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Abstract
In this paper, we show that for T ∈ B(H), if M is almost-invariant for T , then every
maximal almost-invariant subspace ofM is of codimension 1 inM, whereH is a separable,
infinite-dimensional Hilbert space. We also describe the maximal hyperinvariant subspaces
for normal operators with all the dimensions of eigenspaces at most 1 acting onH. Our result
is that for each hyperinvariant subspace, all its maximal hyperinvariant subspaces are also of
codimension 1 in it.
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1 Introduction

Let H be a separable, infinite-dimensional Hilbert space and denote by B(H) the set of
bounded linear operators acting onH. For T ∈ B(H) a subspaceM ofH is called invariant
for T , or T -invariant, if it is closed and TM ⊆ M. The classical Invariant Subspace Problem,
one of the most important problems in Operator Theory, is about the existence of non-trivial
invariant subspaces for an operator T ∈ B(H).
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For an operator T ∈ B(H) and an invariant subspaceM for T , a T -invariant subspaceN is
called a maximal invariant subspace ofM, if N � M and there is no T -invariant subspace
L such that N � L � M. Hedenmalm [6] obtained first the result that every maximal
invariant subspace of the Bergman space is of codimension 1. For further generalizions of
the Bergman space, we refer the interested readers to [1,16]. Later, Guo et al. [5] extended
the result to a much more general situation. Their result is the following.

Theorem 1.1 ([5, Theorem 1.1]). Suppose T is a Fredholm operator acting on a separable
Hilbert space and 1− T T ∗ ∈ Sp for some p ≥ 1. IfM is an invariant subspace for T such
that dimM�TM < ∞, then every maximal invariant subspace of M is of codimension 1
in M.

Here Sp (p > 0) denotes the set of Schatten-p class operators; and for two subspaces
U,V ofH, U�V = U ∩V⊥, where V⊥ denotes the orthogonal complement space of V inH.

Motivated by the above work, we intend to study the maximal almost-invariant subspaces
and maximal hyperinvariant subspaces.

A subspaceM ofH is called almost-invariant for T (or T -almost invariant) if it is closed
and TM ⊆ M + F for some finite-dimensional subspace F of H. This concept was first
introduced in [2]. The minimal dimension of such a subspace F is referred to as the defect
of M for T . It is obvious that every finite-dimensional or finite-codimensional subspace is
almost-invariant under T . So we only need to consider a half-space, that is, a subspace of
H which is infinite-dimensional and infinite-codimensional. For further information about
almost-invariant subspaces, we refer the interested readers to [2,12–14].

In a similar way, we give the definition of maximal almost-invariant subspace.

Definition 1.2 For an operator T ∈ B(H) and an almost-invariant subspace M for T , a T-
almost invariant subspaceN is called amaximal almost-invariant subspace ofM, ifN � M
and there is no T -almost invariant subspace L such that N � L � M.

We will prove that, given an operator T ∈ B(H), for any T -almost invariant half-space
M every maximal almost-invariant subspace of M is of codimension 1 in M.

A subspace M of H is called hyperinvariant for T , or T -hyperinvariant, if it is closed
and WM ⊆ M for each W ∈ {T }′. Here {T }′ denotes the commutant of T given by

{T }′ = {W ∈ B(H) : WT = TW }.
There aremany unsolved problems in the theory of invariant subspaces, hence these problems
need close attention. In this paper, we first deal with hyperinvariant subspaces. For a further
discussion about hyperinvariant subspaces, we recommend to the interested readers the recent
papers [4,7–11,15].

We also define maximal hyperinvariant subspaces analogously.

Definition 1.3 For an operator T ∈ B(H) and a hyperinvariant subspace M for T , a T-
hyperinvariant subspace N is called a maximal hyperinvariant subspace of M, if N � M
and there is no T -hyperinvariant subspace L such that N � L � M.

An operator T ∈ B(H), is said to be normal if T ∗T = T T ∗.
Our conclusion about maximal hyperinvariant subspaces is in the setting of a Hilbert space

H. We will show that for a normal operator T ∈ B(H) and a T -hyperinvariant subspaceM,
if all the dimensions of eigenspaces of T are at most 1, then every maximal hyperinvariant
subspace of M is of codimension 1 in M.

Throughout the paper, for a closed subspace E ofH, PE denotes the orthogonal projection
from H to E and T |E is the operator T restricted to E .
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2 Maximal almost-invariant subspaces

In this section, we give a characterization of maximal almost-invariant subspaces. The main
result can be formulated as follows.

Theorem 2.1 For T ∈ B(H), if M is a T -almost invariant half-space, then every maximal
almost-invariant subspace of M is of codimension 1 in M.

The first step in the proof of Theorem 2.1 is the following lemma.

Lemma 2.2 Let T ∈ B(H). SupposeM andN are two T -almost invariant half-spaces with
N � M and dimM�N ≥ 2. Put S = PM�N T |M�N . Then T has an almost invariant half-
space L such that N � L � M if and only if there exists an S-almost invariant subspace
L0 such that 0 � L0 � M�N .

Proof Since M,N are both T -almost invariant half-spaces, we write TM ⊆ M + F1 and
TN ⊆ N +F2, whereF1 andF2 are finite-dimensional subspaces ofH. Now, ifL is almost-
invariant for T withN � L � M, we assume that TL ⊆ L+F3 for some finite-dimensional
subspace F3. Put L0 = L�N ; then it is clear that 0 � L0 � M�N , and

SL0 = PM�N T |M�N (L�N ) ⊆ (L + F3)�N ⊆ L�N + F3 ⊆ L0 + F3,

that is L0 is S-almost invariant.
Conversely, we assume that there exists a subspace L0 with 0 � L0 � M�N that is S-

almost invariant by SL0 ⊆ L0 +F4 for some finite-dimensional subspace F4. Put L = L0 +
N , thenL is half-space andN � L � M. Next we prove thatL is T -almost invariant. Noting
that SL0 ⊆ L0+F4, i.e., PM�N T |M�NL0 ⊆ L0+F4, we have PN⊥TL0 ⊆ L0+F4+F1.
Then TL0 = PN TL0 + PN⊥TL0 ⊆ N + L0 + F4 + F1, thus

TL = TL0 + TN ⊆ L + F4 + F1 + N + F2 ⊆ L + ̂F,

for some finite-dimensional subspace ̂F , that is, L is T -almost invariant. So the assertion of
this lemma is proved. 
�

The following lemma, proved by Popov and Tcaciuc in [14], is quite important to get the
main result of this section.

Lemma 2.3 Let T be a bounded operator on an infinite-dimensional, reflexive Banach space
X . Then X admits an almost-invariant half-space with defect 1.

Using this lemma, we can prove the following result, which is the key idea of the proof
of Theorem 2.1.

Lemma 2.4 Let T ∈ B(H). SupposeM andN are two T -almost invariant half-spaces with
N � M and dimM�N ≥ 2. Then there is a T -almost invariant half-space L such that
N � L � M.

Proof Set TM ⊆ M + F1 and TN ⊆ N + F2 as in the proof of Lemma 2.2. Firstly,
assuming that dimM�N < ∞, we can choose half-space L such that N � L � M since
dimM�N ≥ 2. Moreover, for each half-space L with N � L � M, we have

TL ⊆ TM ⊆ T (M�N ) + TN ⊆ T (M�N ) + N + F2 ⊆ L + ˜F,

for some finite-dimensional subspace ˜F of H since dimM�N < ∞.
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NowweassumedimM�N = ∞. Consider the operator S = PM�N T |M�N . Since S =
PM�N T |M�N ∈ B(M�N ) andM�N is an infinite-dimensional, reflexiveBanach space,
by Lemma 2.3, M�N admits an S-almost invariant half-space with defect 1. Therefore,
using Lemma 2.2, there exists a T -almost invariant subspace L such thatN � L � M. This
completes the proof. 
�

Now the characterization of maximal almost-invariant subspaces is a direct consequence
of this lemma.

At the end of this section, wewant to pose a question to the interested readers. In the proof,
the finite-dimensional subspaces making sure that N ,L,M are T -almost invariant may not
have the same dimension or even be the same subspace. Of course, here we mean such a
finite-dimensional subspace with minimal dimension to make sure N ,L,M are T -almost
invariant. Hence, it is natural to ask the following question:

Question 2.5 Is there a separable, infinite-dimensional Hilbert space H, and an operator
T ∈ B(H) such that there exist three half-spaces N � L � M that are T -almost invariant
subspaces with the same defect or even the same finite-dimensional subspace are T -almost
invariant subspaces?

3 Maximal hyperinvariant subspaces

In the case when we consider the maximal hyperinvariant subspaces, we focus on the normal
operators acting on a separable, infinite-dimensional Hilbert spaceH. The main result relies
on the following lemma, which is proved in a similar way to [5, Lemma 2.3].

Lemma 3.1 Let T ∈ B(H), M and N be two T -hyperinvariant subspaces with N � M
and dimM�N ≥ 2. Put S = PM�N T |M�N . Then if S has a non-trivial hyperinvariant
subspace then T has a hyperinvariant subspace L such that N � L � M.

Moreover, if in additon T is normal, then the existence of a T -hyperinvariant subspace L
with N � L � M implies the existence of a non-trivial hyperinvariant subspace for S.

Proof Suppose that L0 is a nontrivial hyperinvariant subspace for S. It is clear that 0 � L0 �

M�N . Setting L = L0 +N , we haveN � L � M. Next we prove that L is hyperinvariant
for T . For any W ∈ {T }′, we first prove PM�NW |M�N ∈ {S}′. Indeed,
PM�NW |M�N PM�N T |M�N = PM�NWPM�N T PM�N

= PM�NW (PM − PN )T PM�N
= PM�NWPMT PM�N − PM�NWPN T PM�N
= PM�NWT PM�N ,

here we used PM�NWPN T PM�N = 0 since N is hyperinvariant for T and W ∈ {T }′.
In a similar way, we can obtain

PM�N T |M�N PM�NW |M�N = PM�N T PM�NWPM�N
= PM�N T (PM − PN )WPM�N
= PM�N T PMWPM�N − PM�N T PNWPM�N
= PM�N TW PM�N .

123



A note about maximal almost-invariant subspaces… 225

Since WT = TW , thus

PM�NW |M�N PM�N T |M�N = PM�N T |M�N PM�NW |M�N ,

that is PM�NW |M�N ∈ {S}′.
SinceL0 is a hyperinvariant subspace for S, then PM�NW |M�NL0 ⊆ L0, hencewe have

PN⊥WL0 ⊆ L0. Then it is easy to see that WL0 = PNWL0 + PN⊥WL0 ⊆ N + L0 = L.
Therefore, we conclude that

WL = WL0 + WN ⊆ L.

That is, L is hyperinvariant for T by the arbitrariness of W ∈ {T }′, which proves the first
assertion of this lemma.

Conversely, note that T is normal, i.e., T ∗ ∈ {T }′. Therefore, M,N are both reducing
subspaces of T , so isM�N . Thus we conclude that S = T |M�N . Then the operator T has
the corresponding decomposition

T = S ⊕ T1,

where T1 is the restriction of T on (M�N )⊥. Given an operator W0 ∈ L(M�N ), if
W0S = SW0, set W = W0 ⊕ I(M�N )⊥ , it follows that W ∈ {T }′. Thus WL ⊆ L. It is easy
to prove that W0L0 ⊆ L0, if L0 = L�N . So the second assertion of the lemma is obtained.


�
Lemma 3.2 Let T ∈ B(H) be a normal operator, and M and N two T -hyperinvariant
subspaces with N � M and dimM�N ≥ 2. Then S = PM�N T |M�N is also normal.

Proof SinceM,N are both T -hyperinvariant, and T ∗ ∈ {T }′, thenM,N are both reducing
subspaces of T , so is M�N . Hence S = T |M�N . Next, we will show that T |∗M�N =
T ∗|M�N . In fact,

〈T |∗M�N x, y〉 = 〈x, T |M�N y〉 = 〈x, T y〉 = 〈T ∗x, y〉 = 〈T ∗|M�N x, y〉
for x, y ∈ M�N . Then the result follows from the normality of T . 
�

The next result can be found in [3].

Lemma 3.3 A normal operator that is not a multiple of the identity has a non-trivial hyper-
invariant subspace.

Using the previous lemmas, we are now ready to give the required generalization about
maximal hyperinvariant subspaces.

Theorem 3.4 Let T ∈ B(H) be a normal operator, andM be a T -hyperinvariant subspace.
If all the dimensions of eigenspaces of T are at most 1, then every maximal hyperinvariant
subspace of M is of codimension 1 in M.

Proof Note that the condition that all the dimensions of eigenspaces of T are at most 1
guarantees that PM�N T |M�N is not a multiple of the identity for each T -hyperinvariant
subspace N with N � M and dimM�N ≥ 2. Then the assertion comes easily from the
lemmas above. 
�
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