
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-024-06539-6

1 3

Reversible jump attack to textual classifiers
with modification reduction

Mingze Ni1 · Zhensu Sun2 · Wei Liu1 

Received: 18 January 2023 / Revised: 19 February 2024 / Accepted: 11 March 2024
© The Author(s) 2024

Abstract
Recent studies on adversarial examples expose vulnerabilities of natural language process-
ing models. Existing techniques for generating adversarial examples are typically driven
by deterministic hierarchical rules that are agnostic to the optimal adversarial examples,
a strategy that often results in adversarial samples with a suboptimal balance between
magnitudes of changes and attack successes. To this end, in this research we propose two
algorithms, Reversible Jump Attack (RJA) and Metropolis–Hasting Modification Reduc-
tion (MMR), to generate highly effective adversarial examples and to improve the imper-
ceptibility of the examples, respectively. RJA utilizes a novel randomization mechanism to
enlarge the search space and efficiently adapts to a number of perturbed words for adver-
sarial examples. With these generated adversarial examples, MMR applies the Metropolis–
Hasting sampler to enhance the imperceptibility of adversarial examples. Extensive experi-
ments demonstrate that RJA-MMR outperforms current state-of-the-art methods in attack
performance, imperceptibility, fluency and grammar correctness.

Keywords  Textual attack · Adversarial learning · Natural language processing

Editor: Lijun Zhang.

 *	 Wei Liu
	 wei.liu@uts.edu.au

	 Mingze Ni
	 mingze.ni@student.uts.edu.au

	 Zhensu Sun
	 sunzhs@shanghaitech.edu.cn

1	 School of Computer Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007,
Australia

2	 School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia
Road, Shanghai 201210, China

http://orcid.org/0000-0002-3003-1313
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06539-6&domain=pdf

	 Machine Learning

1 3

1  Introduction

NLP models are known to be vulnerable in various applications, including machine trans-
lation (Ni et al., 2022; Cheng et al., 2020; Tan et al., 2020), sentiment analysis (Zang
et al., 2020; Yang et al., 2021), and text summarization (Cheng et al., 2020). Attackers
can exploit these weaknesses, creating adversarial examples that compromise the perfor-
mance of targeted NLP systems. This growing susceptibility presents significant security
challenges for AI models.

Textual attacks on NLP models are classified into character (Iyyer et al., 2018b; Ribeiro
et al., 2018), word (Alzantot et al., 2018; Jia et al., 2019), and sentence-level (Jia & Liang,
2017) attacks. Character-level attacks are easily countered due to noticeable misspellings
(Ebrahimi et al., 2018), while sentence-level attacks often yield complex, hard-to-read text
(Gan & Ng, 2019). Word-level attacks are gaining preference for their effectiveness and
subtlety, as they involve replacing words with carefully chosen substitutes (Zhang et al.,
2020; Garg & Ramakrishnan, 2020; Liet al., 2020). Consequently, our focus is on conduct-
ing word-level adversarial attacks.

Crafting optimal adversarial examples involves navigating the interplay of successful
attacks, controlled imperceptibility. The predominant strategies for this can be classified
into optimization algorithms and hierarchical search methods. Within the realm of opti-
mization, Genetic Attack (GA) (Alzantot et al., 2018; Jia et al., 2019) and Particle Swarm
Optimization (PSO) (Zang et al., 2020) stand out as evolutionary approaches, focusing
on optimizing attack effectiveness within embedding spaces and sememe-based thesauri,
respectively. However, these methods face two primary challenges: 1) low efficiency in the
optimization process due to the expansive search space, such as GloVe (Pennington et al.,
2014), and 2) Compromised semantic integrity, as even synonym-based word substitu-
tions can cause sentence-level semantics inconsistency. On the other hand, Hierarchical
search crafts adversarial examples by orderly substituting words based on word saliency
rank (WSR) (Ren et al., 2019; Li et al., 2021; Yang et al., 2021). It first identifies target
words using WSR, then employs a Masked Language Model or thesaurus for substitutions.
These hierarchical attacking methods have several drawbacks: 1) the first drawback of this
approach is the difficulty of presetting the number of perturbed words (NPW) for large
datasets with many tokens since the optimal NPW varies with different target texts (Michel
et al., 2019); 2) the WSR-based methods will significantly reduce the searching domain by
only attacking the combination of victim words ordered by the WSR. For a clear illustra-
tion, Fig. 1 showcases the drawbacks of optimization-based GA and hierarchical PWWS
attacks. GA’s replacement of ‘thriller’ with ‘science’ sacrifices semantic quality, while
PWWS, despite altering three words, fails to fool the classifier.

To address the above problems, we propose two novel black-box and word-level
antagonistic algorithms: Reversible Jump Attacks (RJA) and MH Modification Reduc-
tion (MMR). For RJA, we employ the Reversible Jump sampler (RJS) and propose three
variables from a target distribution: the number of perturbed words (NPW), victim
words, and substitutions from Masked Language Models (MLM) and HowNet (Dong &
Dong, 2003). The target distribution for RJS for evaluating the quality of the adversarial
candidates is regularized by a strong penalty of semantic (dis)similarity. The NPW can
be cross-dimensionally searched via RJS to adjust for different textual inputs according
to their word saliency and overall performance. Given these three factors, adversarial
candidates are only accepted based on an acceptance probability from RJS. By run-
ning such a process iteratively, we will obtain the successful candidates with the highest

Machine Learning	

1 3

semantic similarity. Therefore, RJA efficiently searches threat-level attacks inside a
domain larger than WSR without presetting an NPW and sacrificing much semantics for
imperceptibility.

The other algorithm is Metropolis–Hasting Modification Reduction (MMR) which
tends to restore the manipulations from RJA (i.e., reverse back to the original words) and
then update the existing substitutions to maintain the attacking performance. Specifically,
given an adversarial candidate, MMR first stochastically proposes a new candidate by
restoring the attacked words. It applies a customized acceptance probability, calculated by
comparing the overall performance between the new and current candidates, to determine
the acceptance of the new candidate. After restoring some attacked words, MMR uses MH
algorithm to update the substitutions of the current attacked words to preserve the attack-
ing performance. By combining RJA and MMR, we proposed an integrated RJA-MMR
as our final model. Specifically, RJA utilizes a Reverse Jump sampler (Green, 1995b), a
Markov Chain Monte Carlo (MCMC) family member, to sample the dimensional jump-
ing vectors to perform a cross-dimensional search for the optimal attacking performance
constrained by semantic similarity. Intuitively, RJA and MMR agree on attacking perfor-
mance improvement but disagree on NPW. By iteratively running these two antagonistic
algorithms, attackers can boost the attack performance with only a small number of pertur-
bations. The attack performance is illustrated by an example in Fig. 1, where RJA-MMR
outperforms the optimizing attack (Genetic attack) and hierarchical attack (PWWS).

Our main contributions from this work are as follows:

•	 We design a highly effective adversarial attack method, Reversible Jump Attack
(RJA), which utilizes the Reversible Jump algorithm to generate adversarial exam-
ples with an adaptive number of perturbed words. The algorithm enables our attack
method to have an enlarged search domain by jumping across the dimensions.

•	 We propose Metropolis–Hasting Modification Reduction (MMR), which applies
Metropolis–Hasting (MH) algorithm to construct an acceptance probability and use
it to restore the attacked victim words to improve the imperceptibility with attacking
performance reserved. MMR is functional with RJA and empirically proven effec-
tive in the adversarial examples generated by other attacking algorithms.

•	 We evaluate our attack method on real-world public datasets. Our results show that
methods achieved the best performance in terms of attack performance, impercepti-
bility and examples’ fluency.

Fig. 1   An illustrating example to show attack performances of optimizing attack (genetic attack), PWWS
attack, and the proposed method RJA-MMR, where label “0” represents negative sentiment and “1” repre-
sents positive sentiment. The substitutions for different attack methods are bold. Genetic attack sacrifices
too much semantics by changing “thrillers” to “science”, while PWWS fails to fool the model and makes
many ineffective modifications. The proposed method, RJA-MMR, makes a successful attack with only one
word changed

	 Machine Learning

1 3

The rest of this paper is structured as follows. We first review adversarial attacks for NLP
models and the Markov Chain Monte Carlo methods in NLP in Sect. 2. Then we detail our
proposed method in Sect. 3. We evaluate the performance of the proposed method through
empirical analysis in Sect. 4. We conclude the paper with suggestions for future work in
Sect. 5.

2 � Related work

This section reviews the literature on word-level textual attacks and MCMC sampling in
NLP.

2.1 � Word‑level attacks to classifiers

An increasing amount of effort is devoted to generating better textual adversarial exam-
ples with various attack models. Character-level attacks (Liang et al., 2018; Ebrahimi et al.,
2018) use misspellings to attach the victim classifiers; however, these attacks can often be
defended by a spell checker. At the same time, sentence-level attacks (Iyyer et al., 2018b;
Zou et al., 2020) pose threats to the classifier via inserting, removing, and paraphrasing
sentences or pieces of sentences to the original input, while it’s difficult for the generated
text to maintain the imperceptibility (Li et al., 2021). Word-level attacks pose non-trivial
threats to NLP models by locating important words and manipulating them for targeted or
untargeted purposes. Such attacks are broadly regarded as the optimal unit of attacks (Jia &
Liang, 2017).

2.1.1 � Gradient‑based word‑level attacks

With the help of an adopted fast gradient sign method (FGSM) (Goodfellow et al., 2015;
Papernot et al., 2016) were the first to generate word-level adversarial examples to clas-
sifiers. While their attack was able to fool the classifiers, their word-level manipulations
significantly affected the original meaning. In Liang et al. (2018), the authors proposed
to attack the target model by inserting Hot Training Phrases (HTPs) and modifying or
removing the Hot Sample Phrases (HSPs), where HTPs and HSPs are calculated based
on the gradient with respect to words from the input. Similar to Liang, Samanta & Mehta
(2018) utilizes the embedding gradient to determine the important words. Then hierarchi-
cal-driven rules together with hand-crafted word-level synonyms and character-level typos
were designed. Notably, while the textual data is naturally discrete and more perceptible
than image data, many gradient-based textual attacking methods inherited from computer
vision are not effective enough, which leaves textual attack a challenging problem.

2.1.2 � Non‑gradient‑based word‑level attacks

Alzantot et al. (2018) transferred the domain of adversarial attacks to an optimization
problem by formulating a customized objective function. With genetic optimization, they
generate the adversarial examples by sampling the qualified genetic ‘son’ generations that
break out the encirclement of the semantic threshold. However, the genetic algorithm can
be low efficient. Since word embedding space is sparse, performing natural selection for
languages in such a space can be computationally expensive. Jia et al. (2019) proposed a

Machine Learning	

1 3

faster version of Alzantot’s adversarial attacks by shrinking the search space, which accel-
erates the process of evolving in genetic optimization. Although Jia has greatly reduced
the computational expense of genetic-based optimization algorithms, the optimizing pro-
cesses inside word embedding space, such as GloVe (Pennington et al., 2014) and Word-
2Vec (Mikolov et al., 2013), are still not efficient enough. To ease the searching process,
embedding-based algorithms have to use a counter-fitting method to post-process attacker’s
vectors to accelerate the searching speed (Mrksic et al., 2016). Compared with the word
embedding method, utilizing well-organized linguistic thesaurus, e.g., synonym-based
WordNet (Miller et al., 1990) and sememe-based HowNet (Dong & Dong, 2003), is a sim-
ple and easy implementation. Ren et al. (2019) sought synonyms based on WordNet syn-
sets and ranked word replacement order via probability-weighted word saliency (PWWS).
Zang et al. (2020) and Yang et al. (2021) both manifested that the sememe-based HowNet
can provide more substitute words via Particle Swarm Optimization (PSO) and an adaptive
monotonic heuristic search to determine which group of words should be attacked. In addi-
tion, some recent studies utilized masked language models (MLM), such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), to generate contextual perturbations (Liet al.,
2020; Garg & Ramakrishnan, 2020). The pre-trained MLMs can ensure the predicted token
correctly fits the sentence grammar but cannot preserve semantics.

2.2 � Markov chain Monte Carlo in NLP

Markov chain Monte Carlo (MCMC) (Metropolis et al., 1953a), a statistically generic
method for approximate sampling from an arbitrary distribution, can be applied in a vari-
ety of fields, such as optimization (Rubinstein, 1999), machine learning (Fan et al., 2018),
quantum simulation (Haase et al., 2021) and icing models (Herrmann, 1986). The main
idea is to generate a Markov chain whose equilibrium distribution is equal to the target
distribution (Kroese et al., 2011). There exist various algorithms for constructing chains,
including the Gibbs sampler, Reversible Jump sampler (Green, 1995b), and Metropo-
lis–Hasting (MH) algorithm (Metropolis et al., 1953a). To get models capable of reading,
deciphering, and making sense of human languages, NLP researchers apply MCMC to
many downstream tasks, such as text generation and sentimental analysis. For text genera-
tion, Kumagai et al. (2016) proposes a probabilistic text generation model which generates
human-like text by inputting semantic syntax and some situational content. Since human-
like text requests grammarly correct word alignment, they employed Monte Carlo Tree
Search to optimize the structure of the generated text. In addition, Harrison et al. (2017)
presents the application of MCMC for generating a story, in which a summary of movies is
produced by applying recurrent neural networks (RNNs) to summarize events and directing
the MCMC search toward creating stories that satisfy genre expectations. For sentimen-
tal analysis, Kang and Ren (2011) applies the Gibbs sampler to the Bayesian network, a
network of connected hidden neurons under prior beliefs, to extract the latent emotions.
Specifically, they apply the Hidden Markov models to a hierarchical Bayesian network and
embed the emotional variables as the latent variable of the Hidden Markov model.

2.2.1 � Metropolis–Hasting and reversible jump samplers

The Metropolis–Hasting (MH) (Metropolis et al., 1953a) algorithm is a classical Markov
chain Monte Carlo sampling approach. Given the stationary distribution f (z) and transition
proposal q(z�|z) , the MH algorithm can generate desirable examples from f (z) . Specifically,

	 Machine Learning

1 3

at each iteration, a new state �′ will be proposed given the current state z based on a transition
function q(z�|z) . The MH algorithm is based on a “trial-and-error” strategy by defining an
acceptance probability �(��|z) as following:

to decide whether the new state z′ is accepted or rejected.
MCMC can also be applied to sample variational dimension sampling. Reversible Jump

samplers (RJS) (Green, 1995b) is a variation of MCMC algorithms specifically designed to
sample from target distributions that contain vectors with different dimensions. Due to such a
property, RJS can be applied to variable selection (Fan & Sisson, 2011), dimension reduction
(Rincent et al., 2017), and cross-dimensional optimization (Kroese et al., 2011). Unlike the
MH algorithm, RJS requests an additional transition item for proposing the new dimensions.
The formulation of the acceptance probability of RJS is below:

where m denotes the dimensions of the vector z(m) , q
(
�
�
(m�)|z(m)

)
 in Eq. (3) illustrates the

new transition function and p
(
m�|z(m)

)
 is the dimensional transition item. Comparing the

acceptance probabilities of MH (Eq. 1) and RJS (Eq. 2) reveals that RJS is more effective
than MH in handling dimensional variations and sampling parameters of unknown dimen-
sions. Since making adversarial would be a typical situation of dimension variation due
to number of perturbed words (NPW), we believe that attacks based RJS is expected to
achieve better performance than the literature based on MH (Zhang et al., 2019).

2.2.2 � Adversarial attack via MCMC

Despite the applications in NLP, the MCMC can be applied to adversarial attacks on NLP
models. Zhang et al. (2019) has successfully applied MH sampling to generate fluent adver-
sarial examples for natural language by proposing gradient-guided word candidates. Specifi-
cally, they proposed both black-box and white-box attacks, and for black-box attacks, they
perform removal, insertion and replacement by the words chosen from the pre-selector candi-
dates set, but the empirical studies indicate these candidates are not efficient and effective for
attacking. As for the white-box attacks, the gradient of the victim model is introduced to score
the pre-selector candidates set, which successfully improves the attacking performance. How-
ever, the white-box setting is not practical in the real world, as attackers do not have access to
the gradient and structure of the victim models. In addition, MHA successfully improved the
language quality in terms of fluency, but the imperceptibility of the generated examples, espe-
cially in the modification rate, cannot be optimized.

(1)�(��|z) = min

{
f (��)q(z ∣ ��)

f (z)q(�� ∣ z)
, 1

}

(2)�(��(m�)|z(m)) = min

{
f (��(m�))q(z(m) ∣ �

�
(m�))

f (z(m))q(�
�
(m�) ∣ z(m))

, 1

}

(3)q
(
�
�
(m�)|z(m)

)
= p

(
�
�
(m�)|m�, z(m)

)
p
(
m�|z(m)

)
,

Machine Learning	

1 3

3 � Imperceptible adversarial attack via Markov chain Monte Carlo

In this section, we will detail our proposed method, RJA-MMR, the Reversible Jump
attacks (RJA) with Metropolis–Hasting Modification Reduction (MMR).

3.1 � Problem formulation and notaition

Given a pre-trained text classification model, which maps from feature space X to
a set of classes Y , an adversary aims to generate an adversarial document �∗ from a
legitimate document x ∈ X whose ground truth label is y ∈ Y , so that F(�∗) ≠ y . The
adversary also requires Sem(x, �∗) ≤ � for a domain-specific semantic similarity func-
tion Sem(⋅) ∶ X × X → (0, 1) , where the bound � ∈ ℝ helps to ensure imperceptibility.
In other words, in the context of text classification tasks, we use Sem(x, �∗) to capture
the semantic similarity between x and �∗ . More details of the notation are illustrated in
Table 1.

3.2 � Reversible jump attack

This section details our proposed Reversible Jump Attack (RJA) which generates adver-
sarial examples under semantic regularisation. Let D = {(x1, y1), (x2, y2),… , (xN , yN)}
denote a dataset with N data samples, where x and y are the input text and its corre-
sponding class. Given the input text x = [w1,… ,wi,… ,wn] with n words, we denote an
adversarial candidate of RJA as x and denote the final chosen adversarial example as x∗.

Table 1   List of notations used in this research

Notation Description

X Text sample space
Y Class space
D A dataset to be attacked
x = [w1,w2,… ,wn] An input text with n words and wi is the ith word in the sequence
x An adversarial candidate generated by RJA
m, v , s Three factors in adversarial sample generation: the number of

perturbed words, victim words, and their substitutions, respec-
tively

� The set of substitution candidates
x
r The adversarial candidate generated in the restoring step of MMR
x
u The adversarial candidate generated in the updating step of MMR
x
∗ The final optima adversarial example
I(wi) The saliency of the word wi

T The total number of iterations for RJA-MMR
F(⋅) ∶ X → Y The victim classifier
Sem(⋅) ∶ X

2
→ (0, 1) The function measuring the semantic similarity

p(xt+1|xt) ∶ X → (0, 1) The transition function from state xt to xt+1
�(x) ∶ X → (0, 1) Target distribution
�(xt+1|xt) ∶ X → (0, 1) The acceptance probability

	 Machine Learning

1 3

RJA, unlike traditional methods, treats the number of perturbed words (NPW) as
a variable in the sampling process, not a preset value. Utilizing the Reversible Jump
Sampler, RJA conditionally samples NPW, victim words, and their substitutions. The
approach involves a transition function that proposes adversarial candidates, evaluated
against a target distribution focusing on attack effectiveness and semantic similarity
(Eq. 2). This process iteratively refines the adversarial examples, guided by an accept-
ance probability mechanism.

This section first presents the transition function (Sect. 3.2.1) and then elaborates on the
acceptance probability (Sect. 3.2.2), which builds upon the transition function.

3.2.1 � Transition function

To propose the adversarial candidates, we construct our transition function to sequentially
propose the three compulsory factors of crafting a new adversarial candidate xt+1 given the
current one xt : the NPW m, the victim words v = [v1,… , vm] , and the corresponding substi-
tutions s = [s1,… , sm] , where the dimension of v and s is m. Before we detail the process of
proposing these factors, we first introduce the concept of the word saliency. In this context,
word saliency refers to the impact of the word wi on the output of the classifier and the transi-
tion function, if this word is deleted from the sentence. The word with a high saliency has a
high impact on the classifier. Thus, associating more importance to high-saliency words can
help the transition function efficiently propose a high-quality adversarial candidate. To calcu-
late the word saliency, we use the changes of victim classifiers’ logits before and after deleting
word wi to represent the saliency I(wi):

where Flogit(⋅) is the classifier returning the logit of the correct class, and
x�wi = [w1,… ,wi−1,wi+1,… ,wn] is the text with wi removed. We calculate the word sali-
ency I(wi) for all wi ∈ x to obtain word saliency I(x) . Calculating the word saliency is illus-
trated in Block 1 of Fig. 2.

Among the iterations of searching for victim words, assume the RJA adversarial can-
didate at iteration t is xt = (mt, vt, st) and the new adversarial candidate to be crafted is
xt+1 = (mt+1, vt+1, st+1) , we propose the first factor, the NPW value mt+1 , by either adding or
subtracting 1, i.e., mt+1 ∈ {mt + 1,mt − 1} . This set {mt + 1,mt − 1} does not need to include
mt because if the proposed state is rejected, mt+1 will be retained as mt , which means mt still
remains as a possible state. Thus the transition function for the new NPW value mt+1 can be
formulated as a probability mass function as below:

Such a transition function can propose the new state mt+1 ∈ {mt − 1,mt + 1} by referring
to the proportion of the exponential on victim word saliency l1 and unattacked word sali-
ency l2 overall word saliency exponential. Intuitively, if the saliency values of all attacked
words are high, the probability of proposing to reduce one attacked word, mt+1 = mt − 1 , is

(4)I(wi) = Flogit(x) − Flogit(x�wi),

(5)
p(mt+1�xt) =

⎧
⎪⎨⎪⎩

exp(l1)

exp(l1) + exp(l2)
mt+1 = mt − 1,

exp(l2)

exp(l1) + exp(l2)
mt+1 = mt + 1,

where l1 =
�
wi∈vt

I(wi), l2 =
�
wi∉vt

I(wi).

Machine Learning	

1 3

high, and vice versa. Concretely, to sample mt+1 from such a transition function, we firstly
draw a random number, � ∼ Unif (0, 1) ; and if � is less than the probability of sampling
mt+1 = mt − 1 , i.e., 𝜂 <

exp(l1)

exp(l1)+exp(l2)
 , then mt+1 = mt − 1 , otherwise mt+1 = mt + 1 . Unlike

hierarchical attacks, which deterministically perturb the words in the descending order of
the word saliency, randomization is applied because of its two merits: 1) it overcomes the
imprecision problem with the WSR (word saliency rank) mentioned in the preceding intro-
duction section, and 2) it enlarges the search domain by proposing more combinations of
attacked words than those in hierarchical searching.

After determining the number of perturbed words, we sample one target victim word
vtgt (where “tgt” refers to “target”) to be manipulated according to the newly sampled
mt+1 . Specifically, for mt+1 = mt + 1 , the target word vtgt is uniformly sampled from unat-
tacked word set x∖vt , while for mt+1 = mt − 1 the target word vtgt is uniformly drawn
from attacked words set vt then the selected words will be restored to the original words.
The transition function of sampling the target victim word vtgt is thus formulated as:

Fig. 2   The workflow of our RJA-MMR. In this example, HAA generates an adversarial example with one
word perturbed to attack a sentimental classifier with two labels (positive and negative). The block 1
shows the calculation of word saliency. After obtaining the word saliency, we perform RJA in block 2
which reflects the lines 4–15 in Algorithm 1. After RJA, we perform the two steps, restoring and updating
MMR in block 3 and 4  , respectively. The block 3 and 4 are illustrated in lines 4–10 and lines 11–18 in
Algorithm 2, respectively

	 Machine Learning

1 3

After the target word vtgt ∈ xt is selected, we search for a parsing-fluent and semantic-pre-
serving substitution for wtgt . Therefore, we uniformly draw a substitution stgt for vtgt from
the candidates set, which is the intersection (consensus) of candidates provided by Mask
Language Models (MLMs) and Synonyms. Specifically, let M denote the MLM, and we
mask the vtgt in x to construct a masked xmask and feed the masked text into M to search
for the parsing-fluent candidates. Instead of using the argmax prediction, we take the most
possible K words, which are the top K words suggested by the logits from M , to construct
MLM candidates set � = {w1

,… ,wK
} . To keep semantically similar, we form a synonym

set �syn = {w1
syn
,… ,wK

syn
} from HowNet (Dong et al., 2010) based thesauri such as Open-

HowNet (Qi et al., 2019) and BabelNet (Qi et al., 2020) These thesauri are context-aware
and at the same time can provide more synonyms than common thesaurus such as Word-
Net (Miller, 1992). Since our objective is that the generated adversarial examples should
be parsing-fluent and semantic-preserving, the substitution stgt will be uniformly sampled
from the intersection � = �M ∩ �syn , which is illustrated in Eq. (7).

where � = �M ∩ �syn and [�] is the cardinality of the set �.
By applying the Bayes rule to the Eqs. (5), (6) and (7), the final transition function is:

3.2.2 � Acceptance probability for RJA

Before we calculating the acceptance probability, we need to construct the target dis-
tribution for evaluating the performance. Specifically, we argue that a good adversarial
example should achieve successful attacks while being kept semantically similar to the
input text x. Therefore, we formulate the following equation as our target distribution:

where Sem(x, x) represents the semantic similarity, which generally is implemented with
the cosine similarity between sentence encodings from a pre-trained sentence encoder,
such as USE (Cer et al., 2018). C =

∑

x∈
(

1 − Fp(x)
)

Sem(x, x) is a positive normalizing factor
to make

∑
x∈X �(x) = 1 and Fp(⋅) ∶ X → (0, 1) denotes the confidence of making right pre-

dictions where X represents text space. From Eq. (9), we can easily observe that the value
from target distribution �(x) will increase with the increase of the attacking performance
measured by the confidence of making a wrong prediction 1 − Fp(x) , and semantic similar-
ity Sem(x, x).

Given the target distribution in Eq. (9) and transition function in Eq. (), we formulate
the acceptance probability for RJA, �

RJA
(xt+1|xt) , as follows:

(6)p(vtgt|xt,mt+1) =

{
1

mt

vtgt ∈ vt if mt+1 = mt − 1,

1

n−mt

vtgt ∈ x�vt if mt+1 = mt + 1.

(7)p(stgt|wtgt,mt+1, xt) =
1

[�]

(8)p
RJA

(
xt+1|xt

)
= p

(
mt+1|xt

)
p
(
wtgt|mt+1, xt

)
p
(
stgt|wtgt,mt+1, xt

)

(9)�(x) =

(
1 − Fp(x)

)
Sem(x, x)

C
,

Machine Learning	

1 3

After calculating �(xt+1|xt) , we sample a random number � from a uniform distribution,
� ∼ Uniform(0, 1) , if 𝜖 < 𝛼(xt+1|xt) we will accept xt+1 as the new state, otherwise the
state will remain as xt . By running T iterations, we obtain a set of adversarial candidates
{x1, x2,… xT} . We then choose the candidate which not only successfully fools the classi-
fier but also preserves the most semantics as the final adversarial candidate x . The process
of RJA is illustrated in Algorithm 1 and block 2 in Fig. 2.

Algorithm 1   Reversible Jump Attack (RJA)

3.3 � Modification reduction with metropolis–hasting algorithm

Besides the success of tampering with the classifier and semantic preservation, the modi-
fication rate is also an important factor in evaluating the imperceptibility of adversarial
examples. Generally, methods in the literature can generate effective adversarial examples;
however, it was hard to guarantee the modification rate is optimally the lowest. To address
this, we introduce the Metropolis–Hasting Modification Reduction (MMR), leveraging
the Metropolis–Hasting (MH) algorithm to optimize the modification rate by exploring
efficient yet minimal substitution combinations for a given adversarial candidate. MMR
involves two steps, each employing the MH algorithm: 1) stochastically restoring some
attacked words to create a less modified candidate and 2) updating all substitutions without
altering the NPW, m . These steps are detailed in Sects. 3.3.1 and 3.3.2 respectively.

(10)�
RJA
(xt+1|xt) = min

{
�(xt+1)pRJA

(xt|xt+1)
�(xt)pRJA

(xt+1|xt) , 1

}

	 Machine Learning

1 3

3.3.1 � Restoring attacked words with MMR

The first step of MMR is probabilistically restoring some attacked words with MH algo-
rithm to test the necessity of the current substitutions. Given an adversarial candidate
xt = (mt, vt, st) from iteration t in RJA, we aim to generate an adversarial candidate xr

t

which is constructed by restoring some attacked words in xt . To sample the restored substi-
tutions, we propose the probability mass function of selecting substitutions sr ∈ {si,wi} in
iteration t as follows:

where sr = si denotes to continue the attack and sr = wi denotes restoring the substitution
to the original word wi , respectively. The xr

t
 is the proposed adversarial candidate with

selected substitutions restored from x . With such a probability mass function, the sr can be
sampled by the same strategy of sampling as in Eq. (5). To further investigate the quality of
such a candidate, we apply the target distribution, �(x) , in Eq. (9) to construct the follow-
ing acceptance probability:

to decide whether the proposed adversarial candidate xr
t
 should be accepted as the true

candidate.

3.3.2 � Updating the combination of substitutions with MMR

Having restored selected substitutions to obtain the adversarial candidate xr
t
 at the t-th iter-

ation, we proceed to the second step: MMR updating. This step is designed to refine attack
performance by altering substitution combinations without affecting the NPW, mt . We
apply a methodology similar to the one in Eq. (7) for sampling substitution combinations.
In essence, the MMR updating utilizes the candidate proposing function (Eq. 7) to explore
alternative substitutions for each attacked word, aiming for enhanced attack efficacy. The
formulation for this update, leading to the next adversarial candidate xu

t
 , is governed by the

subsequent acceptance probability:

where p(si|wi,m
r
t
, xr

t
) is identical to that in Eq. (7).

(11)p(sr�xt) =
⎧⎪⎨⎪⎩

exp(I(wi))

1 + exp(I(wi))
if sr = si (continue to attack),

1

1 + exp(I(wi))
if sr = wi (attack cancelled),

(12)prestore(x
r
t
|xt) =

∏
sr∈st

p(sr|xt)

(13)�restore(x
r
t
|xt) = min

(
�(xr

t
)prestore(xt|xrt)

�(xt)prestore(x
r
t |xt)

, 1

)

(14)�update(x
u
t
|xr

t
) = min

(
�(xu

t
)pupdate(x

r
t
|xu

t
)

�(xrt)pupdate(x
u
t |xrt)

, 1

)
,

(15)pupdate(x
u
t
|xr

t
) =

∏
si∈s

r
t

p(si|wi,m
r
t
, xr

t
),

Machine Learning	

1 3

By iteratively running T times MH algorithms for substitution restoring and updating
with acceptance probabilities in Eqs. (13) and (14), respectively, we can construct the
adversarial set �� = {xu

t
}T
t=1

 and select the candidate with the highest semantic similarity
among the successful candidates that fools the classifier as the final adversarial example x∗ .
This proposed MMR algorithm will not only be applied to our RJA algorithm but also can
help other attack methodologies reduce their modifications. The whole process of MMR is
illustrated in Algorithm 2 and block 3 – 4 in Fig. 2.

Algorithm 2   Metropolis–Hasting Modification Reduction (MMR)

4 � Experiments and analysis

In this section, we comprehensively evaluation the performance of our method against the
current state of the art. Besides the main results (Sect. 4.4) of attacking performance and
imperceptibility, we also conduct experiments on ablation studies (Sect. 4.5), efficiency
analysis (Sect. 4.6), transferability (Sect. 4.7), target attacks (Sect. 4.8), performance front
of defense mechanism (Sect. 4.9), adversarial retraining (Sect. 4.10), part-of-speech (POS)
preference (Sect. 4.11) and scales of models for robustness(Sect. 4.12)

We evaluate the effectiveness our methods on three widely-used and publicly available
benchmark datasets: AG’s News (Zhang et al., 2015), Emotion (Saravia et al., 2018), SST2
(Socher et al., 2013) and IMDB(Maas et al., 2011). Specifically, AG’s News is a news

	 Machine Learning

1 3

classification dataset with 127,600 samples belonging to 4 topic classes, World, Sports,
Business, Sci/Tech. Emotion (Saravia et al., 2018) is a dataset with 20,000 samples and 6
classes, sadness, joy, love, anger, fear, surprise. SST2 (Socher et al., 2013) is a binary class
(positive and negative) topic dataset with 9613 samples. The IMDB dataset (Maas et al.,
2011), comprising movie reviews from the Internet Movie Database, is predominantly uti-
lized for binary sentiment classification, categorizing reviews into ‘positive’ or ‘negative’
sentiments. The details of these datasets can be found in Table 2.

To ensure reproducibility, we provide the code and data used in our experiments in a
GitHub repository.1

4.1 � Victim models

We apply our attack algorithm to two types of popular and well-performed victim models.
The details of the models can be found below.

4.1.1 � BERT‑based classifiers

To do convincing experiments, we choose three well-performed and popular BERT-based
models, which we call BERT-C models (where the letter “C” represents “classifier”), pre-
trained by Huggingface.2 Due to the different sizes of the datasets, the structures of BERT-
based classifiers are adjusted accordingly. The BERT classifier for AG’s News is structured
by the Distil-RoBERTa-base (Sanh et al., 2019) connected with two fully connected layers,
and it is trained for 10 epochs with a learning rate of 0.0001. For the Emotion dataset, its
BERT-C adopts another version of BERT, Distil-BERT-base-uncased (Sanh et al., 2019),
and the training hyper-parameters remain the same as BERT-C for AG’s News. Since the
SST2 dataset is relatively small compared with the other two models, the corresponding
BERT classifier utilizes a small-size version of BERT, BERT-base-uncased (Devlin et al.,
2019). As for the IMDB, we employ the Distil-BERT-base-uncased for classification tasks.

Table 2   Datasets and accuracy of victim models before attacks

Dataset Size Avg.Length Class Task Model Accuracy (%)

AG’s News 12,700 37.84 4 News topics BERT-C 94
TextCNN 90

Emotion 20,000 19.14 6 Sentiment analysis BERT-C 97
TextCNN 93

SST2 9613 19.31 2 Sentiment analysis BERT-C 91
TextCNN 83

IMDB 50,000 279.48 2 Movie review BERT-C 93
TextCNN 88

1  https://​github.​com/​Mingz​eLuca​sNi/​RJA-​MMR.
2  https://​huggi​ngface.​co/.

https://github.com/MingzeLucasNi/RJA-MMR
https://huggingface.co/

Machine Learning	

1 3

The test accuracy of these BERT-based classifiers before they are under attacks are listed
in Table 2 and these models are publicly accessible3456.

4.1.2 � TextCNN‑based models

The other type of victim model is TextCNN (Kim, 2014), structured with a 100-dimension
embedding layer followed by a 128-units long short-term memory layer. This classifier is
trained 10 epochs by ADAM optimizer with parameters: learning rate lr = 0.005 , the two
coefficients used for computing running averages of gradient and its square are set to be 0.9
and 0.999 (�1 = 0.9 , �2 = 0.999) , the denominator to improve numerical stability � = 10−5 .
The accuracy of these TextCNN-base models is also shown in Table 2.

4.2 � Baselines

To evaluate the attacking performance, we use the TextAttack (Morris et al., 2020) frame-
work to deploy the following baselines:

•	 AGA (Alzantot et al., 2018): it uses the combination of restrictions on word embed-
ding distance and language model prediction scores to reduce search space. As for the
searching algorithm, it adopts a genetic algorithm, a popular population-based evolu-
tionary algorithm.

•	 Faster Alzantot Genetic Algorithm (FAGA) (Jia et al., 2019): it accelerates AGA by
bounding the searching domain of genetic optimization.

•	 BERT-Base Adversarial Examples (BAE) (Garg & Ramakrishnan, 2020): it replaces
and inserts tokens in the original text by masking a portion of the text and leveraging
the BERT-MLM.

•	 Metropolis–Hasting Attack (MHA) (Zhang et al., 2019): it performs Metropolis–Hast-
ing sampling, which is designed with the guidance of gradients, to sample the examples
from a pre-selector that generates candidates by using MLM.

•	 BERT-Attack (BA)(Liet al., 2020): it takes advantage of BERT-MLM to generate can-
didates and attacked words by the static WSR descending order.

•	 Probability Weighted Word Saliency (PWWS) (Ren et al., 2019): it chooses candidate
words from WordNet (Miller et al., 1990) and sorts word attack order by multiplying
the word saliency and probability variation.

•	 TextFooler (TF) (Jin et al., 2020): it ranks the important words with similar strategy
with Eq. (4). With the important rank, the attacker prioritizes replacing them with
the most semantically similar and grammatically correct words until the prediction is
altered.

•	 Particle Swarm Optimization (PSO) (Zang et al., 2020): it selects word candidates from
HowNet and employs the POS to find adversarial text. This method treats every sample
as a particle whose location in the search space needs to be optimized.

3  https://​huggi​ngface.​co/​mrm84​88/​disti​lrobe​rta-​finet​uned-​age_​news-​class​ifica​tion.
4  https://​huggi​ngface.​co/​bhadr​esh-​savani/​disti​lbert-​base-​uncas​ed-​emoti​on.
5  https://​huggi​ngface.​co/​echar​laix/​bert-​base-​uncas​ed-​sst2-​acc91.1-​d37-​hybrid.
6  https://​huggi​ngface.​co/​lvwer​ra/​disti​lbert-​imdb.

https://huggingface.co/mrm8488/distilroberta-finetuned-age_news-classification
https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion
https://huggingface.co/echarlaix/bert-base-uncased-sst2-acc91.1-d37-hybrid
https://huggingface.co/lvwerra/distilbert-imdb

	 Machine Learning

1 3

4.3 � Experimental settings and evaluation metrics

For our RJA and RJA-MMR, we use the Universal Sentence Encoder (USE) (Cer et al.,
2018) to measure the sentence semantic similarity for target distribution in Eq. (9). We
experiment to find k = 30 substitution candidates and to find these candidates’ substitu-
tions, we use RoBERTa-large (Liu et al., 2019) as the MLM with WordPiece (Wu et al.,
2016) tokenizer for contextual infilling and utilize OpenHowNet (Qi et al., 2019) with
NLTK (Bird et al., 2009) tokenizer as the synonym thesaurus. For the sampling-based
algorithms, MHA and the proposed methods (RJA, RJA-MMA), we set the maximum
number of iterations T to 1000.

We argue that the quality of adversarial examples is appraised with regard to three key
facets: attacking performance, imperceptibility, and fluency. To measure these facets, we
use the following five metrics to measure the performance of adversarial attacks:

•	 Successful attack rate (SAR) is defined as the percentage of attacks where the adver-
sarial examples make the victim models predict a wrong label.

•	 Modification Rate (Mod) is the percentage of modified tokens. Each replacement,
insertion or removal action accounts for one modified token.

•	 Grammar Error (GErr) is measured by the absolute rate of increased grammatic errors
in the successful adversarial examples, compared to the original text, where we use
LanguageTool (Naber et al., 2003) to obtain the number of grammatical errors.

•	 Perplexity (PPL) denotes a metric used to evaluate the fluency of adversarial examples
(Kann et al., 2018; Zang et al., 2020). The perplexity is calculated using small-sized
GPT-2 with a 50k-sized vocabulary (Radford et al., 2019).

•	 Textual similarity (Sim) is measured by the cosine similarity between the sentence
embeddings of the input and that of the adversarial sample. We encoded the two sen-
tences with the universal sentence encoder (USE) (Cer et al., 2018).

SAR evaluates attack performance, while Mod and Sim measure imperceptibility. GErr
and PPL assess language fluency.

4.4 � Experimental results and analysis

The main experimental results of the attacking performance (SAR), the imperceptibility
performance (Sim, Mod) and the fluency of adversarial examples (PPL, GErr) are listed in
Table 3 and 4. Moreover, we demonstrate adversarial examples crafted by various methods
shown in Table 5. We manifest the three contributions mentioned in the Introduction sec-
tion by answering three research questions:

4.4.1 � Does our method make more thrilling attacks compared with baselines?

We compare the attacking performance of the proposed method RJA-MMR and baselines
in Table 3. This table demonstrates that RJA-MMR consistently outperforms other com-
peting methods across different data domains, regardless of the structure of classifiers.
Further, even RJA, by itself, without using MMR, can craft more menacing adversarial
examples than most baselines. We attribute such an outstanding attacking performance to

Machine Learning	

1 3

Ta
bl

e 
3  

R
es

ul
ts

 o
n

SA
R

, M
od

, a
nd

 S
im

 m
et

ric
s a

m
on

g
th

e
ba

se
lin

es
 a

nd
 p

ro
po

se
d

m
et

ho
ds

 o
n

di
ffe

re
nt

 d
at

as
et

s

Th
e

be
st

pe
rfo

rm
an

ce
 is

 in
 b

ol
d

Ta
sk

M
et

ho
d

A
G

 n
ew

s
Em

ot
io

n
SS

T2
IM

D
B

SA
R↑

M
od
↓

Si
m
↑

SA
R↑

M
od
↓

Si
m
↑

SA
R↑

M
od
↓

Si
m
↑

SA
R↑

M
od
↓

Si
m
↑

B
ER

T-
C

BA
E

41
.0

11
.3

72
68

.7
7.

7
88

55
.1

11
.3

75
66

6.
9

89
A

G
A

​
15

.3
10

.9
71

48
.1

8.
1

89
41

.7
12

.2
70

71
6.

6
9
0

FA
G

A
​

27
.9

14
.6

75
78

.2
9.

8
89

77
.1

17
.2

69
81

7.
3

89
M

H
A

41
.2

14
.2

62
77

.1
10

.2
87

84
.5

17
.2

72
79

.9
6.

9
81

BA
47

.7
17

.4
73

85
.9

9.
2

82
77

.2
13

.5
74

78
.1

5
.6

87
PW

W
S

76
.8

17
.9

73
91

.8
10

.2
83

93
.9

17
.2

84
99

.0
7.

8
80

TF
89

.3
21

.6
77

90
.1

10
.2

82
90

.4
15

.3
80

96
.3

5
.6

81
PS

O
93

.4
21

.6
69

94
.3

12
.0

87
96

.6
17

.2
81

9
9
.1

6.
3

80
R

JA
95

.1
11

.1
77

97
.1

8.
5

88
96

.4
15

.3
78

92
.1

5.
9

83
R

JA
-M

M
R

96
.7

10
.3

79
97

.3
7.

1
90

98
.7

11
.2

86
10

0.
0

4.
3

92
Te

xt
-C

N
N

BA
E

39
.1

10
.3

72
.6

85
.3

9.
8

73
80

.1
10

.4
70

71
7.

9
80

A
G

A
​

33
.3

11
.3

75
.4

81
.1

7.
7

85
77

.4
10

.8
75

80
8.

8
83

FA
G

A
​

56
.1

11
.5

80
.1

90
.1

8.
3

80
92

.1
15

.3
69

83
7.

6
87

M
H

A
70

.0
16

.4
71

.1
95

.1
14

.1
56

85
.5

17
.2

74
91

10
.1

81
BA

70
.2

15
.4

81
.1

97
.1

9.
3

83
83

.4
13

.4
70

89
8.

7
80

PW
W

S
85

.3
16

.5
81

.1
98

.2
11

.3
79

98
.1

13
.4

81
9
9

10
.1

81
TF

77
.3

19
.4

74
.9

91
.5

10
.9

83
91

.0
17

.2
75

9
9

6.
9

90
PS

O
76

.2
15

.5
77

.3
99

.0
9.

4
83

92
.2

17
.2

81
9
9

9.
3

88
R

JA
88

.3
11

.4
79

.1
94

.9
9.

7
83

94
.0

17
.2

77
95

6
.6

9
0

R
JA

-M
M

R
93

.8
9.

9
82

.2
99

.3
7.

4
89

99
.3

10
.3

82
10

0.
0

3.
3

91

	 Machine Learning

1 3

Table 4   Results on PPL and GErr metrics among the baselines and proposed methods on different datasets

The best performance is in bold

Task Method AG News Emotion SST2 IMDB

PPL↓ GErr↓ PPL↓ GErr↓ PPL↓ GErr↓ PPL↓ GErr↓

BERT-C BAE 142 0.19 233 0.10 173 0.15 181 0.21
AGA​ 132 0.21 291 0.14 192 0.17 211 0.23
FAGA​ 165 0.19 259 0.13 182 0.24 155 0.23
MHA 223 0.28 311 0.18 210 0.31 160 0.20
BA 281 0.19 301 0.17 200 0.25 100 0.20
PWWS 318 0.22 333 0.16 214 0.21 89 0.22
TF 312 0.28 341 0.19 191 0.17 111 0.22
PSO 292 0.31 362 0.20 197 0.27 91 0.22
RJA 155 0.21 281 0.12 201 0.18 77 0.19
RJA-MMR 141 0.18 221 0.10 169 0.13 61 0.19

Text-CNN BAE 132 0.19 201 0.10 143 0.13 131 0.23
AGA​ 132 0.13 213 0.10 182 0.13 158 0.24
FAGA​ 145 0.15 241 0.13 163 0.17 198 0.26
MHA 211 0.29 248 0.16 164 0.22 156 0.22

BA 241 0.15 221 0.13 210 0.21 123 0.23
PWWS 277 0.20 299 0.19 224 0.23 79 0.22

TF 199 0.21 314 0.21 194 0.21 166 0.22

PSO 142 0.14 301 0.18 145 0.14 164 0.28
RJA 154 0.17 294 0.15 164 0.18 89 0.23
RJA-MMR 127 0.12 190 0.08 142 0.11 65 0.19

Table 5   Adversarial examples of the Emotion dataset for victim classifier BERT-C

Bold texts are original words, while italic ones are substitutions. Besides the examples, the attack perfor-
mance is measured by attacking success and confidence in making correct predictions. The lower confi-
dence indicates better performance and the successful attacks and lowest confidence are bold

Methods Adversarial example Success Confidence (%)

BAE Made a wonderful nasty new friend Successful 4.3
AGA​ Made a wonderful beautiful new friend Failed 94
FAGA​ Make Introduced a wonderful beautiful new

friend
Failed 95

MHA Made a wonderful newly friend Failed 70
BA Made a wonderful good new brand friend Failed 95
PWWS Made Seduce a wonderful new raw admirer Failed 99
TF Made a wonderful strange new friend Successful 5.0
PSO Made Doomed a wonderful new friend Successful 0.92
RJA-MMR Made a wonderful lovely new friend Successful 0.80

Machine Learning	

1 3

the two prevailing aspects of RJA. Firstly, RJA optimizes the performance by stochastically
searching the domain. Most of the baselines perform a deterministic searching algorithm
which could get stuck in the local optima. Differently, such a stochastic mechanism helps
skip the local optima and further maximize the attacking performance.

Secondly, some of the baselines strictly attack the victim words in the order of word
saliency rank (WSR), where the domain of the hierarchical search is limited to combina-
tions of the neighboring victim words from the WSR, which would miss the potential opti-
mal victim words combination. Unlike these methods, the RJA would enlarge the searching
domain by testing more combinations of substitutions that do not follow the WSR order.
Thus, the proposed method RJA achieves the best-attacking performance, with the highest
successful attack rate (SAR).

4.4.2 � Is RJA‑MMR superior to the baselines in terms of imperceptibility?

We evaluate the imperceptibility of different attack strategies in terms of semantic simi-
larities (USE) and modification rate (Mod) between the original input text and its derived
adversarial examples, shown in Table 3. It can be seen that the proposed RJA-MMR attains
the best performance among the baselines. The outstanding performance of the proposed
method is attributed to the mechanisms of RJA and MMR. For semantic preservation, we
statistically design the target distribution (Eq. 9) with a strong regularization of the seman-
tic similarity in each iteration. Moreover, the HowNet is a knowledge-graph-based thesau-
rus that provides part-of-speech (POS) aware substitutions. Compared with the candidates
supplied by baselines, the synonyms from HowNet can be more semantically similar to
the original words. As for the modification rate, the proposed MMR is mainly designed
for restoring the attacked words from successful adversarial examples so that the proposed
RJA-MMR perturbs fewer words without sacrificing the attacking performance. Thus we
can conclude that the proposed RJA-MMR provides the best performance for impercepti-
bility among baselines.

4.4.3 � Is the quality of adversarial examples generated by the proposed methods
better than that crafted by the baselines?

We insist the qualified adversarial examples should be parsing-fluent and grammarly cor-
rect. From the Table 4, we can find the RJA-MMR provides the lowest perplexity (PPL),
which means the examples generated by RJA-MMR are more likely to appear in the corpus
of evaluation. As our corpus is long enough and the evaluation model is broadly used, it
indicates these examples are more likely to appear in natural language space, thus eventu-
ally leading to better fluency. For the grammar errors, the proposed method RJA-MMR is
substantially better than the other baselines, which indicates a better quality of the adver-
sarial examples. We attribute such performance to our method of finding word substitution,
constructing the candidates set by intersecting the candidates from HowNet and MLM.

4.5 � Ablation study

To rigorously validate the efficacy of the proposed RJA-MMR method, this section con-
ducts a detailed ablation study, dissecting each component to assess its individual impact
and overall contribution to the method’s performance.

	 Machine Learning

1 3

4.5.1 � Effectiveness of RJA

We compare the attacking performance of our Reversible Jump Attack methods (RJA,
RJA-MMR) and baselines in Table 3, reflected by SAR. The RJA helps attackers achieve
the best attacking performance, with the largest metric SAR across the different down-
stream tasks. Apart from RJA-MMR, its ablation RJA also surpasses the strong base-
lines in most cases. Therefore, RJA is effective in terms of attacking performance.

4.5.2 � Effectiveness of MMR

MMR is a stochastic mechanism to reduce the modifications of adversarial examples
with attacking performance preserved. Besides RJA-MMR, we also apply MMR to dif-
ferent attacking algorithms, including PSO, TF, PWWS, BA and MHA, aiming to dem-
onstrate the advantages of MMR in general.

From Table 3, we can find RJA-MMR has superior performance to RJA with lower
modification rates. Moreover, the other baseline analysis results are shown in Fig. 3. It
shows that the attacking algorithms with MMR consistently have a lower modification
rate than those without MMR. This means that attacking strategies can generally benefit
from MMR by making fewer modifications.

4.5.3 � Performance versus the number of iterations

The performance of the proposed methods is influenced by the number of iterations,
denoted as T  . To delve deeper into this relationship, we conducted an extensive ablation
study examining the correlation between performance and T  . Insights drawn from Fig. 4

Fig. 3   Comparisons on modification rates among attacking strategies (PSO, TF, PWWS, BA, MHA) with
MMR and without MMR to attack the BERT-C on AG News dataset

Machine Learning	

1 3

reveal a positive trend where performance amplifies in tandem with the number of itera-
tions. Notably, performance begins to plateau, indicating convergence, at T = 100.

4.5.4 � Effectiveness of the word candidates

In our ablation study, detailed in Table 6, we explored the effectiveness of various word
candidate selection methods on the performance of RJA-MMR against the TextCNN
model, utilizing the AG News dataset. Our evaluation included three strategies: using
HowNet, MLMs with BERT-base (Devlin et al., 2019), RoBERTa-large (Liu et al., 2019),
and a synergistic approach combining HowNet and MLMs. Individually, HowNet and
the MLM approaches showed notable performance, with RoBERTa-large slightly outper-
forming BERT-base. However, the combination of HowNet and MLMs produced superior
results, surpassing the individual methods in all evaluated metrics, highlighting the signifi-
cant advantage of integrating HowNet with MLMs to enhance the effectiveness of adver-
sarial attacks.

Furthermore, our analysis of combination strategies for generating word candidates
revealed that the more sophisticated MLM, RoBERTa-large, yielded a more effective attack
performance than its less advanced counterpart, BERT-base. This finding suggests a posi-
tive correlation between advancements in MLM technology and enhancements in attack
efficacy. We attribute this trend to the ability of more advanced MLMs to generate more
relevant and suitable word candidates for use in attack methodologies, thereby increasing
the precision and effectiveness of adversarial strategies.

4.6 � Platform and efficiency analysis

In this section, we aim to evaluate the efficiency from both empirical and theoretical per-
spectives. To perform the empirical complexity (EV) evaluation, we carry out all experi-
ments on RHEL 7.9 with the following specification: Intel(R) Xeon(R) Gold 6238R
2.2GHz 28 cores (26 cores enabled) 38.5MB L3 Cache (Max Turbo Freq. 4.0GHz, Min
3.0GHz) CPU, NVIDIA Quadro RTX 5000 (3072 Cores, 384 Tensor Cores, 16GB Mem-
ory) (GPU), and 88GB RAM. Table 7 lists the time consumed for attacking BERT and
TextCNN classifiers on the Emotion dataset. The metric of time efficiency is second per
example, which means a lower metric indicates better efficiency. Results from Table 7 show
that our RJA and RJA-MMR run longer than some static counterparts (PWWS, BAE, TF)
but are more efficient than the others, such as PSO, FAGA, MHA and BA. Nonetheless,

Table 6   Performance metrics for
RJA-MMR against the TextCNN
model on the AG News dataset
using varied word candidate
selection methods

The best performances for each metric are highlighted in bold

Methods SAR USE Mod PPL GErr

HowNet 85.1 72 13.1 159 0.15
BERT-base 83.1 70 12.1 144 0.15
RoBERTa-large 90.1 73 11.3 156 0.12
HowNet+BERT-base 90.8 80 10.9 145 0.14
HowNet+RoBERTa-large 93.8 82 9.9 127 0.12

	 Machine Learning

1 3

the results of our methods running longer than some baseline methods indicate the genuine
time needed to look for the more optimal adversarial examples.

To theoretically gauge convergence speed, researchers employ the probabilistic con-
cept of Mixing Time (MT), which denotes the duration for a Markov chain to approach
its steady-state distribution closely (Kroese et al., 2011). Given that MT is constrained
by the total variation distance (TV) between the proposed and target distributions, TV is
frequently used as a metric to quantify both the mixing time and speed of convergence
(Metropolis et al., 1953a; Green, 1995b). Analysis of Table 7 reveals that the proposed
RJA-MMR method registers the lowest Total Variance (TV) distance, indicating superior
theoretical performance in terms of convergence speed compared to other methods.

4.7 � Transferability

The transferability of adversarial examples refers to its ability to degrade the performance
of other models to a certain extent when the examples are generated on a specific clas-
sifier (Goodfellow et al., 2015). To evaluate the transferability, we investigate further by
exchanging the adversarial examples generated on BERT-C and TextCNN and the results
are shown in Fig. 5.

When the adversarial examples generated by our methods are transferred to attack
BERT-C and TexCNN, we can find that the attacking performance of RJA-MMR still

Table 7   Assessment of attack algorithms’ efficiency on the Emotion dataset, utilizing empirical complexity
(EC) in seconds per example for practical evaluation and total variance (TV) distance for theoretical conver-
gence speed analysis

Lower EC values denote higher efficiency. The top three methods are highlighted in bold, italic, and under-
lined

Methods Metric BAE FAGA​ MHA BA PWWS TF PSO RJA RJA-MMR

BERT-C EC 21.7 162.4 414.0 707.9 0.7 40.5 73.8 66.9 56.2
TV – 1.22 1.14 – – – 1.3 0.99 0.89

TextCNN EC 17.4 84.5 191.3 488.1 0.4 28.1 55.1 51.9 54.1
TV – 1.31 1.40 – – – 1.29 1.11 1.01

Fig. 4   The progression of SAR, SIM, Mod, GErr, and PPL metrics for SST2 BERT over increased itera-
tions (T). Performance trends and convergence points are visually represented

Machine Learning	

1 3

achieves more than 80% successful rate, which is the best among baselines as illustrated in
the Fig. 5. Apart from RJA-MMR, its ablated components RJA also surpass the most base-
lines. This suggests that the transferring attacking performance of the proposed methods
consistently outperforms the baselines.

4.8 � Targeted attacks

A targeted attack is to attack the data sample with class y in a way that the sample will
be misclassified as a specified target class y′ but not other classes by the victim classifier.
RJA and MMR can be easily adapted to targeted attack by modifying 1 − Fy(x) to Fy� (x) in
Eq. (9). The targeted attack experiments are conducted on the Emotion dataset. The results
demonstrate that the proposed RJA-MMR achieves better performance than PWWS, in
terms of attacking performance (SAR), imperceptibility performance (Mod, Sim) and sen-
tence fluency (GErr, PPL) (Table 8).

Fig. 5   Performance of transfer attacks to victim models (BERT-C and TextCNN) on Emotion. A lower
accuracy of the victim models indicates a higher transfer ability (i.e., the lower, the better)

Table 8   Targeted attack and
imperceptibility-preserving
performance on the Emotion
dataset

The victim models are BERT-C and TextCNN classifiers, and the
baseline is PWWS. The statistics for better performance are vertically
highlighted in bold

Classifers Attack methods Metrics

SAR↑ Mod↓ PPL↓ GErr↓ Sim↑

BERT-C PWWS 21.2 14.1 377 0.19 60
RJA-MMR 28.0 9.2 299 0.13 71

TextCNN PWWS 32.6 11.1 345 0.22 63
RJA-MMR 57.1 10.3 256 0.17 65

	 Machine Learning

1 3

4.9 � Attacking models with defense mechanism

Defending against textual adversarial attacks is paramount in ensuring the integrity and
security of machine learning models used in natural language processing applications.
Effective defense mechanisms encompass two multi-faceted approaches that include:
1) robust model training, utilizing adversarial training techniques to increase models’
resilience against malicious inputs. 2) malicious input detection, aiming to identify and
mitigate adversarial examples without actively altering the machine learning model’s
structure or training process.

To ensure a thorough evaluation of our proposed attack methods, we’ve integrated
two distinct defense mechanisms into our assessment. For passive defense, we adopted
the Frequency-Guided Word Substitutions (FGWS) (Mozes et al., 2021) approach,
which excels at identifying adversarial examples. Conversely, for active defense, we
incorporated Random Masking Training (RanMASK) (Zeng et al., 2023), a technique
that bolsters model resilience via specialized training routines. We perform the adver-
sarial attack to the BERT-C on the two datasets IMDB and SST2, and the results are
presented in Table 9. The results show that our method outperforms the baselines.

4.10 � Adversarial retraining

This section explores RJA-MMR’s potential in improving downstream models’ accuracy
and robustness. Following (Li et al., 2021), we use RJA-MMR to generate adversarial
examples from AG’s News training instances and include them as additional training data.
We inject different proportions of adversarial examples into the training data for the set-
tings of a BERT-based MLP classifier and a TextCNN classifier without any pre-trained
embedding. We provide adversarial retraining analysis by answering the following two
questions:

4.10.1 � Can adversarial retraining help achieve better test accuracy?

As shown in Fig. 6, when the training data is accessible, adversarial training gradually
increases the test accuracy while the proportions of adversarial data are smaller than
roughly 30%. Based on our results, we can see that a certain amount of adversarial data can
help improve the models’ accuracy, but too much such data will degrade the performance.
This means that the right amount of adversarial data will need to be determined empiri-
cally, which matches the conclusions made from previous research (Jia et al., 2019; Yang
et al., 2021).

Table 9   A comparative analysis of attack performance (SAR) against BERT-C when subjected to two
defense mechanisms, FGWS and RanMASK, across IMDB and SST2 datasets

Performance metrics are highlighted in bold to emphasize superior results

Datasets Defense BAE FAGA​ MHA PWWS PSO RJA-MMR

IMDB FGWS 37.7 18.0 34.9 66.1 80.0 88.1
RanMASK 39.1 19.2 40.1 55.3 81.0 83.1

SST2 FGWS 38.1 40.1 61.0 63.7 79.9 81.7
RanMASK 41.1 16.4 39.6 71.3 77.1 86.7

Machine Learning	

1 3

Does adversarial retraining help the models defend against adversarial attacks? To
evaluate this, we use RJA-MMR to attack the classifiers trained with different proportions
( 0%, 10%, 20%, 30%, 40% ) of adversarial examples. A higher success rate (SAR) indicates
a victim classifier is more vulnerable to adversarial attacks. As shown in Fig. 7, adversarial
training helps to decrease the attack success rate by more than 10% for the BERT classifier
(BERT-C) and 5% for TextCNN. These results suggest that the proposed RJA-MMR can be
used to improve downstream models’ robustness by joining its generated adversarial exam-
ples to the training set.

Fig. 6   Results of adversarially trained BERT and TextCNN by inserting the different numbers of adver-
sarial examples to the training set. The accuracy is based on the performance of the SST2 test set

Fig. 7   The success attack rate (SAR) of adversarially retrained models with different numbers of adver-
sarial examples. A lower SAR indicates a victim classifier is more robust to adversarial attacks

	 Machine Learning

1 3

4.11 � Parts of speech preference

Regarding the superiority of the proposed method in attacking performance, we inves-
tigate its attacking preference, described by parts of speech (POS), for further linguis-
tic analysis. In this subsection, we break down the attacked words in AG’s News data-
set by part-of-speech tags with Stanford PSO tagger (Toutanova et al., 2003), and the
collected statistics are shown in Table 10. By analyzing the results, we expect to find
the more vulnerable POS by comparing the proposed methods and baselines.

We apply PSO tagger to annotate them with POS tags, including noun, verb, adjec-
tive (Adj.), adverb (Adv.) and others (i.e., pronoun preposition, conjunction, etc.). Sta-
tistical results in Table 10 demonstrate that all the attacking methods heavily focus on
the noun. Presumably, in the topic classification task, the prediction heavily depends
on noun. However, the proposed attacking strategies (RJA and RJA-MMR) tend to take
a more significant proportion of others than any other methods; thus we might con-
clude that Others (pronoun, preposition and conjunction) might be the second adver-
sarially vulnerable. Since these tags (pronouns, prepositions and conjunction) do not
carry much semantics, we think these tags will not linguistically and semantically
affect prediction but possibly impact the sequential dependencies, which could con-
taminate the contextual understanding of the classifiers and then subsequently cause
wrong predictions.

4.12 � Robustness versus the scale of pre‑trained models

Examining Tables 3 and 4, a question arises: Does increasing the scale of a model enhance
its robustness? To explore this, we conducted a study applying our proposed attack meth-
ods to victim models of varying sizes on the Emotion dataset.

To provide a more nuanced analysis, we recognize that limiting our comparison to the
two initial versions of BERT-base and large as introduced by (Devlin et al., 2019)-does not
sufficiently support robust experimental outcomes. Hence, we have incorporated several

Table 10   POS preference with
respect to choices of victim
words among attacking methods

The tags with the horizontally highest and second highest proportion
are bold and italic, respectively

Methods Noun (%) Verb (%) Adj. (%) Adv. (%) Others (%)

BAE 30 14 13 41 2
AGA​ 44 21 11 5 19
FAGA​ 34 11 22 14 19
MHA 54 9 21 4 12
BA 68 9 4 9 10
PWWS 54 9 18 3 16
TF 31 10 39 10 10
PSO 48 9 15 19 9
RJA 28 12 19 11 30
RJA-MMR 22 17 13 17 31

Machine Learning	

1 3

widely recognized versions published subsequent to the original BERT paper. Specifically,
we analyzed four versions of BERT as documented in Turc et al. (2019): BERT Tiny,7
BERT Mini,8 BERT Small,9 and BERT Medium.10 Notably, the most downloaded version
among these has reached up to 6,559,486 monthly downloads on Huggingface alone. Our
findings, detailed in Table 11, demonstrate a positive correlation between model size and
experimental robustness, confirming the value of incorporating a diverse range of model
sizes into our analysis.

5 � Conclusion and future work

In recent years, the safety and fairness of NLP models have greatly been threatened by
adversarial attacks. Many researchers have raised concerns about the robustness of the
NLP classifiers because of their broad downstream tasks, such as fake news detection, sen-
timent analysis, and email spam detection. To improve classifiers’ robustness, we have pre-
sented RJA-MMR which consists of two algorithms, Reversible Jump Attack (RJA) and
Metropolish-Hasting Modification Reduction (MMR). RJA poses threatening attacks to
NLP classifiers by applying the Reversible Jump algorithm to adaptively sample the num-
ber of perturbed words, victim words and their substitutions for individual textual input.
While MMR is a customized algorithm to help improve the imperceptibility, especially to
lower the modification rate, by utilizing the Metropolis–Hasting algorithm to restore the
attacked words without affecting attacking performance. Experiments demonstrate that
RJA-MMR delivers the best attack success, imperceptibility and sentence fluency among
strong baselines.

Although the adversarial examples can threaten the NLP models, these examples are
not bugs but features (Ilyas et al., 2019). To protect the models from the attacks, we con-
duct extensive experiments with a defense strategy, adversarial retraining, which is done
by joining the adversarial examples in the training set and then retraining the models with
the newly constructed training set. Unsurprisingly, in our experiments, the robustness of
the classifiers has been greatly improved, while the accuracy of these models on clean data
drops when an excessive amount of adversarial examples are injected.

Table 11   Robustness of BERT Models of Different Sizes on the Emotion Dataset

These models are trained with the same datasets and hyper-parameter but with different numbers of trans-
former layers (L) and hidden embedding sizes (H)

Versions BERT tiny BERT mini BERT small BERT medium
Size L = 2, H = 128 L = 2, H = 128 L = 4, H = 512 L=4, H=512

SAR 99.9 9.2 98.4 97.5
Mod 5.7 6.2 6.8 7.0
Sim 93 92 91 91

7  https://​huggi​ngface.​co/​prajj​wal1/​bert-​tiny.
8  https://​huggi​ngface.​co/​prajj​wal1/​bert-​mini.
9  https://​huggi​ngface.​co/​prajj​wal1/​bert-​small.
10  https://​huggi​ngface.​co/​prajj​wal1/​bert-​medium.

https://huggingface.co/prajjwal1/bert-tiny
https://huggingface.co/prajjwal1/bert-mini
https://huggingface.co/prajjwal1/bert-small
https://huggingface.co/prajjwal1/bert-medium

	 Machine Learning

1 3

Since the adversarial attack is one of the most effective methods to test the robustness
of a model, the proposed attacks raise some concerns about deep neural networks (DNNs)
and large pre-trained models. As DNNs and pre-trained language models achieved great
success, most existing well-performed NLP classifiers are based on these techniques. Such
popularity of these techniques could put textual classifiers at high risk because attackers
can make effective attacks by utilizing DNNs and large pre-trained models. Thus a safer
way of applying these techniques is a promising future research direction. At the same
time, we also plan to pertinently study and design defense strategies to further improve the
robustness of NLP classifiers under future adversarial attacks.

Author contributions  Mingze Ni contributed to conceptualization, theoretical analysis, experiments and
draft preparation; Zhensu Sun contributed to experiments, draft preparation, writing review; Wei Liu con-
tributed to conceptualization, theoretical analysis, draft writing and editing.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions. Not
applicable.

Availability of data and materials  All of the datasets are available on Huggingface (https://​huggi​ngface.​co/​
datas​ets) and on our GitHub site (https://​github.​com/​Mingz​eLuca​sNi/​RJA-​MMR.​git).

Code availability  All codes from our experiments are available at https://​github.​com/​Mingz​eLuca​sNi/​RJA-​
MMR.​git.

Declarations 

Conflict of interest  Not applicable.

 Ethical approval  Not applicable.

Consent to participate  The authors give their consent to participate.

 Consent for publication  The authors give their consent to the publication of all information in this paper.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alzantot, M., Sharma, Y., Elgohary, A., Ho, B. J., Srivastava, M., & Chang, K. W. (2018). Generating natu-
ral language adversarial examples. In Proceedings of the 2018 conference on empirical methods in
natural language processing (pp. 2890–2896).

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the
natural language toolkit. O’Reilly Media, Inc.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., St. John, R., Constant, N., Guajardo-Cespedes, M.,
Yuan, S., Tar, C., Strope, B. Kurzweil, R. (2018). Universal sentence encoder for English. In Proceed-
ings of the 2018 conference on empirical methods in natural language processing: system demonstra-
tions (pp. 169–174).

https://huggingface.co/datasets
https://huggingface.co/datasets
https://github.com/MingzeLucasNi/RJA-MMR.git
https://github.com/MingzeLucasNi/RJA-MMR.git
https://github.com/MingzeLucasNi/RJA-MMR.git
http://creativecommons.org/licenses/by/4.0/

Machine Learning	

1 3

Cheng, M., Yi, J., Chen, P. Y., Zhang, H., & Hsieh, C. J. (2020). Seq2sick: Evaluating the robustness of
sequence-to-sequence models with adversarial examples. In Proceedings of the AAAI conference on
artificial intelligence (Vol. 34, No. 04, pp. 3601-3608).

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL.

Dong, Z., & Dong, Q. (2003). Hownet-a hybrid language and knowledge resource. In International con-
ference on natural language processing and knowledge engineering, 2003. Proceedings. 2003 (pp.
820–824). IEEE.

Dong, Z., Dong, Q., & Hao, C. (2010). Hownet and its computation of meaning. In Coling 2010: Demon-
strations, (pp. 53–56).

Ebrahimi, J., Rao, A., Lowd, D., & Dou, D. (2018). Hotflip: White-box adversarial examples for text clas-
sification. In Proceedings of the 56th annual meeting of the association for computational linguistics
(Volume 2: Short Papers) (pp. 31–36).

Fan, X., Li, B., & Sisson, S. (2018). Rectangular bounding process. Advances in Neural Information Pro-
cessing Systems, 31.

Fan, Y., & Sisson, S. A. (2011). Reversible jump MCMC. In Handbook of Markov Chain Monte Carlo, (pp.
67–92).

Gan, W. C., & Ng, H. T .(2019). Improving the robustness of question answering systems to question para-
phrasing. In Proceedings of the 57th Annual meeting of the association for computational linguistics,
(pp. 6065–6075).

Garg, S., & Ramakrishnan, G. (2020). Bae: Bert-based adversarial examples for text classification. In Pro-
ceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), (pp.
6174–6181).

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In
CoRRarXiv:​ abs/​1412.​6572

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determi-
nation. Biometrika, 82(4), 711–732.

Haase, J. F., Dellantonio, L., Celi, A., Paulson, D., Kan, A., Jansen, K., & Muschik, C. A. (2021). A
resource efficient approach for quantum and classical simulations of gauge theories in particle physics.
Quantum, 5, 393.

Harrison, B., Purdy, C., & Riedl, M. O. (2017). Toward automated story generation with Markov chain
Monte Carlo methods and deep neural networks. In Thirteenth artificial intelligence and interactive
digital entertainment conference.

Herrmann, H. (1986). Fast algorithm for the simulation of Ising models. Journal of Statistical Physics,
45(1), 145–151.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., & Madry, A. (2019) Adversarial examples are
not bugs, they are features. Advances in Neural Information Processing Systems, 32.

Iyyer, M., Wieting, J., Gimpel, K., & Zettlemoyer, L. (2018b). Adversarial example generation with syn-
tactically controlled paraphrase networks. In Proceedings of the 2018 conference of the North Ameri-
can chapter of the association for computational linguistics: Human language technologies, Volume 1
(Long Papers) (pp. 1875–1885). Association for Computational Linguistics, New Orleans, Louisiana.

Jia, R., & Liang, P. (2017). Adversarial examples for evaluating reading comprehension systems. In Pro-
ceedings of the 2017 conference on empirical methods in natural language processing (pp. 2021–
2031). Association for Computational Linguistics, Copenhagen, Denmark.

Jia, R., Raghunathan, A., Göksel, K., & Liang, P. (2019). Certified robustness to adversarial word substitu-
tions. In Proceedings of the 2019 conference on empirical methods in natural language processing
and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), (pp.
4129–4142).

Jin, D., Jin, Z., Zhou, J. T., & Szolovits, P. (2020). Is Bert really robust? A strong baseline for natural lan-
guage attack on text classification and entailment. In AAAI.

Kang, X., & Ren, F. (2011). Sampling latent emotions and topics in a hierarchical Bayesian network. In
2011 7th international conference on natural language processing and knowledge engineering, (pp.
37–42).

Kann, K., Rothe, S., & Filippova, K. (2018). Sentence-level fluency evaluation: References help, but can
be spared! In Proceedings of the 22nd conference on computational natural language learning, (pp.
313–323).

Kim, Y. (2014). Convolutional neural networks for sentence classification. In EMNLP.
Kroese, D. P., Taimre, T., & Botev, Z. I. (2011). Handbook of Monte Carlo Methods. Wiley.
Kumagai, K., Kobayashi, I., Mochihashi, D., Asoh, H., Nakamura, T., & Nagai, T. (2016). Human-like natu-

ral language generation using Monte Carlo tree search. In CC-NLG.

http://arxiv.org/1412.6572

	 Machine Learning

1 3

Li, D., Zhang, Y., Peng, H., Chen, L., Brockett, C., Sun, M. T., & Dolan, B. (2021). Contextualized perturba-
tion for textual adversarial attack. In Proceedings of the 2021 conference of the North American chap-
ter of the association for computational linguistics: Human language technologies, (pp. 5053–5069).

Li, L., Ma, R., Guo, Q., Xue, X., & Qiu, X. (2020). Bert-attack: Adversarial attack against Bert using
Bert. In Proceedings of the 2020 conference on empirical methods in natural language processing
(EMNLP), (pp. 6193–6202).

Liang, B., Li, H., Su, M., Bian, P., Li, X., & Shi, W. (2018). Deep text classification can be fooled. In Pro-
ceedings of the 27th international joint conference on artificial intelligence (pp. 4208–4215). AAAI
Press, IJCAI’18.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov,
V., (2019.) Roberta: A robustly optimized Bert pretraining approach. ArXiv arXiv:​ abs/​1907.​11692

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for
sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational
linguistics: human language technologies (pp. 142–150). Association for Computational Linguistics,
Portland, Oregon, USA. http://​www.​aclweb.​org/​antho​logy/​P11-​1015

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of
state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.

Michel, P., Li, X., & Neubig, G., (2019). On evaluation of adversarial perturbations for sequence-to-
sequence models. arXiv preprint arXiv:​1903.​06620

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in
vector space. In ICLR.

Miller, G. A. (1992). WordNet: A lexical database for English. Communications of the ACM, 38, 39–41.
Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. J. (1990). Introduction to WordNet:

An on-line lexical database. International Journal of Lexicography, 3(4), 235–244.
Morris, J. X., Lifland, E., Yoo, J. Y., Grigsby, J., Jin, D., & Qi, Y. (2020). Textattack: A framework for

adversarial attacks, data augmentation, and adversarial training in NLP. In Proceedings of the 2020
conference on empirical methods in natural language processing: System demonstrations, (pp.
119–126).

Mozes, M., Stenetorp, P., Kleinberg, B., & Griffin, L. D. (2021). Frequency-guided word substitutions
for detecting textual adversarial examples. In Proceedings of the 16th conference of the European
chapter of the association for computational linguistics: Main volume, (pp. 171–186).

Mrkšić, N., Séaghdha, D. Ó., Thomson, B., Gasić, M., Rojas-Barahona, L., Su, P.H., Vandyke, D., Wen,
T.H. & Young, S. (2016). Counter-fitting word vectors to linguistic constraints. In Proceedings of
the 2016 xonference of the North American chapter of the association for computational linguis-
tics: Human language technologies, (pp. 142–148).

Naber, D. (2003). A rule-based style and grammar checker. Citeseer.
Ni, M., Wang, C., Zhu, T., Yu, S., & Liu, W. (2022). Attacking neural machine translations via hybrid

attention learning. Machine Learning, 111(11), 3977–4002.
Papernot, N., McDaniel, P., Swami, A., & Harang, R. (2016). Crafting adversarial input sequences for

recurrent neural networks. In CoRRarXiv:​ abs/​1604.​08275
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In

Empirical methods in natural language processing (EMNLP), (pp. 1532–1543).
Qi, F., Yang, C., Liu, Z., Dong, Q., Sun, M., & Dong, Z. (2019). Openhownet: An open sememe-based

lexical knowledge base. arXiv preprint arXiv:​1901.​09957
Qi, F., Chang, L., Sun, M., Ouyang, S., & Liu, Z. (2020). Towards building a multilingual sememe

knowledge base: Predicting sememes for babelnet synsets. In Proceedings of the AAAI conference
on artificial intelligence, (pp. 8624–8631).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsu-
pervised multitask learners. OpenAI.

Ren, S., Deng, Y., He, K., & Che, W. (2019) Generating natural language adversarial examples through
probability weighted word saliency. In Proceedings of the 57th annual meeting of the association
for computational linguistics, (pp. 1085–1097).

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Semantically equivalent adversarial rules for debugging
NLP models. In Proceedings of the 56th annual meeting of the association for computational lin-
guistics (Volume 1: Long Papers) (pp. 856–865). Association for Computational Linguistics, Mel-
bourne, Australia.

Rincent, R., Kuhn, E., Monod, H., Oury, F. X., Rousset, M., Allard, V., & Le Gouis, J. (2017). Optimi-
zation of multi-environment trials for genomic selection based on crop models. Theoretical and
Applied Genetics, 130, 1735–1752.

http://arxiv.org/1907.11692
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1903.06620
http://arxiv.org/abs/abs/1604.08275
http://arxiv.org/abs/1901.09957

Machine Learning	

1 3

Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Meth-
odology and Computing in Applied Probability, 1(2), 127–190.

Samanta, S., & Mehta, S. (2018). Generating adversarial text samples. In European conference on infor-
mation retrieval (pp. 744–749). Springer.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of Bert: Smaller,
faster, cheaper and lighter. arXiv:​ abs/​1910.​01108

Saravia, E., Liu, H. C. T., Huang, Y. H., Wu, J., & Chen, Y. S. (2018). CARER: Contextualized affect
representations for emotion recognition. In Proceedings of the 2018 conference on empirical meth-
ods in natural language processing (pp. 3687–3697). Association for Computational Linguistics,
Brussels, Belgium.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., & Potts, C. (2013). Recursive
deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013
conference on empirical methods in natural language processing (pp. 1631–1642). Association for
Computational Linguistics, Seattle, Washington, USA.

Tan, S., Joty, S., Kan, M. Y., & Socher, R. (2020). It’s morphin’ time! Combating linguistic discrimination
with inflectional perturbations. In Proceedings of the 58th annual meeting of the association for com-
putational linguistics (pp. 2920–2935). Association for Computational Linguistics.

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich part-of-speech tagging with
a cyclic dependency network. In Proceedings of the 2003 conference of the North American Chap-
ter of the association for computational linguistics on human language technology—Volume 1 (pp.
173–180). Association for Computational Linguistics, USA, NAACL ’03.

Turc, I., Chang, M. W., Lee, K., & Toutanova, K. (2019). Well-read students learn better: The impact of
student initialization on knowledge distillation. In CoRR arXiv:​ org/​abs/​1908.​08962

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T.,
Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A.,
Vinyals, O., Corrado, G., Hughes, M., & Dean, J. (2016). Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv preprint arXiv:​1609.​08144

Yang, X., Liu, W., Bailey, J., Tao, D., & Liu, W. (2021). Bigram and unigram based text attack via adap-
tive monotonic heuristic search. In Proceedings of the AAAI conference on artificial intelligence, (pp.
706–714).

Zang, Y., Qi, F., Yang, C., Liu, Z., Zhang, M., Liu, Q., & Sun, M. (2020). Word-level textual adversarial
attacking as combinatorial optimization. In Proceedings of the 58th annual meeting of the association
for computational linguistics, (pp. 6066–6080).

Zeng, J., Xu, J., Zheng, X., & Huang, X. (2023). Certified robustness to text adversarial attacks by rand-
omized [mask]. Computational Linguistics, 49(2), 395–427.

Zhang, H., Zhou, H., Miao, N., & Li, L. (2019). Generating fluent adversarial examples for natural lan-
guages. In Proceedings of the 57th annual meeting of the association for computational linguistics.
Association for Computational Linguistics, Florence, Italy.

Zhang, W. E., Sheng, Q. Z., Alhazmi, A., & Li, C. (2020). Adversarial attacks on deep-learning models
in natural language processing: A survey. ACM Transactions on Intelligent Systems and Technology
(TIST), 11(3), 1–41.

Zhang, X., Zhao, J. J., & LeCun, Y. (2015). Character-level convolutional networks for text classification.
In NIPS.

Zou, W., Huang, S., Xie, J., Dai, X., & Chen, J. (2020). A reinforced generation of adversarial examples for
neural machine translation. In Proceedings of the 58th annual meeting of the association for computa-
tional linguistics (pp. 3486–3497). Association for Computational Linguistics.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/1910.01108
http://arxiv.org/1908.08962
http://arxiv.org/abs/1609.08144

	Reversible jump attack to textual classifiers with modification reduction
	Abstract
	1 Introduction
	2 Related work
	2.1 Word-level attacks to classifiers
	2.1.1 Gradient-based word-level attacks
	2.1.2 Non-gradient-based word-level attacks

	2.2 Markov chain Monte Carlo in NLP
	2.2.1 Metropolis–Hasting and reversible jump samplers
	2.2.2 Adversarial attack via MCMC

	3 Imperceptible adversarial attack via Markov chain Monte Carlo
	3.1 Problem formulation and notaition
	3.2 Reversible jump attack
	3.2.1 Transition function
	3.2.2 Acceptance probability for RJA

	3.3 Modification reduction with metropolis–hasting algorithm
	3.3.1 Restoring attacked words with MMR
	3.3.2 Updating the combination of substitutions with MMR

	4 Experiments and analysis
	4.1 Victim models
	4.1.1 BERT-based classifiers
	4.1.2 TextCNN-based models

	4.2 Baselines
	4.3 Experimental settings and evaluation metrics
	4.4 Experimental results and analysis
	4.4.1 Does our method make more thrilling attacks compared with baselines?
	4.4.2 Is RJA-MMR superior to the baselines in terms of imperceptibility?
	4.4.3 Is the quality of adversarial examples generated by the proposed methods better than that crafted by the baselines?

	4.5 Ablation study
	4.5.1 Effectiveness of RJA
	4.5.2 Effectiveness of MMR
	4.5.3 Performance versus the number of iterations
	4.5.4 Effectiveness of the word candidates

	4.6 Platform and efficiency analysis
	4.7 Transferability
	4.8 Targeted attacks
	4.9 Attacking models with defense mechanism
	4.10 Adversarial retraining
	4.10.1 Can adversarial retraining help achieve better test accuracy?

	4.11 Parts of speech preference
	4.12 Robustness versus the scale of pre-trained models

	5 Conclusion and future work
	References

