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Abstract
Let Aϕ denote the matrix of rotation with angle ϕ of the Euclidean plane, FLOOR the
function which rounds a real point to the nearest lattice point down on the left and ROUND
the function for rounding off a vector to the nearest node of the lattice. We prove under the
natural assumption ϕ �= k π

2 that the functions FLOOR ◦Aϕ and ROUND ◦Aϕ are neither
surjective nor injective. More precisely we prove lower and upper estimates for the size of
the sets of lattice points, which are the image of two lattice points as well as of lattice points,
which have no preimages. It turns out that the densities of those sets are positive.

Keywords rotation·digital · plane·lattice points·periodicity

1 Introduction

The digital plane is a lattice whose elements are points with integer coordinates, the so
called lattice points. A function R

2 �→ R
2 can be represented by a function Z

2 �→ Z
2 only

approximately, by rounding its values to a lattice point. Rounding is a mapping q : R2 �→ Z
2.

The discrete variant of the function f : R2 �→ R
2 is q ◦ f . Of course there are plenty discrete

variants of f . One of the most studied function of the plane is the rotation, which is a 2 × 2
real matrix with eigenvalues cosϕ + i sin ϕ and cosϕ − i sin ϕ. Let us denote it by Qϕ . There
exists an invertible real matrix Q such that Qϕ = Q Aϕ Q−1 with

Aϕ =
(
cosϕ − sin ϕ

sin ϕ cosϕ

)

For (x, y) ∈ R
2 the sequence of points { f n(x, y)}∞n=0 is called an orbit1 of f generated by

(x, y). The orbits of Qϕ generated by any non-zero points lie on an ellipse, those of Aϕ on
the unit circle. Plainly Qϕ is a bijective mapping onR2, but usually not bijective on Z2, even
after some rounding. Combining it with a rounding, which results the function q ◦ Qϕ we

1 Some author calls this sequence trajectory.
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Rotation on the digital plane 565

obtain a mapping of Z2 �→ Z
2, which is a discrete rotation in wide sense. Many interesting

and hard questions appear: is a discrete rotation injective, surjective or bijective? What about
its orbits? All orbits of Qϕ are bounded, but this is not at all clear for its discrete variants.
The investigation of such questions have long tradition, see the early example [6].

FLOOR,2 ROUND3 and TRUNC4 are eminent examples of rounding functions. Dis-
cretizing the rotation with them the resulted mappings Z2 �→ Z

2 are more or less different.
Kozyakin et al. [9] gave a good overview on the results concerning discretized rotations,
especially on ROUND ◦Aϕ and T RU NC ◦ Aϕ . Diamond et al. [7] proved that if ϕ �= k π

2 ,
k ∈ Z then all orbits of TRUNC ◦Aϕ eventually gets into the zero point. The situation is
very different with ROUND ◦Aϕ . Kozyakin et al. [9] proved among others that if the rotation
angle ϕ is such that the rows of all the nonnegative powers of the matrix Aϕ are rationally
independent then the density of lattice points with empty full preimages is positive. They
used measure theoretic approach, which allowed them to prove much more general results
too. For other probabilistic results on discrete rotations we refer to [6, 8, 13, 14].

In former investigations of the second author with different coauthors [1–4] a kind of
discrete rotation appears as a natural generalization of positional number systems. It was
given by FLOOR ◦Bϕ with

Bϕ =
(

0 1
−1 −λ

)
, λ = −2 cosϕ.

We come back to this function later, but before we discuss some properties of the FLOOR
function. It commutes with the additive group of translations of Z2 and the full preimage of
zero is [0, 1[×[0, 1[, which is Jordan measurable, thus FLOOR, like ROUND, is a quantizer
in the sense of [9]. Hence the discretized rotation FLOOR ◦Aϕ has similar properties as
ROUND ◦Aϕ . This holds, among others, for the above mentioned property of preimages.

In this note we prove under the natural assumption ϕ �= k π
2 that the function FLOOR ◦Aϕ

is neither surjective nor injective. More precisely we prove lower density estimates for the
sets of lattice points, which are the images of two lattice points as well as of lattice points,
which have no preimages. It turns out, see Theorems 3.1 and 4.2, that these densities are
positive. This means that the number of such lattice points lying in a box symmetric to the
origin and of side length 2M + 1 is O(M2). In Sect. 6 we indicate that the same results hold
to ROUND ◦Aϕ too. We use in the proof elementary results of uniform distribution theory
and properties of primitive Pythagorean triplets. Our results are more precise than those in
[9].

There are discrete rotations which are bijective. Trivial examples are FLOOR ◦Aϕ with
ϕ = k π

2 , k ∈ Z. More interesting are the functions FLOOR ◦Bϕ , 0 ≤ ϕ < 2π . Reeve-Black
and Vivaldi [12] claim that a generic discrete rotation is neither injective nor surjective. Our
results justify this claim for the function FLOOR ◦Aϕ . To prove similar characterization for
FLOOR ◦Qϕ is a challenging problem. We expect that apart the previous examples only the
transpose of Bϕ lies in the exceptional set.

Despite many efforts and interesting results, we have deterministic knowledge only on the
orbits of FLOOR ◦Bϕ . For the eleven values 2 cosϕ = λ = 0,±1, (±1±√

5)/2,±√
2,±√

3
all orbits are periodic, see [2, 3, 10]. Generally it was proved by Akiyama and Pethő [4] that

2 Rounds a real point to the nearest lattice point down on the left.
3 Rounds coordinatewise towards nearest integer neighbor unless both neighbors are equidistant, in which
case round up.
4 Denotes the coordinate-wise truncation of the fractional part of a vector towards the zero point.
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566 C. Hannusch, A. Pethő

for any ϕ there are infinitely many periodic orbits. This is still far from proving the conjecture
that all orbits are periodic see [2].

The matrix Aϕ through Aϕ · (a, b), (a, b) ∈ R
25 induces a linear mapping on R

2, which
we will denote by Aϕ too.

FLOOR and integer part 
.� are the same functions, in the sequel we will use the later. To
simplify our notation we define rϕ : Z2 �→ Z

2 by

rϕ(a, b) = 
Aϕ(a, b)�
= (
a cosϕ − b sin ϕ�, 
a sin ϕ + b cosϕ�).

We computed the orbits of rϕ for many choices of the angle and the starting point and
found always periodicity. For the angle ϕ = π

4 we found infinitelymany starting points which
generate short periodic orbit, see Theorem 5.2. Based on our numerical and theoretical results
we propose the following conjecture

Conjecture 1.1 Every orbit of rϕ is periodic.

We also use the fractional part function, i.e, {x} = x − 
x�. Both functions will be
applied coordinate wise to the points of the real vector spaces. We use the same notation to
these extended functions. Let U = [0, 1[×[0, 1[ and Ū = [0, 1] × [0, 1], then obviously
rϕ(a, b) = (x, y) ∈ Z

2 if and only if Aϕ · (a, b) = (x, y) + u for some u ∈ U . The third
equivalent expression is {Aϕ · (a, b)} = Aϕ · (a, b) − rϕ(a, b).

2 Preliminary results

In order to prove our main results we need some tools from uniform distribution theory. Let
a = (a1, . . . , an),b = (b1, . . . , bn) ∈ R

n be such that 0 ≤ a j < b j ≤ 1, j = 1, . . . , n then
we set Ba,b = [a1, b1[× · · · × [an, bn[. This is a box with side lengths b1 − a1, . . . , bn − an ,
whose volume is plainly

∏n
j=1(b j − a j ). For a sequence of n-dimensional real vectors

X = (xm) set

A(X , Ba,b, N ) = |{m : 0 ≤ m ≤ N , {xm} ∈ Ba,b}|,
where |S| denotes the cardinality of the set S.

The sequence X is called uniformly distributed modulo 1, shortly uniformly distributed if

lim
N→∞

A(X , Ba,b, N )

N
=

n∏
j=1

(b j − a j )

holds for all a,b ∈ R
n with the above property. Notice that if X is uniformly distributed then

for any Ba,b there exists a constant c = ca,b > 0 such that

A(X , Ba,b, N ) > cN (2.1)

holds for all large enough N . Indeed, one may set c = ∏n
j=1(b j − a j ) − ε for some ε > 0.

The following theorem is a bit modified version of Theorem I, p. 64 of Cassels [5] and it
plays a crucial role in this paper.

5 To be precise we should write Aϕ · (a, b)T instead of Aϕ · (a, b), where (a, b)T denote the transpose of the
vector (a, b), i.e., a column vector. As in the article we should do this often, and from the context it will be
clear whether the actual vector is a row or a column vector, we avoid this extra notation.
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Theorem 2.1 Let L j (x) for 1 ≤ j ≤ m be homogeneous linear forms in the n variables
x = (x1, . . . , xn). Suppose that the only set of integers u1, …, um such that

u1L1(x) + · · · + um Lm(x)

has integer coefficients in x1, …, xn is u1 = · · · = um = 0. Then the set of vectors z(x) =
(L1(x), . . . , Lm(x)) for integral x is uniformly distributed modulo 1.

Now we formulate the main lemma of this paper.

Lemma 2.2 Let 0 < t1, t2 ≤ 1 and set L1(x1, x2) = x1 cosϕ − x2 sin ϕ, L2(x1, x2) =
x1 sin ϕ + x2 cosϕ. If ϕ �= k π

2 , k ∈ Z then there exists a constant c1 > 0 depending only
on ϕ, t1, t2 such that the number of solutions (x1, x2) ∈ Z

2, |x1|, |x2| ≤ M of the system of
inequalities

0 ≤ {L1(x1, x2)} < t1 (2.2)

0 ≤ {L2(x1, x2)} < t2 (2.3)

is at least c1M2.
The same statement holds for the number of solutions in pairs of odd integers.

There are only (2M + 1)2 integer pairs with |x1|, |x2| ≤ M , thus our lower estimate is up
to constant best possible.

Proof In the proof we have to distinguish three cases according the arithmetic nature of cosϕ

and sin ϕ.
Case 1. 1, sin ϕ, cosϕ are Q-linearly independent. Then the linear forms L1(x1, x2),

L2(x1, x2) satisfy the assumptions of Theorem 2.1, thus the points ({L1(a, b)}, {L2(a, b)})
for a, b ∈ Z are uniformly distributed in [0, 1[2.

There are (2M +1)2 points (a, b) ∈ Z
2 with |a|, |b| ≤ M , thus setting B = [0, t1[×[0, t2[

and N = (2M + 1)2 in (2.1) we obtain the statement immediately.
If ({L1(a, b)}, {L2(a, b)}) for a, b ∈ Z is uniformly distributed in [0, 1[2 then the same

holds if (a, b) runs through a sublattice of Z2, which proves the second assertion. In Case
2 we use the uniformly distributed property of some sequence, hence for them the second
assertion holds by the above remark.

Case 2. cosϕ = r1 sin ϕ + r2, where r1, r2 ∈ Q, r1 �= 0, and sin ϕ /∈ Q. There exist
integers p1, p2, q with q > 0 such that r1 = p1

q and r2 = p2
q . For any (a, b) ∈ Z

2 there exist
u, v, s, t ∈ Z, 0 ≤ s, t < q such that a = uq + s and b = vq + t . With these notations we
obtain

L1(a, b) =
(

a
p1
q

− b

)
sin ϕ + ap2

q

= (up1 − vq) sin ϕ +
(

sp1
q

− t

)
sin ϕ + ap2

q

and similarly

L2(a, b) = (uq + vp1) sin ϕ +
(

s + tp1
q

)
sin ϕ + b

p2
q

.

Fix s, t and set f1 =
{(

sp1
q − t

)
sin ϕ + ap2

q

}
and f2 =

{(
s + tp1

q

)
sin ϕ + b p2

q

}
. We have

0 ≤ f1, f2 < 1. With these notations we have to count the number of solutions of the system
of inequalities

0 ≤ {(up1 − vq) sin ϕ + f1} < t1
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568 C. Hannusch, A. Pethő

0 ≤ {(uq + vp1) sin ϕ + f2} < t2

in the integers u, v with |u|, |v| ≤ M
q − 1. We have to distinguish two subcases.

Case 2.1. p1 �= ±q . The number D = q2 − p21 is non-zero. As sin ϕ /∈ Q and D ∈ Z we
have D sin ϕ /∈ Q, hence the sequence ({nD sin ϕ}) is uniformly distributed in [0, 1[. Thus
the inequality

0 ≤ {u D sin ϕ + f } ≤ t

has for any fixed 0 ≤ f < 1, 0 < t < 1 at least O(M ′) solutions in u ∈ Z, |u| ≤ M ′, where
the positive constant indicated by the O notation depends only on sin ϕ and on t . Hence the
system of the (independent) inequalities

0 ≤ {u1D sin ϕ + f1} < t1 (2.4)

0 ≤ {u2D sin ϕ + f2} < t2 (2.5)

has at least O(M ′2) solutions in (u1, u2) ∈ Z
2, |u1|, |u2| ≤ M ′.

For all such pairs the system of linear equations

up1 − vq = u1(q
2 − p21)

uq + vp1 = u2(q
2 − p21)

has unique solution in u, v ∈ Z, i.e. (u, v) solves our original system of equations. Using
Cramer’s rule we obtain

u = (u1 p1 + u2q)(q2 − p21)

p21 + q2
and v = (u2 p1 − u1q)(q2 − p21)

p21 + q2
.

Thus |u|, |v| ≤ 2q M ′. Hence choosing M ′ = M
2q2 we can produce at least O(M2) integer

solutions of (2.2) and (2.3).
Case 2.2. p1 = ±q . Repeating the argument of the last case with D = 2p1 we obtain

O(M2) solutions (u1, u2) ∈ Z
2 of the system of inequalities (2.4), (2.5) with |u1|, |u2| ≤

M/2. For all such pairs the system of equations

up1 − vq = p1(u ∓ v) = 2p1u1

uq + vp1 = ±p1(u ± v) = 2p1u2

has unique solution in (u, v) ∈ Z
2 with |u|, |v| ≤ M . This completes the proof of Case 2.

Case 3. sin ϕ, cosϕ ∈ Q. Although the statement is the same as in the other cases, we
have to use different tools in the proof, because Theorem 2.1 does not hold. We have a
kind of discrete uniform distribution treated systematically in Narkiewicz [11]. First we set
sin ϕ = p1

q , cosϕ = p2
q , where p1, p2, q ∈ Z, p1, p2, q �= 0. Then

1 = sin2 ϕ + cos2 ϕ = p21
q2 + p22

q2 ,

which implies p21 + p22 = q2, i.e. p1, p2, q is a Pithagorean triple, and we may assume
that it is primitive, i.e. gcd(p1, q) = gcd(p2, q) = 1. Then there are u, v ∈ Z, u �≡ v

(mod 2), gcd(u, v) = 1 such that p1 = u2 − v2, p2 = 2uv or p1 = 2uv, p2 = u2 − v2 and
q = u2 + v2. We work out in the sequel only the first possibility, because the alternative case
can be handled analogously.
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Rotation on the digital plane 569

With these notations and (a, b) ∈ Z
2 we have

L1(a, b) = a
2uv

u2 + v2
− b

u2 − v2

u2 + v2
,

L1(a, b) = a
u2 − v2

u2 + v2
+ b

2uv

u2 + v2
.

Because gcd(2uv, u2 + v2) = 1 there exists an integer 0 < h < u2 + v2 = q such that

2uvh ≡ u2 − v2 (mod u2 + v2). (2.6)

For fixed a, b ∈ Z there exist d, d1 ∈ Z such that a − hb = d(u2 + v2) + d1, where
0 ≤ d1 < u2 + v2. Then

a(u2 − v2) + 2buv = bh(u2 − v2) + d(u4 − v4) + d1(u
2 − v2) + 2buv.

Multiplying this by 2uv and taking (2.6) into account we obtain

2uv(a(u2 − v2) + 2buv) ≡ 2uvhb(u2 − v2) + 2uvd1(u
2 − v2) + b(2uv)2

≡ b((u2 − v2)2 + 4u2v2) + 2uvd1(u
2 − v2)

≡ b(u2 + v2)2 + 2uvd1(u
2 − v2)

≡ 2uvd1(u
2 − v2) (mod u2 + v2).

Since gcd(2uv, u2 + v2) = 1, we obtain

a(u2 − v2) + 2buv ≡ d1(u
2 − v2) (mod u2 + v2). (2.7)

On the other hand, by (2.6) we get

2uva − (u2 − v2)b ≡ b(2uvh − (u2 − v2)) + 2uvd1

≡ 2uvd1 (mod u2 + v2).

Hence

{L1(a, b)} =
{

2uvd1
u2 + v2

}

and

{L2(a, b)} =
{

(u2 − v2)d1
u2 + v2

}
.

Choosing d1 = 0, which implies a = hb + d(u2 − v2) we obtain that the pair (a, b) ∈ Z
2

solves the system of inequalities (2.2), (2.3).
Finally, choosing b, d ∈ Z such that |b| ≤ M

2q < M
2h and |d| ≤ M

2|p1| = M
2|u2−v2| we obtain

|a| ≤ M , hence such (a, b) ∈ Z
2 pairs not only solve the system of inequalities (2.2),(2.3),

but satisfy |a|, |b| ≤ M too. Plainly the number of such pairs is at least O(M2) and the
lemma is completely proved.

Choosing b odd a is odd too for all odd or even d depending on the parities of h and
u2 − v2. The argument of the last paragraph proves the second assertion in this case. ��
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570 C. Hannusch, A. Pethő

3 Injectivity of digital rotation

Before stating the main result of this section we introduce a notation: Tϕ(M) denotes the
number of (x, y) ∈ Z

2 such that |x |, |y| ≤ M and (x, y) is the image by rϕ of two different
grid points. If ϕ = k π

2 , k ∈ Z then rϕ = Aϕ , thus it is bijective, i.e. Tϕ(M) = 0. Otherwise,
we prove that Tϕ(M) tends to infinity.

Theorem 3.1 If ϕ �= k π
2 , k ∈ Z then there exist constants c2 > 0 depending only on ϕ such

that Tϕ(M) ≥ c2M2.

Proof Let (a1, b1), (a2, b2) ∈ Z
2 such that rϕ(a1, b1) = rϕ(a2, b2). Then


a1 cosϕ − b1 sin ϕ� = 
a2 cosϕ − b2 sin ϕ�

a1 sin ϕ + b1 cosϕ� = 
a2 sin ϕ + b2 cosϕ�,

which implies

(a1 − a2) cosϕ − (b1 − b2) sin ϕ = u1

(a1 − a2) sin ϕ + (b1 − b2) cosϕ = u2

for some −1 < u1, u2 < 1. After squaring and adding these equations we obtain

(a1 − a2)
2 + (b1 − b2)

2 = u2
1 + u2

2 < 2.

As a1 − a2 and b1 − b2 are integers the right hand side can be either zero ore one. The first
case is excluded because either a1 − a2 or b1 − b2 is nonzero. Thus we have the following
four possibilities:

a1 − a2 −1 0 0 1
b1 − b2 0 −1 1 0

This implies that if two grid points have the same image by rϕ , then they are neighbors.
Now, we show that for each ϕ there exist infinitely many neighbors such that rϕ(a1, b1) =

rϕ(a2, b2).
First, we assume a1 = a2 and b2 = b1 + 1. Inserting them into the starting equations we

obtain


a1 cosϕ − b1 sin ϕ� = 
a1 cosϕ − b1 sin ϕ − sin ϕ� (3.1)

and


a1 sin ϕ + b1 cosϕ� = 
a1 sin ϕ + b1 cosϕ + cosϕ� (3.2)

If ϕ ∈ ] 3π
2 , 2π

[
, then sin ϕ < 0 and cosϕ > 0 and the system of equations (3.1) and (3.2)

holds if and only if

0 ≤ {L1(a1, b1)} = {a1 cosϕ − b1 sin ϕ} < 1 + sin ϕ (3.3)

and

0 ≤ {L2(a1, b1)} = {a1 sin ϕ + b1 cosϕ} < 1 − cosϕ. (3.4)

Observe that L1, L2 are the linear forms introduced in Lemma 2.2, further setting t1 =
1 + sin ϕ, t2 = 1 − cosϕ the lemma implies our statement in this case.

The other cases can be handled similarly we give only the important data for repeating
the argument.
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Rotation on the digital plane 571

If a2 = a1 + 1 and b2 = b1, then (3.1), (3.2) reads [L1(a1, b1)] = [L1(a1, b1) + cosϕ]
and [L2(a1, b1)] = [L2(a1, b1) + sin ϕ]. If ϕ ∈ ]

0, π
2

[
then sin ϕ, cosϕ > 0 and setting

t1 = 1 − cosϕ, t2 = 1 − sin ϕ we can apply Lemma 2.2.
If a2 = a1 and b2 = b1 − 1, then (3.1), (3.2) reads [L1(a1, b1)] = [L1(a1, b1) + sin ϕ]

and [L2(a1, b1)] = [L2(a1, b1) − cosϕ]. If ϕ ∈ ]
π
2 , π

[
then sin ϕ > 0 and cosϕ < 0 and

setting t1 = 1 − sin ϕ, t2 = 1 + cosϕ we are done by Lemma 2.2.
Finally if a2 = a1 − 1 and b2 = b1, then (3.1), (3.2) reads [L1(a1, b1)] = [L1(a1, b1) −

cosϕ] and [L2(a1, b1)] = [L2(a1, b1) − sin ϕ]. If ϕ ∈ ]
π, 3π

2

[
then sin ϕ, cosϕ < 0 and

setting t1 = 1 + cosϕ, t2 = 1 + sin ϕ finishes the proof by Lemma 2.2. ��

4 Surjectivity of digital rotation

In the previous section we proved that the digital rotation is usually not injective. Now we
prove that usually it is not surjective either. To achieve our goal we need an elementary
geometric lemma. To state and prove it we introduce some notation. For a point (a, b) ∈ R

2

put T(a,b) = (a, b) + U and T̄(a,b) = (a, b) + Ū , where + means here translation. The
squares T(a,b), (a, b) ∈ Z

2 are disjoint and their union coverR2. As Aϕ is a rotation the sets
Aϕ(T(a,b)) are squares too with the same properties. Thus there exists for any (n, m) ∈ Z

2

unique (a, b) ∈ Z
2 such that (n, m) ∈ Aϕ(T(a,b)).

Lemma 4.1 Let (n, m) ∈ Z
2. Then (n, m) �= rϕ(a, b) for each (a, b) ∈ Z

2 if and only if
(n, m) ∈ Aϕ(T(a,b)) and Aϕ(a + εa, b + εb) /∈ T(n,m) for each εa, εb ∈ {0, 1}. Moreover in
this case the points Aϕ(a +εa, b+εb), εa, εb ∈ {0, 1} belong in some order to the horizontal
and vertical neighbour squres to T(n,m).

Proof Necessity: If Aϕ(a +εa, b+εb) ∈ T(n,m) for some εa, εb ∈ {0, 1}, then rϕ(a +εa, b+
εb) = (n, m), thus (n, m) is the image of some point.

Sufficiency: We have T(a,b) = (a, b) + T(0,0), therefore Aϕ(T(a,b)) = Aϕ(a, b) +
Aϕ(T(0,0)), since Aϕ is linear. The same holds for the closure of T(a,b), denoted by T(a,b). In
Fig. 1 we show the four main situations of the rotated unit square.

We give the proof of the lemma in detail only for the case 3π
2 < ϕ < 2π , the other cases

can be handled similarly. Assume that (n, m) ∈ Aϕ(T(a,b)), but Aϕ(a + εa, b + εb) /∈ T(n,m)

for each εa, εb ∈ {0, 1}. Then we have

Aϕ(a, b + 1)y < m, Aϕ(a + 1, b)y ≥ m + 1,

Aϕ(a, b)x < n, Aϕ(a + 1, b + 1)x ≥ n + 1.

Here and in the sequel, Aϕ(., .)x , Aϕ(., .)y denote the x (respectively y) coordinate of the
corresponding point. Notice that the two strong inequalities are due to the assumption Aϕ(a+
εa, b + εb) /∈ T(n,m) for each εa, εb ∈ {0, 1}.

We show that T(n,m)\Aϕ(T(a,b)) is the union of three disjoint triangles H1, H2, H3. The
triangle H1 is bordered by the lines x = n, y = m + 1 and by the line segment between
the points Aϕ(a, b) and Aϕ(a + 1, b). Similarly H2 is bordered by the lines x = n + 1,
y = m + 1 and by the line segment between the points Aϕ(a + 1, b) and Aϕ(a + 1, b + 1).
Finally, the borders of H3 are the lines x = n, y = m + 1 and the line segment between the
points Aϕ(a, b + 1) and Aϕ(a + 1, b + 1).

That are proper triangles. For example, look at H1. The triangle with vertices Aϕ(a+1, b),
Aϕ(a+1, b+1) and the intersection of the lines x = Aϕ(a+1, b)x and y = Aϕ(a+1, b+1)y

is rectangular and the legth of its hypotenuse is 1, thus Aϕ(a+1, b+1)x − Aϕ(a+1, b)x < 1,
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572 C. Hannusch, A. Pethő

which together with the above inequalities implies Aϕ(a + 1, b)x > n. As Aϕ(a, b)x < n
the line x = n has an intersection with the line segment between Aϕ(a, b) and Aϕ(a + 1, b),
which is different from the end points. Similarly we have Aϕ(a, b)y − Aϕ(a +1, b)y < 1, i.e.
Aϕ(a, b)y < m + 1, hence the line y = m + 1 intersects the line segment between Aϕ(a, b)

and Aϕ(a + 1, b). In this case it may happen that the intersection point is Aϕ(a + 1, b).

As a byproduct we proved Aϕ(a + 1, b) ∈ T(n,m+1), i.e. rϕ(a + 1, b) = (n, m + 1).
Performing similar arguments for H2 and H3 we obtain that Aϕ(a +1, b+1) ∈ T(n+1,m), i.e.
rϕ(a + 1, b + 1) = (n + 1, m) and Aϕ(a, b + 1) ∈ T(n,m−1), i.e. rϕ(a, b + 1) = (n, m − 1)
respectively. Finally, one can prove Aϕ(a, b) ∈ T(n−1,m), i.e. rϕ(a, b) = (n − 1, m) too,
hence the second assertion is proved.

No we finalize the proof of the first assertion. We assume that there exists (c, d) ∈ Z
2,

such that rϕ(c, d) = (n, m). Then Aϕ(c, d) ∈ T(n,m) and (c, d) /∈ T(a,b), i.e. Aϕ(c, d) ∈
T(n,m)\Aϕ(T(a,b)), hence Aϕ(c, d) is contained in one of the triangles H1, H2, H3. We have
H1 ⊆ Aϕ(T(a,b−1)), which contains only the grid point Aϕ(a, b − 1), therefore (c, d) =
(a, b − 1). In contrast, Aϕ(a, b − 1)x < Aϕ(a, b) < n, i.e. 
Aϕ(a, b − 1)x� < n =

Aϕ(c, d)x�, which is a contradiction. We have H2 ⊆ Aϕ(T(a+1,b)) and H3 ⊆ Aϕ(T(a,b+1)),
which implies (c, d) = (a + 1, b) and (c, d) = (a, b + 1) respectively. The proof of the
case 3π

2 < ϕ < 2π is finished. As we mentioned above, the three other cases can be handled
similarly. ��

Similarly to Sect. 3 we introduce the function Nϕ(M), which is the number of grid points
(n, m), such that |n|, |m| ≤ M and which are images of no grid points under the mapping rϕ .
If ϕ = k π

2 , k ∈ Z then rϕ is bijective, hence Nϕ(M) = 0. By the next theorem this cannot
happen otherwise.

Theorem 4.2 If ϕ �= k π
2 , k ∈ Z then there exist constants c3 > 0 depending only on ϕ such

that Nϕ(M) ≥ c3M2.

x

y

Aϕ(0, 1)

Aϕ(1, 1)
Aϕ(1, 0)

0 < ϕ < π
2

x

y

Aϕ(0, 1)

Aϕ(1, 1)
Aϕ(1, 0)

π
2 < ϕ < π

x

y

Aϕ(0, 1)
Aϕ(1, 1)

Aϕ(1, 0)

π < ϕ < 3π
2

x

y

Aϕ(0, 1)
Aϕ(1, 1)

Aϕ(1, 0)

3π
2 < ϕ < 2π

Fig. 1 The situation of Aϕ(T(0,0))
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The orbits generated by points, which are images of no grid points are obviously different.
Hence an immediate consequence of the last theorem is:is

Corollary 4.3 If ϕ �= k π
2 then rϕ has infinitely many different orbits.

On the other hand many orbits of the above type have common members, i.e. they are not
disjoints. It is an open problem whether rϕ admits infinitely many disjoint orbits.

Proof of Theorem 4.2 Let (n, m) ∈ Z
2, which is the image of no grid points under rϕ . Then, by

Lemma 4.1, there exists (a, b) ∈ Z
2 such that (n, m) ∈ Aϕ(T(a,b)) and Aϕ(a + εa, b + εb) /∈

T(n,m) for all εa, εb ∈ {0, 1}. In the same lemma we proved that Aϕ(a, b), Aϕ(a, b + 1),
Aϕ(a + 1, b), Aϕ(a + 1, b + 1) belong in some order to the four unit squares left, right, top
and down to the unit square T(n,m). Depending on the size of ϕ we distinguish four cases.

Case 1: 0 ≤ ϕ < π
2 . Then, by Lemma 4.1, Aϕ(a, b) ∈ T(n,m−1), Aϕ(a, b + 1) ∈

T(n−1,m), Aϕ(a + 1, b) ∈ T(n+1,m), Aϕ(a + 1, b + 1) ∈ T(n,m+1), which means

0 ≤ a cosϕ − b sin ϕ − n < 1

0 ≤ a cosϕ − (b + 1) sin ϕ − (n − 1) < 1

0 ≤ (a + 1) cosϕ − b sin ϕ − (n + 1) < 1

0 ≤ (a + 1) cosϕ − (b + 1) sin ϕ − n < 1.

Rearranging we obtain the system of inequalities

0 ≤ a cosϕ − b sin ϕ − n < 1 (4.1)

sin ϕ − 1 ≤ a cosϕ − b sin ϕ − n < sin ϕ (4.2)

1 − cosϕ ≤ a cosϕ − b sin ϕ − n < 2 − cosϕ (4.3)

sin ϕ − cosϕ ≤ a cosϕ − b sin ϕ − n < 1 + sin ϕ − cosϕ. (4.4)

As 0 ≤ ϕ < π
2 we have sin ϕ, cosϕ > 0. Under this assumption we have sin ϕ − 1 <

sin ϕ − cosϕ < 1 − cosϕ and 0 < 1 − cosϕ holds too. Hence max{sin ϕ − 1, sin ϕ −
cosϕ, 1 − cosϕ, 0} = 1 − cosϕ.

Similarly, sin ϕ < 1 < 2 − cosϕ and sin ϕ < 1 + sin ϕ − cosϕ, thus min{sin ϕ, 1, 2 −
cosϕ, 1 + sin ϕ − cosϕ} = sin ϕ. Hence the inequalities (4.1)–(4.4) hold if and only if

1 − cosϕ ≤ a cosϕ − b sin ϕ − n < sin ϕ.

After multiplying by 2 and adding cosϕ − sin ϕ − 1 we obtain

1 − cosϕ − sin ϕ ≤ (2a + 1) cosϕ − (2b + 1) sin ϕ − 2n − 3 < sin ϕ + cosϕ − 1.(4.5)

Performing the analogous computation for m we get that a, b, m ∈ Z satisfy the require-
ments if and only if

1 − cosϕ − sin ϕ ≤ (2a + 1) sin ϕ + (2b + 1) cosϕ − 2m − 1 < sin ϕ + cosϕ − 1.(4.6)

As sin ϕ + cosϕ − 1 > 0, hence 1 − sin ϕ − cosϕ < 0 we can apply Lemma 2.2 to the
system of inequalities (4.5) and (4.5) with x1 = 2a + 1 and x2 = 2b + 1, which proves the
theorem in this case.

Case 2: π
2 < ϕ < π . Then by Lemma 4.1 Aϕ(a, b) ∈ T(n+1,m), Aϕ(a, b + 1) ∈

T(n,m−1), Aϕ(a + 1, b) ∈ T(n,m+1), Aϕ(a + 1, b + 1) ∈ T(n−1,m). Then

0 ≤ a cosϕ − b sin ϕ − (n + 1) < 1

0 ≤ a cosϕ − (b + 1) sin ϕ − n < 1
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0 ≤ (a + 1) cosϕ − b sin ϕ − n < 1

0 ≤ (a + 1) cosϕ − (b + 1) sin ϕ − (n − 1) < 1.

Rearranging the inequalities we obtain

1 ≤ a cosϕ − b sin ϕ − n < 2 (4.7)

sin ϕ ≤ a cosϕ − b sin ϕ − n < 1 + sin ϕ (4.8)

− cosϕ ≤ a cosϕ − b sin ϕ − n < 1 − cosϕ (4.9)

sin ϕ − cosϕ − 1 ≤ a cosϕ − b sin ϕ − n < sin ϕ − cosϕ. (4.10)

We have sin ϕ > 0, cosϕ < 0, because π
2 < ϕ < π .

Thus max{sin ϕ, 1,− cosϕ, sin ϕ − cosϕ − 1} = 1. Similarly, min{2, 1 + sin ϕ, 1 −
cosϕ, sin ϕ − cosϕ} = sin ϕ − cosϕ. Hence the inequalities (4.7)–(4.10) hold if and only if

1 ≤ a cosϕ − b sin ϕ − n < sin ϕ − cosϕ.

Multiplying by 2 and adding − sin ϕ + cosϕ − 1 we obtain

1 + cosϕ − sin ϕ ≤ (2a + 1) cosϕ − (2b + 1) sin ϕ − 2n − 1 < sin ϕ − cosϕ − 1.

Performing the analogous computation for m we get that a, b, m ∈ Z satisfy the require-
ments if and only if

1 + cosϕ − sin ϕ ≤ (2a + 1) sin ϕ − (2b + 1) cosϕ − 2m − 1 < sin ϕ − cosϕ − 1.

As sin ϕ > 0 and cosϕ < 0 we have sin ϕ − cosϕ − 1 > 0, hence 1− sin ϕ + cosϕ < 0,
thus we may apply Lemma 2.2 to the last system of inequalities, which completes the proof
in the second case,

Case 3: π < ϕ < 3π
2 . Then by Lemma 4.1 Aϕ(a, b) ∈ T(n,m+1), Aϕ(a, b + 1) ∈

T(n+1,m), Aϕ(a + 1, b) ∈ T(n−1,m), Aϕ(a + 1, b + 1) ∈ T(n,m−1). The same computation as
in Cases 1 and 2 leads to the system of inequalities

1 + sin ϕ + cosϕ ≤ (2a + 1) cosϕ − (2b + 1) sin ϕ − 2n − 1 < − sin ϕ − cosϕ − 1

1 + sin ϕ + cosϕ ≤ (2a + 1) cosϕ + (2b + 1) sin ϕ − 2m − 1 < − sin ϕ − cosϕ − 1

As sin ϕ, cosϕ, 1+ sin ϕ + cosϕ < 0 we have − sin ϕ − cosϕ − 1 > 0 and we can apply
Lemma 2.2 again.

Case 4: 3π
2 < ϕ < 2π . Then by Lemma 4.1 Aϕ(a, b) ∈ T(n−1,m), Aϕ(a, b + 1) ∈

T(n,m+1), Aϕ(a + 1, b) ∈ T(n,m−1), Aϕ(a + 1, b + 1) ∈ T(n+1,m). The same computation as
in Cases 1 and 2 leads to the system of inequalities

1 + sin ϕ − cosϕ ≤ (2a + 1) cosϕ − (2b + 1) sin ϕ − 2n − 1 < − sin ϕ + cosϕ − 1

1 + sin ϕ − cosϕ ≤ (2a + 1) cosϕ + (2b + 1) sin ϕ − 2m − 1 < sin ϕ − cosϕ − 1

As sin ϕ,− cosϕ, 1 + sin ϕ − cosϕ < 0 we have − sin ϕ + cosϕ − 1 > 0 and we can
apply Lemma 2.2 again, which completes the proof of the theorem. ��

5 Orbits with short periodicity

Our first goal was to study the periodicity of the orbits of rϕ , which seems to be very difficult.
As a first step we examined some other properties of rϕ , but did not forget the ultimate goal.
In this section we present a small finding, which corresponds to ϕ = π

4 . We show that there
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are infinitely many a ∈ Z, such that the orbit of rϕ generated by (a, 0) is periodic of length
8, i.e.

r8ϕ(a, 0) = (a, 0).

Nevertheless we could present other examples, but this already shows that we do not have
yet the necessary technique to prove much more general results.

In the next lemma we collected those identities, which are necessary to prove our period-
icity result. Their proofs are one step direct computation. We denote, as usual in these notes,
the fractional part of x by {x}.
Lemma 5.1 Let a ∈ Z and set ω = 
 1√

2
a�. Suppose 
√2ω� = a − 1. Then

⌊
− 1√

2
a + 1√

2

⌋
= −ω (5.1)

⌊
1√
2

a − 1√
2

⌋
=

{
ω, if a = 1,

ω − 1, otherwise,
(5.2)

⌊
1√
2

a + 1√
2

⌋
=

{
ω, if { 1√

2
a} < 1 − 1√

2
,

ω + 1, if { 1√
2

a} ≥ 1 − 1√
2
,

(5.3)

⌊
− 1√

2
a + √

2

⌋
=

{−ω, if { 1√
2

a} >
√
2 − 1,

−ω + 1, if { 1√
2

a} ≤ √
2 − 1,

(5.4)

⌊√
2ω + √

2
⌋

=
{

a, if {√2ω} + {√2} < 1,

a + 1, if {√2ω} + {√2} ≥ 1,
(5.5)

⌊
−√

2ω + 1√
2

⌋
=

{−a, if {√2ω} > 1√
2
,

−a + 1, if {√2ω} ≤ 1√
2
.

(5.6)

Theorem 5.2 Let a ∈ Z, ω = 
 1√
2

a� and suppose 
√2ω� = a − 1. If { 1√
2

a} ∈[
1 − 1√

2
, 1√

2

]
, then r8ϕ(a, 0) = (a, 0). There exist infinitely many a ∈ Z satisfying the

assumptions.

Proof First we prove that the assumptions imply {√2ω} ∈
[
1 − 1√

2
, 1√

2

]
. Indeed, [√2ω] =

a −1means a −1 ≤ √
2ω < a (equality is only possible if a = 1), hence 0 < a√

2
−ω < 1√

2
.

Further { 1√
2

a} ∈
[
1 − 1√

2
, 1√

2

]
is equivalent to the sequence of inequalities

1 − 1√
2

<
a√
2

− ω <
1√
2
,

− 1√
2

<
√
2ω − a < −1 + 1√

2
,

1 − 1√
2

<
√
2ω − (a − 1) <

1√
2
,

which proves the claim.

Now we prove the second assertion. As
√
2 is irrational, the sequence

{
a√
2

}
is uni-

formly distributed by Theorem 2.1, thus there are infinitely many a ∈ Z satisfying

{ 1√
2

a} ∈
[
1 − 1√

2
, 1√

2

]
.
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Now we turn to prove the first assertion. It is obvious that rϕ(a, 0) = (ω, ω). Further
by the assumption 
√2ω� = a − 1 we have r2ϕ(a, 0) = (0, a − 1). Moreover, we have

r3ϕ(a, 0) = rϕ(0, a − 1) = (
− 1√
2

a + 1√
2
�, 
 1√

2
a − 1√

2
�). Thus by equations (5.1) and (5.2)

we get r3ϕ = (−ω,ω − 1). Then, by equation (5.6) we have r4ϕ(a, 0) = (−a + 1,−1). After

that we get r5ϕ(a, 0) = (−ω+1,−ω−1) by equation (5.4). Then r6ϕ(a, 0) = (1,−a). Further
we get by equations (5.1) and (5.3) r7ϕ(a, 0) = (ω+1,−ω−1). Finally, using equation (5.5)

we have r8ϕ(a, 0) = rϕ(ω + 1,−ω − 1) = (
√2ω + √
2�, 0) = (a, 0). ��

Remark 5.3 There exist infinitely many natural numbers a, which fulfill the conditions in
Theorem 5.2, therefore there are infinitely many orbits with short periodicity.

We only give one class of starting points for the rotation by 45◦ in order to achieve
periodicity of 8. There may exist many other starting points with the same periodicity.

6 Remarks on ROUND ◦A'

Following the proofs of Theorems 3.1 and 4.2 one can prove similar statements for the
function ROUND ◦Aϕ . To perform such a project one has to adjust Lemma 2.2 according
the new rounding function. This is straightforward if one of cosϕ and sin ϕ is irrational, but
needs some computation otherwise. To save space we leave this to the interested reader.
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