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Abstract
Deep neural networks, despite their capabilities, are constrained by the need for large-scale 
training data, and often fall short in generalisation and interpretability. Inductive logic pro-
gramming (ILP) presents an intriguing solution with its data-efficient learning of first-order 
logic rules. However, ILP grapples with challenges, notably the handling of non-linearity 
in continuous domains. With the ascent of neuro-symbolic ILP, there’s a drive to mitigate 
these challenges, synergising deep learning with relational ILP models to enhance inter-
pretability and create logical decision boundaries. In this research, we introduce a neuro-
symbolic ILP framework, grounded on differentiable Neural Logic networks, tailored for 
non-linear rule extraction in mixed discrete-continuous spaces. Our methodology consists 
of a neuro-symbolic approach, emphasising the extraction of non-linear functions from 
mixed domain data. Our preliminary findings showcase our architecture’s capability to 
identify non-linear functions from continuous data, offering a new perspective in neural-
symbolic research and underlining the adaptability of ILP-based frameworks for regression 
challenges in continuous scenarios.

Keywords Inductive logic programming · Neuro-symbolic artificial intelligence · 
Knowledge representation and reasoning · Non-linear modelling · Deep learning

1 Introduction

State-of-the-art deep neural networks, while powerful, face inherent limitations like the 
need for vast training examples and a deficiency in generalisation and interpretability 
(Chollet, 2019). Inductive logic programming (ILP) offers a promising alternative with 
over three decades of history, emphasising data-efficient methods to learn first-order logic 
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rules, which has the potential for greater generalisability (d’Avila Garcez et al., 2019; Mug-
gleton & De Raedt, 1994). However, the ILP approach is not without its challenges, such 
as handling non-linearity and continuous properties, the computational intensity of predi-
cate rule generation, and dependence on expert-defined background knowledge (Cropper & 
Dumančic, 2020).

The recent surge in neuro-symbolic ILP has aimed to establish hybrid frameworks that 
address these challenges, enabling features like noise handling, recursion-based generalisa-
tion, and supporting predicate invention. Such innovations have paved the way for research 
combining deep learning with relational ILP models, which not only enhances interpret-
ability but also positions decision boundaries using logical rules (Evans & Grefenstette, 
2017; Payani & Fekri, 2019; Yang & Song, 2019). However, the intricacy of addressing 
non-linearity in continuous domains remains an underexplored area.

Our work embarks on this challenge, aiming to design a neuro-symbolic ILP framework 
tailored for modelling non-linearity and continuous properties. Using the differentiable 
Neural Logic (dNL) networks as a foundation (Payani & Fekri, 2019), we focus on extract-
ing non-linear rules in mixed discrete-continuous spaces, or more concretely, Our aim is 
to design an ILP-based framework specifically for learning in a mixed discrete-continuous 
space for the purpose of non-linear function extraction. This task necessitates adapting 
current systems to efficiently derive non-linear rules from data reflecting non-linear func-
tions specified in advance.

Understanding the significance of our proposed framework becomes clearer when con-
sidering its application to real-world problems. Take, for instance, the domain of physics: 
if we were to gather data from a device measuring the relationship E = m × c2 , the iconic 
energy-mass equation. The extended capabilities of ILP, with its focus on non-linear con-
tinuous predicates, could intuitively model such a relationship. This is accomplished by 
teaching the system to recognise operations like squaring a variable ( c2 ) and multiplying 
variables ( m × c2 ). With this, we are not just adding to the toolset of data analysis; we are 
providing a path for data-efficient neuro-symbolic methods that can further scientific dis-
coveries by extracting and understanding non-linear equations.

We introduce a three-step methodology, commencing with continuous data discretisa-
tion and the learning of variable transformations using differentiable Neural Logic Non-
Linear (dNL-NL) networks, repurposed from the standard dNL. The second phase involves 
utilising a separate (dNL-NL) network to represent operational predicates like addition 
or multiplication. Each dNL-NL network aims to define transformations, using the pro-
vided non-linear predicates. A subsequent dNL-NL module extracts operational predi-
cates between individual features, utilising an augmented dataset transformed by the initial 
dNL-NL module’s non-linear predicates. The first and the second modules are end-to-end 
differentiable but the same cannot be said about the overall pipeline. To ensure accurate 
non-linear function extraction, we calculate the true loss on the continuous target using the 
compiled non-linear function from the extracted rules. This approach centres on extracting 
non-linear functions from mixed domain data.

While the current study focuses on supervised learning, future endeavours might extend 
this proposal to dynamic contexts, such as discerning state dynamics within reinforce-
ment learning environments. Our findings showcase our architecture’s ability to retrieve 
non-linear functions from continuous data where clausal rules describe the function. This 
venture unveils a unique direction in neural-symbolic research, suggesting that ILP-based 
frameworks are adaptable to continuous data, addressing regression challenges. To our 
knowledge, this proposed work is the first to focus on the differential logical learning of 
non-linear functions.
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2  Related work

Logic programs, by their very nature, offer a high degree of interpretability. As mod-
els become increasingly complex, there is a growing need in many domains for models 
that can be understood, validated, and trusted by humans (Barredo Arrieta et  al., 2020). 
Logic programs allow for the symbolic representation of knowledge, which can be use-
ful in scenarios where domain knowledge needs to be incorporated or where explanations 
are required in symbolic form (Hitzler & Sarker, 2022). While neural networks and kernel 
machines are powerful function approximators, they often act as black-box models. The 
trade-off between accuracy and interpretability is a well-known challenge (Barredo Arrieta 
et al., 2020). Our approach seeks to bridge this gap by providing a mechanism to learn non-
linear relationships in data while retaining the interpretability of symbolic methods.

The foundational principles of ILP, especially as detailed in Muggleton and de Raedt 
(1994), played a significant role in guiding this research. Classic ILP systems excel at 
learning logic-based rules and first-order logical predicates from structured, discrete, and 
relational data. However, they struggle when faced with non-linear predicates in continu-
ous domains. Several classical ILP systems, including FOIL (Quinlan, 1990), Progol (Mug-
gleton, 1995), Claudien (De Raedt & Dehaspe, 1997), Aleph (Srinivasan, 2001), XHAIL 
(Ray, 2009), and Atom (Ahlgren & Yuen, 2013), have showcased their proficiency in han-
dling noisy data and addressing problems within infinite domains. While they are adept at 
processing certain recursive rules, they do not consistently deliver optimal results and lack 
support for predicate invention. To illustrate a specific challenge, Aleph’s heuristic search, 
with its greedy nature, runs the perpetual risk of entrapment in local optima. Notably, these 
systems harness the set covering algorithm, learning hypotheses one clause at a time.

Another approach to note is Metagol (Muggleton et al., 2018), which, in contrast to its 
predecessors, boasts capabilities in predicate invention, recursion handling, and producing 
optimal programs across infinite domains. One disadvantage of Metagol is its inability to 
manage noise. Newer systems, such as Popper (Cropper & Morel, 2021a) and Poppi (Crop-
per & Morel, 2021b)-which builds upon Popper to enable automatic predicate invention-fill 
this gap. They adeptly handle noise, predicate invention, recursion, and can craft optimal 
programs within infinite domains (Cropper & Morel, 2021a, b).

ILP systems are inherently designed for symbolic representations, specifically for rela-
tional data in discrete domains. They are built to identify patterns using logical predicates. 
This design makes them unsuitable for continuous domains, which rely on numerical val-
ues and mathematical operations, differing greatly from ILP’s logic-based foundation. 
Tackling non-linear predicates in these domains is challenging due to the complex math-
ematical computations and the vast function space it requires to search, which is computa-
tionally intensive.

Early ILP research was primarily focused on reasoning within discrete spaces, with 
notable contributions from Chavira and Darwiche (2008); Kersting et al. (2000); Richard-
son and Domingos (2006); Kimmig et  al. (2012). A shift towards exploring mixed dis-
crete-continuous spaces was evident in works such as Speichert and Belle (2018), where 
piecewise polynomials were harnessed to model continuous distributions, subsequently 
informing target predicate definitions. In a parallel vein, Nitti et al. (2016) proposed a prob-
abilistic approach, leveraging Gaussian base atoms to derive rules.

Non-linear predicates present clear challenges in traditional ILP systems. This has led 
to growing interest in neuro-symbolic methods for better modelling in continuous domains. 
Our proposed method introduces a new ILP technique, learning from magic values with 
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lazy evaluation. A magic value in a program refers to a constant symbol vital for the pro-
gram’s proper execution, even if its selection lacks a clear rationale (Hocquette & Cropper, 
2023). In our system, the lower and upper bound weights (detailed in Sect. 4.1) for the non-
linear and operation predicates serve as these magic values. While these bounds ultimately 
become constant symbols in predicate definitions post-training, they start as trainable 
parameters. Lazy evaluation, as adopted by Aleph for constant refinement, is also utilised 
in our method (Srinivasan & Camacho, 1999). Aleph refines bottom clauses by seeking 
variable substitutions and executing a partial hypothesis on both positive and negative 
examples. Essentially, rather than exploring all constant symbols, lazy evaluation focuses 
solely on symbols derived from the examples. Similarly, we evaluate our rules using evolv-
ing lower/upper bounded weights and predicate membership weights, making our approach 
aligned with the principles of lazy evaluation. Our work expands ILP’s learning capabili-
ties to cover large and unbounded domains, and our tests show its advantages over previous 
systems.

Recent advancements in the ILP field have embraced a neuro-symbolic approach, as 
highlighted by Evans and Grefenstette (2017). This study introduced dILP, a novel neural 
ILP solver with a differentiable architecture for deduction. The emergence of such neuro-
symbolic ILP systems has spurred a trend in benchmarking ILP based on various features, 
including noise resilience, compatibility with infinite domains, recursion, and predicate 
invention. As this field matures, richer feature sets will be introduced, setting the stage 
for more nuanced evaluations and progress benchmarking. Neuro-symbolic ILP methods, 
while presenting numerous enhancements, have not prioritized learning non-linear predi-
cates in continuous domains. In contributing to this narrative, our work introduces the 
modelling of non-linearity in continuous or mixed domains, broadening the comparative 
landscape.

Neuro-symbolic ILP has seen various advancements, with several noteworthy contribu-
tions pushing the boundaries of the field. Shindo et al. employ differentiable logic mod-
ules that softly compose logic programs. Instead of utilizing MLPs, they manage multiple 
clauses with function symbols to enhance interpretability. Additionally, they incorporate 
predicate operations such as negation and preservation, which bolster flexibility (Shindo 
et al., 2021). This method’s differentiable aspects, such as tensor encoding and inference, 
function on discrete logic symbols and their respective truth values. Sen et al. expanded 
upon logical neural networks to derive rules in first-order logic. They demonstrate the joint 
learning of rules and logical connectives (Sen et al., 2021). The flexibility of their learn-
ing algorithm accommodates various linear inequality and equality constraints. Owing to 
adaptable parametrisation, their approach outperforms others on multiple benchmarks. 
Krishnan et  al. build upon the differentiable ILP framework introduced by Evans et  al. 
Their primary objective is to learn recursive programs and conduct predicate invention 
with stratified and safe negation (Krishnan et al., 2021).

Addressing the learning challenge in our work, we acknowledge parallels in other 
research that prioritise distinct component learning for data modelling, such as the 
approach detailed in Duvenaud et  al. (2013). They innovatively redefine kernel learning 
as a structure discovery challenge, automating kernel form choices and composing kernel 
structures using base components. This approach offers an expressive modelling language, 
capturing widely-used kernel construction methods. Their emphasis on Gaussian process 
regression with the kernel as a covariance function leverages the Bayesian framework for 
streamlined structure discovery, using marginal likelihood for evaluation.

In this initial study, the focus has been on establishing the dNL-NL model as a foun-
dational approach for extracting non-linear equations from continuous data within a 
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regression framework. This work serves as a proof of concept, laying the groundwork for 
future research which will aim to scale the model and undertake comprehensive compara-
tive evaluations with other neuro-symbolic approaches to further validate its applicability 
and effectiveness. Given that, we note other models which could be considered in evalu-
ating future iterations of the dNL-NL architecture in program synthesis with continuous 
domains. TerpreT, a probabilistic programming language, integrates neural networks with 
traditional search techniques in Inductive Program Synthesis (IPS) (Gaunt et al., 2016). It 
uses models inspired by compiler representations, which are trainable via gradient descent, 
enabling the handling of complex control flows and external storage interactions. Ter-
preT’s unique architecture supports defining execution models like Turing Machines, using 
parameterized programs and interpreters. It accommodates a variety of back-end inference 
algorithms, facilitating the synthesis of interpretable source code with intricate control 
structures. This setup not only aids in learning complex programs but also permits com-
parisons across different inference techniques and representations.

Building on this foundation, DeepCoder emerges as an innovative IPS method, harness-
ing neural networks to decode patterns in problem descriptions for guiding search-based 
synthesis (Balog et al., 2017). DeepCoder redefines IPS as a big data challenge, training 
extensively on IPS problems. Its framework establishes a versatile programming language, 
easily predictable from input–output examples, and devises models to link these examples 
to program attributes. This leads to considerable speed enhancements in program synthe-
sis, particularly for the complex problems typical in competitive programming. DeepCod-
er’s use of machine learning improves the efficiency and effectiveness of program synthesis 
by predicting program attributes and influencing the synthesis process with neural network 
insights.

Other approaches to program synthesis using elements of non-linear bias include 
DreamCoder (Ellis et  al., 2020). DreamCoder is an innovative program learning system 
that specializes in program induction across multiple domains, utilizing self-supervised 
learning, bootstrapping, and domain-specific languages. It employs a unique “Wake/Sleep" 
architecture for program induction, combining generative models and neural networks to 
efficiently synthesize and refactor programs. DreamCoder stands out for its ability to dis-
cover specialized abstractions, enabling the expression of complex solutions to tasks at 
hand and achieving significant advancements in the field of program learning.

3  Background

3.1  ILP

Inductive logic programming (ILP) is a method of symbolic computing which can auto-
matically construct logic programs provided a background knowledge base (KB) (Muggle-
ton & de Raedt, 1994). An ILP problem is represented as a tuple (B,P,N) of ground atoms, 
with B defining the background assumptions, P is a set of positive instances which help in 
defining the target predicate to be learned, and N  defines the set of negative instances of 
the target predicate. The aim of ILP is to eventually construct a logic program that explains 
all provided positive sets and rejects the negative ones. Given an ILP problem (B,P,N) , 
the aim is to identify a set of hypotheses (clauses) H such that (Muggleton & de Raedt, 
1994):
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• B ∧H ⊧ 𝛾 for all � ∈ P

• B ∧H ̸⊧ 𝛾 for all � ∈ N

Where ⊧ denotes logical entailment. Thus stating, that the conjunction of the background 
knowledge and hypothesis should entail all positive instances and the same should 
not entail any negative instances. We assume for example a KB with provided con-
stants {bob, carol, volvo, jacket, pants, skirt,⋯} , where the task is to learn the predicate 
���������(X) . Then the ILP problem is defined as:

• B = {���(ford), ��������(jacket), ��(jacket, bob), ������(carol, volvo),⋯}

• P = {���������(bob), ���������(carol),⋯}

• N = {���������(volvo), ���������(jacket),⋯}

The outcome of the induction performed is a hypothesis of the form:

The learned first-order logic rule from the KB states “if an object is inside the car with 
clothing on it, then it is a passenger”.

The ILP problem may also contain a language frame L and program template Π (Evans 
& Grefenstette, 2017). The language frame is a tuple which contains information on the 
target predicate, the set of extensional predicates, arity of each predicate, and a set of con-
stants, while the program template describes the range of programs that can be generated.

The placement of ILP in the context of non-linearity is that predicate rules can be 
equated with a non-linear function. For example, consider the equation for the mass-energy 
equivalence E = m × c2 , which takes in as input mass (m) and multiplies it by the square of 
the constant for the speed of light (c). For the sake of the example, we treat both m and c as 
random variables within the range [0, 1). As non-linear equations produce continuous out-
put, we can discretise the output into specified ranges. Discretising the continuous output 
transforms the non-linear regression problem into a classification problem, aligning with 
the discrete reasoning of ILP. By discretising the output of a function, such as E = m × c2 
into distinct intervals, we can also interpret the distinct intervals as level sets on the equa-
tion. These level sets, which can be arbitrarily shaped and even disconnected, correspond 
to the range within specific bins and serve as target predicates for ILP to learn. Associating 
each FOL rule with specific level sets enriches our understanding of the function’s repre-
sentation, clarifying the relationship between logic rules and the function’s behaviour.

The ILP problem would then focus on learning target predicates which represent an 
output range, here Class1(m,  c) maps to the output range (0 ≤ E ≤ 3.07 × 10−1) . As 
before, the tuple of ground atoms (B,P,N) would contain background assumptions but 
in the non-linear context, the predicates in the KB would be associated with inequalities 
(LessThan), inequalities on transformed input (SquareLessThan), and inequalities 
for operations between variables such as taking the product between two variables (Prod-
LessThan). Assuming a KB with well-defined predicates consisting of operations and 
transformations on continuous data, a hypothesis for the first class can be induced:

Here, the logic rule for the classification can be interpreted as “if m is less than 0.6 and 
the square of c is less than 0.5 and the product between m and c2 is less than 0.3, then the 

���������(X) ← ������(X, Y1) ∧ ���(Y1) ∧ ��(Y2,X) ∧ ��������(Y2)

�����1(m, c)(0≤E≤3.07×10−1) ← ��������(m, 0.6) ∧ ��������������(c, 0.5)∧

������������(m, c2, 0.3)



Machine Learning 

1 3

value of E will be greater than or equal to 0 and less than or equal to 3.07 × 10−1 ”. The 
interpretation, while distant from the original non-linear function, can be parsed to derive 
the true equation. The inequalities on the continuous values assist in defining the discrete 
range associated with our Class1 predicate, but the associated transformations ( c2 ) and 
operations ( m × c2 ) lend themselves to defining the non-linear equation for E. We note that 
the reliability of the non-linear and operation predicate rules we derive hinges on the gran-
ularity of the target’s discretisation. A sufficiently fine-grained discretisation ensures the 
robustness of the learned rules, as a low discretisation scheme risks overgeneralising the 
non-linear output.

3.2  dNL

Initially, ILP was constrained to program induction on non-noisy symbolic data. While data-
efficient, traditional ILP was limited in its applications. In Evans and Grefenstette (2017), ILP 
was bridged with neural networks, to create an end-to-end differentiable architecture which 
could learn on noisy data. The core ideas have been used in subsequent proposals, including 
the approach presented here. Payani et al. proposed a further extension of ILP called a differ-
entiable neural logic (dNL) network which utilises differentiable neural logic layers to learn 
Boolean functions (Payani & Fekri, 2019), building upon ideas proposed by Evans et al. The 
concept is to define Boolean functions that can be combined in a similar cascading architec-
ture akin to neural networks. This gives deep learning an explicit symbolic representation that 
is interpretable. It also redefines ILP as an optimisation problem. The dNL architecture uses 
membership weights and conjunctive and disjunctive layers with forward chaining to remove 
the need for the rule template to solve ILP problems.

In the construction of the logical framework, Boolean values ( true = 1, false = 0) are 
mapped to real value ranges [0, 1]. Payani et al. define fuzzy unary and dual Boolean functions 
of variables x and y as follows:

• x = 1 − x

• x ∧ y = xy

• x ∨ y = 1 − (1 − x)(1 − y)

The core component of the dNL network is their use of differentiable neural logic layers to 
learn Boolean functions (Payani & Fekri, 2019). The dNL architecture uses membership 
weights and conjunctive and disjunctive layers to learn a target predicate or Boolean function. 
Learning a target predicate p requires the construction of Boolean function Fp which passes 
in a Boolean vector x of size N with elements x(i) , into a neural conjunction function fconj (see 
Eq. 1a) which is defined by a conjunction Boolean function Fconj (see Eq. 1a). 

 A predicate defined by Boolean function in this matter is extracted by parsing the archi-
tecture for membership weights ( w(i) ) above a given threshold, where membership weights 
are converted to Boolean weights via a sigmoid m(i) = �(cw(i)) with constant c ≥ 1 . The 

(1a)fconj(x) =

N
∏

i=1

Fconj(x
(i),m(i))

(1b)Fconj(x
(i),m(i)) = x(i)m(i) = 1 − m(i)(1 − x(i))
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constant c effectively acts as a “scaling factor" for the sigmoid’s argument. As the constant 
is greater than 1, it makes the sigmoid curve steeper. This means that the transition from 
the lower asymptote to the upper asymptote of the sigmoid function occurs over a nar-
rower range of input values. Membership weights are paired with continuous lower and 
upper bound predicate functions (discussed in Sect. 3.4) which are eventually interpreted 
as atoms in the body of the predicate being learned. These same Boolean predicate func-
tions are used to transform non-Boolean data into a Boolean format for the logic layers.

Similarly, a neural disjunction function fdisj (see Eq. 2a) can be constructed using the 
disjunction Boolean function Fdisj (see Eq. 2a). 

 By combining different neural Boolean functions, a multi-layered structure can be cre-
ated. For example, cascading a conjunction function with a neural disjunction function (see 
Eq. 2a) creates a layer in disjunctive normal form (DNF), so-called dNL-DNF. Alterna-
tively, cascading a disjunctive function with a neural conjunction function reinterprets the 
architecture in conjunctive normal form (CNF), forming a dNL-CNF.

Each rule to be learned corresponds to a dNL-DNF (or dNL) function, a differentiable 
symbolic Boolean function with parameterized membership weights in its conjunction 
and disjunction layers. A rule’s body is represented by a Boolean dNL function, deter-
mined by membership weights in its neural conjunction and disjunction functions, given 
by Fp ← fdisj(fconj(x)) . The conjunction layer’s membership weights, m(i) , relate to specific 
Boolean inputs x(i) from vector x , signifying the presence or absence of a Boolean feature. 
Meanwhile, the disjunction layer’s membership weights, which are separate weights from 
the conjunction layer, map to the conjunction layer’s rows, offering multiple definitions for 
rule p.

The optimization of the model is performed by evaluating the extracted rules’ member-
ship weights, where evaluation is done by applying the extracted rules to the background 
knowledge so that negative examples are rejected and positive examples are entailed. The 
weights are optimized based on the loss functions detailed in Sect. 3.5. As we extend to the 
continuous case where inputs are continuous and the target is discrete, each class in a tabu-
lar dataset is associated with a target predicate Boolean function Fp , which is defined by 
bounded continuous Boolean predicates derived from each continuous feature, as explained 
in Sect. 3.4.

3.3  Notation

In this proposal, mathematical equations play a vital role in detailing our approach. To 
ensure clarity, we provide tables that list and define the crucial hyperparameters and nota-
tions. Please refer to Table 2 for hyperparameters and Table 1 for the specific notations 
employed throughout this proposal.

We also clarify, that for a given instance i, we define a discrete output label yi , and our 
set of continuous feature values xi ← {x

(1)

i
, x

(2)

i
,⋯ , x

(m)

i
} representing the data entry for our 

label yi . We note that the x(i) notation is useful in understanding the input with respect 
to Eqs. (1a and 2a), however, we will use the following notation to refer to a continuous 

(2a)fdisj(x) = 1 −

N
∏

i=1

(1 − Fdisj(x
(i),m(i)))

(2b)Fdisj(x
(i),m(i)) = x(i)m(i)
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random variable Xi , and for a given instance i in the data, {X1,X2,⋯ ,Xm}i , as this upper-
case format reflects the final logical rule syntax given by the architecture (seen in the 
results section).

3.4  Continuous predicates

The original dNL architecture made use of continuous predicates but the investigation was 
limited. To handle continuous inputs, Boolean predicate functions are applied to the continu-
ous variables as a series of lower and upper bound predicates (Payani & Fekri, 2019; Speichert 

Table 1  Notation and definitions for implemented equations

Notation Definition

Xi Random variable
{X1,⋯ ,Xm}i Data instance i with m features
Dc,c Continuous data set with subscripts c signifying both target and inputs are continuous
Dd,c Continuous data set with subscript d signifying the target is discrete while inputs are 

continuous
Yd Vector for the discrete target with d distinct classes
yi Discrete output label for an instance i
ℙ Set of target predicates
p A given target predicate
Cp Set of continuous predicates associated with each variable Xi

Fp Target predicate Boolean function for a predicate p
gti

x
 , lti

x
Boolean upper/lower boundary predicate for variable x and interval i

lxi , uxi Lower/upper boundary values for feature x and interval i
Fgti

x
 , Flti

x
Continuous bounded Boolean predicate functions

gti
f (x)

 , lti
f (x)

Non-linear transformation upper/lower boundary predicates for f (x) ∈ {sin(x), exp(x),⋯}

Fgti
f (x)

 , Flti
f (x)

Non-linear transformation bounded Boolean predicate functions
Fgti

f (x,y)
 , Flti

f (x,y)
Operation bounded Boolean predicate functions between features x and y

��T , ��O Transformation and operation knowledge base
I Input matrix
Xp Evaluated predicate p rule
X Set of optimised target predicates
� , �∗ Non-linear generator function and non-linear function approximation

Table 2  Listed user defined 
hyperparameters and definitions

Hyperparameter Definition

c A constant applied to sigmoid function inputs to 
ensure output is Boolean

b Batch size
k Number of bin intervals for continuous variables
d Number of discrete classes on the target
Np Row space of the disjunction layer
Ne Column space of the conjunction layer



 Machine Learning

1 3

& Belle, 2018; Belle et al., 2016; Bueff et al., 2021). The resulting continuous Boolean predi-
cates are taken in as input continuous values and return either true or false based on whether 
the input meets the condition. In this interpretation, each continuous variable x is defined by 
k upper and lower boundary predicates, where we have a Boolean upper boundary predicate 
gti

x
(x, lxi) , which states whether “x is greater than lxi " is true, and the lower boundary predicate 

lti
x
(x, uxi) which states whether “x is less than uxi " is true, where i ∈ 1, 2,⋯ , k . The lower and 

upper boundary values lxi and uxi respectively are also treated as trainable weights allowing for 
the following definition for the predicates:

In Eq. (3), the sigmoid ( � ) and constant c ≥ 1 (set to c = 20 ) are applied to ensure that the 
output is Boolean. While the sigmoid ensures a Boolean output, the constant acts on the 
steepness of the sigmoid curve. A larger constant value increases the steepness, resulting in 
greater confidence when the input is in fact greater/less than the corresponding boundary 
value.

3.5  dNL loss function

The following loss functions are used in the dNL network to ensure that training accounts for 
loss on the predictive output and heuristic loss related to the interpretability of the learned 
clauses. The primary loss measure is the average cross-entropy between predictions on Xp[e] , 
where e is a ground truth from the set of negative and positive class examples Np,Pp , and the 
true classification of e. The loss function takes into account all predicates p in the set of target 
predicates ℙ (see Eq. 4):

Additional loss metrics include a measure of interpretability (see Eq. 5), where considera-
tion is given to the fact that membership weights may not converge to 0 or 1 in the final 
network. Often such cases occur when no formal Boolean rule definition can model the 
discrete target classification in the background knowledge. To increase interpretability, the 
dNL model is optimised such that membership weights converge to 0 and 1. The member-
ship weights m reflect the weights from both the disjunction and conjunction layers used to 
define Fp.

The final loss term is designed to reduce the number of terms in each clause via pruning 
(see Eq. 6). During training, it is possible to encounter cases of redundancy, so for each 
predicate function Fp , the dNL model prunes the definitions by subtracting from the sum 
of membership weights, the term Nmax , which denotes the number of allowed terms in the 
definition.

(3)Fgti
x
= �(c(x − uxi)), Flti

x
= �(−c(x − lxi))

(4)
L = −𝔼p∈ℙ𝔼(e,�p)∈Λp

{

�plogXp[e] + (1 − �p)log(1 − Xp[e])
}

where, Λp =

{

(� , 1)|� ∈ Pp

}

⋃

{

(� , 0)|� ∈ Np

}

(5)Lint = 𝔼p∈ℙ𝔼m∈Fp
m(1 − m)

(6)Lprn =
∑

p∈ℙ

relu
(

∑

mi∈Fp

mi − Nmax

)
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In Eq. 7, all loss terms are combined into a final aggregated loss metric. Note the included 
hyperparameters on the pruning loss ( �prn ) and on the interpretability loss ( �int).

4  Contributions

The following section discusses the extensions applied to baseline dNL networks to derive 
dNL-NL networks, as well as coverage of the transformation and operation layers which 
will be used in the overall pipeline to extract non-linear functions from continuous data. 
We first provide a general overview of the various components prior to discussing them 
more in-depth with regard to their algorithmic and mathematical implementation

Non-linear and Operation predicates: Our dNL-NL model efficiently handles non-linear 
transformations of continuous inputs. We apply standard non-linear transformations like 
power, exponential, and sine functions. Additionally, the model uses operation predicates, 
symbolizing basic mathematical operations, enhancing its computational capabilities.

Handling of Non-linear Continuous data: To manage the non-linear continuous data, we 
redefined it within the classification framework. This involved basing our target predicate 
on continuous Boolean predicates. For each classification within a dataset with discrete 
targets and continuous variables, we efficiently separated positive and negative examples.

Input Matrix and dNL architecture: Our model’s architecture prominently features an 
input matrix. This matrix converts continuous inputs into a Boolean interpretation suitable 
for dNL-NL processing. The activations from the input matrix are fed through a conjunc-
tive and disjunctive layer each with respective membership weights.

Loss function: The model employs a loss function designed for rule consistency and 
reduced complexity. Additionally, the ‘true loss’ metric measures the difference between 
the extracted non-linear function and the original continuous target.

Subsequent sections delve into transformation and operation layers and the rule extrac-
tion pipeline, integrating the aforementioned techniques into a unified framework.

4.1  Non‑linear and operation predicates

Consider the initial example for the equation E = m × c2 . Our objective is to learn logical rules 
that define a particular region of its output. Using these rules, we can reconstruct a non-linear 
equation with the given predicates. In our framework, m is addressed by predicates from Eq. 3, 
while c necessitates the transformation c2 . Additionally, predicates capturing the multiplication 
operation m × c2 are paramount. Though inequalities define the range 0 ≤ E ≤ 3.07 × 10−1 for 
the associated discrete class predicate, our primary focus is on variable transformations and 
operations. Subsequent continuous predicates are derived from this need.

To handle continuous inputs, we employ non-linear transformations, specifically 
focusing on functions like the power ( f (x) = x2 ), exponential ( f (x) = exp(x) ), and sine 
( f (x) = sin(x) ) function. We introduce k upper and lower boundary transformation predi-
cates for each (non-linear transformation predicates):

(7)Lagg = L + �prnLprn + �intLint
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Here, i ∈ 1, ..., k , � denotes the sigmoid function, c is a constant, and uxi and lxi represent 
upper and lower bounds for the ith predicate. The bounded weights are trainable param-
eters specific to each transformation predicate. Given that, the bounded weights are shared 
among the learned target predicates in ℙ to ensure learned literals are consistent among the 
rule definitions. During training, we split transformed continuous features into k bins of 
equal width.

Furthermore, we define operation predicates, capturing arithmetic operations between 
variables. For variables x and y, we present k upper and lower boundary predicates (opera-
tion predicates):

These boundaries stem from the resulting outputs of variable operations. Combined, our 
dNL model, equipped with both transformation and operation predicates, can adeptly infer 
non-linear relationships from data.

4.2  Non‑linear continuous data

In the dNL framework and similar ILP-inspired architectures, a Knowledge Base (KB) is 
formed with positive instances P and negative instances N  , supported by general back-
ground assumptions B . For dNL’s continuous input handling, continuous attributes undergo 
a transformation into Boolean predicate functions via discretisation. We recast continuous 
data Dc,c to fit a classification problem, resulting in discrete targets, where subscripts c and 
d indicate continuous and discrete data, respectively. Our target predicate’s body consists of 
continuous Boolean predicates, with its head representing a discrete class, mirroring a non-
linear function’s output range, (a ≤ �(x) ≤ b) . Given a dataset Dd,c , with a discrete target Yd 
and continuous variables Xi (where i ranges from 1 to m), instances belonging to a specific 
classification are viewed as positive examples, and the rest are considered negative.

Using the dNL-NL model, we craft background knowledge, as illustrated in Fig.  1. 
Inputs from an example dataset are transformed according to our transformation KB ��T , 
resulting in our background knowledge B . This transformation process is further elabo-
rated in Algorithm 1 where background knowledge is crafted for each predicate p in the 
set of target predicates ℙ . Depending on our model’s emphasis (either operation or trans-
formation), background knowledge incorporates either operations from ��O or transforma-
tions from ��T , but not both. In Algorithm 1, the ‘OR’ reflects this option and is not an 

square: Fgti
Sqr(x)

= �(c(x2 − uxi)), Flti
Sqr(x)

= �(−c(x2 − lxi))

exponential: Fgti
Exp(x)

= �(c(exp(x) − uxi)), Flti
Exp(x)

= �(−c(exp(x) − lxi))

sine: Fgti
Sin(x)

= �(c(sin(x) − uxi)), Flti
Sin(x)

= �(−c(sin(x) − lxi))

addition: Fgti
Add(x,y)

= �(c((x + y) − u(x,y)i)),

Flti
Add(x,y)

= �(−c((x + y) − l(x,y)i))

subtraction: Fgti
Sub(x,y)

= �(c((x − y) − u(x,y)i)),

Flti
Sub(x,y)

= �(−c((x − y) − l(x,y)i))

multiplication: Fgti
Prod(x,y)

= �(c((x × y) − u(x,y)i)),

Flti
Prod(x,y)

= �(−c((x × y) − l(x,y)i))
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executable operation. Training leverages B to determine positive and negative instances 
corresponding to a class. As an example, for the predicate linked to class1 , we derive Nclass1

 
and Pclass1

 from B - a process depicted in Fig. 1. During training iterations, each data batch 
provides positive and negative instances for every target class.

Algorithm 1  building Background Knowledge

 

Fig. 1  Example depiction of 
creating background knowledge 
from original data and the repre-
sentation of positive and negative 
examples for continuous data 
with respect to target predicate 
class1
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4.3  Input matrix and architecture structure

The Boolean target predicate function, Fp , is constructed of alternating conjunction 
and disjunction layers, arranged in DNF form, as described by Eqs.  () and  (). These 
layers process Boolean predicate functions derived from continuous variables. Specifi-
cally, within Fp , the conjunction layer’s membership weight columns, Ne , are defined as 
Ne = 2 × k × |Cp| , where the factor of 2 corresponds to separate lower and upper bound 
predicates, and Cp indicates continuous predicates derived from each variable Xi and its 
affiliated knowledge base ��i . The number of stacked conjunction neurons at the dis-
junction layer is defined by the hyperparameter Np.

The input matrix, I , defined in Eq. 8, consolidates continuous lower and upper bound 
predicate functions. The column space is defined by Ne and the row space is defined by 
the batch size. During training, batch size, b , is left as a hyperparameter. This matrix 
facilitates the transformation of continuous data into a Boolean form suitable for the 
dNL-NL network’s reasoning.

Fp is defined by I and encompasses continuous Boolean predicates, membership weights, 
disjunction layer Fdisj , and conjunction layer Fconj , as characterized in Eq. 9.

The neurons in the primary dNL function initialize the membership weights close to zero 
using random Gaussian distributions to prevent gradients from becoming exceedingly 
small. Equations (10a) and (10b) detail how conjunction and disjunction functions interact 
with the input matrix and membership weights. 

 Note that the Boolean membership weights m are derived from a sigmoid transformation 
of weights W , and Wconj is a matrix with dimensions (Np × Ne) while Wdisj is a vector of 
size Np.

Algorithm  2 encapsulates the dNL-NL model’s single-step design, merging 
Eqs. (8), (10a), and (10b). In this model, each grounding e updates in one step based on the 
background knowledge. Following a single step on an input batch, we ground the weighted 
matrix Xp for predicate p. This method integrates the logical entailments from our input 
matrix. Upon training all predicate functions, a set � of evaluated target predicate func-
tions is returned.

(8)I =

[

⋁

e∈Cp

k
⋁

i=1

(

Fgti
e
∨ Flti

e

)

]

b

(9)Fp|I,Ne ,Np
= Fdisj(Np,Fconj(Ne, I))

(10a)
Fconj =

Ne
∑

i=1

[1 − m
conj

i
(1 − Ii)]

where, mconj = �(cWconj), W
conj

Np ,Ne
∼ N

(10b)
Fdisj = 1 −

Np
∑

i=1

[1 − m
disj

i
Fi
conj

]

where, mdisj = �(cWdisj), W
disj

1,Np
∼ N
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Algorithm 2  Non-linear Single Step Forward Chain Model/ dNLNL model

4.4  Loss function

The loss function design ensures that rules for discrete classes are consistent and that 
the complexity is minimized (refer to Eq. 7). The true loss, Losstrue , while not employed 
during dNL-NL network training, acts as a measure of how closely the non-linear func-
tion approximation, �∗ , derived from the network, matches the original continuous target. 
Losstrue represents the average absolute disparity between our approximated function and 
the continuous output Yc , see Eq. 11.

4.5  Transformation layer

The objective of the transformation layer is to learn the mathematical transformations 
applied to individual variables. The layer takes as input, discretized data associated with a 
variable Xi , denoted D(i)

d,c
 , and the knowledge base on transformations, ��T . Then outputs 

the transformation layer accuracy accT
Xi

 and a set of optimised target predicates �T
Xi

.
The dNL-NL architecture extracts rules that capture the non-linear relationship between 

continuous variables using discrete classification of the target. The rules, however, might 
sometimes deviate from the original non-linear function � which derived the data, espe-
cially when access to all features and transformations is granted. This deviation might 
result in either the inclusion of non-existent non-linear transformations or the omission of 
certain variables. To overcome these challenges, it’s preferable to adopt a more constrained 
approach. In this context, the transformation layer applies the dNL-NL model to individual 

(11)Losstrue =
1

N

N
∑

i=1

|

|

|

(

Yc[i] − �
∗({X1,X2,⋯ ,Xm}i)

|

|

|
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variables to determine their mathematical transformations. This is done in a manner where 
the knowledge base can be updated or specific transformations removed if required.

Seen in Algorithm 3, for input variable Xi , a list of continuous predicates Cp is created 
using the available transformations from ��T . Subsequently, the knowledge base is instan-
tiated using the dataset, target predicates, and potential continuous predicates. The dNL-
NL model � is then constructed and trained for a number of iterations ( Imax ) using batches 
( B(I) ). The optimization focuses on the average cross-entropy between the ground truth and 
the individual class predictions but also uses the loss function Lagg (see Eq. 7). The learn-
ing rate starts at 0.001 and is adjusted for faster convergence.

Algorithm 3  Transformation Layer

4.6  Operation layer

The objective of the operation is to learn rules reflecting mathematical operations between 
variables after their transformations have been learned. The layer takes as input a dataset 
with discretized target Dd,c , the operation knowledge base ��O , and optimised transforma-
tion layer models for all variables, {�T

X1
, ...,�T

Xm
} . Then the layer outputs the operation 

layer accuracy accO and a set of optimised target predicates �O.
Following the transformation layers, the operation layer comes into play. It differs from 

the transformation layer primarily in its knowledge base and dataset: it uses an operation-
associated knowledge base and includes all variables in the dataset. After the transforma-
tions have been learned for each feature, they are used to inform the operation layer’s learn-
ing process.

(12)
TRANSFORMDATA(Dd,c, {�

T
X1
,⋯ ,�T

Xm
}) = eXi

(D
(i)

d,c
)

where, eXi
← MAXPREDICATE(�T

Xi
), ∀�T

Xi
∈ {�T

X1
,⋯ ,�T

Xm
}
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As seen in Algorithm 4, the dataset is transformed based on the predicates from the trans-
formation layer with the highest confidence. The confidence of a predicate is gauged by its 
associated weights. The function transformDataset (see Eq. 12) takes the original data-
set and the transformation layer’s results to derive a transformed dataset Dd,T . For max-
PreDicate (see Eq. 12) we iterate over all associated transformation predicates, ignoring 
the upper/lower bound distinction, and count the number of transformation predicates with 
membership weights greater than hyperparameter � to determine which transformation to 
apply on the variable. Like the transformation layer, the operation layer builds its knowl-
edge base and subsequently trains the dNL-NL model. The final optimised architecture, 
�

O , captures operations between transformed variables and is pivotal in deducing the true 
non-linear function.

Algorithm 4  Operation Layer

4.7  Rule extraction pipeline

In Algorithm 5, we integrate the transformation layer, operation layer, and construction 
of non-linear function approximation �∗ to compute the true loss Losstrue (see Eq. 11). In 
Fig. 2, a high-level structure of the transformation and operation layers is displayed along 
with the general pipeline connecting the layers. Our initial step discretizes the continuous 
dataset Dc,c into d classes, yielding Dd,c . Using equal-width binning, we copy the trans-
formation knowledge base ��∗

T
 , updating it during training if extraction fails. We intro-

duce Boolean flags for each variable flag{X1,X2,⋯,Xm}
 to determine the use of the modified 

(13)MAXPREDICATE(�T
Xi
) = *argmaxe

⎡

⎢

⎢

⎣

�

Xj∈�
T
Xi

2×k
�

i=1

1

�

me
Xj ,i

> 𝜖

�

�

�

�

�

∀e ∈ Xj
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⎦
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transformation knowledge base ��∗
T
 . A data structure F∗ stores non-linear function approx-

imations for updating the operation knowledge base ��∗
O
.

The pipeline’s main loop calculates Losstrue after the operation and transformation lay-
ers. We continue until Losstrue is below a threshold � (set at 0.05). Transformation layers, 
associated with each feature Xi , are trained first. Depending on the feature flag flagXi

 , we 
use either the reduced or full knowledge base. After training, we save the model �T

Xi
 and its 

accuracy score accXi
T . Using accuracy scores, the least performing layer is identified, and 

its associated predicate is removed from the updated knowledge base for the next iteration.
The true loss’s value guides whether to update the knowledge base. This is done using 

the calcloss function. Beforehand, we check the data structure F∗ for any derived func-
tion approximation �∗ . The method CHECKOPERATIONS compares functions to see if 
certain transformation pairings have been previously derived. Recognized pairings lead 
to the removal of corresponding operations from ��∗

O
 to avoid redundancy. A boolean 

flag flagoperation indicates if the operation layer uses the full transformation set ��O or its 
updated version ��∗

O
.

The calcloss function, using optimised models from each layer, constructs the non-
linear function per Eq.  (1213). This equation computes the loss on dataset Dc,c with the 
continuous target, yielding Losstrue . After calculating the loss, the non-linear approxima-
tion is stored in F∗.

Fig. 2  High level view of transformation and operation layers
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Algorithm 5  Pipeline
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5  Experiments

The capacity of the dNL-NL pipeline to extract non-linear functions �∗ is evaluated on 
synthetically generated datasets, where the datasets were generated by non-linear func-
tions � . As dNL-NL represents a unique application of ILP based frameworks, we do 
not include comparative models, but instead focus on the capacity of dNL-NL to extract 
the correct non-linear functions from the generated data.1 Ultimately, the goal is to 
extract non-linear rules using dNL-NL reasoning in order to construct a function that 
simulates the original ( �∗ ∼ � ). With the following experiments, we demonstrate that 
the dNL-NL framework can be used to extract non-linear functions from data provided 
a relevant KB.

Prior to discussing the dNL-NL extracted rules, we briefly explain the syntax in the 
rule hypotheses. As seen in Fig. 3, each dNL-NL network produces fitted predicate func-
tions associated with each class, class1() in the figure. The clausal body is defined by a 
conjunction of atoms where the associated membership weight is placed before the atom in 
brackets, extracted from the conjunction neuron. If the membership weight is above 0.95, 
i.e. the model is confident it should be in the definition, then the weight is not listed next 
to the atom. As we stack two disjunction neurons in our dNL-NL architecture, we can have 
at most two hypotheses for a given class. Again, the value in brackets before the rule rep-
resents the membership weights from the disjunction neuron. If no rule is listed then no 
prior membership weights in the associated conjunction vector were above a reasonable 
confidence threshold.

5.1  Performance on noisy data

While the primary focus of this proposal is to employ our dNL-NL architecture for non-
linear function extraction, we also tested it on noisy data to illustrate its capacity for dis-
cerning algorithmic patterns. This assists in determining which non-linear transformations 
or operations between features are pertinent for classification.

We evaluated our dNL-NL architecture using the Yacht Hydrodynamics dataset, avail-
able on the UCI machine learning repository (Dheeru & Karra Taniskidou, 2017). In 
this case, we explored non-linear transformations across all features and then defined 

Fig. 3  Explanation of target predicate outputs

1 In the future we intend to identify applications where it might be possible to compare learning approaches 
to non-linear modelling, and in which case a comparison could be drawn between other approaches and our 
proposal here. Moreover, we plan on applying this framework to learning explainable policies in reinforce-
ment learning where we believe a reasonable model comparison can be performed.
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operation predicates based on the two features present within the class rules. For compari-
son, the baseline model was built on dNL, relying solely on continuous Boolean predicate 
functions.

The yacht hydrodynamics dataset encompasses a range of adimensional parameters, 
chiefly concerned with hull geometry coefficients and the influential Froude number. 
These parameters provide insights into the yacht’s hydrodynamic performance and its 
interactions with water. The parameters included in the dataset are as follows, Longitudi-
nal position of the center of buoyancy, Prismatic coefficient, Length-displacement ratio, 
Beam-draught ratio, Length-beam ratio, and the Froude number. The target variable meas-
ured in this dataset is the residuary resistance per unit weight of displacement. This is a 
vital metric as it quantifies the additional resistance a yacht encounters beyond the fric-
tional resistance due to its hull shape and other hydrodynamic factors. As the target fea-
ture is continuous, we use equal-frequency binning to parse the data into three discrete 
classes corresponding to the following features ranges, class1() ∼ 0.001 ≤ �(x) < 1.286 , 
class2() ∼ 1.286 ≤ �(x) < 7.806 , and class3() ∼ 7.806 ≤ �(x) ≤ 62.42.

In Table  3 we observe the performance of the baseline dNL model when using just 
continuous Boolean predicates. We note the accuracy is lower than our dNL-NL model 
using non-linear transformation predicates, see Table 4. In both cases, we observe that the 
Froude number feature and Beam-draught ratio are prevalent in the causal definitions. This 
indicates that these two features are more significant when determining the classification.

In Table 4, we further discern the specific non-linear transformations applied to each 
feature. Notably, the Beam-draught ratio feature predominantly undergoes the square func-
tion transformation. Meanwhile, the Froude number is subjected to a variety of transforma-
tions: sine, exponential, and square, with the exponential transformation being the most 
pronounced.

In Table  5, we focus on the two significant features: Beam-draught ratio and Froude 
number, aiming to discern the relevant operations between them. The Froude number 
is subjected to sine, exponential, and square transformations, while the Beam-draught 
ratio is primarily squared. We identify several operation predicates denoting specific 
operations. Notably, for class1(),  class2(),   and class3(), the prevailing operation is 

Table 3  Each dNL learned rule for the discrete classes on the Yacht Hydrodynamics dataset

Target is discretized into three classes and variable space includes 6 continuous features

Yacht hydrodynamics Rules

dNL: accuracy: 0.90 class1()
∶ −[1.00](Froude < 0.44 ∧ Froude < 0.27)

class2()
∶ −[1.00]([0.26]Froude > −0.49 ∧ Froude > 0.15 ∧ Froude < 0.44)

∶ −[1.00]([0.14]Froude > −0.49 ∧ Froude > 0.15 ∧ Froude < 0.44)

class3()
∶ −[1.00]([0.25]Beamdraught > 3.28 ∧ [0.22]Beamdraught > 3.28∧

    [0.19]Beamdraught > 3.28 ∧ [0.12]Beamdraught > 3.27∧

    [0.11]Beamdraught < 5.86 ∧ [0.17]Froude > −0.49∧

    Froude > 0.15 ∧ Froude > 0.30)

∶ −[1.00]([0.11]Beamdraught < 5.88 ∧ [0.23]Froude > −0.49∧

    Froude > 0.15 ∧ Froude > 0.30)
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(Beamdraught2 × Froude2) . It is also worth noting that this approach outperforms the base-
line dNL model.

5.2  Learning two variable functions

We use the dNL-NL framework to extract the following non-linear equations which have 
all been synthetically generated on two continuous variables using various transformations 
and operations. We tested the proposed dNL-NL networks on 6 separate non-linear equa-
tions. Each equation contains a transformation on a continuous variable and a mathemati-
cal operation between the two transformed variables.

In Table 6, the value ranges on each variable used are continuous float values between 
[0,  10]. Each synthetically generated equation contains 200 instances. For the majority 
of equations, the continuous target was discretized into three classes ( d = 3 ) using equal-
width binning, and we set the number of boundaries to ( k = 7 ) for the continuous vari-
ables. The extracted predicates for Table 6 are the result of 5-fold cross-validation for each 
dNL-NL layer in the framework. We also take the average run time for 10 training sessions 
to demonstrate the speed in deriving the non-linear rules. From the results, we see that we 
were able to extract the correct predicates representing the non-linear relationship of the 
synthetic data, but in some cases, the computation required a significant amount of time. 
This is notable with equation exp(X1) − (X2)2 , where the time to completion was far larger 
than the other equations. Similarly, sin(X1) − exp(X2) also had a long computation time. 
In both cases the equations shared the subtraction operation, suggesting an area of inves-
tigation. We also note that the heuristics for updating the KB is another potential research 
avenue.

In reading the class rules, we will explain the meaning of the definitions in the context 
of the example non-linear function ( ���(��) × (��)� ) and one of its classes, see Table 7. 
Each target predicate (class1(),  class2(),  class3()) represents an output range based on 
the non-linear function which generated the data � (ranges determined by equal-width 
binning), so the clausal body states what inequalities need to be true on the transformed 
features in order for the non-linear function’s output to fall within a given range. For the 
transformation layers, this is only done on a single feature, so we observe rule definitions 

Table 4  Each dNL-NL learned rule for the discrete classes on the Yacht Hydrodynamics dataset, using non-
linear transformation predicates

Target is discretized into three classes and variable space includes 6 continuous features

Yacht hydrodynamics Rules

dNL-NL: accuracy:0.98 class1()
∶ −[1.00](FroudeExp < 1.27 ∧ [0.66]FroudeSine < 0.30)

∶ −[1.00](FroudeExp < 1.27 ∧ [0.68]FroudeSine < 0.30)

class2()
∶ −[1.00](FroudeExp > 1.28 ∧ FroudeSquare < 0.14)

class3()
∶ −[1.00]([0.70]BeamdraughtSquare > 13.53 ∧ FroudeExp > 1.44∧

    FroudeExp > 1.28)

∶ −[1.00](FroudeExp > 1.44 ∧ FroudeExp > 1.28 ∧ [0.73]FroudeSquare > 0.04)
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containing just one variable. In the case of the transformation layer on X1, based on the 
output we could state that “class 3 is true if the exponentiation of variable X1 is greater 

Table 5  Each dNL-NL learned rule for the discrete classes on the Yacht Hydrodynamics dataset, using 
operation predicate functions

Target is discretized into three classes and variable space includes 2 continuous features

Yacht hydrodynamics Rules

dNL-NL: accuracy:0.95 class1()
∶ −((Beamdraught2 × Froude2) < 1.68 ∧ (Beamdraught2 × Froude2) < 2.12∧

    [0.76](Beamdraught2 × sin(Froude) < 4.03)

∶ −((Beamdraught2 × Froude2) < 0.75 ∧ [0.94](Beamdraught2 × Froude2) < 1.68

    ∧[0.91](Beamdraught2 × Froude2) < 2.12)

class2()
∶ −((Beamdraught2 + exp(Froude) > 17.09∧

    [0.90](Beamdraught2 − exp(Froude) > 11.65∧

    [0.90](exp(Froude) − Beamdraught2) < −11.65∧

    (Beamdraught2 × Froude2) > 0.54 ∧ (Beamdraught2 × Froude2) > 1.12

    ∧[0.82](Beamdraught2 × Froude2) < 2.12

    ∧(Beamdraught2 × Froude2) < 3.17)

∶ −([0.76](exp(Froude) − Beamdraught2) > −14.67∧

    (Beamdraught2 × Froude2) > 0.54 ∧ (Beamdraught2 × Froude2) < 1.68

    ∧(Beamdraught2 × Froude2) < 2.12∧

    [0.79](Beamdraught2 × Froude2) < 3.17∧

    [0.90](Beamdraught2 × sin(Froude) > 1.33)

class3()
∶ −((Beamdraught2 − exp(Froude) < 14.14∧

    (exp(Froude) − Beamdraught2) > −14.67∧

    (Beamdraught2 × Froude2) > 0.54 ∧ (Beamdraught2 × Froude2) > 1.12

    ∧[0.78](Beamdraught2 × sin(Froude) > 1.33∧

    [0.89](Beamdraught2 − sin(Froude)) < 16.08∧

    [0.86](sin(Froude) − Beamdraught2) > −16.10)

∶ −([0.88](Beamdraught2 × Froude2) > 0.54 ∧ (Beamdraught2 × Froude2) > 1.73

    ∧(Beamdraught2 × Froude2) > 1.12∧

    [0.73](Beamdraught2 × sin(Froude) > 1.33)

Table 6  Average computation 
time (in seconds) and results for 
extracting non-linear equations 
composed of two variables with 
float values between [0, 10]

True equation Extracted predicates Avg. time

���(��) × (��)� X1Exp ∧X2Square ∧ X1X2Prod 169.54

���(��) + (��)� X1Sine ∧X2Square ∧ X1X2Add 181.89
���(��) × ���(��) X1Exp ∧X2Sine ∧ X1X2Prod 221.09
���(��) − (��)� X1Exp ∧X2Square ∧ X1X2Sub 1287.35
(��)� + ���(��) X1Square ∧X2Exp ∧ X1X2Add 61.79
���(��) − ���(��) X1Sine ∧X2Exp ∧ X1X2Sub 679.35
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than 17065.14 and the square of variable X1 is greater than 91.8" and this rule in conjunc-
tion with the rules for class1() and class2() are accurate 77.5% of the time. In the case 
of the transformation on X2, we could state “class 3 is true if the square of variable X2 
is greater than 55.75 and the square of variable X2 is less than 72.94". In the operation 
layer, which now defines the discrete classes based on operations between the two features, 
key to note is that the features have been transformed based on the best performing trans-
formation in the previous transformation layers. The rules learned in the operation layer 
include operation atoms which describe the operation between transformed variables. In 
Table 7, this indicates the variable X1 is transformed by the exponent function and X2 is 
transformed by the square function, which results in rules that can be interpreted as follows 
“class 3 is true if the product of exp(X1) and (X2)2 is greater than 754844.25 and the prod-
uct of exp(X1) and (X2)2 is greater than 943555.38 and the product of exp(X1) and (X2)2 
is greater than 1132266.38”. In various rule definitions we observe redundant literals (e.g. 

Table 7  Each dNL-NL layer’s associated learned rules, where rules are defined by extracted non-linear 
predicates for the function ( exp(X1) × (X2)

2 ) where the target was discretized into three classes and the vari-
able space was floats in the range [0, 10]

���(��) × (��)� Rules

Transformation: X1 
accuracy: 0.775

 class1()
∶ −[0.95]([0.29]X1Exp < 5689.05 ∧ [0.12]X1Exp < 7585.06 ∧ X1Exp < 17065.14)

∶ −[0.94]([0.30]X1Exp < 5689.05 ∧ [0.12]X1Exp < 7585.06 ∧ X1Exp < 17065.14)

class2()
∶ −[0.39](X1Exp > 5689.05 ∧ [0.50]X1Exp > 7585.06 ∧ X1Exp < 11377.09∧

    [0.23]X1Square < 80.92)

class3()
∶ −[0.97]([0.80]X1Exp > 17065.14 ∧ X1Square > 91.18)

Transformation: X2 
accuracy: 0.875

class1()
∶ −[0.94]([0.20]X2Sine > −0.49 ∧ [0.12]X2Sine < 0.76 ∧ [0.38]X2Sine < 0.79)

∶ −[0.96]([0.20]X2Square < 28.00 ∧ [0.38]X2Square < 54.06∧

    [0.73]X2Square < 64.23)

class2()
∶ −[0.68]([0.93]X2Square > 46.92 ∧ [0.81]X2Square > 71.66∧

    [0.94]X2Square < 72.94 ∧ [0.16]X2Square < 90.48)

class3()
∶ −[0.21](X2Square > 55.74 ∧ [0.92]X2Square < 72.94)

Operation: X1 ∧ X2 
accuracy: 0.975

class1()
∶ −[0.96]([0.89]X1X2Prod < 377422.12 ∧ X1X2Prod < 566133.19)

∶ −[0.96]([0.24]X1X2Add < 17146.57 ∧ [0.75]X1X2Prod < 377422.12∧

            X1X2Prod < 566133.19 ∧ [0.26]X1X2Sub < 17047.03∧

    [0.45]X2X1Sub > −17047.03)

class2()
∶ −[0.99](X1X2Prod > 377422.12 ∧ [0.53]X1X2Prod < 943555.38∧

    X1X2Prod < 1132266.38)

class3()
∶ −[0.99]([0.23]X1X2Prod > 754844.25 ∧ X1X2Prod > 943555.38∧

    [0.94]X1X2Prod > 1132266.38)
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X1X2Prod < 94355.38 ∧ X1X2Prod < 1132266.38 for class2() of the operation layer). 
This is due to the stochastic nature of training of the membership weights in that some lit-
erals will supersede others based on their inequalities however redundant literals may still 
be present in the rule definition as the model was not overall penalised for including them. 
While they do not impact model performance, future research may consider a post-process-
ing step to remove redundant literals for better interpretability. Note, the output in Table 7 
has been propositionalised for clarity, however for inference to be performed on unseen 
instances, the predicate logic format of the rules is used to input values from X1 and X2.

The original output from various dNL-NL layers can be seen in Table  7, which 
depicts the resulting belief state for the equation ( ���(��)) × (��)� ) after 100 itera-
tions for each associated dNL-NL layer. The three discrete classes correspond 
to the following features ranges, class1() ∼ 1.69 × 10−2 ≤ �(x) < 4.43 × 105 , 
class2() ∼ 4.43 × 105 ≤ �(x) < 8.86 × 105 , and class3() ∼ 8.86 × 105 ≤ �(x) ≤ 1.33 × 106 . 
In the table it can be observed that the resulting rules were stronger at the operation layer 
than at the individual transformation layers. In the case of the transformation layer, it can 
be observed that the transformation on the second variable ( (X2)2 ) was better able to define 
the discrete classification predicates, as indicated by the higher accuracy. Across the layers, 
the learned predicate rules for each class were still able to identify the correct transforma-
tions based on the confidence associated with each grounding. We do note atoms in some 
of the definitions are not representative of the original non-linear function, for example in 
the transformation layer for X2, the first definition for class1() is defined by bounded atoms 
of the sine function. The pipeline still can learn atoms which model the target predicate yet 
do not represent the true non-linear function, but taken as a whole across all definitions and 
layers, the pipeline is able to extract the relevant transformations and operations.

In Table  8 the dNL-NL layers extract the non-linear equation ( ���(��) + (��)� ), 
again with features sampled from a uniform distribution between [0, 10]. The three dis-
crete classes correspond to the following features ranges, class1() ∼ −0.92 ≤ �(x) < 32.0 , 
class2() ∼ 32.0 ≤ �(x) < 64.9 , and class3() ∼ 64.9 ≤ �(x) ≤ 97.8 . The synthetic datasets 
are again comprised of 200 instances with three classes and 7 equal-width boundaries on 
the continuous predicates. From Table 8, we again are able to extract the correct non-linear 
equations. Note the accuracy scores being 100 percent correct for the X2 transformation 
layer. This indicates the definitions for the three target classes in this layer were able to 
entail all positive and negative examples successfully, even if not all atoms were relevant 
to the true non-linear function (e.g. X2Exp > 3911.76 ). Also note the transformation layer 
accuracy for X1 is rather poor, such that the definitions for the various classes do not model 
the discrete target predicates well. This can be attributed to the sine functions periodic out-
put and so greater emphasis is given to the non-linear output of the second transformation 
(X2)2 in modelling the discrete classes independently. As a whole, the pipeline is able to 
extract the non-linear function which simulates the data.

In Table  9 the dNL-NL layers extract the non-linear equation 
( ���(��) × ���(��) ). The three discrete classes correspond to the fol-
lowing features ranges, class1() ∼ −1.26 × 104 ≤ �(x) < −2.06 × 103 , 
class2() ∼ −2.06 × 103 ≤ �(x) < 8.43 × 103 , and 
class3() ∼ 8.43 × 103 ≤ �(x) ≤ 1.89 × 104 . Again note the accuracy of the first transfor-
mation later (exp(X1)) which outperforms the second transformation layer, and also note 
the accuracy of the second layer containing various irrelevant transformation continuous 
atoms. Given that, the confidence of the model for the sine function is far stronger across 
the classification predicates. In general, the periodic transformation of the sine function 
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leads to specific challenges when trying to model the discrete ranges associated with the 
target predicates.

In Table  10 the dNL-NL layers extract the non-linear equation ( ���(��) − (��)� ). 
The five discrete classes correspond to the following features ranges, 
class1() ∼ −84.6 ≤ �(x) < 4.09 × 103 , class2() ∼ 4.09 × 103 ≤ �(x) < 8.26 × 103 , 

Table 8  Each dNL-NL layer’s associated learned rules, where rules are defined by extracted non-linear 
predicates for the function ( sin(X1) + (X2)

2 ) where the target was discretized into three classes and the vari-
able space was floats in the range [0, 10]

���(��) + (��)� Rules

Transformation: 
X1 accuracy: 
0.475

class1()
∶ −[0.82]([0.45]X1Sine > 0.47 ∧ [0.13]X1Sine < −0.60 ∧ [0.14]X1Sine < −0.94∧

    [0.45]X1Sine < 0.79)

∶ −[0.80]([0.40]X1Sine < −0.60 ∧ [0.51]X1Sine < −0.94 ∧ [0.39]X1Sine < 0.79)

class2()
∶ −[0.80]([0.79]X1Sine > −0.86 ∧ [0.51]X1Sine > −0.03, [0.28]X1Sine > −0.04∧

    [0.25]X1Sine < 0.17 ∧ [0.34]X1Sine < 0.17 ∧ [0.75]X1Sine < 0.15)

∶ −[0.42](X1Sine > −0.86 ∧ [0.17]X1Sine > −0.03 ∧ X1Sine > 0.75∧

    [0.14]X1Sine < 0.17)

class3()
∶ −[0.72]([0.92]X1Sine > 0.47 ∧ [0.85]X1Sine < 0.51)

∶ −[0.86]([0.24]X1Sine > −0.61 ∧ [0.83]X1Sine > 0.47 ∧ [0.90]X1Sine < 0.51)

Transformation: 
X2 accuracy: 
1.00

class1()
∶ −[0.95]([0.60]X2Square < 28.06 ∧ X2Square < 35.54 ∧ [0.86]X2Square < 45.20)

∶ −[0.95]([0.63]X2Square < 28.06 ∧ X2Square < 35.54 ∧ [0.85]X2Square < 45.20)

class2()
∶ −[0.99](X2Exp < 3911.76 ∧ X2Square > 28.03 ∧ [0.27]X2Square < 64.17∧

    [0.83]X2Sine > −0.55)

class3()
∶ −[0.96]([0.89]X2Exp > 3911.76 ∧ [0.19]X2Square > 54.31 ∧ X2Square > 64.03)

∶ −[0.96]([0.31]X2Exp > 1956.46 ∧ [0.53]X2Exp > 3911.76 ∧ X2Square > 64.03∧

    [0.55]X2Sine < 0.95 ∧ [0.22]X2Sine < 0.97)

Operation: X1 ∧ 
X2 accuracy: 
1.00

class1()
∶ −[0.96](X1X2Add < 35.04 ∧ X1X2Prod < 26.78 ∧ [0.26]X1X2Sub > −27.77∧

    [0.17]X2X1Sub < 27.77 ∧ [0.25]X2X1Sub < 35.93)

∶ −[0.96](X1X2Add < 35.04 ∧ X1X2Prod < 26.78 ∧ [0.10]X1X2Sub > −35.93∧

    [0.16]X1X2Sub > −27.77 ∧ [0.33]X2X1Sub < 35.93)

class2()
∶ −[0.99](X1X2Add > 35.06 ∧ [0.42]X1X2Add < 65.19∧

    X1X2Add < 71.85 ∧ [0.10]X1X2Sub > −64.36 ∧ [0.43]X2X1Sub < 64.40)

∶ −[0.59](X1X2Add > 28.87 ∧ [0.23]X1X2Add > 35.06 ∧ X1X2Add < 71.85∧

    [0.52]X1X2Prod < 9.44)

class3()
∶ −[0.99]([0.93]X1X2Add > 65.00 ∧ [0.94]X1X2Add > 71.84∧

    [0.89]X1X2Sub < −64.26)

∶ −[0.98](X1X2Add > 65.00 ∧ [0.90]X1X2Prod > −9.84 ∧ [0.92]X2X1Sub > 64.31)
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Table 9  Each dNL-NL layer’s associated learned rules, where rules are defined by extracted non-linear 
predicates for the function ( exp(X1) × sine(X2) ) where the target was discretized into three classes and the 
variable space was floats in the range [0, 10]

���(��) × ����(��) Rules

Transformation: X1 
accuracy: 0.925

class1()
∶ −[0.65]([0.82]X1Exp > 1897.02 ∧ [0.68]X1Exp > 5689.05∧

    [0.53]X1Exp > 13273.11 ∧ [0.81]X1Exp < 15169.12)

∶ −[0.30]([0.12]X1Exp > 1897.02 ∧ X1Exp > 5689.05∧

    [0.84]X1Exp > 13273.11 ∧ [0.85]X1Exp < 15169.12)

class2()
∶ −[0.92]([0.11]X1Exp < 1897.02 ∧ [0.12]X1Exp < 3793.03∧

    [0.45]X1Exp < 5689.05 ∧ X1Exp < 13273.11∧

    [0.87]X1Exp < 15169.12)

∶ −[0.93]([0.13]X1Exp < 1897.02 ∧ [0.16]X1Exp < 3793.03∧

    [0.38]X1Exp < 5689.05 ∧ X1Exp < 13273.11∧

    [0.88]X1Exp < 15169.12)

class3()
∶ −[0.96](X1Exp > 9481.08 ∧ X1Exp > 15169.12 ∧ [0.15]X1Exp < 17065.14∧

    [0.67]X1Sine < 0.16)

∶ −[0.94](X1Exp > 9481.08 ∧ [0.94]X1Exp < 11377.09 ∧ [0.89]X1Sine < 0.16)

Transformation: X2 
accuracy: 0.825

class1()
∶ −[0.48]([0.89]X2Exp < 17598.91 ∧ [0.60]X2Square > 28.23∧

    [0.30]X2Square < 18.01 ∧ X2Sine < −0.29)

class2()
∶ −[0.92]([0.11]X2Sine > −0.28 ∧ [0.18]X2Sine < 0.84)

∶ −[0.93]([0.20]X2Sine > −0.28 ∧ [0.13]X2Sine > −0.28∧

    [0.11]X2Sine < 0.84 ∧ [0.17]X2Sine < 0.84)

class3()
∶ −[0.49]([0.58]X2Exp < 1956.46 ∧ [0.29]X2Square > 54.30∧

    [0.19]X2Square < 7.95 ∧ X2Sine > 0.84)

∶ −[0.24]([0.21]X2Exp < 1956.46 ∧ [0.71]X2Square > 54.30∧

    [0.14]X2Square < 7.95 ∧ [0.95]X2Sine > 0.84)

Operation: X1 ∧ X2 
accuracy: 1.00

class1()
∶ −[0.99]([0.48]X1X2Add > 1896.20 ∧ [0.13]X1X2Add > 5688.59∧

    X1X2Prod < −1892.88 ∧ [0.13]X1X2Sub > 5688.59∧

    [0.84]X2X1Sub < −1896.20)

class2()
∶ −[0.96]([0.27]X1X2Prod > −5684.47 ∧ [0.93]X1X2Prod > −1892.88∧

    [0.66]X1X2Prod < 5690.31 ∧ X1X2Prod < 9481.91)

∶ −[0.97]([0.32]X1X2Add < 9480.99 ∧ [0.15]X1X2Prod > −5684.47∧

    [0.92]X1X2Prod > −1892.88 ∧ X1X2Prod < 9481.91∧

    [0.25]X1X2Sub < 9480.99 ∧ [0.25]X2X1Sub > −9480.99)

class3()
∶ −[0.73]([0.59]X1X2Prod > 5690.31 ∧ X1X2Prod > 9481.91)

∶ −[0.99](X1X2Add > 9480.99 ∧ X1X2Prod > 5690.31∧

    [0.45]X1X2Prod > 9481.91)
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Table 10  Each dNL-NL layer’s associated learned rules, where rules are defined by extracted non-linear 
predicates for the function ( exp(X1) − (X2)

2 ) where the target was discretized into three classes and the vari-
able space was floats in the range [0, 10]

���(��) − (��)
� Rules

Transformation 
layer: X1 accu-
racy: 1.00

class1()
∶ −[0.94]([0.70]X1Exp < 3793.03 ∧ [0.73]X1Exp < 5689.05 ∧ X1Square < 71.17)

∶ −[0.95]([0.63]X1Exp < 3793.03 ∧ [0.83]X1Exp < 5689.05 ∧ X1Square < 71.17)

class2()
∶ −[0.99](X1Exp > 3793.03 ∧ [0.50]X1Square > 71.06∧

    X1Square < 80.95 ∧ [0.23]X1Sine > 0.16)

class3()
∶ −[0.99](X1Exp < 11377.09 ∧ X1Square > 80.93 ∧ [0.42]X1Square < 89.56)

class4()
∶ −[0.48](X1Exp > 11377.09 ∧ X1Exp < 17065.14)

∶ −[0.98](X1Exp > 11377.09 ∧ X1Exp < 17065.14)

class5()
∶ −[0.94]([0.95]X1Exp > 15169.12 ∧ X1Exp > 17065.14)

∶ −[0.74](X1Exp > 17065.14)

Transformation 
layer: X2 accu-
racy: 0.75

class1()
∶ −[0.89]([0.19]X2Square > 17.83 ∧ [0.17]X2Square < 28.12∧

    [0.38]X2Square < 48.06)

∶ −[0.89]([0.19]X2Square > 17.83 ∧ [0.44]X2Square > 70.13)

class2()
∶ −[0.18]([0.28]X2Square > 8.63 ∧ [0.53]X2Square > 47.96∧

    [0.18]X2Square < 18.05 ∧ [0.83]X2Square < 54.14 ∧ X2Square < 89.56)

∶ −[0.21]([0.29]X2Square > 8.63 ∧ [0.63]X2Square > 47.96∧

    [0.12]X2Square < 18.05 ∧ [0.74]X2Square < 54.14 ∧ X2Square < 89.56)

class3()
∶ −[0.12]([0.93]X2Square > 55.89 ∧ [0.58]X2Square < 80.96)
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class3() ∼ 8.26 × 103 ≤ �(x) < 1.24 × 104 , class4() ∼ 1.24 × 104 ≤ �(x) < 1.66 × 104 , and 
class5() ∼ 1.66 × 104 ≤ �(x) ≤ 2.07 × 104 . Compared to other experiments, extraction of 
this equation required 5 discrete target predicates. Running the pipeline with 3 classifica-
tion predicates resulted in the model failing to learn the true non-linear function. The accu-
racy for the second transformation layer (X2) is lower than the other layers, even though the 
model is confident in the presence of bounded atoms associated with the power function. 
The subtraction operation, was also a challenge for the operation layer to extract, as seen by 
the computational time in Table 6.

In Table  11 the dNL-NL layers extract the non-linear equation ( (��)� + ���(��) ). 
The three discrete classes correspond to the following features ranges, 
class1() ∼ 1.94 ≤ �(x) < 6.93 × 103 , class2() ∼ 6.93 × 103 ≤ �(x) < 1.39 × 104 , and 
class3() ∼ 1.39 × 104 ≤ �(x) ≤ 2.08 × 104 . The transformation layers are able to extract 
the correct transformations, as seen by the various bounded predicates and their measure of 
confidence. The transformation on feature X1 achieved a lower accuracy, and the issue with 
modelling the discrete classes can be seen with the various bounded continuous predicates 
in the definitions of this layer. The lower performance of the (X1) can likely be attributed to 
the perfect performance of the second transformation layer (X2).

Table 10  (continued)

���(��) − (��)
� Rules

Operation layer: 
accuracy: 1.00

class1()

∶ −[0.94]([0.93]X1X2Sub < 3711.60 ∧ X1X2Sub < 5616.66∧

    [0.25]X1X2Sub < 7521.72)

∶ −[0.94]([0.93]X1X2Sub < 3711.60 ∧ X1X2Sub < 5616.66∧

    [0.10]X1X2Sub < 7521.72)

class2()

∶ −[0.84]([0.39]X1X2Prod > 377422.12 ∧ [0.34]X1X2Prod < 754844.25∧

    X1X2Sub > 3711.60 ∧ [0.29]X1X2Sub < 7521.72∧

    [0.94]X1X2Sub < 9426.78)

∶ −[0.92](X1X2Sub > 3711.60 ∧ X1X2Sub < 7521.72 ∧ [0.72]X1X2Sub < 9426.78)

class3()

∶ −[0.99]([0.13]X1X2Prod < 566133.19 ∧ X1X2Sub > 7521.72∧

    [0.26]X1X2Sub > 9426.78 ∧ X1X2Sub < 11331.84∧

    [0.10]X1X2Sub < 13236.90)

class4()

∶ −[0.59](X1X2Sub > 11331.84 ∧ X1X2Sub < 17047.03)

∶ −[0.98]([0.86]X1X2Sub > 9426.78 ∧ X1X2Sub > 11331.84 ∧ X1X2Sub < 17047.03)

class5()

∶ −[0.91](X1X2Sub > 15141.96 ∧ X1X2Sub > 17047.03)

∶ −[0.96](X1X2Sub > 15141.96 ∧ X1X2Sub > 17047.03)
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Table 11  Each dNL-NL layer’s associated learned rules, where rules are defined by extracted non-linear 
predicates for the function ( (X1)

2 + exp(X2) ) where the target was discretized into three classes and the vari-
able space was floats in the range [0, 10]

(��)
� + ���(��) Rules

Transforma-
tion: X1 
accuracy: 
0.875

class1()
∶ −[0.92]([0.29]X1Square < 45.25)

∶ −[0.93]([0.25]X1Exp > 1897.02 ∧ [0.13]X1Exp < 5689.05 ∧ [0.19]X1Exp < 7585.06∧

    [0.18]X1Square > 60.69)

class2()
∶ −[0.55]([0.68]X1Square > 9.69 ∧ [0.42]X1Square > 27.08 ∧ X1Square < 36.26∧

    [0.85]X1Sine > −0.43)

∶ −[0.22]([0.74]X1Exp > 5689.05 ∧ [0.79]X1Exp < 13273.11 ∧ [0.94]X1Square > 27.08∧

    [0.29]X1Square < 80.93)

class3()
∶ −[0.25]([0.80]X1Square > 18.45 ∧ X1Square < 26.34 ∧ [0.34]X1Sine < 0.41∧

    [0.21]X1Sine < 0.41)

∶ −[0.38]([0.17]X1Exp > 7585.06 ∧ [0.34]X1Exp < 15169.12 ∧ [0.13]X1Square > 18.45∧

    [0.79]X1Square > 45.10 ∧ [0.47]X1Square > 80.93 ∧ [0.72]X1Square < 60.73)

Transforma-
tion: X2 
accuracy: 
1.00

class1()
∶ −[0.95]([0.27]X2Exp < 5867.07 ∧ X2Exp < 7822.37 ∧ [0.16]X2Square < 73.42∧

    [0.92]X2Square < 81.03)

∶ −[0.94]([0.25]X2Exp < 5867.07 ∧ X2Exp < 7822.37 ∧ [0.13]X2Square < 73.42∧

    [0.92]X2Square < 81.03)

class2()
∶ −[0.98](X2Exp > 5867.07 ∧ [0.74]X2Exp > 7822.37 ∧ [0.93]X2Exp < 15643.60∧

    [0.30]X2Sine > −0.10)

class3()
∶ −[0.95](X2Exp > 13688.29 ∧ [0.74]X2Exp > 15643.60 ∧ X2Square > 90.54)

∶ −[0.92](X2Exp > 13688.29 ∧ [0.59]X2Exp > 15643.60 ∧ X2Square > 90.54)

Operation: X1 
∧  X2 accu-
racy: 1.00

class1()
∶ −[0.96]([0.15]X1X2Add < 5894.04 ∧ [0.22]X1X2Add < 7858.34∧

    X1X2Sub > −7759.43 ∧ [0.17]X1X2Sub > −5795.13∧

    [0.16]X2X1Sub < 5795.13 ∧ [0.92]X2X1Sub < 7759.43)

∶ −[0.96]([0.21]X1X2Add < 5894.04 ∧ X1X2Add < 7858.34∧

    [0.71]X1X2Sub > −7759.43 ∧ [0.21]X1X2Sub > −5795.13∧

    [0.12]X2X1Sub < 5795.13 ∧ [0.37]X2X1Sub < 7759.43)

class2()
∶ −[0.21](X1X2Add > 7858.34 ∧ [0.44]X1X2Add < 15715.54∧

    [0.21]X1X2Sub > −15616.62 ∧ [0.73]X2X1Sub < 15616.62)

∶ −[0.98]([0.10]X1X2Sub > −13652.33 ∧ [0.71]X1X2Sub < −7759.43∧

    X2X1Sub > 5795.13 ∧ [0.95]X2X1Sub < 13652.33)

class3()
∶ −[0.97](X1X2Add > 13751.24 ∧ [0.69]X1X2Prod > 193413.66∧

    X1X2Sub < −13652.33)

∶ −[0.96](X1X2Add > 13751.24 ∧ [0.25]X1X2Add > 15715.54∧

    [0.31]X1X2Sub < −15616.62 ∧ [0.81]X2X1Sub > 13652.33∧

    [0.25]X2X1Sub > 15616.62)
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In Table  12 the dNL-NL layers extract the non-linear equa-
tion ( ���(��) − ���(��) ). The three discrete classes correspond to the fol-
lowing features ranges, class1() ∼ −2.08 × 104 ≤ �(x) < −1.39 × 104 , 
class2() ∼ −1.39 × 104 ≤ �(x) < −6.93 × 103 , and 
class3() ∼ −6.93 × 103 ≤ �(x) ≤ −3.29 × 10−1 . The performance is again noted to be 
slower, as seen in Table 6. The subtraction operation, which also resulted in a slow perfor-
mance for Table 10, struggles to be efficiently extracted by the operation layer, thus we pro-
pose future research to investigate improving the subtraction operation.

Future Research:
As indicated, there are areas of improvement for the dNL-NL functions and the overall 

pipeline. Specifically related to the logical reasoning of the dNL-NL layers, it was found that 
extracting subtraction operations was computationally expensive. This issue is potentially 

Table 12  Each dNL-NL layer’s associated learned rules, where rules are defined by extracted non-linear 
predicates for the function ( sine(X1) − exp(X2) ) where the target was discretized into three classes and the 
variable space was floats in the range [0, 10]

����(��) − ���(��) Rules

Transformation: 
X1 accuracy: 
0.85

class2()
∶ −[0.16]([0.48]X1Sine > 0.35 ∧ X1Sine < −0.11)

∶ −[0.10](X1Sine > 0.35)

class3()
∶ −[0.79]([0.11]X1Sine > −0.09 ∧ [0.12]X1Sine > −0.09)

∶ −[0.75]([0.12]X1Sine > −0.09 ∧ [0.11]X1Sine > −0.09)

Transformation: 
X2 accuracy: 
0.975

class1()
∶ −[0.94](X2Exp > 13688.29 ∧ [0.40]X2Exp > 15643.60 ∧ X2Square > 90.56)

∶ −[0.90](X2Exp > 13688.29 ∧ [0.44]X2Exp > 15643.60 ∧ X2Square > 90.56)

class2()
∶ −[0.99](X2Exp > 5867.07 ∧ [0.73]X2Exp > 7822.37 ∧ [0.14]X2Exp < 15643.60∧

    [0.93]X2Square < 91.70)

class3()
∶ −[0.95]([0.17]X2Exp < 5867.07 ∧ X2Exp < 7822.37 ∧ [0.23]X2Square < 73.09∧

    [0.92]X2Square < 81.07)

∶ −[0.95]([0.34]X2Exp < 5867.07 ∧ X2Exp < 7822.37 ∧ [0.28]X2Square < 73.09∧

    [0.89]X2Square < 81.07)

Operation: X1 ∧ 
X2 accuracy: 
1.00

class1()
∶ −[0.99](X1X2Prod < 5866.06 ∧ [0.76]X1X2Prod < 9776.73∧

    X1X2Sub < −13688.51)

∶ −[0.99](X1X2Sub < −15644.01 ∧ X1X2Sub < −13688.51∧

    [0.90]X1X2Sub < −11733.01)

class2()
∶ −[0.99]([0.48]X1X2Sub > −15644.01 ∧ [0.86]X1X2Sub > −13688.51∧

    [0.63]X1X2Sub < −7822.01 ∧ X1X2Sub < −5866.50)

class3()
∶ −[0.95](X1X2Prod > −1955.29 ∧ [0.14]X1X2Sub > −9777.51∧

    X1X2Sub > −7822.01)

∶ −[0.96](X1X2Sub > −7822.01 ∧ X1X2Sub > −5866.50)
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related to the logical structure of the continuous Boolean predicates. Periodic functions such 
as the sine function also posed certain challenges when modelling the target predicates, and 
we leave this as an area of investigation for future research.

A more notable future investigation is that of the heuristics used to update the knowledge 
bases which determined which continuous predicates were available to the dNL-NL layers. In 
the pipeline proposed here, we rely on a simple heuristic of removing predicates based on their 
layer’s accuracy scores. Future research might consider a modelling-based approach which 
uses accuracy scores and the true loss to train a model for selecting the various transformation 
and operation functions for continuous predicate instantiation.

The proposed architecture here focuses on demonstrating the capacity for ILP inspired 
models to extract non-linear functions from mixed-continuous domains. Our experiments 
focus on the two-variable case as a proof of concept. A further extension would be to consider 
three or more variables. This extension would also need to factor in the heuristics for updating 
the knowledge base, as well as the structuring of the transformation layers, exploring applica-
tions where more complex rules are needed and also coming up with a comparison strategy 
to relate to other learning approaches. To the best of our knowledge, a key issue in devising a 
comparison strategy is that little research is available on learning explainable non-linear mod-
els, such that we may be the first.

Given that, future work could reconfigure our dNL-NL model for a direct compari-
son with Duvenaud et al. (2013). A prospective extension to our dNL-NL framework could 
involve transitioning from our transformation/operation Boolean predicate functions to kernel 
Boolean predicate functions. By leveraging compositional techniques to define structures via 
kernels, there is potential to incorporate the method of creating composite kernel spaces from 
sums and products of base kernels into dNL-NL networks. This could entail embedding ker-
nel predicates while retaining our operational Boolean predicates, enabling a comprehensive 
and direct model comparison.

While experiments in this proposal focused on transformation and operations between vari-
ables. Future extensions could apply constant continuous Boolean predicates, where a con-
stant is multiplied on a random variable as seen in Eq. (14). Here the constant C could be a 
predetermined value provided by the modeller, or a trainable weight akin to the lower and 
upper bound values ( uCxi, lCxi).

6  Conclusion

We expand on a differentiable extension to ILP, so-called differentiable Neural Logic 
(dNL) networks, by focusing on the extraction of non-linear rules from synthetic data 
which has been generated by various non-linear functions. We provide a scheme for 
learning non-linear transformations and operations between variables using the logical 
framework of dNL and assessing the success of our derived logical rules by comparing 
them to the continuous target values. This work allows dNL networks to derive logi-
cal solutions in mixed discrete and continuous domains. Furthermore, from our results, 
we demonstrate that a pipeline of dNL networks can successfully extract non-linear 
functions from mixed discrete-continuous domains. For possible future extensions, 
we intend to investigate more extensive domain applications such as those common to 
other scientific disciplines. As there is no current work of a comparable nature, future 

(14)Fgti
Cx
= �(c((C × x) − uCxi)), Flti

Cx
= �(−c((C × x) − lCxi))
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investigations will also look into possible model comparisons, as well as integration 
with reinforcement learning. The avenue of combing dNL-NL with reinforcement learn-
ing allows for applications in machine vision and possibly natural language processing.

Appendix A: Example input matrix and dNL‑NL network

In discussing the dNL-NL framework, it is important to clarify the design of the 
deep network architecture in the context of linear transformations of the input varia-
bles. As an example, presume we are trying to extract non-linear functions for a sim-
ple dataset consisting of two random variables {X1,X2} with continuous values and a 
target Yc , where c denotes that the target is real-valued and continuous. In our exam-
ple we will also include the following list of continuous transformation predicates 
Cp = {X1,X2, SqrX1, SqrX2,ExpX1,ExpX2} , and we will discretize Yc into three distinct 
target predicate classes ℙ = {class1, class2, class3} , done by performing equal-width bin-
ning on Yc to derive our descretized target Yd where d = 3 . In this example, three discrete 
classes are selected arbitrarily, but note higher values can be used. We will also set 
our batch size b = 6 and the number of continuous variable boundaries k = 2 , note that 
these parameters can be adjusted. By setting k = 2 we are creating two lower and upper 
boundary predicates for each predicate in Cp . We start first by structuring our continu-
ous input matrix I , which is done for each classi ∈ ℙ but for our example we will discuss 
the Boolean deep architecture for class1 . In this example, as Ne = 24 , we have an input 
matrix with dimensions (6, 24).

In Eq. (A1), I is composed of continuous Boolean predicate functions for each variable and 
each transformation on said variable. When values from B are passed into the input matrix, 
they are transformed by the Boolean predicate functions into a matrix of Boolean values, 
which the rest of the dNL architecture can reason on. Again, the lower and upper bound 
weights (li, ui) can be optimised and will be adjusted during training. The weight values are 
initially set by taking the maximum and minimum from the continuous range for a given 
variable and dividing by k.

The process of creating our predicate function Fclass1
 for class1 requires stacking con-

junction neurons, and in our example, the number of conjunction stacks Np is set to 2. 
In order to create our classification target predicate function, we need to create trainable 
weights as seen in Eq. (A2) where ( c = 2 ). The list of linear transformations for the con-
junction layer can be seen in Eq. (A2).

(A1)I(6,24) =

[

Flt1
X1

Flt2
X1

Fgt1
X1

Fgt2
X1

Flt1
X2

⋯ Fgt2
ExpX2

⋮ ⋱

]

(A2)

W
conj

(2,24)
∼ ℕ

m
conj

(2,24)
= �

(

W
conj

(2,24)
× c

)

Z
conj

(6,2,24)
= [m

conj

(2,24)
](1,2,24) ×

(

1.0 − [I(6,24)](6,1,24)
)

S
conj

(6,2)
=

24
∏

i=1

(

1.0 − Z
conj

(6,2,i)

)
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We use the brackets “ [∙] " to denote the extension of matrices with additional dimensions to 
facilitate matrix-to-matrix operations. Following the construction of the conjunction layer, 
we then stack disjunction layers based on the activations found in the conjunction layer, as 
seen in Eq. (A3).

As our intensional target rules are defined by body definitions composed of extensional 
predicates, we only need to take a single step in forward chaining to ground the rule for our 
predicate class1 during the current training iteration. The final aggregation of the ground-
ings from the batch input defines the body of our target predicate function Fclass1

 . The con-
struction of the dNL-NL network is performed for each discrete classification (with corre-
sponding predicate function) and eventually collected in a data structure �.
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