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Abstract
Recently, several types of neural operators have been developed, including deep operator 
networks, graph neural operators, and Multiwavelet-based operators. Compared with these 
models, the Fourier neural operator (FNO), a physics-inspired machine learning method, is 
computationally efficient and can learn nonlinear operators between function spaces inde-
pendent of a certain finite basis. This study investigated the bounding of the Rademacher 
complexity of the FNO based on specific group norms. Using capacity based on these 
norms, we bound the generalization error of the model. In addition, we investigate the cor-
relation between the empirical generalization error and the proposed capacity of FNO. We 
infer that the type of group norm determines the information about the weights and archi-
tecture of the FNO model stored in capacity. The experimental results offer insight into the 
impact of the number of modes used in the FNO model on the generalization error. The 
results confirm that our capacity is an effective index for estimating generalization errors.

Keywords  Rademacher complexity · Fourier neural operator · Generalization error · 
Physics-inspired machine learning · Neural operator

1  Introduction

Physics-inspired machine learning is an actively studied area with two approaches to learn-
ing. One approach focuses on determining solutions to partial differential equations (PDEs) 
for fixed PDE and boundary conditions and includes the deep Ritz method (Weinan & Yu, 
2018), physics-informed neural networks (Raissi et al., 2019), and least-squares ReLU neural 
network (Cai et al., 2021). The other approach focuses on the operators between the function 
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spaces and includes DeepONets (Lu et al., 2021), multiwavelet-based operator (Gupta et al., 
2021), graph neural operator (Li et  al., 2020) and Fourier neural operator (FNO) Li et  al. 
(2021). This study focuses on FNO, which uses a Fourier transform to manage the convolu-
tion operator between two functions quickly and practically. One advantage of FNO is its 
computational efficiency; unlike DeepONet, its representation is not limited to a finite-dimen-
sional space spanned by a few basis functions. Previous studies ( Li et al. (2021) and Pathak 
et al. (2022)) have confirmed that the FNO successfully approximates numerical solvers and 
real-world data, verifying its computational efficiency and potential applicability. Unlike real-
world machine-learning problems, approximating the solver operator of a PDE is determin-
istic and concrete. The universal approximation property of the FNO and its approximation 
error for certain PDE problems (Kovachki et al., 2021) have been verified; however, there are 
no results estimating the generalization error of the FNO. Moreover, although approximat-
ing the solver operator of the PDE is a deterministic problem, we can only provide a finite 
number of samples to the FNO. Therefore, the accurate inference of hidden data is another 
problem to consider. Several approaches have been proposed regarding the bounding gener-
alization error of deep neural networks, such as the group norm of weights (Neyshabur et al., 
2015), spectral norm (Bartlett et al., 2021), path norm (Neyshabur et al., 2015), Fisher-Rao 
norm (Liang et al., 2019), and relative flatness (Petzka et al., 2021). In this study, we investi-
gated the bounding of generalization errors within the probably approximately correct (PAC) 
learning theory framework. In particular, we bound the Rademacher complexity of the FNO.

1.1 � Overview of FNOs

Figure 1 illustrates the FNO architecture. The network input is ℝda-valued function in the 
domain D̃ ⊂ ℝ

d . We denote the input function space of FNO by A(D̃;ℝda ) . The vector 
value of the input function is lifted to a dv-dimensional vector using a layer defined as 
NP ; while passing through the Fourier layers (denoted as Ai in the diagram) iteratively, 
it is processed as a ℝdv-valued function. Each Fourier layer comprises an activation func-
tion, which is the sum of a neural network with a convolution of the input function with 
a kernel parameterized by weight Ri . After passing through the Fourier layers, the vector 
value of the ℝdv-valued function vD is projected onto the du-dimensional vector using NQ . 
We denote the output function space of FNO by U(D̃;ℝdu ) . The neural network Ai in the 

Fig. 1   a Sketch of the overall architecture of Fourier neural operator (FNO) b Detailed diagram of the Fou-
rier layers
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Fourier layers can be chosen arbitrarily. In our results, we chose Ai as a fully connected 
network (FCN) or convolutional neural network (CNN). Because computational machines 
cannot handle infinite-dimensional data, we constructed an FNO model using finite param-
eters based on the above concept, considering real-world implementation.

1.2 � Probably approximately correct learning

PAC learning is a framework of statistical learning theory proposed by Valiant (1984). One 
of the main concepts of PAC learning theory is the no-free-lunch (NFL) theorem, which 
states that it is not possible to achieve low approximation and estimation errors simulta-
neously. The trade-off between the two errors is closely related to the complexity of the 
hypothesis class. Various quantities related to the complexity of the hypothesis class, such 
as the VC dimension, Rademacher complexity, and Gaussian complexity, determine the 
learnability and decay of estimation errors. All the complexities are related; however, there 
are several differences. For example, the VC dimension is independent of the training set, 
whereas the others are not. Neural networks and deep learning can be applied to PAC learn-
ing theory as a subcategory of machine learning. Recently, various studies have investi-
gated bounding the Rademacher complexity and the VC dimensions of the hypothesis class 
of neural networks. For instance, results regarding the bounding of Rademacher complexi-
ties for FCN (Neyshabur et al., 2015), RNN (Minshuo et al., 2020), and GCN (Lv, 2021), 
and analysis of the VC dimension of neural networks (Sontag, 1998) have been obtained. 
In addition, there is information about the bounding Rademacher complexity of DeepONet 
(Gopalani et al., 2022), a kind of neural operator. Reference (Weinan et al., 2020) estimated 
the generalization error of ResNet in prior and posterior estimates.

1.3 � Our contributions

In this study, we defined the capacities of FNO models based on certain group norms. We 
bound the Rademacher complexity of the hypothesis class based on these capacities for 
two types of FNOs (Fourier layers with FCN and CNN) and induced the bounding of the 
posterior generalization error of the FNO models. In Sect. 4, we experiment with data gen-
erated from the Burgers equation problem and verify the correlation between our bounding 
process and empirical generalization errors. Through experiments, we gain insights into 
the model architecture and weights contained in various capacities. We also qualitatively 
confirmed that the empirical generalization errors depend on the number of modes used in 
the FNO model. Furthermore, we confirmed the strong correlation between our capacity 
factored by dataset size and empirical generalization error on experiments with varying 
dataset size. We replicate the experiments using other PDE problems. Finally, we com-
pared our capacity with the Hessian trace, Fisher-Rao norm, and relative flatness, showing 
time, memory efficiency, and effectiveness of our capacity.

2 � Preliminary

Notation Several indices are considered in the discussion. Therefore, to simplify the formu-
las, we denote x1 … xd as x and k1 … kd as k . In addition, for the multi-index tensor in the 
norm, indices denoted by ⋅ are used to calculate the norm; for example,
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Discretization of data Because the function space is infinite-dimensional, to treat the data 
and operator numerically, we discretize the function domain and consider the function to 
be a finite-dimensional vector. Let D̃N = {x1, ..., xN} be the discretization of the domain 
D̃ ∈ ℝ

d . Then, the ℝm-valued function f is discretized into (f (x1), ..., f (xN))) ∈ ℝ
N×m : Sub-

sequently, we discretize A(D̃;ℝda ) and U(D̃;ℝdu ) as ℝN×da and ℝN×du , respectively. Then, 
sample data are defined as follows: element ((ajk), (ujk)) ∈ ℝ

N×da ×ℝ
N×du.

Fourier transform Based on the Fourier analysis, we know that the Fourier transform 
transforms the convolution operation to pointwise multiplication. For the function of domain 
D̃ ⊂ ℝ

d , let F  and F−1 be the Fourier and inverse Fourier transforms over D̃ , respectively. 
Thus, we obtain the following relationship:

For our analysis, we select D̃ as [0, 2�]d . Because we treat functions as discretized vectors, 
we can treat the Fourier transform as a discrete Fourier transform. If the discretization of 
D̃ is uniform, it can be replaced by a fast Fourier transform. Consider that D̃ is discretized 
uniformly by resolution N1 ×⋯ × Nd = N ; then, for discretized function f ∈ ℝ

N , its FFT 
F(f )(k) and IFFT F−1(f )(k) are defined as follows:

In our analysis, we denote the components of FFT and IFFT tensors as follows: 

F
kx

=
1√

N1…Nd

e
−2i�

∑d

j=1

xjkj

Nj  , F†

xk
=

1√
N1…Nd

e
2i�

∑d

j=1

xjkj

Nj  , respectively.

Definition 1  (General FNO) Let D̃N be the discretized domain in ℝ
d ; then, 

FNO ∶ ℝ
N×da → ℝ

N×du is defined as follows:

where NP and NQ denote the neural networks used for lifting and projection, respectively. 
Each Ai is a Fourier layer. For simplicity, we assume that NQ and NP are linear maps. Each 
Fourier layer is a composition of the activation function with a sum of convolutions based 
on a parameterized function and linear map. Only partial frequencies were used in the Fou-
rier layers, expressed as an index set K = {(k1, ..., kd) ∈ ℤ

d ∶ 0 ≤ kj ≤ kmax,j, j = 1, ..., d} . 
The formula for the FNO is

‖Axy⋅‖p = p

��

i

�
Axyi

�p

.

f ∗ k = F
−1(F(k) ⋅ F(f )).

F(f )(k) =
1√

N1 …Nd

N1�

x1

⋯

Nd�

xd

f (x1, ..., xd)e
−2i�

∑d

j=1

xjkj

Nj

F
−1(f )(k) =

1√
N1 …Nd

N1�

x1

⋯

Nd�

xd

f (x1, ..., xd)e
2i�

∑d

j=1

xjkj

Nj .

FNO = NQ◦AD◦AD−1 ⋯◦A1◦NP,
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CNN layer For each Fourier layer, a general linear map can be replaced by a CNN layer. A 
schematic of the convolution with 2D data and a kernel is shown in Fig. 2.

A certain kernel size swipes the input tensors so that each index of outputs has an inner 
product with the kernel and local components of the input tensor centering the index. For 
example, for a d-rank input tensor of size N1 ×⋯ × Nd , we consider a d-rank tensor ker-
nel K of size c1 ×⋯ × cd , with ci less than Ni . Let us denote this CNN layer by the kernel 
C(c1 ×⋯ × cd) ; then, the tensor that passes through the CNN layer with K is defined as 
follows:

The CNN layers were restricted to kernels of odd sizes to maintain the positional dimen-
sion of the tensor. Padding was applied to the input tensor of the CNN layer to fit the 
dimensions. For example, for N1 ×⋯ × Nd-dimensional tensor xx1⋯xd

 and CNN layer 
C(c1,… , cd) , we pad ci−1

2
 zeros for each side of the input tensor. We denote this padded 

v0 ∶= NP(a) =
∑

k

Pjkaxk

vt+1 ∶= At+1(vt) = �

(
At+1vt + F

−1
(
Rt+1 ⋅ (F(vt))

))
.

= �

(∑

z,k

At+1,xzjkvt,zk +
∑

z,k∈K,k

F
†

xk
Rt+1,k,jkFkz

vt,zk

)
(t = 0, ...,D − 1)

u ∶=
∑

k

vD,xkQkj.

C(c1,… , cd)(xx1⋯xd
)z1⋯zd

=

c1−1∑

j1=0

⋯

cd−1∑

jd=0

Kj1,…,jd
xz1+j1,…,zd+jd

.

Fig. 2   Schematic of 2D-CNN layer
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tensor by x̃ . Subsequently, C(c1,… , cd)(x̃x1⋯xd
) have the same dimensions as the input ten-

sor. As the number of channels in the Fourier layers is fixed, for a CNN layer with multiple 
channels, we use the same notation, that is, C(c1,… , cd) . The formula for multi-channel 
CNN layer is as follows:

Definition 2  (FNO with CNN layer) Consider the settings of the above FNO; the only dif-
ference is that the Fourier layer is the sum of the CNN layer and convolution with param-
eterized functions.

An ideal operator should infer a solution from all the functions in the input func-
tion space. However, for practical and implementation ease, finite training samples were 
selected from vector space distributions, which is a discretized function space. Suppose D 
is a distribution on ℝN×da ×ℝ

N×du . Then, we define the loss function as follows:

Definition 3  (Loss for FNO) Suppose that the training dataset is given by

where each sample is chosen independent of the distribution D . The training loss is defined 
as follows:

Let p be the probability distribution of D , defined as ℝN×da ×ℝ
N×du . Then, the loss of the 

entire distribution D is defined as follows:

3 � Generalization bound for FNOs

In this section, we calculate the upper bound of the Rademacher complexity of the FNO, 
and estimate the generalization bound. In addition, we present several lemmas regarding 
the main results. The proof of the main theorems comprises two main lemmas: inequality 

C(c1,… , cd)(xx1⋯xd
)z1⋯zdj

=

du∑

k=1

c1−1∑

j1=0

⋯

cd−1∑

jd=0

Kj1,…,jd ,k,j
xz1+j1,…,zd+jd ,k

.

vt+1 ∶= At+1(vt) = 𝜎

(
Ct+1(c1,… , cd)(ṽt) + F

−1
(
Rt+1 ⋅ (F(vt))

))

= 𝜎

( du∑

k=1

c1−1∑

j1=0

⋯

cd−1∑

jd=0

Kt+1,jk,j1,…,jd
ṽtx1+j1,…,xd+jd ,k

+
∑

z,k∈K,k

F
xk

†Rt+1,k,jkFkz
vt,zk

)
.

S ∶= {((ai,jk), (ui,jk)) ∈ ℝ
N×da ×ℝ

N×du ∶ i = 1, ...,m},

LS ∶=
1

m

m�

i=1

‖ui,⋅⋅ − FNO(ai,⋅⋅)‖2.

LD ∶= ∫
ℝN×da×ℝN×du

‖ui,⋅⋅ − FNO(ai,⋅⋅)‖2dp(a, u).
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for the Rademacher complexity and sup-norm of FNO models. Using these lemmas, we 
prove the main results.

3.1 � Mathematical setup

Definition 4  (Rademacher complexity) Let F  represent mapping from X  to ℝ . Suppose 
{xi ∈ X ∶ i = 1, ...,m} . �i are independent and uniform and {+1,−1}-valued random vari-
ables. The empirical Rademacher complexity of F  for a given sample set is defined as 
follows:

The main components of our results are as follows:

Definition 5  (weight norms and capacity) For the multi-rank tensor Mi1,...,im,j1,...,jk
 , we 

define the following weight norm:

For p = ∞ or q = ∞ , we consider the sup-norm instead of the definition above. Now, sup-
pose that for an FNO with a Fourier layer of depth D, we denote Q and P as the projection 
and lifting weight matrices, respectively, and Ai and Ri as the weight tensors of the Fourier 
layers. We then define ‖ ⋅ ‖p,q , where p is the index for positions, frequencies, and inputs, 
and q is the output index. The following norm is defined for the Fourier layer:

The capacity of the FNO model h as a product of the weights of its layers is defined as 
follows:

Next, for the kernel tensor K of the CNN layer, we define the following norms for the 
weights and capacities of the entire neural network: In the ‖ ⋅ ‖p,q norm for the kernel ten-
sor of the CNN layer, p is the index of the kernels and input, and q is the output index.

Next, we define hypothesis classes in which the Rademacher complexity is bounded in 
our results. A hypothesis class is a collection of functions from which a learning algorithm 
selects a function.

Rm(F) = ��

[
1

m
sup
f∈F

m∑

i=1

�if (xi)

]
.

‖Mi1,...,im,j1,...,jk
‖p∶{i1,...,im},q∶{j1,...,jk} ∶= q

����
�

j1...jm

�
p

��

i1...ik

Mi1,...,im,j1,...,jk

p

�q

.

‖(Ai,Ri)‖p,q ∶= ‖Ai‖p,q + ‖Ri‖p,q
p∗
√
kmax,1...kmax,d

N
⌊ 1

p∗
−

1

q
⌋+

.

�p,q(h) ∶= ‖P‖p,q‖Q‖p,q
D�

i=1

‖(Ai,Ri)‖p,q.

‖(Ki,Ri)‖p,q ∶= ‖K‖p,q p∗
√
c1 … cd +

p∗

�
kmax,1...kmax,d‖R‖p,q

�CNNp,q(hCNN) ∶= ‖P‖p,q‖Q‖p,q‖
D�

i=1

‖(Ki,Ri)‖p,q.
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Definition 6  (Hypothesis classes of FNO) Suppose that the function classes of the FNO 
with D depth and maximal modes of the Fourier layers are kmax,1, ..., kmax,d . The width and 
size of the input vector, size of the output vector, and activation function are fixed. Then, 
the hypothesis class for a general FNO is defined as follows:

Finally, we define the hypothesis class of the FNO with CNN layers as follows:

We also define the following auxiliary definition for the hypothesis class of sub-neu-
ral networks of FNO models, where the terminal layer is the Fourier layer (denoted as 
FNOsub∶i).

Similarly, we define HCNN

din
CP,C0,...,Ci

.

3.2 � Main results

The notations in each lemma and theorem are based on the definitions in Sect. 3.1. The 
activation function is Lipschitz continuous and passes through the origin ( �(0) = 0 ). 
Moreover, we set our notations as follows: for a given sample S = {ai}i=1,…,m (with input 
data ai ) and hypothesis class Hdin

CP,C0,...,Ct
 , we denote h(ai) by vt,i , where h ∈ H

din
CP,C0,...,Ct

 . 
The components are denoted by vt,i,xj.

The following lemma regarding lp norms is frequently used in our proofs.

Lemma 1  (Norm inequality) If 1 ≤ p ≤ q ≤ ∞ , then for v ∈ ℝ
N we obtain the following 

inequality:

Let ⌊⋅⌋+ denote a ReLU function. Then, for an arbitrary 1 ≤ p, q , the inequality can be 
defined as

The following lemma handles nonlinear loss in our proof (the proof can be found in 
Maurer (2016)).

Lemma 2  (Vector-contraction inequality for Rademacher complexity) Assume that � is a 
Lipschitz continuous function with Lipschitz constant L and F  is a hypothesis class of ℝN

-valued functions. Thus, we obtain the following inequality:

H
din
CP,C0,...,CD,CQ

∶= {FNO ∶ ‖P‖p,q ≤ CP,

‖(Ai,Ri)‖p,q ≤ Ci(i = 1, ...,D), ‖Q‖p,∞ ≤ CQ}.

HCNN

din
CP,C0,...,CL ,CQ

∶= {FNO ∶ ‖P‖p,q ≤ CP,

‖(Ki,Ri)‖p,q ≤ Ci(i = 1, ...,D), ‖Q‖p,∞ ≤ CQ}.

H
din
CP,C0,...,Ci

∶= {FNOsub∶i ∶ ‖P‖p,q ≤ CP, ‖(At,Rt)‖p,q ≤ Ct, (t = 1, ..., i)}.

‖v‖q ≤ ‖v‖p ≤ ‖v‖qN
1

p
−

1

q .

‖v‖p ≤ ‖v‖qN
⌊ 1

p
−

1

q
⌋+ .
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Here, we present the main results. The proof has two parts. First, we obtain the upper 
bound of p ∗-norm of the output of FNO models. Second, we bound the Rademacher 
complexity of the FNO model on samples based on the obtained upper bound. We 
assume that the projection and lifting layers are linear maps. However, we can easily 
generalize this to a general FCN.

Lemmas 3 and 3’ are the main factors in our results; the Fourier layers are peeled 
inductively.

Lemma 3  Suppose H = H
din
CP,C1,...,CD,CQ

 is the FNO hypothesis class with constants 
CP,C1,… ,CD,CQ . Then, for the sample a ∈ ℝ

N×da , we obtain the following inequality:

Proof 
Then, we have the following:

Subsequently, we peel off the Fourier layers.

For ���
∑

F
†

xk
RD,k,j⋅Fk⋅

���p in (2),

��

�
1

m
sup
f∈F

m�

i=1

�i�(f (xi))

�
≤ √

2L��

�
1

m
sup
f∈F

�

i,k

�ikfk(xi)

�
.

sup
h∈H

‖h(a)
⋅⋅
‖p∗,∞

≤ LD(NH)
D⌊ 1

p∗
−

1

q
⌋+H

⌊ 1

p∗
−

1

q
⌋+CQCD …C1CP‖a‖p∗

(1)

h(a)
xj

=
�

k

vD,xkQkj

≤ ‖vD,x⋅‖p∗‖Q⋅j‖p

‖h(a)
⋅⋅
‖p∗,∞

≤ sup
j

p∗

��

x

‖vD,x⋅‖
p∗
p∗‖Q⋅j‖

p∗
p

≤ ‖vD,⋅⋅‖p∗CQ

(2)

�

�
AD(a) + F

−1(RD ⋅ (F(a)))
�

xj

= �

��

z,k

AD,xzkjvD−1,zk +
�

k,z,k

F
†

xk
RD,k,jkFkz

vD−1zk

�

≤ L
���
�

z,k

AD,xzkjvD−1,zk +
�

k,z,k

F
†

xk
RD,k,jkFkz

vD−1,zk
���

≤ L

�
‖AD,x⋅⋅j‖p +

���
�

F
†

xk
RD,k,j⋅Fk⋅

���p

�
���vD−1,⋅⋅

���p∗,

‖‖‖
∑

k

F
†

xk
RD,k,j⋅Fk⋅

‖‖‖p =
p

√∑

z,k

(∑

k

F
†

xk
RD,k,jkFkz

)p

.
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For fixed x, z, k , 
(
F
†

xk
F
kz

)

k

 is a kmax,1,… , kmax,d-dimensional vector, where each compo-

nent exhibits the e
ib

N
 form. Thus, by applying Hölder’s inequality, we obtain the following 

inequality:

Subsequently, the following bound is obtained:

We iteratively apply the above bound to obtain the following inequality:

By combining the two inequalities, we obtain the following inequality.

���
�

k

F
†

xk
RD,k,j⋅Fk⋅

���p

≤ p

�����

z,k

� p∗
√
kmax,1...kmax,d

N
‖RD,⋅,jk‖p

�p

=

p∗
√
kmax,1...kmax,d

N
p

�
N
�

k,k

R
p

D,k,jk

=
p∗

�
kmax,1...kmax,d

N
‖RD,⋅,j,⋅‖p.

�

�
AD(a) + F

−1(RD ⋅ (F(a)))
�

xj

≤ L
�
‖AD,x⋅⋅j‖p +

p∗

�
kmax,1...kmax,d

N
‖RD,⋅,j,⋅‖p

����vD−1,⋅⋅
���p∗.

(3)

sup
h∈HCP ,C0,...,CD

‖vD,⋅⋅‖p∗

≤ sup
h∈HCP ,C1,...,CD

L
�
‖AD‖p,p∗ + p∗

�
kmax,1...kmax,d‖RD‖p,p∗

����vD−1,⋅⋅
���p∗

≤ (NH)
⌊ 1

p∗
−

1

q
⌋+ sup

h∈HCP ,C1,...,CD

L
�
‖AD‖p,q +

p∗
√
kmax,1...kmax,d

N
⌊ 1

p∗
−

1

q
⌋+

‖RD‖p,q
����vD−1,⋅⋅

���p∗

(4)

≤ L(NH)
⌊ 1

p∗
−

1

q
⌋+CD sup

h∈HCP ,C1,...,CD−1

���vD−1,⋅⋅
���p∗

≤ ...

≤ LD(NH)
D⌊ 1

p∗
−

1

q
⌋+CD …C1 sup

h∈HCP

���v1,⋅⋅
���p∗

≤ LD(NH)
D⌊ 1

p∗
−

1

q
⌋+H

⌊ 1

p∗
−

1

q
⌋+CD …C1CP‖a‖p∗.
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We use Hölder’s inequality in (1) and (2) and norm inequalities in (3) and (4). 	�  ◻

The proof of the following lemma is similar to that of Lemma 3. However, in this 
case, the hypothesis class is FNO with CNN layers.

Lemma 3’   Suppose H = HCNN

din
CP,C1,...,CD,CQ

 is the hypothesis class of an FNO with CNN 
layer and constants CP,C1,… ,CD,CQ . Then, for a sample a ∈ ℝ

N×da , we obtain the fol-
lowing inequality:

Proof  We modify the induction parts of the Fourier layers in the proof of Lemma 3.

where we use Hölder’s inequality in (5). Subsequently, by applying p ∗ norm to the ine-
quality above over x, j and the norm inequality, we obtain the following inequality:

The remainder of this proof is similar to that of Lemma 3. 	�  ◻
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Lemma 4  Suppose Hdin
CP,C1,...,CD,CQ

 is the hypothesis class of the FNO with given constants 
CP,C1,… ,CD,CQ . Then, for samples S = {ai}i=1,…,m , we obtain the following inequality:

Proof 

where we used norm inequality in (6). 	�  ◻

Theorem 1  Suppose Hdin
CP,C1,...,CD,CQ

 is a hypothesis class with constants CP,C1,… ,CD,CQ . 

Then, for samples S = {ai}i=1,…,m , we obtain the following inequality:

Proof 

	�  ◻

Theorem 2  (FNO with CNN layer) Suppose HCNN

din
CP,C1,...,CD,CQ

 is a hypothesis class with 
constants CP,C1,… ,CD,CQ . Then, for samples S = {ai}i=1,…,m , we obtain the following 
inequality:
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Proof 

	�  ◻

Corollary 1  For a constant 𝛾 > 0 , consider the hypothesis class H�p,q≤� , which is a collec-
tion of FNOs with �p,q ≤ � . For samples S = {ai}i=1,…,m , we obtain the following 
inequality:

For a given hypothesis class HCNN �p,q≤� , similar to H�p,q≤� , and training samples 
S = {ai}i=1,…,m , we obtain the following inequality:

Proof  As

We obtain the following inequalities.
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Because the upper bound of p ∗-norm of the models of the hypothesis class in the above 
equation is the same as that in Lemma 3, we apply the same logic as in Theorem 1. Thus, 
we obtain the following inequality:

Similarly, based on the above proof, we obtain the inequality for FNO with CNN layers. 	
� ◻

Recall the following fundamental theorem (for details, see Shalev-Shwartz and Ben-
David (2014)) that states the statistical estimation of the generalization error bound of a 
given hypothesis class in terms of Rademacher complexity.

Theorem  3  (Generalization error bounding based on Rademacher complexity) Given 
hypothesis class H and loss function l ∶ H × Z that satisfy the following case: for all h ∈ H 
and z ∈ Z , we obtain |l(h, z)| ≤ c . Then, with a probability of at least 1 − � , for all h ∈ H , 
we obtain

where D is the probability distribution on Z and S is a training dataset sampled from D 
i.i.d.

Before considering the generalization bound of FNO, we select the distribution D 
on ℝN×da ×ℝ

N×du to have a compact support. Thus, |l(h, z)| ≤ c condition in Theorem 3 
holds. Then, using Theorem 3 and Corollary 1, we obtain the following estimation of 
the generalization error bound:

Theorem  4  (Generalization error bound for FNO) For the training dataset 
S = {(ai, ui)}i=1,…,m , sampled from probability distribution D i.i.d., and for hypothesis 
class H�p,q≤� , let h⋆ be the ERM minimizer of LS and ‖h(a) − u‖2 ≤ �2 for all (a, u) ∼ D , 
h ∈ H�p,q≤� . Subsequently, with a probability of at least 1 − � , we obtain the following 
inequality:
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Similarly for hypothesis class of FNOs with CNN layers, dataset S, and hypothesis class 
HCNN �p,q≤� , let h⋆

CNN
 be the ERM minimizer of LS and ‖h(a) − u‖2 ≤ �2 for all (a, u) ∼ D , 

h ∈ HCNN �p,q≤� . Subsequently, with a probability of at least 1 − � , we obtain the following 
inequality:

Proof  We just need to calculate Rm(l◦H) term in Theorem 3.

Similarly, based on the above proof, we obtain the inequality for the FNO with CNN lay-
ers. 	�  ◻

If the capacity of FNO model h is � , it is included in the hypothesis class H�p,q≤� . 
Because the inequalities in Theorem 4 hold for all hypotheses in class, we have the fol-
lowing posterior estimate of FNO:

Corollary 2  (Posterior estimation of generalization and expected errors) Given architecture 
parameters N,H, du, da, L , and training samples {(ai, ui)}i=1,…,m with ‖ai‖p∗ ≤ B for all i. 
Suppose h is a trained FNO (Fourier layer with FCN or CNN) such that ‖h(a) − u‖2 ≤ �2 
for all training samples. Then, with a confidence level of at least 1 − � , we obtain the fol-
lowing estimates:

for FNOs with CNN,

LD(h
⋆

CNN
) − LS(h

⋆

CNN
)

≤ 4
√
2𝜖𝛾CNNL

DH
(D+1)⌊ 1

p∗
−

1

q
⌋+N

1

p du
1

m

m�

i=1

‖ai‖p∗ + 𝜖2

�
2 log 4∕𝛿

m
.

Rm(l◦H�p,q≤�(NFNO)
) ≤ 2

√
2���

�
1

m
sup

h∈H�p,q≤�

�

i,x,j

�ixjh(ai)xj

�
(Lemma 2)

≤ 2
√
2��LD(NH)

D⌊ 1

p∗
−

1

q
⌋+H

⌊ 1

p∗
−

1

q
⌋+N

1

p du
1

m

m�

i=1

‖ai‖p∗. (Corollary 1)

LD(h) − LS(h)

≤ 4
√
2�LD(NH)

D⌊ 1

p∗
−

1

q
⌋+H

⌊ 1

p∗
−

1

q
⌋+N

1

p du�p,q(h)B + �2

�
2 log 4∕�

m
.

⟹ LD(h) ≤ 4
√
2�LD(NH)

D⌊ 1

p∗
−

1

q
⌋+H

⌊ 1

p∗
−

1

q
⌋+N

1

p du�p,q(h)B

+ �2
�
1 +

�
2 log 4∕�

m

�
.

LD(hCNN) − LS(hCNN)

≤ 4
√
2�LDH

(D+1)⌊ 1

p∗
−

1

q
⌋+N

1

p du�CNNp,q(hCNN)B + �2

�
2 log 4∕�

m
.

⟹ LD(hCNN) ≤ 4
√
2�LDH

(D+1)⌊ 1

p∗
−

1

q
⌋+N

1

p du�CNNp,q(hCNN)B

+ �2
�
1 +

�
2 log 4∕�

m

�
.



	 Machine Learning

1 3

Our definitions of capacity and results are motivated by the group-norm capacity of an 
FCN (Neyshabur et al., 2015). The results in Neyshabur et al. (2015) imposed the upper 
bound of the generalization error on the capacity and inverse factor of 

√
m . The proof of 

this upper bound relies on the homogeneity of the ReLU activation function. Our results 
apply only to the Lipschitzness of the activation function. Although our results only have 
the O(1) bound, if we focus on the ReLU activation case, we may have the following bound 
based on our capacity derivation and theorems in Neyshabur et al. (2015).

Corollary 3  (Posterior estimation of generalization error and expected error in the 
RELU activation case) Given architecture parameters N,H, du, da, L , and training sam-
ples {(ai, ui)}i=1,…,m with ‖ai‖p∗ ≤ B for all i. Suppose h is a trained FNO (Fourier layer 
with FCN or CNN) such that ‖h(a) − u‖2 ≤ �2 for all training samples and 1 ≤ p ≤ 2 , 
1 ≤ q ≤ p ∗ . Then, with a confidence level of at least 1 − � , we obtain the following 
estimates:

For FNOs with CNN,

Therefore, for the ReLU activation case, we can guarantee convergence of the gen-
eralization error with increasing training dataset size. However, the actual convergence 
rate of the generalization error is higher than the theoretical bound, as observed in 
Sect. 4.
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4 � Experiments

This section validates the experimental results. In addition, we show that the capacity 
we defined is an effective index for estimating empirical generalization errors in various 
respects.

4.1 � Overall correlation over various p and q

First, we investigate the correlation between our capacity and the empirical generalization 
errors for various capacities of p and q.

Data specification For the experiment, we synthesized a dataset based on the following 
Burgers equation:

The domain of the problem is a circle; we uniformly discretize the domain by N = 1024 . 
As described in Sect. 2, each data point represents a pair of functions. In our experiment, 
the input function was an initial condition, and the target function was a solution to the 
above equation at t = 0.1 . Each input function was generated from Gaussian random fields 

with covariance k(x, y) = e
−

(x−y)2

(0.05)2 . The training and test datasets comprise 800 and 200 pairs 
of functions, respectively (both generated independently).

Correlation for various capacities of p  and q We investigated the correlation between 
the generalization error and capacities. Each point in Fig. 3 represents a trained model for 
the randomly chosen hyperparameters. The architecture of the models used in our exper-
iment was organized as follows: 2-depth Fourier layers, linear layers without projection 
activation, and lifting layers. The width is fixed at 64. The weight decay for each training 
session was randomly chosen from 0, 2*1e−2, 4*1e−2, 6*1e−2, and 8*1e−2; kmax was 
randomly chosen from 8, 12, 16, and 20; the kernel size was randomly chosen from 1, 3, 5, 
and 7 for 100 iterations.

ut = −uux + 0.01uuxx

Fig. 3   Scatter plot of generalization error versus capacity for p = 1.2, q = 1.2
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Table 1 lists the correlations for the various values of p and q. The correlation decreases 
with increasing p and q. This is because as p increases, the p-norm loses information about 
elements other than the highest norm. Thus, the information of the model is lost in a capac-
ity defined by high values of p and q. However, as p goes to ∞ , p ∗ reaches 1; thus, kernel 
size and kmax have a greater effect on capacity as p increases. Therefore, we assume that the 
capacity of a high p contains more information regarding model architecture. To prove our 
arguments, we conducted experiments in which kmax was varied and the other hyperparam-
eters were fixed. First, to show that the capacities of low p and q contain more information 
about the model weights than its architecture, we trained three models with negligible dif-
ferences in kmax . Second, to demonstrate that the capacities of high p and q are more closely 
related to the model architecture, we trained three types of models with considerable differ-
ences in kmax . For each experiment, we trained the models 30 times for each kmax setting, that 
is, 14, 16, and 18 in the left column of Fig. 4 and 10, 30, and 50 in the right column. Hyper-
parameters other than kmax were fixed: the kernel size of the CNN layer was 1, the width was 
64, and the depth of the Fourier layers was 2. As revealed by the left column of Fig. 4, mod-
els with small gaps in kmax lose the correlation between the generalization gap and capacity 
with increasing p and q. However, in the right column, the highest correlation between the 
capacity and generalization error is obtained for higher p and q values compared to those in 
the left column. The correlation is maintained at  0.89 for the p, q = ∞ case.

4.2 � Dependency of generalization errors on architectures and datasets

4.2.1 � Dependency on kmax

Next, we examined the dependency of the generalization error on the model architecture. 
In the experiments, hyperparameters other than kmax are fixed. We consider two cases: Fou-
rier layers at depths of 1 and 2.

A low kmax implies that the dynamics of learning are unpredictable and chaotic 
(Seleznova & Kutyniok, 2021); therefore, we did not consider models with extremely small 
values of kmax . We varied kmax from 13 to 39 in two intervals. For a detailed analysis, we 
removed the CNN layer parts from the Fourier layers, such that the generalization error 
is proportional to the weight norm Ri . To verify the influence of kmax size, we divided the 
generalization error by Ri . As the defined capacity is correlated with the generalization 
error, it is expected that the divided generalization error is correlated with p∗

√
kmax at a depth 

of 1 and p∗2
√
kmax at a depth of 2. As listed in Tables 2 and 3, the generalization error divided 

by the norms is correlated to p∗
√
kmax and p∗2

√
kmax . Hence, we can verify that the correlation 

Table 1   Correlation between 
empirical generalization error 
and capacities of various p and q 
for trained models with randomly 
chosen hyperparameters

Bold value indicates the highest one

p = 1 p = 1.2 p = 1.6 p = 2 p = 4 p = ∞

q = 1 0.8757 0.9137 0.7794 0.7595 0.7542 0.7285
q = 1.2 0.8395 0.9358 0.8007 0.7635 0.7526 0.7265
q = 1.6 0.8127 0.9007 0.8476 0.7750 0.7495 0.7231
q = 2 0.8037 0.8720 0.8815 0.7860 0.7466 0.7204
q = 4 0.7919 0.8417 0.9084 0.7938 0.7322 0.7112
q = ∞ 0.7555 0.8229 0.8859 0.7765 0.7235 0.7219
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Fig. 4   Left: Scatter plot, correlation, and linear regression between generalization error and capacities of vari-
ous p and q for 30 trained models for kmax = 14, 16, 18 ; Right: Scatter plot, correlation, and linear regression 
between generalization error and capacities of various p and q for 30 trained models for kmax = 10, 30, 50



	 Machine Learning

1 3

is low for low capacities of p and q, and the desired dependency on kmax is unclear. As p 
and q increase, this correlation first increases and then decreases slightly. Based on these 
data, we can conclude that capacities with higher p and q contain more information about 
the model architecture(kmax ), and capacities with very high p and q may cause a loss of 
specific information about each model; thus, the correlation decreases. Figure 5 shows the 
scatter plot and regression for a few experimental cases. The generalization error depend-
ence on kmax was more convex at a depth of two. Based on our definition of capacity, the 
exponent of kmax is proportional to the depth of the Fourier layers. Therefore, the increased 
convexity illustrated on the right side of the figures qualitatively validates the results.

4.2.2 � Empirical dependency on the size of training samples

As in Corollary 3 and other results on bounding the generalization error of neural nets by capac-
ity norms, generalization error should converge as the training data set grows. The convergence 
rate is O(n−l) where 0 ≤ l ≤ 0.5 . However, we found that the real convergence rate is much 
faster than the theoretical bounding rate. Moreover, our defined capacity is a suitable indicator 
by observing that the combination of our capacity with factor by training dataset size is highly 
correlated to the empirical generalization error. First, we show that we also obtain a high cor-
relation for nonlinear activation other than ReLU. The architecture of the models is as follows: 
all the hyperparameters are the same as in Sect. 4.1, the weight decay, kmax , is randomly chosen 
from [0,e−3,...,4e−3], [10,12,...,20] respectively. The results are shown in Fig. 6.

Next, we demonstrate a high correlation between our empirically determined formula 
and the generalization errors of our experimental results. The architecture of this experi-
ment was the same as that described above. However, the architecture of the model was 
fixed at kmax = 14 and the other hyperparameters were equal to those in the above exper-
iments. The only varying parameter was the training dataset size [200, 400,..., 10,000]. 

Table 2   Correlation between 
empirical generalization error 
divided by weight norm of 
Fourier layers and p∗

√
kmax for 

FNO with depth 1 of Fourier 
layers

Bold value indicates the highest one

p = 2 p = 2.5 p = 4 p = 8 p = 20 p = ∞

q = 1 0.6913 0.8199 0.8928 0.9062 0.8855 0.8647
q = 2 0.7210 0.8386 0.9029 0.9129 0.8921 0.8699
q = 4 0.7302 0.8389 0.8990 0.9064 0.8868 0.8629
q = 8 0.7041 0.8133 0.8797 0.8872 0.8649 0.8328
q = ∞ 0.6561 0.7620 0.8454 0.8573 0.8231 0.7741

Table 3   Correlation between 
empirical generalization error 
divided by weight norm of 
Fourier layers and p∗2

√
kmax for 

FNO with depth 2 of Fourier 
layers

Bold value indicates the highest one

p = 2 p = 4 p = 8 p = 12 p = 20 p = ∞

q = 1 −0.4145 0.8722 0.9319 0.9387 0.9385 0.9322
q = 2 −0.4027 0.8882 0.9396 0.9439 0.9436 0.9365
q = 4 −0.3386 0.9063 0.9484 0.9506 0.9485 0.9397
q = 8 −0.1041 0.9129 0.9508 0.9504 0.9448 0.9319
q = ∞ 0.3099 0.8821 0.9207 0.9162 0.9045 0.8834



Machine Learning	

1 3

Fig. 5   Left: Scatter plot and regression between generalization error divided by norms of Fourier layers and 
p∗
√
kmax for various p, q where the depth of Fourier layer is 1; Right: Scatter plot and regression between generali-

zation error divided by norms of Fourier layers and p∗2
√
kmax for various p, q where the depth of Fourier layer is 2
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We found that the actual convergence rates are much faster than the results of Corollary 3 
(which implies that the upper bound of the generalization error is O(m−0.5) ) and the con-
vergence rates are dependent on the activation functions of the models; O(m−1.1) for ReLU, 
and O(m−1.55) for GELU. The results are presented in Figs. 7 and 8. The shaded areas in the 
right figures indicate the variance in the empirical generalization error. We also calculated 
the variance of our estimation; however, when normalized to the scale of empirical gener-
alization error, it is significantly small compared to empirical generalization error. There-
fore, it is a stable index for estimating generalization errors.

Fig. 6   Left: Scatter plot of generalization error for ReLU case Right: Scatter plot of generalization error for 
GELU case

Fig. 7   Left: Scatter plot of generalization error for ReLU Right: Graph of empirical generalization error and 
normalized capacity factored by size of training dataset
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Fig. 8   Left: Scatter plot of generalization error for GELU case Right: Graph of empirical generalization 
error and normalized capacity factored by size of training dataset

Fig. 9   Scatter plot and Correlation on the various test datasets
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4.3 � Correlation for different resolution test samples and out of distribution 
samples

The upper bound of the generalization errors in Sect.  3 depends on discretization 
and dataset structure. To investigate how our capacity correlates with the generaliza-
tion error of the test samples generated from different data distributions of the origi-
nal training dataset, we constructed several test datasets other than the original one. 
For the experiment, we trained our models based on the same settings as those in 
Sect. 4.2.2, and inferenced on various test datasets. Recall that covariance of the GRF 
is k(x, y) = e

−
(x−y)2

c2  where c is a coefficient: Our test datasets were all four cases: c = 0.05 
with discretization N = 512 and N = 2048 . and N = 1024 with c = 0.025 and c = 0.1 . 
The capacity is calculated as p = 2, q = 2 . The experimental results are shown in Fig. 9 
and Table 4. It is interesting that although in Corollary 2 and 3, the upper bound has 
explicit dependence on discretization size N, in the empirical experiment, our capac-
ity itself has a resolution-invariant property, showing almost the same tendency in 
the N=2048 and N=512 cases as in the original case. When c = 0.1 , the tendencies of 
regression line and data are similar as in c = 0.05 case, and even empirical generaliza-
tion errors are lower. However, when c = 0.025 , the tendency of the data points was 
frustrated and had a higher generalization error. We assume that the main reason for this 
phenomenon is that the information on the frequency data distribution is different. For 
c = 0.025 case, each function pair has more high-frequency components. The c = 0.1 
case has even fewer high-frequency components than c = 0.05 case.

4.4 � Additional experiments on other PDEs

To show that our capacity is an effective indicator for estimating the generalization error, 
we experimented with more cases, which are problems of the governing equations 1-d 
integration, 1-d heat equation, 2-d heat equation and 2-d Navier–stokes equation. We 
verified the correlation between the empirical generalization error and the defined 
capacity. Similar to the experiments for the Burgers equation described in Sect. 4.2, We 
checked the correlation between empirical generalization error and capacity factored by 
the sizes of dataset for the fixed model architecture and varying sizes of dataset (Fig. 10). 
As discussed in Sect. 4.2, the GELU performs better than ReLU activation, and we fixed 
our activation as GELU throughout all experiments. We omitted the CNN layer to sim-
plify the experiment.

Table 4   Correlation between empirical generalization error and our capacity for various test datasets where 
c = 0.05, N = 1024 case is i.i.d to training dataset

(c, N) (0.05, 1024) (0.05, 2048) (0.05, 512) (0.1, 1024) (0.025, 1024)

Correlation 0.852 0.840 0.848 0.829 0.833
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Fig. 10   Left: Scatter plot of generalization error for various PDE problems Right: Graph of empirical gen-
eralization error and normalized capacity factored by size of training dataset
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4.4.1 � 1‑d integration

1-d integration is one of the simplest function operators. The experimental settings were as 
follows:

where u0 is an initial condition, and u is a scaled integration of this function. As in the 
Burgers equation setting in Sects. 4.1 and 4.2, our domain is a circle uniformly discretized 
by N = 1024 . The function was scaled by multiplying it by 10 for normalization. Each 
initial function is generated from Gaussian random fields with covariance k(x, y) = e

−
(x−y)2

(0.05)2 , 
similar to the Burgers equation. The total training dataset comprises 10,000 pairs of func-
tions, and test dataset comprises 200 pairs of functions, respectively.

Training settings For fixed hyperparameters and varying sizes of the training dataset, we 
fixed the model architecture as kmax = 14 and the width as 64, the depth of the Fourier lay-
ers as 2, and the weight decay as e−3. The size of training dataset is [200, 400,..., 10,000]. 
For each training dataset size, the training was repeated five times.

4.4.2 � 1‑d heat equation

We experimented with another 1-d time dependent PDE problem known as 1-d heat equation. 
1-d heat equation describes the heat distribution on a physical object such as a steel rod. The 
governing equations are as follows.

The domain of the problem is a circle, and we uniformly discretize the domain by N = 
1024. The initial condition was generated by the same Gaussian random field as that in 
the Burgers equation and 1-d integration settings. The target function is a section of the 

ux = 10u0,

u(0) = 0

ut = uxx

Fig. 10   (continued)
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solution of the heat equation for a given initial condition at T=0.1. The training and test 
datasets have 10,000 and 200 pairs of functions, respectively.

Training settings The training settings are the same as in 1-d integration problem.

4.4.3 � 2‑d heat equation

Time-dependent heat equations are parabolic PDEs that describe heat diffusion. We experi-
mented based on a 2-d time-dependent heat equation to verify that our capacity is effective for 
a linear 2-dimensional PDE. The governing equations are as follows:

The domain of the problem is a torus, which means that the problem is periodic along 
the x- and y-axes. The domain was uniformly discretized with N=64 in both coordinates. 
The initial condition is generated by 2-d Gaussian random field with the distribution 
� = N(0, 73∕2(−Δ + 49I)−2.5) having the same GRF as in A.3.3 of Li et al. (2021). The tar-
get function is a section of the solution of the heat equation for a given initial condition at T 
= 0.005: The training and test datasets have 5000 and 200 pairs of functions, respectively.

Training settings For fixed hyperparameters and varying sizes of the training dataset, we 
fixed the model architecture as (kmax,1, kmax,2) = (14, 14) , with a width of 32, a depth of 2, and 
a weight decay of e−3. The training dataset size is [100, 200,..., 5000]. For each training data-
set size, the training was repeated five times.

4.4.4 � 2‑d Navier–Stokes equation

We consider the vicious, incompressible 2-d Navier–Stokes equation in vorticity form. The 
governing equations are as follows.

where u denotes the vorticity of velocity field v ( u = ∇ × v ) defined in the torus-prod-
uct time interval ( T × [0, T] ). 0 ≤ � is the viscosity coefficient, and f is a forcing func-
tion fixed as f (x) = 0.1(sin(2�(x1 + x2)) + cos(2�(x1 + x2))) . We selected one of the 2-d 
Navier–Stokes equation training dataset samples constructed in Li et al. (2021). Therefore, 
the initial vorticity function is generated from � = N(0, 73∕2(−Δ + 49I)−2.5) as in the heat 
equation. The viscosity coefficient � is 1e−4. We set the target of our model as vorticity at 
time T = 5 (=u(0, 5)) for a given initial vorticity.

Training settings The training settings are the same as in the 2-d heat equation problem.

4.5 � Comparison with other capacities

In this subsection, we compare our capacity with recently developed capacity norms: the 
Fisher-Rao norm (Liang et al., 2019), the Hessian trace norm (Petzka et al., 2021) and relative 
flatness (Petzka et al., 2021). For the experiment, we trained models with hyperparameters of 
width 16, 2-depth Fourier layers; kmax was chosen from [10,12,...,20] and weight decay from 
[0,1e−3,...,4e−3] on training dataset with 800 pairs of functions, which is the same as in the 
previous experiment settings. From Table 6 and Fig. 11, we infer that our capacity has the 

ut = ∇2u

ut + v ⋅ ∇u = �Δu + f ,

Δ ⋅ v = 0,

u(x, 0) = u0
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highest correlation among the norms because our capacity does contain information about the 
hyperparameter concerning the model’s architecture, whereas other norms do not. In addition, 
complicated derivatives or second-derivative information are not required to calculate our 
capacity. Therefore, as shown in Table 5, the calculation time of our capacity is much shorter 
than that of the other norms, enhancing memory efficiency.

5 � Conclusion

We investigated the bounding Rademacher complexity of an FNO and defined its capacity, 
which depends on the model architecture and the group norms of the weights. Although sev-
eral results exist regarding the bounding Rademacher complexity of various types of neural 
networks, the FNO possesses tensor weights of rank higher than two. Therefore, our study 
may be useful for other NNs containing higher-rank tensors. Our results are experimentally 
validated. Based on these experiments, we gained insights into the impact of p and q val-
ues and information about the model weights and architecture stored in terms of capacities. 
Through experiments on other PDEs and their dependency on the architecture and size of 
datasets, we validated that our capacity norm is effective for estimating the empirical gen-
eralization error. By comparing it with other sophisticated capacity norms, we empirically 
prove that our capacity norm is an efficient and effective index among these norms. Moreover, 
although various neural operators have been developed, including FNO and DeepONet, the 
analysis of PAC learning for these neural operators has not been performed in detail. Thus, 
this study may serve as a guide for such analyses. In this study, we assume that the activation 
function is fixed. For a general model containing parameterized activation, such as PReLU, we 
need to modify our analysis. Although the Rademacher complexity contains information about 
datasets, the bounding of our results lacks a specific dependency on each problem. Because 
we experimented with various PDE problems, the performance of the FNO varied for each 
problem. Therefore, we must extend the complexities to include information about datasets. 
In addition, although we empirically verified faster convergence compared to the theoretical 

Table 5   Time and memory cost for calculation of each norms

Our capacity Fisher–Rao norm Hessian trace norm Relative flatness

Time cost (s) 1e−3 0.15 175.12 188.86
Memory cost 80.1875 (KB) 80.1875 (KB) 200 (MB) 200 (MB)

Table 6   Correlation between empirical generalization error and various norms for different test datasets

Our capacity Fisher-Rao norm Hessian trace 
norm

Relative flatness

c = 0.05, N = 1024 0.921 0.195 0.046 0.182
c = 0.05, N = 2048 0.956 0.257 0.085 0.243
c = 0.05, N = 512 0.936 0.135 0.065 0.222
c = 0.1, N = 1024 0.842 0.168 0.164 0.281
c = 0.025, N = 1024 0.698 0.197 0.017 0.141
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bound, we need to justify the empirical fast convergence of the generalization error through 
careful theoretical analysis.

Fig. 11   Scatter plot and correlation for between empirical generalization error and various norms

Fig. 12   Left: Scatter plot of generalization error for models with CNN layers and ReLU activation. Right: 
Graph of empirical generalization error and normalized capacity factored by the size of training dataset
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Appendix A: Experimental details

A.1 Environment of experiments

All the experiments were conducted using Pytorch 2.0.1, with Python 3.9.6. The specifi-
cations of the hardware environment are as follows (Table 7):

A.2 Numerical schemes used in experiments

We used a forward difference scheme with a time step of 1e−4 and 1e−5 for 1-d and 
2-d heat equations, respectively. For the 1-d integration experiment, we used the most 
basic method (right-hand rule) by adding all terms and multiplying by the interval 
spacing. For 2-d Navier–Stokes equation, we used the dataset in Li et  al. (2021); the 
detailed numerical scheme is specified in Li et  al. (2021). The equation was solved 
using a stream function formulation and a pseudospectral method. For time marching, 
the Crank-Nicolson update was used with a time step of 1e−4.

A.3 Mathematical formulas for norms

We calculated the Fisher-Rao norm using the following formula with the finite difference 
method derived in Liang et al. (2019):

For the Hessian trace, we apply the following formula to the first Fourier layer:

Finally, for relative flatness, because the weight is a multi-rank tensor, we slightly modified 
the formula in Petzka et al. (2021). This formula is also applied to the first Fourier layer. 
The formula is as follows:

‖�‖2
fr
= �

��l(f�(X), Y)
�f�(X)

, f�(X)
�

H(k,s� ,s),(k̃,s̃�,s̃) =
𝜕2l

𝜕w(k,s� ,s)𝜕w(k̃,s̃�,s̃)

tr(H) =
∑

all(k,s�,s)

H(k,s� ,s),(k,s�,s)

H(k,s� ,s),(k̃,s̃�,s̃) =
𝜕2l

𝜕w(k,s� ,s)𝜕w(k̃,s̃�,s̃)

t̃r(H(s,s�)) =
�

all(k,k�,s̃,s̃�)

H(k,s̃,s),(k�,s̃� ,s�)

𝜅Tr ∶=
�

all(s,s�)

⟨R
⋅,⋅,s,R⋅,⋅,s�⟩t̃r(H(s,s�))

Table 7   Specification of 
computer hardware

CPU GPU RAM

Intel i9-10900 Nvidia RTX3080 64GB
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Appendix B: FNO with CNN layer versus without CNN layer

In this section, we present the results of the CNN-layer case. Although, for simplicity of 
analysis, we dropped the CNN layers in the experiments in Sect. 4, as shown in Fig. 12, 
the correlation is even higher than the cases with CNN layers dropped.
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