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Abstract We consider variants of the Halton sequence in a generalized numeration system,
called the Cantor expansion. We show that it provides a wealth of low-discrepancy sequences
by giving an estimate of the (star) discrepancy of the Halton sequence in each bounded
Cantor base. The techniques used in our estimation of the discrepancy are adapted from
those developed by E.I. Atanassov.
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1 Introduction

Let o = (x,);2, be a sequence in [0, 1)°. A standard problem in numerical analysis is
estimating the integral of a function, through a knowledge of its value at a finite number of
points of the sequence. This is known as the Monte Carlo method in the case of stochastic
sequences (x,,)ﬁl\'=1 or the quasi-Monte Carlo method in the case of deterministic (x,,)flv= 1
This is encapsulated in the famous Koksma—Hlawka inequality
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1 N
FEydx =3 flm)| = V()Dy(@)
n=1

‘ [0,1]%

for an arbitrary function f on [0, 1]° with bounded variation V ( f) in the sense of Hardy and
Krause and any finite set of points (xn) _, with discrepancy

A(J; N; w)

Dy(w) = sup N

J=[T_110,z)<[0, 1)*

—AS(J)’.

Here A(J; N; w) = #{1 <n < N: x, € J} is the counting function, where A;(J) denotes
the s-dimensional Lebesgue measure of J and the above supremum is taken over all rectan-
gular solids J = [[;_;[0,z;) with 0 < z; < 1 (1 <i < s). Note that A,(J) = [[_, zi.
For more details on numerical integration, the reader can consult [3,11] or [14]. Evidently,
to estimate f[()’ 1 f (x) dx sufficiently precisely, what is needed is a good bound for D}, ().
The discrepancy is nothing other than a quantitative measure of uniformity of distribution.
In particular, the sequence  is uniformly distributed on [0, 1)*, if and only if D} (w) — 0
as N — o0. In a sense, the faster D;‘V (w) decays as a function of N, the better uniformly
distributed the sequence w is. One of the fundamental obstructions in this subject is that there
is a limit to how well distributed any sequence can be. This is encapsulated in the elementary
inequality Dy (w) > 1/2°N (N € N) whose proof makes an entertaining exercise. This
opens the door to the deep subject of irregularities of distribution which addresses just what
limitations there are to the uniformity of distribution of an arbitrary sequence, and the com-
plementary problem of constructing sequences with discrepancy as small as possible. This
latter issue is clearly central to the initial issue mentioned in this paper.

Perhaps the most famous example of a low-discrepancy sequence is the van der Corput
sequence. In 1935, van der Corput [21] introduced a procedure to generate low-discrepancy
sequences on [0, 1). These sequences are considered to be among the best distributed over
[0, 1), and no other infinitely generated sequences can have discrepancy of smaller order of
magnitude than van der Corput sequences. The technique of van der Corput is based on a
very simple idea. Let b > 1 be a natural number. Then every nonnegative integer n has a
b-adic representation of the form

o0
n= anbj*l =ny +n2b+n3b2 +n4b3 +

wheren; € {0, 1, .. — 1} (j € N). The van der Corput sequence (¢y,(n));,2, in base b is
constructed by reversmg the base b representation of the sequence of nonnegative integers,
where the radical-inverse function ¢, : Ng — [0, 1) is defined by

o0 o0
iy N _m me ony
¢b(;n1b )_gbf_b+b2+b3+ .

In practical applications, a generalization of the van der Corput sequence to higher dimensions
is more likely to be of practical use. In 1960, this was proposed by Halton [7]. Given coprime

integers b1, ..., by all greater than 1, the sequence (¢p, (1), ..., ¢p, (1)) is called the
Halton sequence in bases by, ..., by.
It was known for a long time that the discrepancy of the first N elements of the Halton
sequence in bases by, ..., by can be bounded by
(log N)* (log N)*!
bi,...,b o , 1.1
c(by D) N + N (L.1)
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130 A. Haddley et al.

for some constant ¢(by, ..., by) > 0. For example, this was shown in [4,6,7,15] and [18]. It
is believed that the order (log N)*/N is the best possible for an arbitrary infinite sequence.
That this is the case when s = 1 was proved by Schmidt [20]. For s > 1, the question
remains open. We shall call an infinite sequence w in [0, 1)* a low-discrepancy sequence if
Dy (w) = O((log N)*/N).

The question of how small the constant c(by, ..., bs) in (1.1) can be interesting from
both a theoretical and a practical viewpoint. The articles referred to above show that this
constant depends very strongly on the dimension s. The minimal value for this quantity can
be obtained if we choose by, ..., by to be the first s prime numbers. But even in this case
c(by, ..., bs) grows very fast to infinity if s increases. This deficiency was overcome by
Atanassov [1] who proved that

s

1 b —1
bi,....by) = — .
c(r s) s!ll;[llogb,-

This estimate is so impressive that, when by, ..., by are the first s prime numbers,
cby,...,b;) > 0ass — oo.

In this paper, we introduce the Halton sequence in a generalized numeration system,
which is induced by the a-adic integers and which is called the Cantor expansion, and give
an estimate of its discrepancy by adapting the techniques developed by Atanassov. It is worth
noting here that the van der Corput sequence and some one-dimensional low-discrepancy
sequences with respect to the Cantor expansion were studied in [2] and [5]. Note also that it
was mentioned in [8] about the Halton sequence in a more generalized numeration system
than the Cantor expansion, called the G-expansion; however, the paper aimed to study the
Halton sequence in some fixed non-integer bases and did not touch on the Halton sequence
with respect to dynamical bases.

We now summarize the contents of this paper. In Sect. 2, we introduce the concept of a
generalized numeral system. Then we define the Halton sequence induced by this generalized
system and state our main result on the estimate of discrepancy of the Halton sequence. In
Sects. 3 and 4, we collect all preliminary lemmas and prove our main result, respectively. In
Sect. 5, we prove an estimate of discrepancy of the van der Corput sequence in a generalized
numeration system without the restriction on boundedness of inducing sequences. Then we
pose an open problem regarding an extension of our results. Finally, we introduce in Sect. 6
the Hammersley point set induced by the generalized numeration system and show that it
provides a wealth of low-discrepancy point sets by giving an estimate of its discrepancy.

2 A generalized Halton sequence

Letb = (b j)?ozl be a sequence of natural numbers greater than 1. Then it is clear that every
nonnegative integer n has a unique b-adic representation of the form

o0
n= znjbl «--bj_1 =ny +naby +n3b1by + ngb1byb3 + - - -,
=1

where nj € {0, 1,...,b; — 1} (j € N). This b-adic representation is also called the Cantor
expansion of n with respect to the Cantor base b. Moreover, every real number x € [0, 1)
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The Halton sequence in the Cantor expansion 131

has a b-adic expansion of the form

o0

. AR RV N
x—zbl...bj b1+b1b2+b1bzb3+ 7

j=1
where x; € {0, 1,...,b; — 1} (j € N). The x; can be calculated by the greedy algorithm
X1 :[xbl] and Xj = [{xb1~-~bj,1}bj],

where [«] and {«} denote the integer part and the fractional part of «, respectively. The idea
of this generalized numeration system stems from the a-adic integers, which is a class of
locally compact topological groups and possesses a symbolic dynamical structure. For more
details on the a-adic integers, see [9, pp. 106-117].

Define the radical-inverse function ¢, : No — [0, 1) by

o0

o
nij n ny ns
bi-bi )= Ty e
¢(z 1) > = b

The van der Corput sequence in base b is defined as (¢ ("))f,ozo- This sequence was studied
in [2] and [5], where it was proved to be a low-discrepancy sequence with some restriction
on the Cantor base b. Furthermore, the sequence was shown, without any restriction on the
Cantor base, to be uniformly distributed mod 1 in [13] and to be a low-discrepancy sequence
in [12].

Letb, = (bl,.,)?‘;l, ..., by = (by, j)i": | be s sequences of natural numbers greater than
1 such that, forall ji, j, € Nandall1 < i < i <s, we have b;, j, and b;, j, coprime. The
Halton sequence in bases by, ..., b is defined to be @ = (¢hp, (n), ..., Pp, (M)

The following is our main result and gives an estimate of the discrepancy of the Halton
sequence in bases of bounded sequences.

Main Theorem 2.1 Let b, = (bl,j)?ip by = (bs,j)j?ozl be s bounded sequences of
natural numbers greater than 1 such that, for all ji, jo € Nand all 1 < iy < iy <'s, we

have b;, j, and b;, j, coprime. Suppose that w is the Halton sequence in bases by, ..., b;.
Then, for any N > 1, we have

117 ( LMi/2) log N & Mig 1y (LMi/2]log N
N D% < — _— 1),
v(@) =5 Ul( log m; H) 2.7 H( logm T )

=0 i=1

where M; = max(bi,j)?';l and m; = min(b,;j)cj?o=l (1<i<y).

Corollary 2.2 Let b, = (bl,j)?o:p b= (bs,j)j?ozl be s bounded sequences of natural
numbers greater than 1 such that, for all ji, j» € Nand all 1 < iy < iy < s, we have b;; j,
and bj, j, coprime. Suppose that w is the Halton sequence in bases by, . .., b,. Then, for any

N > 1, we have

(log N)* (log N)*~!
D% <cby,...,b (0]
~ (@) < c(by by) N + N
with R
1 [M;/2]
b,,....b)=—
@y, - by) S!H logm; ’

i=1
where M; = max(bi,j)?o:1 and m; = min(b,-,j)‘j’.o=1 (1 <i<y).

This shows that the Halton sequence is a low-discrepancy sequence.
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132 A. Haddley et al.

3 Preliminary lemmas

In order to prove Theorem 2.1, we need the following five lemmas. These preliminary results
are adapted from [3] whose ideas go back to Atanassov [1].

Lemma 3.1 Let b, = (bl,j)?iw «.ovby = (b)) be s arbitrary sequences of natural

numbers greater than 1 such that, for all ji, j» € Nand all 1 < iy < iy <5, we have b;; j,
and b, j, coprime. Suppose that  is the Halton sequence in bases by, ..., b,. Let J be an

interval of the form
S
u; Vi
J = ,
il_[l[bi,l"’bi,ki bi,l"'bi,k,-)

with integers 0 < u; < v; <b;1---biy, andk; > 1 forall 1 <i <s. Then the inequality

N
|A(J; Ns ) = Nas(D] < [ [ i — ui)
i=1
holds for every N € N. Moreover, for every N < ]_[f:l bi1---bix,wehave A(J; N; w) <
H}'Y:1(Ui —u;).
Proof For each n € Ny, we denote the b;-adic expansion of n by
(@)

n= n?) +ny b1+ ngi)bi,lbi,z + nff)bi,lbi,zbis +-

where n;i) e {0,1,...,b;; — 1} (j € N). Choose £ = (I1,...,ls) € Nj such that, for all
1 <i<s,wehave 0 <I[; < b, - b with the expansion

li = lig +ligg—1bix; + lik;—2Dik;bigg—1 + -+ li1bi g, -+ - bi2,

where l; j,—j € {0,1,...,bjj,—j — 1} (0 < j < k; — 1). We consider the interval

s
I; li+1 )
Jy = |: s .
ll:[l bi1---bix, bi1---big

Then the nth element w, of the Halton sequence is contained in Jy, if and only if, for all
1<i<sy,

li’1+...+li’$§n({) ng) ...<li']+...+ li.k + !

b1 biv---bix, ~ bi1  biibio b1 bi1---big

This is however equivalent to n(li) =1l1,..., n](é) = l; x; which in turn is equivalent to
n=li1+liobiy+ -+ 1igbi1--big—1 (mod b;y---bjy)foralll <i <s.

Asby j, ..., by, j are pairwise coprime forall (ji, ..., js) € N°, we obtain from the Chi-
nese Remainder Theorem that every []i_, bi,1 - - - bi ; consecutive elements of the Halton
sequence, contain exactly one elementin Jy or, in other words, A(Jg; ¢ Hle bi1--bij;w) =
t for all t € N, and hence

N s
A(Jz; IHbi,l bk w) - (tHbi,l "'bi,k,-))-s(-li) =0.
i=1 i=1

Therefore, for every N € N, we obtain

|A(Je: N: ) = Nag(Jo)| < 1.
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The Halton sequence in the Cantor expansion 133

Now we write the interval J as a disjoint union of intervals of the form Jp,

vi—1 vg—1

J = U U Jo,

l1=u ly=uy
where ¢ = (I1, ..., [ls). We then have

vi—1 vg—1

|A(J; Ns @) = NA(DI < D7 -+ D AU Ny o) = NAs(Jo)| <H(vl — 1),

l1=u ly=uy i=1

which proves the first assertion.
For every N < H‘;:] bi1---bik, we always have A(Jy; N;w) < 1 for each £ =

(1,...,1s) e NywithO <[; < b;1---bjy forall1 <i <s, and hence
vi—1 vg—1
AUiNiw)= D - D> AU Nio) < H(vl — ui).
l1=u, ly=uy
This was the second assertion of the lemma. ]

Lemma 3.2 Let b, = (b, ])] O e (bs,j);";l be s arbitrary sequences of natural
numbers greater than 1. For each N € N, let d(b;,...,b; N) be the number of tuples
(ki, ..., ks) € N* such that []_ bi,1 -+ bix, < N.Then we have

log N
d(élv'“» saN)_ S‘H]Ogmi’

where m; = min(b;_ J) o (I <i<y).

Proof Let N € N. Assume that k = (ki, ..., k;) € N° satisfies [[}_; bi1---bix; < N.
Notice that we immediately have m]fl .- -mfs < N.Thenthe interval Ex = [[}_[ki — 1, k;)
of volume 1 is entirely contained in the simplex

S={(x1,...,x) €[0,00)°: x;logm + - -+ + x; logmy < log N}
of volume 2 5 Hl 1 SggN Hence, we obtain
* logN
d@l,...,gs;N)ﬂs( U Ek) < h(8) = 1‘[1 i
Ogmt
ExCS
as required. O

Lemma 3.3 Let b, = (blj)J e

numbers greater than 1. Suppose that (z,(cl))]fio, ey (z,(f))]fozo are s bounded sequences of

by = (bs,j);il be s arbitrary sequences of natural

nonnegative real numbers such that z(()i) < 1and z,((i) < fiforallk e Nandall 1 <i <.
Then, for any N > 1, we have

s
log N
S [ < H(ﬁ g +s),
s! log m;
K1,k NS =1 =1
[Ty bi-big; <N

where m; = rIlin(la,~7j);?°:1 (1<ic<ys).
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134 A. Haddley et al.

Proof Letu C {1,...,s}. By Lemma 3.2, the number of s-tuples (ki, ..., ks) such that
k > 0ifi € u, k, = 0ifi ¢ u, and Hleu 1---bix; < N is bounded above by

W [Tica ]loogg—mi. Moreover, each of these s-tuples contributes at most [[;., fi to the sum

on the left hand side in the statement of the lemma. From this, invoking the inequality
Ao

I\!—

log N
2 Hz(’)— P ||.H ogm

1 log N
SIPIEI
=5 :
§: uc{l,...,s} icu IOgml
1+ log N
B ;lljl (fl log m; +S)’
and this is the desired result. O

Now we need to introduce some notation. Let / € R’ be an interval. Then a signed

splitting of J is a collection of not necessarily disjoint intervals Jp, ..., J, together with
signs €1, ..., & € {—1, 1} such that, for all x € J, we have
r
Z & = 1.
xgl,-

A function v on the class of intervals in R? is said to be additive if, for each pair of disjoint
intervals A, B in R®, we have v(A U B) = v(A) + v(B). It is not hard to see that the s-
dimensional Lebesgue measure A; and the counting function A(-; N; w) are the examples
we are particularly interested in. It is not hard to check that, for any additive function v on
the class of intervals in R*, we have

v(J) =D ev(i),
i=1

where (J1, ..., Jr; €1, ..., &) is a signed splitting of J, and here we use v(J;) = v(J; N J)
(1 <i <r). The following result is taken directly from [1] (see also [3] for a detailed proof).

Lemma 3.4 ([1, Lemma 3.5]) Let J = Hle[O, z;) be an s-dimensional box. For each
I <i <s, let (zk,i)k=1,...,.n; e an arbitrary finite sequence of numbers in [0, 1]. Define
further zo; = 0 and z,,11,; = z;i for all 1 <i < s. Then the collection of intervals

N

H[min(zki,h Zki+1,i)’ max(zki,iv Zkri—l,i))
i=1

together with the signs &g, . r, = Hle SEN(Zk;+1,i — ;i) for 0 <k <nmjand1 <i <s
define a signed splitting of the interval J.

For the proof of Theorem 2.1, we need a digit expansion of reals z € [0, 1) in (b; );’i |-adic
base which uses signed digits. The next lemma shows that such an expansion exists.
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The Halton sequence in the Cantor expansion 135

Lemma 3.5 Let b = (b‘,-)?o: | be an arbitrary sequence of natural numbers greater than 1.
Then every z € [0, 1) can be written in the form

ai a as
z=ay+ —+—+

b by bbby T

with integer digits ag, ay, az, . .. such that ay € {0, 1} and —|_b/2_lj <aj =< L%J for all

J € N. This expansion is called a signed b-adic expansion of z.

Proof Foreach j € N, letc; = Lbjz_lj. Define

Cl c2 c3
X=—+—+
by biby  bibybs

For z € [0, 1), we have z + x € [0, 2) with b-adic expansion

€0, 1).

+ .
X=1u _ E——— ceey
¢ O b T biby | bibobs

where ug € {0, 1}, and where u; € {0, 1,...,b; — 1} (j € N). Therefore,

U] —C1 Uy — C2 U3z —c3
Z=1uo+ by + biby +b]b2b3+

I <uj—cj<bj—1- Lb‘/;lj = L%J for all j € N, as required. O

. bj—1
with — |~

4 Proof of the main theorem

Proof of Theorem 2.1 Let J = H‘;Zl[O, zi) < [0, 1)*. According to Lemma 3.5, for all
1 <i <, we consider the signed b;-adic expansion of z; of the form

a1 a2 a3
Zi =ai0+ — + — : +---
bin  biabip  bi1biabi3
. bl,]_l bl,] .
witha;o € {0, 1} and — | =5—] < a; ; < [5"] (j €N).
Foralll <i <y, letn; = L]fggrgyj + 1, and for 1 < k < n;, define the truncations of the
v
expansions
a1 ain ai k—1
ki =4aio0+ — + - et
b P0 bi1  bibin biy---bik—1

andlet zo; = 0 and z;+1,; = zi.
According to Lemma 3.4, the collection of intervals

i=1

together with the signs g, x, = Hle SgN(Zg+1,i — 2Uq,i) for0 <k; <nmjand1 <i <5
defines a signed splitting of the interval J.
Since both Ay and A(-; N; w) are additive functions on the set of intervals, we obtain that

nj

ny
AU N; @) = Nag(D) = D - D ey kg (AU ki N3 @) = Nag (kg k)
k1=0 k=0

=2 + 2o,
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136 A. Haddley et al.

where ¥ denotes the sum over all (ki, ..., k) such that Hle bi1---biy, < N and %,
denotes the remaining part of the above sum.

First we deal with the sum X¥;. For any 1 < i < s, the length of the interval
[min(zk; i, 2k 41,i), MAX(Zk;i s Th;+1,i)) 1S |aik; /bi1 -+~ big; |, and also the limit points of
this interval are rationals with denominator b; 1 - - - b; k, . It is worth keeping in mind that, due
to the choice of n;, we must have k; < n; when H‘le bi1---bix;, < N.Accordingly, the
intervals J, .k, are of the form as considered in Lemma 3.1 from which we obtain

i=1

bii; ; L .
We have |a; ¢, | < | 2"’ ] < L%J =: fi. An application of Lemma 3.3 yields that

1 v (LM;/2]log N
¥ < S'l_ll( +S).

log m;

It remains to estimate ;. To this end, we split the set of s-tuples (ki,...,ks) for
which Hle bi1---bix, > N into disjoint sets By, By, ..., B_1 where we set By =
{k1, ..., k) € Ny: by1---b1g > N}and, forl </ <s—1,

1 I+1
B = [(kl,...,ks) eNy: [[bia-- b, < Nand [[bir- bix, > N].
i=1 i=1
For a fixed 1 <[ < s — 1 and a fixed [-tuple (ky, ..., k;) with Hﬁ:] bi1---biy, <N,

define r to be the largest integer such that

!
(Hbi,l "'bi,k,-)(lerl,l ~-bry1r—1) < N.
i=1

It follows that the tuple (ky, ..., ki, ki+1, - . ., ks) is contained in By, if and only if k;41 > 7.
Therefore, for any 0 < [ < s — 1 and fixed k, . .., k; € No such that []'_, b1 - - big, <
N, we have that

D ek AUk okt N @) = Nag (k. k,) = £(A(L; N: @) — NA(L)),

kiy1,....kseN
(ki,....ks)eB;
where

L= H[min(Zk,-,i, Zhi+1,i)> MAX(Zk; iy Thi41,0))
i=1
N
x [min(z,r41, 21), max(zrry1, 20) X [ ] 10, 20).
i=l+2
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The Halton sequence in the Cantor expansion 137

Let (ky,...,ks) € B;. As

ai+1,r Al+1,r+1 Al41,r+2
241 = Zri41] = + +ee
biyr1--bivry by cbivrrvr o birra b2
B 1 a1, Ait1,r+1 Al41,r42 ‘
biyir b1 by birrrbivi+r bivrbiet r1bitn 42

1

Lb1s1r/2) | bisirs/2) Lbrs1,r42/2] +)

T bip11 by -1 biy1.r b1 b1 e+ Dig1rDiv1 r+1b141 42

1

T by byt
1

biy1.1 - biy1r-1

1 1 1

2 2biy1y o 2641 bt )
1

2

+—+—_+~~-)

< : (
biy1,1--bir1r-1

itfollows that the interval [min(z, /41, Z/+1), Mmax(z, ;+1, Z/+1)) is contained in some interval

[ : : )
biv1,1-bit1r biyrn by
foru, v € Ng with v —u < b;41,. Hence, L is contained in the interval

1
= H[min(zk,‘,[v Zk,‘+1,i)7 maX(Zk,‘,iv Zk,'+1,l'))
u

i=1
x[ , v ) x [0, 1)*~1=1.
bigt11-big1y by bigrr

Since (ki,...,ks) € B;, we have N < (Hﬁzl bit -+ bik)bis1,1biyr,y) and N >
Hﬁ:l b 1---bj ;. The latter fact implies that k; < n; forall 1 <i <. Thus, an application
of Lemma 3.1 yields that

l
A(L; N; o) < A(L'; N; ) < by [ [ laik |-
i=1
But on the other hand, we also have that NA;(L) < bj41.» Hle la; k,|. Hence,

1 1
|A(L; N; @) = Nag(L)| < by [ [ lais) < Mg [ cies
i=1 i=1

where ¢; , = lifk; =0and ¢;, = L L | otherwise.
Summing up, we obtain
3] < Z > > e k (AUky kst N5 @) = NAs(Jiy. oy ))‘
(k1,....kg)eB;

s—1 o l
<> > M HC, B i H(LM@J’;ogN l)’
1

=0 ki,...,k1€Ng i=1 i=
where we have used Lemma 3.3 again. Hence, the result follows. O
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138 A. Haddley et al.

S An open problem

We have seen that the Halton sequence in bases of bounded sequences b;,..., b, is a
low-discrepancy sequence. It is of theoretical interest to ask whether the assumption of
boundedness of the base sequences b, ..., b, can be removed or not.

The following statement shows that we can remove the restriction on the boundedness
when s = 1. That is, the van der Corput sequence in base b = (b j)?il of an arbitrary
sequence of natural numbers greater than 1 is a low-discrepancy sequence. Note that the

proof is developed from the classical dyadic case in [10, pp. 127-128].

Proposition 5.1 Letb = (b j)</?°=1 be an arbitrary sequence of natural numbers greater than
1. Suppose that w is the van der Corput sequence in base b. Then, for any N € N, we have

log N
224
logm

NDy(w) <
where m = min(bj)jil.

Note that Proposition 5.1 gives a better estimation of discrepancy than the case s = 1 of
Theorem 2.1 and also that of [2, Théoreme 4.5]. To prove this result, we need to introduce a
notation and two preliminary lemmas.

A finite sequence 0 < ¢| < ¢» < -+ < ¢, of points from the interval [0, 1) is called an
arithmetic progression with difference n if ¢;11 —¢; = nforalll <i <L — 1.

The first lemma gives an estimation of discrepancy of an arithmetic progressions.

Lemma 5.2 ([16, Theorem 2.1]) Letc1 < ¢y < --- < cr be an arithmetic progression with
difference n. Then we have

Dj (ci, ..., c) <min(n, 1/L)

The next simple lemma is useful for estimating the discrepancy of a sequence which can
be decomposed into a number of subsequences with small discrepancy.

Lemma 5.3 ([18, Theorem 2.6, Ch. 2]) For 1 < k < K, let wy be a sequence of Ny elements
in [0, 1) with discrepancy D;;,k (wr). Let w be a superposition of wy, ..., wk, that is, a
sequence obtained by listing in some order the terms of wy. We set N = Ny + --- + Nk,
which will be the number of elements of w. Then we have

K

NDj (@) < > NeDj, (@)
k=1

Proof of Proposition 5.1 We can always represent a given N € N by its b-adic expansion
N = Ny + Noby + N3b1by + -+ - + Niby - - bg—1, (5.1)

where k € Nand N; € {0,1,...,b; — 1} (1 < j < k). Partition the interval [0, N] of
integers into k subintervals I, ..., Iy as follows. First, put I1 = [0, N¢b; - - - br—1]. Then,
for each 1 < j < k, we define I; as the interval

[Nkby -+ -bg—1+- -+ Nk_jrob1 -+ bg—jp1+1, Nkby -+ by +- - -+ Ng—j1by - - - b1
Note that the proof idea of splitting up the range of 0, 1, ..., N in this way is due to Nieder-
reiter [17].
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Anintegern € I; (1 < j < k) can be written in the form
k—j+1
n=Ngby - b1+ + Ne_jpabrbejor+1+ D mibg--bi_y.  (52)
i=1
where bp = landn; € {0,1,...,b; =1} (1 <i <k—j+1)suchthatng_jy1 < Np_ji1.
In fact, we get all Ny by ---by—; integers in I; if we let n; run through all possible
combinations. It now follows that
Ni Ni—j+2 1

o by by bi-bk—jt2  br---br—jy1

k—j+1
D
= X; .
ST
i=1

where x; only depends on j, and not on n. If n runs through /;, then Zi{:—lj i bl'f"‘ b
. 1 b1 —1 1 k—j bi—1 Ni—j+1 .
runs through all fractions 0, R T A > bib T BBy insome order.
Moreover, we note that
Ny Ni_iio br- br_iyo—1 1
0<xj=s——+ -+ I < = < :
Tobyeee by by« br—ji2 by« by by br—js1

We deduce that if the ¢ (n) (n € I;) are ordered according to their magnitude, then we
obtain a sequence w; of Ny_j1by - - - by j elements that is a true arithmetic progression with
parameters ; = m . Itnow follows immediately from Lemma 5.2 that the discrepancy
of each w;, multiplied by the number of elements in w;, is at most 1. Combining this with
Lemma 5.3 and the fact that ¢, (0), ¢p(1), ..., #p(N) is decomposed into k sequences w;,
we obtain N Dy (w) < k.

It remains to estimate & in terms of N. By (5.1), we have N > by ---br_1 > m"*~ ", and
so we obtain k < (log N/logm) + 1. This completes the proof of Proposition 5.1. O

k—1

In general, it is likely to be true that the Halton sequence in arbitrary bases of sequences
is a low-discrepancy sequence.

Problem 5.4 Let s > 1, and let by = (bl,j)?o:l,...,év = (bs’j);";l be s arbitrary
sequences of natural numbers greater than 1 such that, for all ji,j» € N and all
1 <iy <ip <, we have b, j, and b, j, coprime. Suppose that w is the Halton sequence
in bases by, ..., b,. Then we have

Dy(w) <c(by,....b

» ZLs

(log N)* (log N)*~!
)T + 0 (T) ,

where c(by, ..., b,) > 0is a constant.

If the conjecture is true, then it is natural to ask further whether the constant c(b,, . .., by)
can be reduced to a similar form to that in Corollary 2.2.

6 A generalized Hammersley point set

Based on the (s — 1)-dimensional Halton sequence, we can introduce a finite s-dimensional
point set which is known as the Hammersley point set.
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Let by = (b1,j))32,, ... by = (bs—1,j)7Z; be s — 1 sequences of natural numbers
greater than 1 such that for all ji, j» € N and all 1 <iy <ip <s—1, wehave b; j, and
bi,, j, coprime. The Hammersley point set in bases by, ..., b,_; consisting of N points in

[0, 1)* is defined to be the point set

P = [(%a‘f’él(n),,(PQS,l(n))()fan_l]

We deduce a discrepancy bound for the Hammersley point set with the help of Theorem 2.1
in combination with the following general result from [18] that goes back to Roth [19].

Lemma 6.1 ([18, Lemma 3.7]) Let w = (x,)52, be an arbitrary sequence in [0, D=1 with
discrepancy Dy (w). For N € N, let P be the point set consisting of (n/N, x,) in [0, 1)* for
n=0,1,..., N — 1. Then we have

ND}(P) < max N'Dy/(w)+ 1.
I<N’'<N
Theorem 6.2 Let b, = (b; ])] b= (bs,l,j);"’;l be s — 1 arbitrary sequences of

natural numbers greater than 1 such that, for all ji, j» € Nandall1 <ij <ip <s—1, we
have b;, j, and by, j, are coprime. For N € N, let P be the Hammersley point set in bases

by, ...,b,_ consisting of N points. Then, for any N > 2, we have
1 S M2 logN Mz+1 L (IM;/2]log N
ND}(P) < + +1)+1
VP = G [{( logm; ) Z E[l( logm; )

where M; =max{bi,j Géii bi31~--biyj < N} and m; =min{bi,j Eéil bi’l-“b,"j < N}
I<i<s-—1).

Corollary 6.3 Letb, = (bl,j)?o:p oo bo = (bs—l,j)?ozl be s — 1 bounded sequences of
natural numbers greater than 1 such that, for all j1, j» € Nandall1 <i; <ip <s—1,
we have b;, j, and by, j, coprime. For N € N, let P be the Hammersley point set in bases

by, ..., b,_, consisting of N points. Then, for any N > 2, we have
log N)*~! log N)$—2
DY(P) < clby. .- by gN) +0(( gN) )

with

c(by.....b_}) =

s—1
1 [M;/2]
(s — 1! E logm; ’

where M; = max(b;, ]) °  and m; = min(b;, J)Ool (1<i<y).

A point set P consisting of N points in [0, 1)* is called a low-discrepancy point set
if D}, (P) = O((logN )*~1/N). In this sense, the generalized Hammersley point set is a
low-discrepancy point set.
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