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Abstract
In the numerical integration of nonlinear autonomous initial value problems, the computa-
tional process depends on the step size scaled vector field h f as a distinct entity. This paper
considers a parameterized transformation

h f �→ h f ◦ (I − γ h f )−1,

and its role in thefinite step size stability of singly diagonally implicit Runge—Kutta (SDIRK)
methods. For a suitably chosen γ > 0, the transformed map is Lipschitz continuous with
a reasonably small constant, whenever h f is negative monotone. With this transformation,
an SDIRK method is equivalent to an explicit Runge–Kutta (ERK) method applied to the
transformed vector field. Through this mapping, the SDIRK methods’ A-stability, and linear
order conditions are investigated. The latter are closely related to approximations of the expo-
nential function ez that are polynomial in z, when considering ERKmethods, and polynomial
in terms of the transformed variable z(1 − γ z)−1, in case of SDIRK methods. Considering
the second family of methods, and expanding the exponential function in terms of this trans-
formed variable, the coefficients can be expressed in terms of Laguerre polynomials. Lastly, a
family of methods is constructed using the transformed vector field, and its order conditions,
A-stability, and B-stability are investigated.
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1 Introduction

Devised by Dahlquist, the linear test equation ẋ = λx , with parameter λ ∈ C, is the standard
problem for analyzing numerical stability of time steppingmethods for initial value problems
of ordinary differential equations (ODEs). Although numerical stability depends both on the
problem parameter λ and the method’s step size h > 0, it only depends on their product
z = hλ ∈ C. Thus, it can be analyzed in terms of a single parameter, the scaled vector field
z. For example, integrating the test equation by a Runge–Kutta (RK) method, we obtain the
recursion

xn+1 = S(z) xn,

where the stability function S(z) is a polynomial P(z) if the method is explicit, and a rational
function R(z) if the method is implicit. The method’s stability region consists of the set of
z ∈ C which are mapped by the stability function S into the unit circle, i.e., |R(z)| ≤ 1 in
the implicit case, and |P(z)| ≤ 1 in the explicit case.

Since P(z) → ∞when z → ∞, all explicitmethods have bounded stability regions. Thus,
explicit methods will do as long as |z| � 1, corresponding to nonstiff problems, but only
implicit methods can be stable for large vales of z. To be useful for stiff differential equations,
implicit methods are typically designed so that the stability region {z ∈ C : |R(z)| ≤ 1}
covers a large portion, possibly all, of C−. This way numerical stability can be maintained
without severe step size restrictions.

Although simple, the linear test equation has strong implications. In a broader context
Re(z) < 0 corresponds to uniform negative monotonicity and dissipation. Likewise, |z| 	 1
corresponds to problems with large scaled Lipschitz constants. The idea of this paper is to
transform the scaled vector field into another vector field, which can be handled by an explicit
method. We seek a map M : C → C such that

Re(z) ≤ 0 
⇒ |M(z)| � 1.

The simplest choice is a Möbius transformation

z �→ w = z

1 − γ z
,

where γ > 0 is chosen so that the left half-plane Re(z) ≤ 0 is mapped into a disk of moderate
radius,

∣
∣
∣
∣
w + 1

2γ

∣
∣
∣
∣
≤ 1

2γ
.

Here the imaginary axis in the z-plane is mapped to the boundary of the disk, and z = −1 to
its inside (see Fig. 1).

The motivation is that a polynomial P(w) is then equivalent to a rational function,

P(w) = P

(
z

1 − γ z

)

= R(z).

Thus, applying an explicit Runge–Kutta (ERK) method (with a bounded stability region)
to the modified vector field (which has a moderate scaled Lipschitz constant) is equivalent
to applying a particular kind of implicit RK method with unbounded stability region to the
original vector field, which is only assumed to be dissipative.

We shall demonstrate that for a single parameter γ , this procedure is equivalent to a singly
diagonally implicit Runge–Kutta (SDIRK) method, while, if several different parameters
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Fig. 1 Image of the Möbius map.
Half-planes Re z < a < 0 are
mapped by the transformation
z �→ w = z

1−γ z into circles

centered at − 1
2γ

1−2aγ
1−aγ

with

radius 1
2γ

4aγ−1
aγ−1 . Depicted is the

γ = 1 case, with color shades
corresponding to different values
of a. In particular, for a = 0, the
left half plane Re z ≤ 0 is
mapped into a subset of the unit
circle, |z + 1

2 | ≤ 1
2

γ are chosen, it is equivalent to a DIRK method. We then use this equivalence to explore
the behaviour of SDIRK methods on linear problems. This leads us to an expansion of the
exponential function in terms of modified Laguerre polynomials. We explore how a similar
transformationmay be used to define a family ofRKmethodswithB-stability and consistency
that are easy to characterize.

A useful review of general purpose DIRK-type methods is given by [6], where many
examples are given of the different method properties, andwhat aspects have to be considered
in the choice of methods. A full treatment of explicit and implicit RK methods is given in [2,
4, 5]. This also includes the special topic of B-stability [1], and its relation to A-stability [3].

2 From the test equation to systems of ODEs

The transformation applied to the linear test equation can be adapted to linear and nonlinear
systems of ordinary differential equations.

2.1 The linear case

The linear scalar test equation provides a sufficient model for diagonalizable systems of
ODEs. If A ∈ R

n×n represents the vector field and A = T−1�T is its spectral decomposition,
then, taking y(t) = T x(t), the systems

ẋ(t) = Ax(t) and ẏ(t) = �y(t)

are equivalent. The latter system is merely a collection of scalar equations, whose solutions
decrease monotonically if and only if the eigenvalues reside in the left complex half plane,
i.e.,

α[A] = max
1≤ j≤n

Re λ j (A) ≤ 0,

where α[A] is the spectral abscissa of A.
Integrating this system with an RK method yields the recursion

xn+1 = S(hA)xn,
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170 A. Molnár et al.

where S is the method’s stability function and h = tn+1− tn is the time step, with xn ≈ x(tn).
This recursion is equivalent to yn+1 = S(h�)yn , with yn ≈ y(tn).

Therefore, the condition for stability is

|S(hλ j (A))| ≤ 1.

In other words, if the stability function S maps the negative half plane Re z ≤ 0 into the
unit circle (the A-stability condition), then the numerical solution is stable whenever the
differential equation is.

This result generalizes to systems of equations using the Euclidean logarithmic norms and
matrix norms to replace the real part and absolute value, respectively. Thus, if S satisfies the
A-stability condition above, any matrix having a nonpositive Euclidean logarithmic norm
M2[hA] ≤ 0 will map to a contraction, ‖S(hA)‖2 ≤ 1, and guarantee stability. Here, the
logarithmic norm is defined by

M2[A] = sup
u �=0

u∗Au
u∗u

.

This pattern also generalizes to the nonlinear case, with certain restrictions on A- and
B-stability. Following [8], for a vector field f : Rn → R

n we define its least upper bound
(lub.) logarithmic Lipschitz constant

M2[ f ] = sup
u �=v

〈u − v, f (u) − f (v)〉
〈u − v, u − v〉 ,

and its Lipschitz constant

L2[ f ] = sup
u �=v

〈 f (u) − f (v), f (u) − f (v)〉
〈u − v, u − v〉 .

Weremark that a greatest lower bound logarithmicLipschitz constant can be defined similarly,
with inf in place of sup in the former equation.Wewill not use this quantity directly, therefore
we omit the lub. qualifier, i.e., by the logarithmic Lipschitz constant we will understand M2.

Given γ > 0, let us defineMγ : Rn×n → R
n×n , a mapping between matrix spaces, such

that

Mγ (hA) = hA(I − γ hA)−1.

Theorem 2.1 If h, γ > 0 and A ∈ R
n×n is a matrix, then the implication chain

M2[hA] ≤ 0 
⇒
∥
∥
∥
∥

1

2γ
I + Mγ (hA)

∥
∥
∥
∥
2

≤ 1

2γ

⇒ ∥

∥Mγ (hA)
∥
∥
2 ≤ 1

γ

holds.

In other words, the nonnegative definiteness of hA implies a circle condition onMγ (hA)

which leads to the h-independent bound on the latter.
Instead of proving this theorem separately, we show how the same chain of implications

holds in a general, nonlinear setting, where a scaled uniformly negative monotone vector
field is transformed by the Möbius map to a vector field with small scaled Lipschitz constant.
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2.2 The nonlinear case

Let us fix a γ > 0 and introduce the function spaces

Lipγ (Rn) = {

f ∈ Lip(Rn) : L2[ f ] ≤ γ −1} ,

Mon−(Rn) = {

f : Rn → R
n : L2[ f ] < ∞, M2[ f ] ≤ 0

}

.

Using these we can extend the Möbius map to the nonlinear case as

Mγ : Mon−(Rn) → Lipγ (Rn),

h f �→ h f ◦ (I − γ h f )−1.

The domain and range in this definition are justified by the following theorem.

Theorem 2.2 If f : Rn → R
n is a vector field, then the implication chain

M2[h f ] ≤ 0 
⇒ L2

[
1

2γ
I + h f ◦ (I − γ h f )−1

]

≤ 1

2γ

⇒ L2

[

h f ◦ (I − γ h f )−1
]

≤ 1

γ

holds.

Proof Let hg denote γ h f ◦ (I − γ h f )−1. Then our chain reads

M2[h f ] ≤ 0 
⇒ L2 [I + 2hg] ≤ 1 
⇒ L2 [hg] ≤ 1.

The second implication follows from a reverse triangle inequality. To show the first, we start
from the inequality defining M2[h f ]. We have that

〈u − v, h f (u) − h f (v)〉 ≤ M2[h f ] · 〈u − v, u − v〉
holds for all u, v in some suitably chosen domain. To further simplify notation, we will use
capital letters to refer to these differences: F = h f (u) − h f (v),G = hg(u) − hg(v), J =
u−v. Then this inequality (intended in the “for all possible pairs ofn-vectors” sense) becomes

〈J , F〉 ≤ M2[h f ] · 〈J , J 〉.
Our goal is to show that

〈J , F〉 ≤ 0 
⇒ 〈J + 2G, J + 2G〉 − 〈J , J 〉 ≤ 0.

Obviously 〈J , γ F〉 ≤ 0 follows from the inequality on the left, thus by the polarization
identity

〈J + γ F, J + γ F〉 − 〈J − γ F, J − γ F〉 ≤ 0.

Writing this as

〈J − γ F + 2γ F, J − γ F + 2γ F〉 − 〈J − γ F, J − γ F〉 ≤ 0,

and momentarily regarding J , F,G as functions to compose them from the right by (I −
γ h f )−1, or equivalently, making a change of variables of the form u − γ h f (u) = x we get

〈J + 2G, J + 2G〉 − 〈J , J 〉 ≤ 0.

��

123



172 A. Molnár et al.

3 SDIRK⇔ ERK +M�

Let us consider the Möbius transform of a step size scaled vector field h f

hg = Mγ (h f ) = h f ◦ (I − γ h f )−1.

Here, aswe have seen, themodified vector field has an h-independently small scaledLipschitz
constant, in the sense that even if h f has a large Lipschitz constant, hg has a small scaled
Lipschitz constant. Therefore it is possible to solve the modified problem numerically using
an explicit Runge–Kutta method.

This leads us to our main equivalence result, stated in the following theorem.

Theorem 3.1 SDIRK methods are equivalent to ERK methods combined with the Möbius
transformation Mγ in the sense that taking a single numerical step in the solution of the
transformed equation using an explicit method yields the same result as taking a single
numerical step in the solution of the original equation using an SDIRK method.

Proof Let us take a single step of step size h from x0 to x1 using a general s-stage explicit
Runge–Kutta method given by its Butcher-tableau (ai j )si, j=1, (bi )

s
i=1, applied to the trans-

formed vector field

hg = h f ◦ (I − γ h f )−1.

A step with the explicit method takes the form of

Xi = x0 +
i−1
∑

j=1

ai j hg(X j ) (i = 1, . . . , s),

x1 = x0 +
s

∑

i=1

bi hg(Xi ).

Introducing the variables Yi = (I − γ h f )−1(Xi ), these equations become

(I − γ h f )(Yi ) = x0 +
i−1
∑

j=1

ai j h f (Y j ) (i = 1, . . . , s),

x1 = x0 +
s

∑

i=1

bi h f (Yi ),

which is equivalent to

Yi = x0 +
i−1
∑

j=1

ai j h f (Y j ) + γ h f (Yi ) (i = 1, . . . , s),

x1 = x0 +
s

∑

i=1

bi h f (Yi ).
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Here we recognize the formula of a time step by an SDIRK method with Butcher-tableau

γ

a21 γ
...

. . .

as1 as2 as,s−1 γ

b1 b2 . . . bs

applied to the original vector field. ��
Let us remark that a similar argument works in the DIRK case, however the transformation

is more complicated. When we are at step n and time tn , we may define hg such that

hg(tn + h
s

∑

j=1

ai j , x) = (

h f ◦ (I − γi h f )
−1) (x) (i = 1, . . . , s)

holds. Then the above argument can be repeated with the appropriate γi in place of γ .

4 SDIRKmethods through theMöbius transformation

In this section we investigate the behaviour of SDIRK methods on linear problems through
the Möbius transformation.

The two fundamental topics of interest are stability and consistency. In the linear case,
both of these are studied through R̃, the stability function of the method. The first is related to
themagnitude of R̃, the second is to the ability of R̃ to approximate the (complex) exponential
map.

4.1 Stability

In Sect. 1 we have argued that if the ERK method’s stability function is R, then the stability
function of the method obtained by first transforming the vector field, then applying this ERK
method to it is

R̃(z) = R

(
z

1 − γ z

)

.

A-stability then becomes

z ∈ C
− 
⇒

∣
∣
∣R̃(z)

∣
∣
∣ ≤ 1.

Therefore it is enough to require that the image of the left half plane by the Möbius trans-
formation is contained in the stability region of the explicit method. The previous set is the
disk centered at − 1

2γ with radius 1
2γ , thus A-stability may be written as

|z| ≤ 1 
⇒
∣
∣
∣
∣
R

(−1 + z

2γ

)∣
∣
∣
∣
≤ 1.

Letting P(z) = R
(−1+z

2γ

)

, the condition becomes that P should map the unit disk into itself.

Assuming that the coefficients of P are ck , we have

ck = 1

k! R
(k)(−(2γ )−1)(2γ )−k .
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174 A. Molnár et al.

Forming a vector c of these coefficients, we have the following. Due to Parseval’s theorem,
a necessary condition is that ‖c‖2 ≤ 1. On the other hand, one sufficient condition is that
‖c‖1 ≤ 1, implying that ‖c‖2 ≤ 1√

deg P+1
is enough.

4.2 Consistency

As we have already mentioned, the order of consistency depends on how well the stability
function approximates the exponential map. More precisely, the SDIRK method satisfying
the linear order conditions up to order p can be expressed briefly as

R̃(z) = exp(z) + O(z p+1).

This implies that we are facing the approximation problem

R̃(z) = R

(
z

1 − γ z

)

≈ ez

for some polynomial R.

4.3 Möbius–Laguerre expansion of ez

Let us introduce the modified Laguerre polynomials

L̃n(γ ) =
{

1, n = 0,
1
n (−γ )n−1Ln−1(γ

−1), n ≥ 1,

where Ln is the nth Laguerre polynomial [7, with α = 1]. Then the following theorem holds.

Theorem 4.1
∞
∑

n=0

L̃n(γ )

(
z

1 − γ z

)n

= ez .

Proof The generating function of Ln is

∞
∑

n=0

Ln(x)t
n = 1

(1 − t)2
exp

(

− t x

1 − t

)

, |t | < 1.

Multiplying both sides by (1 − t)2, this is equivalent to

L0(x) + (L1(x) − 2L0(x))t +
∞
∑

n=2

(Ln−2(x) − 2Ln−1(x) + Ln(x))t
n = exp

(
t x

t − 1

)

, |t | < 1.

The recursion

Ln(x) =

⎧

⎪⎨

⎪⎩

1 n = 0

2 − x n = 1
(

2 − x
n

)

Ln−1(x) − Ln−2(x) n ≥ 2
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implies that this can be rewritten as

1 − xt +
∞
∑

n=2

(

− x

n
Ln−1(x)

)

tn = exp

(
t x

t − 1

)

, |t | < 1,

where the term −xt can be moved into the sum with n = 1. Substituting

t = zγ

γ z − 1
, x = 1

γ
,

and using that t(t − 1)−1 is an involution, we arrive at our result

1 +
∞
∑

n=1

(

− 1

nγ
Ln−1(γ

−1)

) (
zγ

γ z − 1

)n

= ez .

��
We remark that the relation between Laguerre polynomials and the stability function of the

SDIRKmethods has been explored previously [5], but not through theMöbius transformation
perspective.

4.4 A remark on implementation

The mathematical equivalence outlined in this paper is well mirrored in code.
In a fairly standard imperative style implementation of an SDIRK method one has three

main layers — loops — of computation. First there are the time steps. Inside each of these
are the stage steps, which calculate the stage values and derivatives. Inside each of these
calculations one has to solve a typically nonlinear equation of the form

ki = f

⎛

⎝

i−1
∑

j=1

ai j hk j + γ hki

⎞

⎠ .

This is usually done using an iterative Newton-like method, which becomes our last layer of
computation, below this lie the majority of vector field evaluations.

If implemented in the Runge–Kutta–Möbius sense, the layers stay the same with the
distinction that the iterative solver is moved down to the layer of vector field evaluations.

The reason for this is twofold. Firstly, in an explicit method there is no need for equation
solving during the stage steps. Secondly, implementing an inversion such as (I −γ h f )−1(c)
is in practice done by solving the equation c = (I − γ h f )(x).

Therefore the two viewpoints yield similar codes. This brings similar computational costs.
However, when the evaluation of the map

h f ◦ (I − γ h f )−1

is cheaper than the solution of the corresponding nonlinear equation, the Möbius style dom-
inates.

5 A family of Runge–Kutta–Möbius methods

In this section we are going to construct a family of Runge–Kutta methods. We describe their
B-stability and look at their order conditions.
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5.1 Construction

Assume a fixed γ > 0. Let us introduce the elementary Runge–Kutta–Möbius method N1(α)

identified with its step function

N1(α) = (I − (γ − α)h f ) ◦ (I − γ h f )−1.

This is a single stage implicit Runge–Kutta method since

N1(α) = I + αh f ◦ (I − γ h f )−1.

We define the s-stage elementary Runge–Kutta–Möbius (RKM) method as a composition of
these

Ns(b1, . . . , bs) =
◦

∏

j=s→...1
N1(b j ).

We will use the following remark in showing that these are Runge–Kutta methods.

Corollary 5.1 The stage value functions Si (a1:i,1:i−1) of an SDIRK method satisfy the recur-
sion

Si (a1:i,1:i−1) = (I − γ h f )−1

⎛

⎝I +
i−1
∑

j=1

ai j S j (a1: j,1: j−1)

⎞

⎠ 1 ≤ i ≤ s.

The pre-stage value functions Pi (a1:i,1:i−1) of an SDIRK method satisfy the recursion

Pi (a1:i,1:i−1) = I +
i−1
∑

j=1

ai j h f (I − γ h f )−1Pj (a1: j,1: j−1) 1 ≤ i ≤ s.

SDIRK methods are themselves pre-stage value functions.

Proof This is the functional form of Theorem 3.1. ��
Theorem 5.2 An s-stage SDIRK method satisfying the constant off-diagonal columns condi-
tion

ai j = b j for 1 ≤ j < i ≤ s

is an s-stage elementary RKM method

Ns(b1, . . . , bs) = Ns(b1:s).

Proof We proceed by induction. The one-stage case is clear. If G = h f (I − γ h f )−1, then

Ns(b1:s) = I +
s

∑

i=1

biGPi (a1:i,1:i−1)

= I +
s

∑

i=1

biGPi (b1:i−1)

= I +
s−1
∑

i=1

biGPi (b1:i−1) + bsGPs(b1:s−1)

= Ns−1(b1:s−1) + bsGNs−1(b1:s−1)

123



Runge–Kutta–Möbius methods 177

= (I + bsG)Ns−1(b1:s−1)

= N1(bs)Ns−1(b1:s−1).

��

5.2 Stability

The stability function of these methods takes the form

det(I − zA + z1 ⊗ bT )

det(I − zA)
= 1

(1 − zγ )s

s
∏

i=1

(1 − zγ + zbi ) =
s

∏

i=1

1 − (γ − bi )z

1 − zγ
,

since I + z1 ⊗ bT − zA is upper triangular with diagonal elements 1 − zγ + zbi . Clearly,
since this is the product of the stability functions of the components.

Due to the construction, both A- and B-stability can be guaranteed by requiring the com-
ponents to be A- and B-stable, respectively.

Let us characterize the B-stability of the components.

Theorem 5.3 When 0 < γ , the statements

i) M2[F] < 0 
⇒ L2[(I − αF)(I − γ F)−1] ≤ 1,
ii) |α| ≤ γ

are equivalent.

Proof The inequality of the first point is equivalent to

‖(I − αF)(I − γ F)−1(x) − (I − αF)(I − γ F)−1(y)‖22 ≤ ‖x − y‖22,
for all suitable x �= y in a suitable domain. We introduce u = (I − γ F)−1(x) and v =
(I − γ F)−1(y) to rewrite this as

‖(I − αF)(u) − (I − αF)(v)‖22 ≤ ‖(I − γ F)(u) − (I − γ F)(v)‖22.
If J = u − v, H = F(u) − F(v), then this is just

‖J − αH‖22 − ‖J − γ H‖22 ≤ 0.

Solving

J − αH = X + Y , J − γ H = X − Y

we get

X = J − α + γ

2
H , Y = γ − α

2
H .

So we continue with the polarization identity,
〈

J − α + γ

2
H ,

γ − α

2
H

〉

≤ 0,

which is equivalent to

γ − α

2
〈J , H〉 ≤ γ 2 − α2

4
〈H , H〉.
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From the assumptions we have that 〈J , H〉 ≤ 0 ≤ 〈H , H〉. Considering the signs of γ − α

and γ + α, there are four cases.
On the one hand, when γ ≥ α and γ ≥ −α, the inequality holds.
On the other hand, setting f = cI , and dividing both sides by 〈J , J 〉 > 0, we get

γ − α

2
c ≤ γ 2 − α2

4
c2.

Thus, picking c < 0 constants appropriately, we see that the case where γ ≥ α and γ ≥ −α

hold is the only possible one. ��
Corollary 5.4 The elementary RKM method N1(α) is B-stable if and only if

|γ − α| ≤ γ.

Proof Apply Theorem 5.3 to the elementary RKM method

N1(α) = (I − (γ − α)h f ) ◦ (I − γ h f )−1.

��

5.3 Consistency

In Theorem 5.2, we have seen that these are SDIRKmethods. Therefore, the�s(t)weight of
a t rooted tree can be expressed as a polynomial in γ , where the coefficients do not depend
on γ , and these coefficients can be expressed in terms of tree weights of the underlying ERK
method [2]. We are going to concentrate on the latter.

More precisely, we shall provide formulae for separating the last k of the bi parameters
from the rest in the order conditions. Firstly, one might separate bs from the rest using the
formula

�s(t) = bs
∏

t ′∈unroot(t)
�s−1(t

′) + �s−1(t),

where unroot maps a tree to a forest by removing its root node (and the corresponding edges).
We will use t ′ ∈ t to denote the same thing.

We are going to need the elementary symmetric polynomials

e j (x1, . . . , xn) =
∑

1≤i1<i2<···<i j≤n

xi1xi2 . . . xi j .

For example,

e0(x, y, z) = 1,

e1(x, y, z) = x + y + z,

e2(x, y, z) = xy + xz + yz,

e3(x, y, z) = xyz.

These have the property that

ek+1(x1, . . . , xn+1) = ek(x1, . . . , xn)xn+1 + ek+1(x1, . . . , xn).

We introduce the formal expressions

E j (x1, . . . , xn)�(t) =
∑

1≤i1<i2<···<i j≤n

xi1
∏

t ′∈t
xi2

∏

t ′′∈t ′
· · · xi j

∏

t ( j)∈t ( j−1)

�(t ( j)).
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We will use the shorter notation and write this expression as

E j (x1, . . . , xn) =
∑

1≤i1<i2<···<i j≤n

x1�
′
x2�

′′ · · · x j �( j).

For example,

E0(x, y, z) = 1,

E1(x, y, z) = x�
′ + y�

′ + z�
′,

E2(x, y, z) = x�
′
y�

′′ + x�
′
z�

′′ + y�
′
z�

′′,
E3(x, y, z) = x�

′
y�

′′
z�

′′′.

These satisfy the recursion

Ek+1(x1, . . . , xn+1) = Ek(x1, . . . , xn)xn+1�
(k+1) + Ek+1(x1, . . . , xn).

Theorem 5.5 If k ≤ s, then

�s(t) =
k

∑

j=0

E j (bs, . . . , bs−k+1) �s−k(t).

Proof The k = 0 case is clear. We proceed by induction.

�s(t) =
k

∑

j=0

E j (bs , . . . , bs−k+1)�s−k(t)

=
k

∑

j=0

E j (bs , . . . , bs−k+1)
(

bs−k�
( j+1) + 1

)

�s−k−1(t)

=
⎛

⎝

k
∑

j=0

E j (bs , . . . , bs−k+1) bs−k�
( j+1) + E j+1 (bs , . . . , bs−k+1)

⎞

⎠ �s−k−1(t)

+
⎛

⎝

k
∑

j=0

E j (bs , . . . , bs−k+1) − E j+1 (bs , . . . , bs−k+1)

⎞

⎠ �s−k−1(t)

=
⎛

⎝

k+1
∑

j=1

E j (bs , . . . , bs−k) + E0(bs , . . . , bs−k+1) − Ek+1(bs , . . . , bs−k+1)

⎞

⎠ �s−k−1(t)

=
⎛

⎝

k+1
∑

j=1

E j (bs , . . . , bs−k) + 1 − 0

⎞

⎠�s−k−1(t).

��

Corollary 5.6 If k ≤ s, then, for any lanky tree tl ,

�s(tl) =
k

∑

j=0

e j (bs, . . . , bs−k+1)�s−k(tl)

holds.
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Proof Unrooting a lanky tree yields a forest that has a single member, a lanky tree of size
one less. Thus, �(k) can be removed from the formula, and we are left with the elementary
symmetric polynomials. ��
Corollary 5.7 Given γ and the first s − k of the bi coefficients, it is possible to construct a
polynomial such that choosing its roots as the last k of the bi coefficients, the method satisfies
the first k linear order conditions.

Proof Apply the previous formula to the first k lanky trees one by one to recursively get
equations of the form

e j (bs, . . . , bs−k+1) = c j ( j = 1, . . . , k).

These are Viète-formulae that provide the coefficients of the polynomial. ��

6 Conclusion

In this paper we have considered a complex Möbius transformation

Mγ : C → C, z �→ z

1 − γ z

for some γ > 0. This maps the left complex half plane to the inside of a circle of radius γ −1.
Firstly, we have extended this transformation to linear systems. In Theorem 2.1, we have

shown that this extension maps matrices with nonpositive spectral abscissa to matrices with
2-norm at most γ −1.

Secondly, we have extended this transformation to the nonlinear system case via the
formula

h f �→ h f ◦ (I − γ h f )−1.

In Theorem 2.2, we have shown that this extension maps uniformly negative monotone,
Lipschitz-continous vector fields to ones with a Lipschitz-constant at most γ −1.

Thirdly, we have argued that a step size scaled vector field h f transformed this way will
therefore have an h-independent, small bound on its Lipschitz constant. Therefore an ERK
method may be applied to the transformed vector field. In Theorem 3.1, we have shown the
equivalence

SDIRK ⇔ ERK + Mγ ,

which says that applying an ERK method and transforming the step size scaled vector field
withMγ yields the same numerical solution as applying the corresponding SDIRK method.

Fourthly, we have used theMöbius transformation to view the stability function of SDIRK
methods, and by consequence their linear order and stability conditions in a new light. The
transformation led us to prove a Möbius–Laguerre expansion of the exponential function in
Theorem 4.1:

∞
∑

n=0

L̃n(γ )

(
z

1 − γ z

)n

= ez .

Then, we have remarked that the transformation viewpoint isolates the equation solver,
and speeds up calculation when h f (I − γ h f )−1 has a known closed form.
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Lastly, we have used another Möbius transformation to define a new family of RKM
methods. We have shown that these are SDIRK methods. In Theorem 5.3, we have extended
the proof of Theorem 2.2 to characterize their B-stability, and lastly, explored their order
conditions.
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