S/J , t) = 3t + 1 for t ≤ rd − 1.
We know that the degree of J is 3rd , which means that either HF(S/J , rd) is 3rd−1 or 3rd .
To prove by contradiction, assume that HF(S/J , rd) = 3rd − 1. Hence, the first difference
of the Hilbert function of S/J is

1 3 3 3 · · · 1 1 0 .

So, by [13, Proposition 5.2] it follows that V (J ) contains a subset of rd + 2 collinear
points having multiplicities r . It contradicts the fact that V (J ) has only subsets of at most 2r
collinear points. Therefore,

t 0 1 2 3 · · · rd − 1 rd rd + 1 · · ·
HF(S/J , t) 1 4 7 10 · · · 3rd − 2 3rd 3rd · · · .

We conclude that reg(J ) = rd + 1.
We know from (4.1) that

HF(S/(J/I rD0
), t) = HF(S/I rD0

, t) − HF(S/J , t), ∀t ≥ 0.

Since the set minimal generators of I rD0
has only one form of degree β(I rD0

) = rd , we
conclude that HF(S/I rD0

, t) − HF(S/J , t) = c ∈ Z
+, for all t ≥ rd . Therefore, the Hilbert

function of S/(J/I rD0
) is partially as follows:

t 0 1 2 3 · · · rd rd + 1 rd + 2 · · ·
HF(S/(J/I rD0

), t) 0 0 3 10 · · · c c c · · · .

This follows that reg
( J
I rD0

)
is at most rd−1. From Proposition 2.5, we know that reg(I rD0

) ≥
rd , hence, reg

( J
I rD0

)
< reg(I rD0

). Therefore,

rd + 1 = reg(J ) ≤ max

{
reg

(
J

I rD0

)
, reg(I rD0

)

}
= reg(I rD0

).

The proof is completed. �
Theorem 4.5 Let D j be as in Lemma 4.1. If r ≥ 2 and d ≥ 2, then

(1) reg(I rD0
) = rd + 1,

(2) reg(I rD1
) = reg(I rD2

) = rd,

Proof The proof of (1) is a direct consequence of Propositions 2.5,4.2 and Lemma 4.4. The
proof for j = 1 follows from Propositions 4.2,2.5 and [7, Proposition 1.12.6]. The last
remaining case for j = 2 similarly the result follows from Propositions 2.5 and 4.2. The
proof is complete. �
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Corollary 4.6 For the ideals ID j defined in Lemma 4.1, we have

areg(ID j ) = lim
r→∞

reg(I rD j
)

r
= d.

Remarks in P
n

It is natural to ask about the regularity of the same type of ideals in higher projective spaces.
However, simply calculations can show that the formula for reg(I rD j

), with r > 1, is much

more complicated than for cases of P
2 and P

3, and can not be easily described. Thus, we
dedicate this section to be a leading step on further investigations in this subject, by proving
the lemma which concerns reg(ID j ).

Definition 4.7 Let n ≥ 4 and 0 ≤ j ≤ n − 1. Let ID j be the ideal of a set nd − j points on
C defined by the ideal I = I2(M) as follows,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ID0 = I +

〈
(xn−1 − x1)(x

d−1
0 − xd−1

n )
〉
,

ID1 = I +
〈
xn−1(x

d−1
0 − xd−1

n ), xn−2(x
d−1
0 − xd−1

n )
〉
,

ID j = ID j−1 +
〈
xn− j−1(x

d−1
0 − xd−1

n )
〉
, if 2 ≤ j ≤ n − 1.

One can easily observe that the proof of the fact that ideals ID j indeed describes the set of
nd − j distinct points can be mimic from the proof of Lemma 4.1. Also the next remark is
similar to the result obtained in Proposition 4.2.

Remark 4.8 For ideals ID j defined as in Definition 4.7, one can compute the reg(ID j ) as
in Proposition 4.2 by writing their free resolutions or directly by computing their Hilbert
functions,

reg(ID j ) =
{
d + 1, if 0 ≤ j < n − 1

d, if j = n − 1.

5 Symbolic defect

Comparing symbolic and ordinary powers of ideals of points in P
N has became very popular

in recent years. There are a few different concepts that are concerning “the ideal containment
problem". In this section we want to analyse one of them in the case of ideals ID j . Let us
recall first the definition of symbolic power of ideal.

Definition 5.1 Let I be a homogeneous ideal in a polynomial ring R. For m ≥ 1, the m-th
symbolic power of I is the ideal

I (m) = R ∩
⎛
⎝ ⋂

p∈Ass(I )
(Im)p

⎞
⎠ ,

where the intersection is taken over all associated primes p of I .

It is known that for any m the inclusion Im ⊆ I (m) holds, but the reverse does not hold in
general. Therefore it is natural to ask about the number of generators in the module I (m)/Im .
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Definition 5.2 We define the m-th symbolic defect of I for any integer m ≥ 2 to be

sdefect(I ,m) = the number of minimal generators of I (m)/Im .

We refer the interested readers in this subject to [12].
Motivated by the result of relation between symbolic and ordinary powers obtained for

ideal of s general points on smooth conic [3], we take another step towards description of
this behaviour for ideals of s general points on a TCC, by analysing the symbolic defect of
ID j . What we can prove for those ideals is the following:

Theorem 5.3 Let ID j be the ideals of points defined in Lemma 4.1. Then

(1) sdefect(ID1 ,m) > 0, if m ≥ 3.
(2) sdefect(ID j ,m) > 0 for j = 0, 2.

Proof Our proof is based on simply observation that a particular element, different for each
case, belongs to I (m)

Dj
\ImDj

.
For the case (1) consider the polynomial

f1 = Q1Q3(x
d−1
0 − xd−1

3 ).

We prove by induction on k ≥ 1 that

f k1 ∈ I (3k)
D1

, Q2 f
k
1 ∈ I (3k+1)

D1
, Q2Q3 f

k
1 ∈ I (3k+2)

D1
,

while

f k1 /∈ I 3kD1
, Q2 f

k
1 /∈ I 3k+1

D1
, Q2Q3 f

k
1 /∈ I 3k+2

D1
. (5.1)

First observe that f1 ∈ I (3)
D1

, which is a straightforward consequence of the Zariski–Nagata

theorem (see [10, Theorem 3.14]). Assume for the induction hypothesis that we have f k1 ∈
I (3k)
D1

, for some k > 1. Then one can easily check that there are Q2 f k1 ∈ I (3k+1)
D1

, Q2Q3 f k1 ∈
I (3k+2)
D1

, once again by the Zariski–Nagata theorem. The fact that f k+1
1 ∈ I (3k+3)

D1
follows

from induction hypothesis together with

f k1 f1 ∈ I (3k)
D1

I (3)
D1

⊂ I (3k+3)
D1

,

since symbolic powers of any homogeneous ideal I form graded sequence of ideals.
Now we turn to the second part of the proof of (1). It can be checked by any symbolic

algebra program, or check by hand, that f1 /∈ I 3D1
. Therefore directly from the definition of

ordinary power we get

f k1 /∈ I 3kD1
.

Multiplying element f k1 by appropriate Qi ∈ ID1 gives the desired assertion (5.1).
The proof of the case (2) is identical as the case (1), if we instead of taking f1 consider

the polynomials

f0 = Q3(x2 − x3)(x
d−1
0 − xd−1

3 ), f2 = Q3(x
d−1
0 − xd−1

3 ),

and proceed by induction on k ≥ 1 in order to show that

f k0,2 ∈ I (2k)
D0,2

, Q1 f
k
0,2 ∈ I (2k+1)

D0,2
,
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and

f k0,2 /∈ I 2kD0,2
, Q1 f

k
0,2 /∈ I 2k+1

D0,2
.

�
Remark 5.4 There is one missing case of sdefect(ID1 , 2) in the statement of Theorem 5.3.
We expect that sdefect(ID1 , 2) = 0, however we do not have a theoretical proof of this
hypothesis.

Motivated by numerous tests and observations that we made, we want to finish this section
with a conjecture that we was not able to prove, but we believe to be true.

Conjecture 5.5 Let D j be a set of 3d − j general points on a TCC, where 0 ≤ j ≤ 2. Then

1) I (m)
Dj

⊆ I rD j
if and only if m ≥ r + 1 for any integer r ≥ 2, in the case j = 0, 2.

2) I (m)
D1

⊆ I rD1
if and only if m ≥ r + 1 for r ≥ 3, and moreover, I (m)

D1
⊆ I 2D1

if and only if
m ≥ 2.
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