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Abstract We consider variants of the Halton sequence in a generalized numeration system,
called the Cantor expansion.We show that it provides a wealth of low-discrepancy sequences
by giving an estimate of the (star) discrepancy of the Halton sequence in each bounded
Cantor base. The techniques used in our estimation of the discrepancy are adapted from
those developed by E.I. Atanassov.
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1 Introduction

Let ω = (xn)∞n=1 be a sequence in [0, 1)s . A standard problem in numerical analysis is
estimating the integral of a function, through a knowledge of its value at a finite number of
points of the sequence. This is known as the Monte Carlo method in the case of stochastic
sequences (xn)Nn=1 or the quasi-Monte Carlo method in the case of deterministic (xn)Nn=1.

This is encapsulated in the famous Koksma–Hlawka inequality
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≤ V ( f )D∗
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for an arbitrary function f on [0, 1]s with bounded variation V ( f ) in the sense of Hardy and
Krause and any finite set of points (xn)Nn=1 with discrepancy

D∗
N (ω) = sup

J=∏s
i=1[0,zi )⊆[0,1)s

∣
∣
∣
∣

A(J ; N ;ω)

N
− λs(J )

∣
∣
∣
∣
.

Here A(J ; N ;ω) = #{1 ≤ n ≤ N : xn ∈ J } is the counting function, where λs(J ) denotes
the s-dimensional Lebesgue measure of J and the above supremum is taken over all rectan-
gular solids J = ∏s

i=1[0, zi ) with 0 < zi ≤ 1 (1 ≤ i ≤ s). Note that λs(J ) = ∏s
i=1 zi .

For more details on numerical integration, the reader can consult [3,11] or [14]. Evidently,
to estimate

∫

[0,1]s f (x) dx sufficiently precisely, what is needed is a good bound for D∗
N (ω).

The discrepancy is nothing other than a quantitative measure of uniformity of distribution.
In particular, the sequence ω is uniformly distributed on [0, 1)s , if and only if D∗

N (ω) → 0
as N → ∞. In a sense, the faster D∗

N (ω) decays as a function of N , the better uniformly
distributed the sequenceω is. One of the fundamental obstructions in this subject is that there
is a limit to how well distributed any sequence can be. This is encapsulated in the elementary
inequality D∗

N (ω) ≥ 1/2s N (N ∈ N) whose proof makes an entertaining exercise. This
opens the door to the deep subject of irregularities of distribution which addresses just what
limitations there are to the uniformity of distribution of an arbitrary sequence, and the com-
plementary problem of constructing sequences with discrepancy as small as possible. This
latter issue is clearly central to the initial issue mentioned in this paper.

Perhaps the most famous example of a low-discrepancy sequence is the van der Corput
sequence. In 1935, van der Corput [21] introduced a procedure to generate low-discrepancy
sequences on [0, 1). These sequences are considered to be among the best distributed over
[0, 1), and no other infinitely generated sequences can have discrepancy of smaller order of
magnitude than van der Corput sequences. The technique of van der Corput is based on a
very simple idea. Let b > 1 be a natural number. Then every nonnegative integer n has a
b-adic representation of the form

n =
∞
∑

j=1

n jb
j−1 = n1 + n2b + n3b

2 + n4b
3 + · · · ,

where n j ∈ {0, 1, . . . , b− 1} ( j ∈ N). The van der Corput sequence (φb(n))∞n=0 in base b is
constructed by reversing the base b representation of the sequence of nonnegative integers,
where the radical-inverse function φb : N0 → [0, 1) is defined by

φb

( ∞
∑

j=1

n jb
j−1

)

=
∞
∑

j=1

n j

b j
= n1

b
+ n2

b2
+ n3

b3
+ · · · .

In practical applications, a generalization of the van derCorput sequence to higher dimensions
is more likely to be of practical use. In 1960, this was proposed by Halton [7]. Given coprime
integers b1, . . . , bs all greater than 1, the sequence (φb1(n), . . . , φbs (n))∞n=0 is called the
Halton sequence in bases b1, . . . , bs .

It was known for a long time that the discrepancy of the first N elements of the Halton
sequence in bases b1, . . . , bs can be bounded by

c(b1, . . . , bs)
(log N )s

N
+ O

(
(log N )s−1

N

)

, (1.1)

123



130 A. Haddley et al.

for some constant c(b1, . . . , bs) > 0. For example, this was shown in [4,6,7,15] and [18]. It
is believed that the order (log N )s/N is the best possible for an arbitrary infinite sequence.
That this is the case when s = 1 was proved by Schmidt [20]. For s > 1, the question
remains open. We shall call an infinite sequence ω in [0, 1)s a low-discrepancy sequence if
D∗

N (ω) = O((log N )s/N ).

The question of how small the constant c(b1, . . . , bs) in (1.1) can be interesting from
both a theoretical and a practical viewpoint. The articles referred to above show that this
constant depends very strongly on the dimension s. The minimal value for this quantity can
be obtained if we choose b1, . . . , bs to be the first s prime numbers. But even in this case
c(b1, . . . , bs) grows very fast to infinity if s increases. This deficiency was overcome by
Atanassov [1] who proved that

c(b1, . . . , bs) = 1

s!
s

∏

i=1

bi − 1

log bi
.

This estimate is so impressive that, when b1, . . . , bs are the first s prime numbers,
c(b1, . . . , bs) → 0 as s → ∞.

In this paper, we introduce the Halton sequence in a generalized numeration system,
which is induced by the a-adic integers and which is called the Cantor expansion, and give
an estimate of its discrepancy by adapting the techniques developed by Atanassov. It is worth
noting here that the van der Corput sequence and some one-dimensional low-discrepancy
sequences with respect to the Cantor expansion were studied in [2] and [5]. Note also that it
was mentioned in [8] about the Halton sequence in a more generalized numeration system
than the Cantor expansion, called the G-expansion; however, the paper aimed to study the
Halton sequence in some fixed non-integer bases and did not touch on the Halton sequence
with respect to dynamical bases.

We now summarize the contents of this paper. In Sect. 2, we introduce the concept of a
generalized numeral system. Thenwe define the Halton sequence induced by this generalized
system and state our main result on the estimate of discrepancy of the Halton sequence. In
Sects. 3 and 4, we collect all preliminary lemmas and prove our main result, respectively. In
Sect. 5, we prove an estimate of discrepancy of the van der Corput sequence in a generalized
numeration system without the restriction on boundedness of inducing sequences. Then we
pose an open problem regarding an extension of our results. Finally, we introduce in Sect. 6
the Hammersley point set induced by the generalized numeration system and show that it
provides a wealth of low-discrepancy point sets by giving an estimate of its discrepancy.

2 A generalized Halton sequence

Let b = (b j )
∞
j=1 be a sequence of natural numbers greater than 1. Then it is clear that every

nonnegative integer n has a unique b-adic representation of the form

n =
∞
∑

j=1

n jb1 · · · b j−1 = n1 + n2b1 + n3b1b2 + n4b1b2b3 + · · · ,

where n j ∈ {0, 1, . . . , b j − 1} ( j ∈ N). This b-adic representation is also called the Cantor
expansion of n with respect to the Cantor base b. Moreover, every real number x ∈ [0, 1)

123



The Halton sequence in the Cantor expansion 131

has a b-adic expansion of the form

x =
∞
∑

j=1

x j
b1 · · · b j

= x1
b1

+ x2
b1b2

+ x3
b1b2b3

+ · · · ,

where x j ∈ {0, 1, . . . , b j − 1} ( j ∈ N). The x j can be calculated by the greedy algorithm

x1 = [xb1] and x j = [{xb1 · · · b j−1}b j ],
where [α] and {α} denote the integer part and the fractional part of α, respectively. The idea
of this generalized numeration system stems from the a-adic integers, which is a class of
locally compact topological groups and possesses a symbolic dynamical structure. For more
details on the a-adic integers, see [9, pp. 106–117].

Define the radical-inverse function φb : N0 → [0, 1) by

φb

( ∞
∑

j=1

n jb1 · · · b j−1

)

=
∞
∑

j=1

n j

b1 · · · b j
= n1

b1
+ n2

b1b2
+ n3

b1b2b3
+ · · · .

The van der Corput sequence in base b is defined as (φb(n))∞n=0. This sequence was studied
in [2] and [5], where it was proved to be a low-discrepancy sequence with some restriction
on the Cantor base b. Furthermore, the sequence was shown, without any restriction on the
Cantor base, to be uniformly distributed mod 1 in [13] and to be a low-discrepancy sequence
in [12].

Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s sequences of natural numbers greater than
1 such that, for all j1, j2 ∈ N and all 1 ≤ i1 < i2 ≤ s, we have bi1, j1 and bi2, j2 coprime. The
Halton sequence in bases b1, . . . , bs is defined to be ω = (φb1(n), . . . , φbs (n))∞n=0.

The following is our main result and gives an estimate of the discrepancy of the Halton
sequence in bases of bounded sequences.

Main Theorem 2.1 Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s bounded sequences of
natural numbers greater than 1 such that, for all j1, j2 ∈ N and all 1 ≤ i1 < i2 ≤ s, we
have bi1, j1 and bi2, j2 coprime. Suppose that ω is the Halton sequence in bases b1, . . . , bs .
Then, for any N ≥ 1, we have

ND∗
N (ω) ≤ 1

s!
s

∏

i=1

(	Mi/2
 log N
logmi

+ s

)

+
s−1
∑

l=0

Ml+1

l!
l

∏

i=1

(	Mi/2
 log N
logmi

+ l

)

,

where Mi = max(bi, j )∞j=1 and mi = min(bi, j )∞j=1 (1 ≤ i ≤ s).

Corollary 2.2 Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s bounded sequences of natural
numbers greater than 1 such that, for all j1, j2 ∈ N and all 1 ≤ i1 < i2 ≤ s, we have bi1, j1
and bi2, j2 coprime. Suppose that ω is the Halton sequence in bases b1, . . . , bs . Then, for any
N ≥ 1, we have

D∗
N (ω) ≤ c(b1, . . . , bs)

(log N )s

N
+ O

(
(log N )s−1

N

)

with

c(b1, . . . , bs) = 1

s!
s

∏

i=1

	Mi/2

logmi

,

where Mi = max(bi, j )∞j=1 and mi = min(bi, j )∞j=1 (1 ≤ i ≤ s).

This shows that the Halton sequence is a low-discrepancy sequence.
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132 A. Haddley et al.

3 Preliminary lemmas

In order to prove Theorem 2.1, we need the following five lemmas. These preliminary results
are adapted from [3] whose ideas go back to Atanassov [1].

Lemma 3.1 Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s arbitrary sequences of natural
numbers greater than 1 such that, for all j1, j2 ∈ N and all 1 ≤ i1 < i2 ≤ s, we have bi1, j1
and bi2, j2 coprime. Suppose that ω is the Halton sequence in bases b1, . . . , bs . Let J be an
interval of the form

J =
s

∏

i=1

[
ui

bi,1 · · · bi,ki
,

vi

bi,1 · · · bi,ki

)

with integers 0 ≤ ui < vi ≤ bi,1 · · · bi,ki and ki ≥ 1 for all 1 ≤ i ≤ s. Then the inequality

|A(J ; N ;ω) − Nλs(J )| ≤
s

∏

i=1

(vi − ui )

holds for every N ∈ N. Moreover, for every N ≤ ∏s
i=1 bi,1 · · · bi,ki , we have A(J ; N ;ω) ≤

∏s
i=1(vi − ui ).

Proof For each n ∈ N0, we denote the bi -adic expansion of n by

n = n(i)
1 + n(i)

2 bi,1 + n(i)
3 bi,1bi,2 + n(i)

4 bi,1bi,2bi,3 + · · · ,

where n(i)
j ∈ {0, 1, . . . , bi, j − 1} ( j ∈ N). Choose � = (l1, . . . , ls) ∈ N

s
0 such that, for all

1 ≤ i ≤ s, we have 0 ≤ li < bi,1 · · · bi,ki with the expansion

li = li,ki + li,ki−1bi,ki + li,ki−2bi,ki bi,ki−1 + · · · + li,1bi,ki · · · bi,2,
where li,ki− j ∈ {0, 1, . . . , bi,ki− j − 1} (0 ≤ j ≤ ki − 1). We consider the interval

J� =
s

∏

i=1

[
li

bi,1 · · · bi,ki
,

li + 1

bi,1 · · · bi,ki

)

.

Then the nth element ωn of the Halton sequence is contained in J�, if and only if, for all
1 ≤ i ≤ s,

li,1
bi,1

+· · ·+ li,ki
bi,1 · · · bi,ki

≤ n(i)
1

bi,1
+ n(i)

2

bi,1bi,2
+· · · <

li,1
bi,1

+· · ·+ li,ki
bi,1 · · · bi,ki

+ 1

bi,1 · · · bi,ki
.

This is however equivalent to n(i)
1 = li,1, . . . , n

(i)
ki

= li,ki which in turn is equivalent to
n ≡ li,1 + li,2bi,1 + · · · + li,ki bi,1 · · · bi,ki−1 (mod bi,1 · · · bi,ki ) for all 1 ≤ i ≤ s.

As b1, j1 , . . . , bs, js are pairwise coprime for all ( j1, . . . , js) ∈ N
s,we obtain from the Chi-

nese Remainder Theorem that every
∏s

i=1 bi,1 · · · bi,ki consecutive elements of the Halton
sequence, contain exactly one element in J� or, in otherwords, A(J�; t ∏s

i=1 bi,1 · · · bi,ki ;ω) =
t for all t ∈ N, and hence

A

(

J�; t
s

∏

i=1

bi,1 · · · bi,ki ;ω

)

−
(

t
s

∏

i=1

bi,1 · · · bi,ki
)

λs(J�) = 0.

Therefore, for every N ∈ N, we obtain

|A(J�; N ;ω) − Nλs(J�)| ≤ 1.
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The Halton sequence in the Cantor expansion 133

Now we write the interval J as a disjoint union of intervals of the form J�,

J =
v1−1
⋃

l1=u1

· · ·
vs−1
⋃

ls=us

J�,

where � = (l1, . . . , ls). We then have

|A(J ; N ;ω) − Nλs(J )| ≤
v1−1
∑

l1=u1

· · ·
vs−1
∑

ls=us

|A(J�; N ;ω) − Nλs(J�)| ≤
s

∏

i=1

(vi − ui ),

which proves the first assertion.
For every N ≤ ∏s

i=1 bi,1 · · · bi,ki , we always have A(J�; N ;ω) ≤ 1 for each � =
(l1, . . . , ls) ∈ N

s
0 with 0 ≤ li < bi,1 · · · bi,ki for all 1 ≤ i ≤ s, and hence

A(J ; N ;ω) =
v1−1
∑

l1=u1

· · ·
vs−1
∑

ls=us

A(J�; N ;ω) ≤
s

∏

i=1

(vi − ui ).

This was the second assertion of the lemma. �
Lemma 3.2 Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s arbitrary sequences of natural
numbers greater than 1. For each N ∈ N, let d(b1, . . . , bs; N ) be the number of tuples
(k1, . . . , ks) ∈ N

s such that
∏s

i=1 bi,1 · · · bi,ki ≤ N . Then we have

d(b1, . . . , bs; N ) ≤ 1

s!
s

∏

i=1

log N

logmi
,

where mi = min(bi, j )∞j=1 (1 ≤ i ≤ s).

Proof Let N ∈ N. Assume that k = (k1, . . . , ks) ∈ N
s satisfies

∏s
i=1 bi,1 · · · bi,ki ≤ N .

Notice that we immediately have mk1
1 · · ·mks

s ≤ N . Then the interval Ek = ∏s
i=1[ki − 1, ki )

of volume 1 is entirely contained in the simplex

S = {

(x1, . . . , xs) ∈ [0,∞)s : x1 logm1 + · · · + xs logms ≤ log N
}

of volume 1
s!

∏s
i=1

log N
logmi

. Hence, we obtain

d(b1, . . . , bs; N ) = λs

(
⋃

Ek⊆S

Ek

)

≤ λs(S) = 1

s!
s

∏

i=1

log N

logmi
,

as required. �
Lemma 3.3 Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s arbitrary sequences of natural

numbers greater than 1. Suppose that (z(1)k )∞k=0, . . . , (z
(s)
k )∞k=0 are s bounded sequences of

nonnegative real numbers such that z(i)0 ≤ 1 and z(i)k ≤ fi for all k ∈ N and all 1 ≤ i ≤ s.
Then, for any N ≥ 1, we have

∑

(k1,...,ks )∈Ns
0∏s

i=1 bi,1···bi,ki ≤N

s
∏

i=1

z(i)ki
≤ 1

s!
s

∏

i=1

(

fi
log N

logmi
+ s

)

,

where mi = min(bi, j )∞j=1 (1 ≤ i ≤ s).
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134 A. Haddley et al.

Proof Let u ⊆ {1, . . . , s}. By Lemma 3.2, the number of s-tuples (k1, . . . , ks) such that
ki > 0 if i ∈ u, ki = 0 if i /∈ u, and

∏

i∈u bi,1 · · · bi,ki ≤ N is bounded above by
1

|u|!
∏

i∈u
log N
logmi

. Moreover, each of these s-tuples contributes at most
∏

i∈u fi to the sum
on the left hand side in the statement of the lemma. From this, invoking the inequality
1

|u|! ≤ ss−|u|
s! , we obtain

∑

(k1,...,ks )∈Ns
0∏s

i=1 bi,1···bi,ki ≤N

s
∏

i=1

z(i)ki
≤

∑

u⊆{1,...,s}

1

|u|!
∏

i∈u
fi
log N

logmi

≤ 1

s!
∑

u⊆{1,...,s}
ss−|u| ∏

i∈u
fi
log N

logmi

= 1

s!
s

∏

i=1

(

fi
log N

logmi
+ s

)

,

and this is the desired result. �
Now we need to introduce some notation. Let J ⊆ R

s be an interval. Then a signed
splitting of J is a collection of not necessarily disjoint intervals J1, . . . , Jr together with
signs ε1, . . . , εr ∈ {−1, 1} such that, for all x ∈ J, we have

r
∑

i=1
x∈Ji

εi = 1.

A function ν on the class of intervals in R
s is said to be additive if, for each pair of disjoint

intervals A, B in R
s, we have ν(A ∪ B) = ν(A) + ν(B). It is not hard to see that the s-

dimensional Lebesgue measure λs and the counting function A(·; N ;ω) are the examples
we are particularly interested in. It is not hard to check that, for any additive function ν on
the class of intervals in R

s, we have

ν(J ) =
r

∑

i=1

εiν(Ji ),

where (J1, . . . , Jr ; ε1, . . . , εr ) is a signed splitting of J, and here we use ν(Ji ) = ν(Ji ∩ J )

(1 ≤ i ≤ r). The following result is taken directly from [1] (see also [3] for a detailed proof).

Lemma 3.4 ([1, Lemma 3.5]) Let J = ∏s
i=1[0, zi ) be an s-dimensional box. For each

1 ≤ i ≤ s, let (zk,i )k=1,...,ni be an arbitrary finite sequence of numbers in [0, 1]. Define
further z0,i = 0 and zni+1,i = zi for all 1 ≤ i ≤ s. Then the collection of intervals

s
∏

i=1

[min(zki ,i , zki+1,i ), max(zki ,i , zki+1,i ))

together with the signs εk1,...,ks = ∏s
i=1 sgn(zki+1,i − zki ,i ) for 0 ≤ ki ≤ ni and 1 ≤ i ≤ s

define a signed splitting of the interval J.

For the proof of Theorem 2.1, we need a digit expansion of reals z ∈ [0, 1) in (b j )
∞
j=1-adic

base which uses signed digits. The next lemma shows that such an expansion exists.
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The Halton sequence in the Cantor expansion 135

Lemma 3.5 Let b = (b j )
∞
j=1 be an arbitrary sequence of natural numbers greater than 1.

Then every z ∈ [0, 1) can be written in the form

z = a0 + a1
b1

+ a2
b1b2

+ a3
b1b2b3

+ · · ·

with integer digits a0, a1, a2, . . . such that a0 ∈ {0, 1} and −	 b j−1
2 
 ≤ a j ≤ 	 b j

2 
 for all
j ∈ N. This expansion is called a signed b-adic expansion of z.

Proof For each j ∈ N, let c j = 	 b j−1
2 
. Define

x = c1
b1

+ c2
b1b2

+ c3
b1b2b3

+ · · · ∈ [0, 1).

For z ∈ [0, 1), we have z + x ∈ [0, 2) with b-adic expansion

z + x = u0 + u1
b1

+ u2
b1b2

+ u3
b1b2b3

+ · · · ,

where u0 ∈ {0, 1}, and where u j ∈ {0, 1, . . . , b j − 1} ( j ∈ N). Therefore,

z = u0 + u1 − c1
b1

+ u2 − c2
b1b2

+ u3 − c3
b1b2b3

+ · · ·

with −	 b j−1
2 
 ≤ u j − c j ≤ b j − 1 − 	 b j−1

2 
 = 	 b j
2 
 for all j ∈ N, as required. �

4 Proof of the main theorem

Proof of Theorem 2.1 Let J = ∏s
i=1[0, zi ) ⊆ [0, 1)s . According to Lemma 3.5, for all

1 ≤ i ≤ s, we consider the signed bi -adic expansion of zi of the form

zi = ai,0 + ai,1
bi,1

+ ai,2
bi,1bi,2

+ ai,3
bi,1bi,2bi,3

+ · · ·

with ai,0 ∈ {0, 1} and −	 bi, j−1
2 
 ≤ ai, j ≤ 	 bi, j

2 
 ( j ∈ N).

For all 1 ≤ i ≤ s, let ni = 	 log N
logmi


 + 1, and for 1 ≤ k ≤ ni , define the truncations of the
expansions

zk,i = ai,0 + ai,1
bi,1

+ ai,2
bi,1bi,2

+ · · · + ai,k−1

bi,1 · · · bi,k−1
,

and let z0,i = 0 and zni+1,i = zi .
According to Lemma 3.4, the collection of intervals

Jk1,...,ks =
s

∏

i=1

[min(zki ,i , zki+1,i ),max(zki ,i , zki+1,i ))

together with the signs εk1,...,ks = ∏s
i=1 sgn(zki+1,i − zki ,i ) for 0 ≤ ki ≤ ni and 1 ≤ i ≤ s

defines a signed splitting of the interval J.
Since both λs and A(·; N ;ω) are additive functions on the set of intervals, we obtain that

A(J ; N ;ω) − Nλs(J ) =
n1∑

k1=0

· · ·
ns∑

ks=0

εk1,...,ks (A(Jk1,...,ks ; N ;ω) − Nλs(Jk1,...,ks ))

= 	1 + 	2,
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136 A. Haddley et al.

where 	1 denotes the sum over all (k1, . . . , ks) such that
∏s

i=1 bi,1 · · · bi,ki ≤ N and 	2

denotes the remaining part of the above sum.
First we deal with the sum 	1. For any 1 ≤ i ≤ s, the length of the interval

[min(zki ,i , zki+1,i ),max(zki ,i , zki+1,i )) is |ai,ki /bi,1 · · · bi,ki |, and also the limit points of
this interval are rationals with denominator bi,1 · · · bi,ki . It is worth keeping in mind that, due
to the choice of ni , we must have ki < ni when

∏s
i=1 bi,1 · · · bi,ki ≤ N . Accordingly, the

intervals Jk1,...,ks are of the form as considered in Lemma 3.1 from which we obtain

|A(Jk1,...,ks ; N ;ω) − Nλs(Jk1,...,ks )| ≤
s

∏

i=1

|ai,ki |.

We have |ai,ki | ≤ 	 bi,ki
2 
 ≤ 	Mi

2 
 =: fi . An application of Lemma 3.3 yields that

	1 ≤ 1

s!
s

∏

i=1

(	Mi/2
 log N
logmi

+ s

)

.

It remains to estimate 	2. To this end, we split the set of s-tuples (k1, . . . , ks) for
which

∏s
i=1 bi,1 · · · bi,ki > N into disjoint sets B0, B1, . . . , Bs−1 where we set B0 =

{(k1, . . . , ks) ∈ N
s
0 : b1,1 · · · b1,k1 > N } and, for 1 ≤ l ≤ s − 1,

Bl =
{

(k1, . . . , ks) ∈ N
s
0 :

l
∏

i=1

bi,1 · · · bi,ki ≤ N and
l+1
∏

i=1

bi,1 · · · bi,ki > N

}

.

For a fixed 1 ≤ l ≤ s − 1 and a fixed l-tuple (k1, . . . , kl) with
∏l

i=1 bi,1 · · · bi,ki ≤ N ,

define r to be the largest integer such that

( l
∏

i=1

bi,1 · · · bi,ki
)

(bl+1,1 · · · bl+1,r−1) ≤ N .

It follows that the tuple (k1, . . . , kl , kl+1, . . . , ks) is contained in Bl , if and only if kl+1 ≥ r.
Therefore, for any 0 ≤ l ≤ s − 1 and fixed k1, . . . , kl ∈ N0 such that

∏l
i=1 bi,1 · · · bi,ki ≤

N , we have that

∑

kl+1,...,ks∈N
(k1,...,ks )∈Bl

εk1,...,ks (A(Jk1,...,ks ; N ;ω) − Nλs(Jk1,...,ks )) = ±(A(L; N ;ω) − Nλs(L)),

where

L =
l

∏

i=1

[min(zki ,i , zki+1,i ),max(zki ,i , zki+1,i ))

× [min(zr,l+1, zl+1),max(zr,l+1, zl+1)) ×
s

∏

i=l+2

[0, zi ).
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Let (k1, . . . , ks) ∈ Bl . As

|zl+1 − zr,l+1| =
∣
∣
∣
∣

al+1,r

bl+1,1 · · · bl+1,r
+ al+1,r+1

bl+1,1 · · · bl+1,r+1
+ al+1,r+2

bl+1,1 · · · bl+1,r+2
+ · · ·

∣
∣
∣
∣

= 1

bl+1,1 · · · bl+1,r−1

∣
∣
∣
∣

al+1,r

bl+1,r
+ al+1,r+1

bl+1,r bl+1,r+1
+ al+1,r+2

bl+1,r bl+1,r+1bl+1,r+2
+ · · ·

∣
∣
∣
∣

≤ 1

bl+1,1 · · · bl+1,r−1

( 	bl+1,r/2

bl+1,r

+ 	bl+1,r+1/2

bl+1,r bl+1,r+1

+ 	bl+1,r+2/2

bl+1,r bl+1,r+1bl+1,r+2

+ · · ·
)

≤ 1

bl+1,1 · · · bl+1,r−1

(
1

2
+ 1

2bl+1,r
+ 1

2bl+1,r bl+1,r+1
+ · · ·

)

≤ 1

bl+1,1 · · · bl+1,r−1

(
1

2
+ 1

22
+ 1

23
+ · · ·

)

= 1

bl+1,1 · · · bl+1,r−1
,

it follows that the interval [min(zr,l+1, zl+1),max(zr,l+1, zl+1)) is contained in some interval
[

u

bl+1,1 · · · bl+1,r
,

v

bl+1,1 · · · bl+1,r

)

for u, v ∈ N0 with v − u ≤ bl+1,r . Hence, L is contained in the interval

L ′ =
l

∏

i=1

[min(zki ,i , zki+1,i ),max(zki ,i , zki+1,i ))

×
[

u

bl+1,1 · · · bl+1,r
,

v

bl+1,1 · · · bl+1,r

)

× [0, 1)s−l−1.

Since (k1, . . . , ks) ∈ Bl , we have N < (
∏l

i=1 bi,1 · · · bi,ki )(bl+1,1 · · · bl+1,r ) and N ≥
∏l

i=1 bi,1 · · · bi,ki . The latter fact implies that ki < ni for all 1 ≤ i ≤ s. Thus, an application
of Lemma 3.1 yields that

A(L; N ;ω) ≤ A(L ′; N ;ω) ≤ bl+1,r

l
∏

i=1

|ai,ki |.

But on the other hand, we also have that Nλs(L) ≤ bl+1,r
∏l

i=1 |ai,ki |. Hence,

|A(L; N ;ω) − Nλs(L)| ≤ bl+1,r

l
∏

i=1

|ai,ki | ≤ Ml+1

l
∏

i=1

ci,ki ,

where ci,ki = 1 if ki = 0 and ci,ki = 	Mi
2 
 otherwise.

Summing up, we obtain

|	2| ≤
s−1
∑

l=0

∑

k1,...,kl∈N0
∏l

i=1 bi,1···bi,ki ≤N

∣
∣
∣
∣

∑

(k1,...,ks )∈Bl
εk1,...,ks (A(Jk1,...,ks ; N ;ω) − Nλs(Jk1,...,ks ))

∣
∣
∣
∣

≤
s−1
∑

l=0

∑

k1,...,kl∈N0
∏l

i=1 bi,1···bi,ki ≤N

Ml+1

l
∏

i=1

ci,ki ≤
s−1
∑

l=0

Ml+1

l!
l

∏

i=1

(	Mi/2
 log N
logmi

+ l

)

,

where we have used Lemma 3.3 again. Hence, the result follows. �
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5 An open problem

We have seen that the Halton sequence in bases of bounded sequences b1, . . . , bs is a
low-discrepancy sequence. It is of theoretical interest to ask whether the assumption of
boundedness of the base sequences b1, . . . , bs can be removed or not.

The following statement shows that we can remove the restriction on the boundedness
when s = 1. That is, the van der Corput sequence in base b = (b j )

∞
j=1 of an arbitrary

sequence of natural numbers greater than 1 is a low-discrepancy sequence. Note that the
proof is developed from the classical dyadic case in [10, pp. 127–128].

Proposition 5.1 Let b = (b j )
∞
j=1 be an arbitrary sequence of natural numbers greater than

1. Suppose that ω is the van der Corput sequence in base b. Then, for any N ∈ N, we have

ND∗
N (ω) ≤ log N

logm
+ 1,

where m = min(b j )
∞
j=1.

Note that Proposition 5.1 gives a better estimation of discrepancy than the case s = 1 of
Theorem 2.1 and also that of [2, Théorème 4.5]. To prove this result, we need to introduce a
notation and two preliminary lemmas.

A finite sequence 0 ≤ c1 < c2 < · · · < cL of points from the interval [0, 1) is called an
arithmetic progression with difference η if ci+1 − ci = η for all 1 ≤ i ≤ L − 1.

The first lemma gives an estimation of discrepancy of an arithmetic progressions.

Lemma 5.2 ([16, Theorem 2.1]) Let c1 < c2 < · · · < cL be an arithmetic progression with
difference η. Then we have

D∗
L(c1, . . . , cL) ≤ min(η, 1/L)

The next simple lemma is useful for estimating the discrepancy of a sequence which can
be decomposed into a number of subsequences with small discrepancy.

Lemma 5.3 ([18, Theorem 2.6, Ch. 2]) For 1 ≤ k ≤ K , let ωk be a sequence of Nk elements
in [0, 1) with discrepancy D∗

Nk
(ωk). Let ω be a superposition of ω1, . . . , ωK , that is, a

sequence obtained by listing in some order the terms of ωk . We set N = N1 + · · · + NK ,

which will be the number of elements of ω. Then we have

ND∗
N (ω) ≤

K
∑

k=1

NkD
∗
Nk

(ωk).

Proof of Proposition 5.1 We can always represent a given N ∈ N by its b-adic expansion

N = N1 + N2b1 + N3b1b2 + · · · + Nkb1 · · · bk−1, (5.1)

where k ∈ N and N j ∈ {0, 1, . . . , b j − 1} (1 ≤ j ≤ k). Partition the interval [0, N ] of
integers into k subintervals I1, . . . , Ik as follows. First, put I1 = [0, Nkb1 · · · bk−1]. Then,
for each 1 < j ≤ k, we define I j as the interval

[Nkb1 · · · bk−1 +· · ·+Nk− j+2b1 · · · bk− j+1 +1, Nkb1 · · · bk−1 +· · ·+Nk− j+1b1 · · · bk− j ].
Note that the proof idea of splitting up the range of 0, 1, . . . , N in this way is due to Nieder-
reiter [17].
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An integer n ∈ I j (1 ≤ j ≤ k) can be written in the form

n = Nkb1 · · · bk−1 + · · · + Nk− j+2b1 · · · bk− j+1 + 1 +
k− j+1
∑

i=1

nib0 · · · bi−1, (5.2)

where b0 = 1 and ni ∈ {0, 1, . . . , bi − 1} (1 ≤ i ≤ k − j + 1) such that nk− j+1 < Nk− j+1.

In fact, we get all Nk− j+1b1 · · · bk− j integers in I j if we let ni run through all possible
combinations. It now follows that

φb(n) = Nk

b1 · · · bk + · · · + Nk− j+2

b1 · · · bk− j+2
+ 1

b1 · · · bk− j+1
+

k− j+1
∑

i=1

ni
b1 · · · bi

= x j +
k− j+1
∑

i=1

ni
b1 · · · bi ,

where x j only depends on j, and not on n. If n runs through I j , then
∑k− j+1

i=1
ni

b1···bi
runs through all fractions 0, 1

b1
, . . . , b1−1

b1
, 1
b1b2

, . . . ,
∑k− j

i=1
bi−1
b1···bi + Nk− j+1

b1···bk− j+1
in some order.

Moreover, we note that

0 ≤ x j = Nk

b1 · · · bk + · · · + Nk− j+2

b1 · · · bk− j+2
≤ bk · · · bk− j+2 − 1

b1 · · · bk ≤ 1

b1 · · · bk− j+1
.

We deduce that if the φb(n) (n ∈ I j ) are ordered according to their magnitude, then we
obtain a sequenceω j of Nk− j+1b1 · · · bk− j elements that is a true arithmetic progressionwith
parametersη j = 1

b1···bk− j+1
. It now follows immediately fromLemma5.2 that the discrepancy

of each ω j , multiplied by the number of elements in ω j , is at most 1. Combining this with
Lemma 5.3 and the fact that φb(0), φb(1), . . . , φb(N ) is decomposed into k sequences ω j ,

we obtain ND∗
N (ω) ≤ k.

It remains to estimate k in terms of N . By (5.1), we have N ≥ b1 · · · bk−1 ≥ mk−1, and
so we obtain k ≤ (log N/ logm) + 1. This completes the proof of Proposition 5.1. �

In general, it is likely to be true that the Halton sequence in arbitrary bases of sequences
is a low-discrepancy sequence.

Problem 5.4 Let s > 1, and let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s arbitrary
sequences of natural numbers greater than 1 such that, for all j1, j2 ∈ N and all
1 ≤ i1 < i2 ≤ s, we have bi1, j1 and bi2, j2 coprime. Suppose that ω is the Halton sequence
in bases b1, . . . , bs . Then we have

D∗
N (ω) ≤ c(b1, . . . , bs)

(log N )s

N
+ O

(
(log N )s−1

N

)

,

where c(b1, . . . , bs) > 0 is a constant.

If the conjecture is true, then it is natural to ask further whether the constant c(b1, . . . , bs)
can be reduced to a similar form to that in Corollary 2.2.

6 A generalized Hammersley point set

Based on the (s − 1)-dimensional Halton sequence, we can introduce a finite s-dimensional
point set which is known as the Hammersley point set.
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Let b1 = (b1, j )∞j=1, . . . , bs−1 = (bs−1, j )
∞
j=1 be s − 1 sequences of natural numbers

greater than 1 such that, for all j1, j2 ∈ N and all 1 ≤ i1 < i2 ≤ s − 1, we have bi1, j1 and
bi2, j2 coprime. The Hammersley point set in bases b1, . . . , bs−1 consisting of N points in
[0, 1)s is defined to be the point set

P =
{(

n

N
, φb1(n), . . . , φbs−1

(n)

)

: 0 ≤ n ≤ N − 1

}

.

Wededuce a discrepancy bound for theHammersley point set with the help of Theorem2.1
in combination with the following general result from [18] that goes back to Roth [19].

Lemma 6.1 ([18, Lemma 3.7]) Let ω = (xn)∞n=0 be an arbitrary sequence in [0, 1)s−1 with
discrepancy D∗

N (ω). For N ∈ N, let P be the point set consisting of (n/N , xn) in [0, 1)s for
n = 0, 1, . . . , N − 1. Then we have

ND∗
N (P) ≤ max

1≤N ′≤N
N ′D∗

N ′(ω) + 1.

Theorem 6.2 Let b1 = (b1, j )∞j=1, . . . , bs−1 = (bs−1, j )
∞
j=1 be s − 1 arbitrary sequences of

natural numbers greater than 1 such that, for all j1, j2 ∈ N and all 1 ≤ i1 < i2 ≤ s − 1, we
have bi1, j1 and bi2, j2 are coprime. For N ∈ N, let P be the Hammersley point set in bases
b1, . . . , bs−1 consisting of N points. Then, for any N ≥ 2, we have

ND∗
N (P) ≤ 1

(s − 1)!
s−1
∏

i=1

(	Mi/2
 log N
logmi

+s−1

)

+
s−2
∑

l=0

Ml+1

l!
l

∏

i=1

(	Mi/2
 log N
logmi

+l

)

+1,

where Mi = max{bi, j ∈ bi : bi,1 · · · bi, j ≤ N } and mi = min{bi, j ∈ bi : bi,1 · · · bi, j ≤ N }
(1 ≤ i ≤ s − 1).

Corollary 6.3 Let b1 = (b1, j )∞j=1, . . . , bs−1 = (bs−1, j )
∞
j=1 be s − 1 bounded sequences of

natural numbers greater than 1 such that, for all j1, j2 ∈ N and all 1 ≤ i1 < i2 ≤ s − 1,
we have bi1, j1 and bi2, j2 coprime. For N ∈ N, let P be the Hammersley point set in bases
b1, . . . , bs−1 consisting of N points. Then, for any N ≥ 2, we have

D∗
N (P) ≤ c(b1, . . . , bs−1)

(log N )s−1

N
+ O

(
(log N )s−2

N

)

with

c(b1, . . . , bs−1) = 1

(s − 1)!
s−1
∏

i=1

	Mi/2

logmi

,

where Mi = max(bi, j )∞j=1 and mi = min(bi, j )∞j=1 (1 ≤ i ≤ s).

A point set P consisting of N points in [0, 1)s is called a low-discrepancy point set
if D∗

N (P) = O((log N )s−1/N ). In this sense, the generalized Hammersley point set is a
low-discrepancy point set.
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