
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-024-06531-0

1 3

Structure discovery in PAC‑learning by random projections

Ata Kabán1  · Henry Reeve2

Received: 5 March 2023 / Revised: 30 October 2023 / Accepted: 14 February 2024 
© The Author(s) 2024

Abstract
High dimensional learning is data-hungry in general; however, many natural data sources 
and real-world learning problems posses some hidden low-complexity structure that permit 
effective learning from relatively small sample sizes. We are interested in the general ques-
tion of how to discover and exploit such hidden benign traits when problem-specific prior 
knowledge is insufficient. In this work, we address this question through random projec-
tion’s ability to expose structure. We study both compressive learning and high dimen-
sional learning from this angle by introducing the notions of compressive distortion and 
compressive complexity. We give user-friendly PAC bounds in the agnostic setting that are 
formulated in terms of these quantities, and we show that our bounds can be tight when 
these quantities are small. We then instantiate these quantities in several examples of par-
ticular learning problems, demonstrating their ability to discover interpretable structural 
characteristics that make high dimensional instances of these problems solvable to good 
approximation in a random linear subspace. In the examples considered, these turn out to 
resemble some familiar benign traits such as the margin, the margin distribution, the intrin-
sic dimension, the spectral decay of the data covariance, or the norms of parameters—
while our general notions of compressive distortion and compressive complexity serve to 
unify these, and may be used to discover benign structural traits for other PAC-learnable 
problems.
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1 Introduction

Many high dimensional learning problems require sample sizes that grow with the 
dimension of the data representation in an essential way in general. Examples include 
learning with scale-insensitive loss functions such as the 0–1 loss, learning on 
unbounded input or parameter domains (Mohri et  al., 2012; Shalev-Shwartz & Ben-
David, 2014), learning Lipschitz classifiers (Gottlieb & Kontorovich, 2014), metric 
learning (Verma & Branson, 2015), and others. A common approach to deal with these 
problems is to employ some form of regularisation constraints that reflect prior knowl-
edge about the problem, when available. Indeed, natural data sources and real-world 
learning problems tend to possess some hidden low complexity structure, and these 
can permit effective learning from relatively small sample sizes in principle. However, 
knowing these structures in advance to devise appropriate learning algorithms can be a 
challenge.

In this work, we are interested in the general question of how to discover and exploit 
such hidden benign traits when problem-specific prior knowledge is insufficient, based 
on just a general-purpose low complexity conjecture.

We address this question through random projection’s ability to expose structure—
an ability previously studied in contexts as distinct as high dimensional phenomena 
(Bartl & Mendelson, 2021), geometric functional analysis (Liaw et al., 2017), and brain 
research (Papadimitriou & Vempala, 2019). Random projection (RP) is a simple, com-
putationally efficient linear dimensionality reduction technique that preserves Euclidean 
structure with high probability. In machine learning, this can speed up computations at 
the price of a controlled loss of accuracy—this is generally referred to as compressive 
learning, in analogy with compressive sensing. Moreover, RP has a regularisation effect, 
and it has also been used as an analytic tool to better understand high dimensional learn-
ing in an early conference version of this work (Kabán, 2019).

The remainder of this section sets up the problem and gives a motivating example. In 
Sect. 2 we give simple PAC-bounds in the agnostic setting, both for compressive learn-
ing and for high dimensional learning. Our goal here is to work under minimal assump-
tions and isolate interpretable structural quantities that help gain intuitive insights into 
generalisation in high dimensional small sample situations. We term these as compres-
sive distortion and compressive complexity in the compressed and uncompressed set-
tings respectively, and we show that our bounds can be tight when these quantities are 
small.

In Sect.  3 we instantiate the above by bounding the problem-specific quantities that 
appear in these bounds for several widely-used model classes. These worked examples 
demonstrate how these quantities unearth structural characteristics that make these specific 
problems solvable to good approximation in a random linear subspace. In the examples 
considered, these turn out to take the form of some familiar benign traits such as the mar-
gin, the margin distribution, the intrinsic dimension, the spectral decay of the data covari-
ance, or the norms of parameters—all of which remove dimensionality-dependence from 
error-guarantees in settings where such dependence is known to be essential in general. At 
the same time, our general notions of compressive distortion and compressive complexity 
serve to unify these characteristics, and may be used beyond the examples pursued here. 
We also show how one can use unlabelled data to estimate these general quantities when 
analytic bounds are infeasible, and this procedure recovers a form of consistency regulari-
sation (Laine & Aila, 2017), which is a semi-supervised technique widely used in practice.
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1.1  Problem setting

1.1.1  High dimensional learning

Let Xd ⊂ ℝd be an input domain, and Y the target domain—e.g. Y = {−1, 1} is classifica-
tion, Y ⊆ ℝ in regression. We are interested in high dimensional problems, so d can be 
arbitrarily large.

Let Hd be a function class (hypothesis class) with elements h ∶ Xd → Y . The loss func-
tion � ∶ Y × Y → [0, �̄] quantifies the mismatch between predictions and targets. Through-
out this work we assume that the loss is bounded i.e. �̄ < ∞ . This simplifying assumption 
is often made in algorithm-independent theoretical analyses, either by clipping the loss, or 
by working with bounded functions h ∈ Hd e.g. by constraining both the parameter and 
input spaces to bounded sets. Several examples may be found in (Rosasco et  al., 2004). 
Boundedness is often natural too, since classification losses in use are typically surrogates 
for the 0–1 loss, which is bounded by �̄ = 1.

We are given a set of labelled examples TN = {(X1, Y1),… , (XN , YN)} drawn i.i.d. from 
some unknown distribution ℙ over Xd × Y . The learning problem is to select a function 
from Hd with smallest generalisation error E(X,Y)∼ℙ[�(h(X), Y)] , using the sample TN.

Let Gd = 𝓁◦Hd = {(x, y) → g(x, y) = 𝓁(h(x), y) ∶ h ∈ Hd} denote the loss class under 
study. Expectations with respect to (w.r.t.) the unknown data distribution ℙ , will be denoted 
by the shorthand E[g] ∶= E(X,Y)∼ℙ[g(X, Y)] = ∫

X×Y
gdℙ . Sample averages, i.e. expectations 

w.r.t. the empirical measure ℙ̂N defined by a sample TN will be denoted as 
ÊTN

[g] ∶= ÊTN
[g(X, Y)] =

1

N

∑N

n=1
g(Xn, Yn) = ∫

X×Y
gdℙ̂N , where ℙ̂N =

1

N

∑N

n=1
𝛿Xn

 , and �X 
is the probability distribution concentrated at X. A best element of H is denoted by 
h∗ ∈ arg inf

h∈Hd

E[𝓁◦h] , g∗ ∶= 𝓁◦h∗ ; a sample error minimiser is ĥ ∈ arg min
h∈Hd

ÊT[𝓁◦h] , and 

ĝ ∶= 𝓁◦ĥ.

1.1.2  Compressive learning

Let k ≤ d be integers, and R ∈ ℝk×d a random matrix with independent and identically dis-
tributed (i.i.d.) entries from a 0-mean 1/k-variance distribution, chosen to satisfy the John-
son–Lindenstrauss (JL) property (Property 5.1). This is referred to as a random projection 
(RP) (Arriaga & Vempala, 1999; Matoušek, 2008). For instance, a random matrix with 
i.i.d. Gaussian entries is known to satisfy JL. For simplicity, throughout of this paper we 
will work with Gaussian RP, which serves as a simple dimensionality reduction method. 
While RP is not a projection in a strict linear-algebraic sense, the rows of R have approxi-
mately identical lengths and are approximately orthogonal to each other with high prob-
ability—hence the established nomenclature of "random projection".

We denote the compressed input domain by XR ≡ R(X) ⊆ ℝk , and have analogous defi-
nitions, indexed by R, as follows. The compressed function class HR contains functions 
of the form hR ∶ XR → Y . The learning algorithm receives the compressed training set, 
denoted TN

R
= {(RXn, Yn)}

N
n=1

 , and selects a function from HR.
We denote a sample error minimiser in this reduced class by ĥR ∈ arg inf

hR∈HR

ÊTN
R
[𝓁◦hR] , 

where ÊTN
R
[𝓁◦hR] =

1

N

∑N

n=1
𝓁(hR(RXn), Yn) is the empirical error of the compressed 
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learning problem, and denote ĝR ∶= 𝓁◦ĥR . Likewise, h∗
R
∈ arg inf

hR∈HR

E[𝓁◦hR] denotes a best 

function in HR , g∗
R
∶= 𝓁◦h∗

R
.

We are interested in the generalisation error of the compressed sample minimiser ĥR , 
that is E(X,Y)∼ℙ[�(ĥR(RX), Y)] , relative to the best h∗ ∈ Hd.

Let us end this introduction with an example that showcases the regularisation effect of 
RP, and demonstrates a failure of empirical risk minimisation (ERM) without regularisa-
tion. This will motivate our approach of introducing novel quantities in Sect.  2, and the 
instantiations of these quantities later in Sect. 3 may be regarded as a strategy to derive 
model-specific regularisers from the structure-preserving ability of RP. In our bounds, 
these quantities will be responsible for dimension-independence.

1.2  A motivating example

Random projection based dimensionality reduction is most commonly motivated by com-
putational speed-up and storage savings, and these benefits may come at the expense of a 
slight deterioration of accuracy performance. But this is just part of the story. In this sec-
tion we make the picture more complete by demonstrating a simple example to highlight 
that RP has a regularisation effect without of which ERM can actually fail.

Theorem  1 (ERM can be arbitrarily bad) Let ei be the i-th canoni-
cal basis vector, suppose the data distribution is uniform on the finite set 
X × Y ∶= S ≡ {(e1 + ei, 1), (−e1 − ei,−1) ∶ i = 2,… , d} , and let TN be an i.i.d. sample of 
size N. Then, 

1. There exists a classifier hbad such that Ê(X,Y)∼TN
[1(hT

bad
XY ≤ 0)] = 0 , but 

2. Let R be a k × d random projection matrix with i.i.d. sub-gaussian entries independent 
of TN , and d ≥ k ≥ ⌈16 log 4N

�
⌉ , where 𝛾 > 0 is the normalised margin of h∗ in S. Given 

any � ∈ (0, 1) , w.p. at least 1 − � the generalisation error of any compressive ERM, 
ĥR ∈ ℝk , is upper bounded as the following 

The proof is given in Appendix Sect.  1. The construction exploits the fact that some 
ERM classifiers perform badly in small sample problems with large margin; in contrast, RP 
narrows the margin while keeping separability with high probability, so in this construction 
compressive ERM enjoys a dimension-free generalisation guarantee.

EX,Y [1(h
T
bad

XY ≤ 0)] ≥ 1 −
N

d − 1
.

EX,Y

{
1
(
ĥT
R
RXY ≤ 0

)} ≤ 2

N

(
k log

2eN

k
+ log

4

𝛿

)
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2  Error bounds for compressible problems

2.1  Learning with compressive ERM

We introduce the following definition, which later we use to bound the error of compres-
sive ERM.

Definition 1 (Compressive distortion of a function) Given a function g ∈ Gd , we define its 
compressive distortion as the following:

Property 2.1 The following properties are immediate: 

1. For all g ∈ Gd and all k ∈ ℕ,Dk(g) ≥ 0.
2. There exists k ≤ d s.t. Dk(g) = 0.
3. For any k, if g(x, y) ∈ [0, �̄] for all (x, y) ∈ X × Y , then Dk(g) ∈ [0, �̄].
4. If � is L-Lipschitz in its first argument, then ∀h ∈ Hd,Dk(g) ≤ L ⋅ Dk(h) , where g = 𝓁◦h.

Moreover, these properties also hold for DR.
Due to the first two properties above, as k → d , the generalisation bounds for compres-

sive ERM will recover those for the original ERM. The last property implies that for many 
loss functions of interest, the compressive distortion can be bounded independently of label 
information.

It is natural to conjecture that learning problems whose target function has small com-
pressive distortion are easier for compressive learning. This is indeed the case, as we shall 
see shortly. Recall the empirical Rademacher complexity of a function class G is defined as 
R̂N(G) =

1

N
E𝜎 supg∈G

∑N

n=1
𝜎ng(Xn) , where � = (�1,… , �N)

i.i.d

∼ Uniform(±1) . Let us denote 
by ĝR = 𝓁◦ĥR the loss of the compressive ERM predictor. We have the following generali-
sation bound.

Theorem 2 (Generalisation of compressive ERM) Let GR be the loss class associated with 
the compressive class of functions HR , and assume that � is uniformly bounded above by �̄  . 
For any k ∈ ℕ and 𝛿 > 0 , w.p. 1 − 2�,

where �(k, g∗, �) ≡ min

{
1−�

�
Dk(g

∗),

√
1

2
log

1

�

}
 . In particular, if Dk(g

∗) ≤ � for some 

𝜃 ∈ [0, �̄] , then the compressive ERM satisfies

Proof Fixing R we have an ERM over the compressive class. Hence, we can bound the 
generalisation error of the function learned, ĝR ∈ GR , using classic uniform bounds such as 

(1)DR(g) ≡ inf
gR∈GR

EX,Y |(gR◦R − g)(X, Y)|; Dk(g) ≡ ER[DR(g)(X, Y)]

(2)E[ĝR] ≤ E[g∗] + Dk(g
∗) + 2R̂N(GR) + 𝓁 ⋅ 𝜉(k, g∗, 𝛿) + 4𝓁

√
log(3∕𝛿)

2N

(3)E[ĝR] ≤ E[g∗] + 𝜃 + 2R̂N(GR) + 𝓁 ⋅ 𝜉(k, g∗, 𝛿) + 4𝓁

√
log(3∕𝛿)

2N
.
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(Mohri et al, 2012, Lemma 3.3) (Theorem 29 in Appendix 5) combined with the Hoeffding 
bound. This gives w.p. 1 − � that

This bound is relative to g∗
R
∈ GR , that is the best achievable in the reduced class, while we 

want a bound relative to the best achievable in the original class, i.e. g∗ ∈ Gd . To this end, 
we write

where we used Jensen’s inequality to draw the infimum out of the expectation, since the 
infimum is a concave function.

Now, since the loss is bounded, and recalling that Dk(g
∗) = ER[DR(g

∗)] , we can bound 
the last term on the r.h.s. as DR(g

∗) ≤ Dk(g
∗) +

√
1

2
log(1∕�) w.p. 1 − � using Hoeffding’s 

inequality (Lemma 27), or alternatively as DR(g
∗) ≤ 1

�
Dk(g

∗) = Dk(g
∗) +

1−�

�
Dk(g

∗) w.p. 
1 − � using Markov’s inequality (Lemma 26). Each of these two bounds can be tighter than 
the other depending on the magnitude of Dk(g

∗) . By taking the minimum, we have

Finally, by the union bound, both (4) and (6) hold simultaneously w.p. 1 − 2� , hence we 
conclude the statement (2). Equation (3) follows from (2) by substituting the upper bound � 
for Dk(g

∗) .   ◻

The error of the uncompressed ERM is recovered when Dk(g
∗) = 0 , which in the worst 

case will happen for k = d . Moreover, depending on the structure of the problem, Dk(g
∗) 

can become negligible even for k < d . Theorem 2 implies that compressive learning will 
work better on problems where the target function g∗ has small compressive distortion.

The benefit of this simple result is to unify the analysis of compressive learning of vari-
ous models into one framework, which further depends on problem-specific quantities. In 
particular, the compressive distortion appears in the bound, which depends on the particu-
lar model class, and analysing this quantity further will give us a handle on discovering 
problem-specific characteristics that contribute to the ease of learning from compressed 
data.

Here we assumed that the distortion threshold � and the compression dimension k are 
fixed in advance. The latter may be set to a fraction of the available sample size N, so that 
the function class complexity remains small. Later in Sect. 3 we develop some intuition 
about the geometric meaning of compressive distortion in some concrete function classes, 
and demonstrate how it can be used to learn about benign problem characteristics.

2.2  Learning compressible problems in the dataspace

The main quantity in our analysis of compressive learning in the previous section was the 
compressive distortion of the target function, Dk(g

∗) . In this section we return to the orig-
inal high dimensional problem, and define a notion of distortion for the entire function 
class, which we refer to as the compresive complexity of the class. We shall then focus on 

(4)E[ĝR] ≤ E[g∗
R
] + 2R̂N(GR) + 4�̄

√
log(3∕𝛿)

2N

(5)E[g∗
R
] = E[g∗] + E[g∗

R
− g∗] ≤ E[g∗] + inf

gR∈GR

E|gR − g∗| = E[g∗] + DR(g
∗),

(6)DR(g
∗) ≤ Dk(g

∗) + �(k, g∗, �).
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function classes that have low compressive complexity. The intuition behind this approach 
is that such classes are in fact a smaller in some sense, which should allow easier learn-
ing—albeit this will have to be a non-ERM algorithm that avoids the pitfalls of ERM that 
we exemplified earlier in Sect. 1.2, and this will indeed follow from our analysis. To this 
end, in this section we give a uniform bound in terms of compressive complexity.

We introduce an auxiliary construction that involves a random projection for analytic 
purposes, while the learning problem stays in the original data space without any dimen-
sionality reduction. As before, R ∈ ℝk×d, k ≤ d is a RP matrix, but this time it will serve 
a purely analytic role. We define an auxiliary function class, GR = 𝓁◦HR with elements 
gR = 𝓁◦hR—again for analytic purposes. This class may be chosen freely. A natural choice 
is to have the same functional form as the elements of Gd , but operating on k (rather than d) 
dimensional inputs, as then from a compressive learning guarantee one can readily infer a 
dataspace guarantee, as we shall see shortly. However, other choices can be more conveni-
ent to work with when the dataspace bound is sought. Next, we define compressive com-
plexity with the aid of an unspecified auxiliary class GR , as follows.

Definition 2 (Compressive complexity of a function class) Given a function class 
Gd and a function g ∈ Gd , we let D̂R,N(g) ≡ infgR∈GR

ÊTN
|gR(RX, Y) − g(X, Y)| , and 

D̂k,N(g) ≡ ER[D̂R,N(g)] . We define the compressive distortion of Gd as the following.

We may think of the compressive complexity as the largest (w.r.t. g ∈ Gd ) ‘mimicking 
error’ (on average over training sets) of compressive learners that each receive a randomly 
compressed version of the inputs and learn to behave like g. With the use of Definition 2, 
we can decompose the Rademacher complexity of the original class as the following.

Lemma 3 (Decomposition of Rademacher complexities) Let Gd be a class of uniformly 
bounded real valued functions on X  . We have

(7)Ĉk,N(Gd) ≡ sup
g∈Gd

D̂k,N(g); Ck,N(Gd) ≡ ETN∼ℙ
N [Ĉk,N(Gd)]

(8)R̂N(Gd) ≤ Ĉk,N(Gd) + ER[R̂N(GR)]

(9)RN(Gd) ≤ Ck,N(Gd) + ER[RN(GR)]

(10)RN(Gd) ≤ Ĉk,N(Gd) + ER[R̂N(GR)] + �̄

√
log(1∕𝛿)

2N
w.p. 1 − 𝛿

(11)RN(Gd) ≤ Ĉk,N(Gd) + ER[RN(GR)] + �̄

√
log(1∕𝛿)

2N
w.p. 1 − 𝛿



 Machine Learning

1 3

Proof of Lemma 3 By the definition,

We add and subtract E� supg∈Gd
ER infgR∈GR

�
1

N

∑N

n=1
�ngR(RXn, Yn)

�
 , so

 This completes the proof of (8). Taking expectation w.r.t. the distribution of TN we obtain 
(9). Using these, we obtain inequalities (10)–(12) by employing McDiarmid’s inequality 
(Lemma 28), as follows.

Since the loss function is bounded by �̄  , changing one point of TN can only change 
R̂N(Gd) (or Ĉk,N(Gd) ), as a functions of a set of N points, by at most c = �̄∕N . Hence, 
applying one side of McDiarmid’s inequality gives each of the following

Now, combining (13) with (8) gives (10). Combining (9) with (14) gives (11). Finally, 
using (9) and then applying (13) with the class GR gives (12).   ◻

The reason the above decompositions will be useful for our purposes is that, when-
ever Ck,N(Gd) is sufficiently small, then the Rademacher complexity of the original func-
tion class becomes essentially the complexity of a k rather than a d dimensional function 
class—therefore, inspecting Ck,N(Gd) for the class Gd at hand will help us gain intuitive 
insight about the structures that make some high dimensional problems actually be less 
high dimensional than they appear to be. As such, our focus is on problems where RN(Gd) 
grows with d, and Ck,N(Gd) is small, and examples will follow in the next section. In such 
problems, when prior knowledge does not justify any further assumptions, the smallness of 
compressive distortion represents a general-purpose simplicity conjecture that may be used 
to derive conditions for a high dimensional problem to be solvable in low dimensions. The 
particular form of these will depend on the particular function class associated with the 
learning problem, but for now we keep the formalism general and simple.

(12)RN(Gd) ≤ Ck,N(Gd) + ER[R̂N(GR)] + �̄

√
log(1∕𝛿)

2N
w.p. 1 − 𝛿

R̂N(Gd) = E𝜎 sup
g∈Gd

1

N

N∑
n=1

𝜎ng(Xn, Yn).

R̂N(Gd) ≤ E𝜎 sup
g∈Gd

ER inf
gR∈GR

{
1

N

N∑
n=1

𝜎n(g(Xn, Yn) − gR(RXn, Yn))

}

+ E𝜎ER sup
gR∈GR

{
1

N

N∑
n=1

𝜎ngR(RXn, Yn)

}

≤ Ĉk,N(Gd) + ER[R̂N(GR)].

(13)RN(Gd) ≤ R̂N(Gd) + �̄

√
log(1∕𝛿)

2N
w.p. 1 − 𝛿;

(14)Ck,N(Gd) ≤ Ĉk,N(Gd) + �̄

√
log(1∕𝛿)

2N
w.p. 1 − 𝛿.
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Theorem 4 (Uniform bounds for problems with small compressive complexity) Fix some 
𝜃 ∈ [0, �̄] . Suppose that G̃d ⊆ Gd is a function class that satisfies Ck,N(G̃d) ≤ 𝜃 . Then, for 
any 𝛿 > 0 , w.p. 1 − � the following holds uniformly for all g ∈ G̃d:

Furthermore, w.p. 1 − � , ĝ ∶= arg min
g∈G̃d

Ê[g] , satisfies

Proof By the classic Rademacher bound (Theorem 29) applied to G̃d , we have w.p. 1 − �∕2 
for all g ∈ G̃d that

Applying (12) from Lemma 3 to G̃d , we further have 
RN(G̃d) ≤ R̂N(G̃R) + Ck,N(G̃d) + �̄

√
log(2∕𝛿)

2N
 w.p. 1 − �∕2 , where G̃R ⊆ GR . This combined 

with (17) using the union bound gives w.p. 1 − �

Finally, G̃R ⊆ GR implies R̂N(G̃R) ≤ R̂N(GR) , and using that Ck,N(G̃d) ≤ 𝜃 completes the 
proof of (15).

Equation (16) follows from (15). Indeed, as (15) holds uniformly for all g ∈ G̃d , it also 
holds with ĝ in the place of g, and we apply this w.p. 1 − 2�∕3 yielding

By definition of ĝ , we also have ÊTN
[ĝ] ≤ ÊTN

[g∗] , and by Hoeffding’s inequality we fur-

ther have ÊTN
[g∗] ≤ E[g∗] + �̂

√
log(3∕𝛿)

2N
 w.p. 1 − �∕3 . Finally, we combine this with (19) 

via the union bound to complete the proof.   ◻

Theorem  4 implies that, if the compressive complexity of the function class is suffi-
ciently small, then the d-dimensional problem is solvable with a guarantee that is almost as 
good as a k ≪ d-dimensional version of the problem. This is of interest in problems where 
the available sample size N is too small relative to d to permit a meaningful guarantee. 
Observe that k manages a tradeoff, as � decreases with k while the Rademacher complexity 
in general may increase with k. As before, k and � are considered to be fixed before seeing 
the data. A sensible choice is to set k proportional to N—which is typically known—in 
other words, in small sample settings we are prepared to take a bias � and in return gain 
control over the affordable complexity of the class. The classic bounds are recovered when 
k = d . However, the intuition is that often the geometry of the problem may be favourable 
for � to be sufficiently small while k ≪ d . Our bounds express this intuition, and Sect. 3 
will make it more concrete.

(15)E[g] ≤ ÊTN
[g] + 2𝜃 + 2ER[R̂N(GR)] + 3�̄

√
log(2∕𝛿)

2N

(16)E[ĝ] ≤ E[g∗] + 2𝜃 + 2ER[R̂N(GR)] + 4�̄

√
log(3∕𝛿)

2N
.

(17)E[g] ≤ ÊTN
[g] + 2ER[RN(G̃d)] + �̄

√
log(2∕𝛿)

2N
.

(18)E[g] ≤ ÊTN
[g] + 2ER[R̂N(G̃R)] + 2Ck,N(G̃d) + �̄

√
log(2∕𝛿)

2N
.

(19)E[ĝ] ≤ ÊTN
[ĝ] + 2𝜃 + 2ER[R̂N(GR)] + 3�̄

√
log(2∕(3𝛿))

2N
.
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Note that the restriction of the function class to obey Ck,N(G̃d) ≤ 𝜃 is necessary for the 
above guarantee. This is important, as in practice it is often easier to specify a large class 
Gd , and we have seen earlier in Theorem 1 that an unconstrained ERM can be arbitrarily 
bad. Hence, in order to exploit the guarantee provided by Theorem 4, the learning algo-
rithm must ensure this constraint.

The compressive complexity has similar properties to those of compressive distortion.

Property 2.2 The following properties hold. 

1. For all g ∈ Gd and all k ∈ ℕ , Ck,N(Gd) ≥ 0.
2. There exists k ≤ d s.t. Ck,N(Gd) = 0.
3. For any k, if g(x, y) ∈ [0, �̄] for all (x, y) ∈ X × Y , then Ck,N(Gd) ∈ [0, �̄].
4. If � is L-Lipschitz in its first argument, then Ck,N(Gd) ≤ L ⋅ Ck,N(Hd).

Moreover, these properties also hold for D̂R,N(⋅), D̂k,N(⋅) , and Ĉk,N(⋅).
Furthermore, we can link compressive distortion with compressive complexity, and 

this facilitates insights about high dimensional dataspace learning from guarantees 
obtained on compressive learning.

Property 2.3 (From compressive distortion to compressive complexity) Let ℙ̂ denote 
the counting probability measure over the training sample. Suppose we have a 
bound DR(h) ≤ �R(h,ℙ) for all h ∈ Hd , where �R is some expression that depends 
on R. Then, we also have Ck,N(Hd) ≤ ETN∼ℙ

N [suph∈Hd
ER[𝜓R(h, ℙ̂)]] . In particu-

lar, if DR(h) ≤ �(ℙ) ⋅ �R(h) for all h ∈ Hd with some expressions � and �R , then 
Ck,N(Hd) ≤ ETN∼ℙ

N [𝜙(ℙ̂)] ⋅ suph∈Hd
ER[𝜑R(h)].

Proof of Property 2.3 Since DR(h) ≤ �R(h,ℙ) for all h ∈ Hd , we also have 
D̂R,N(h) ≤ 𝜓R(h, ℙ̂) for all h ∈ Hd . Hence,

Applying this to the special case when �(h,ℙ) = �(ℙ) ⋅ �R(h) for all h ∈ Hd , the second 
statement follows.   ◻

Below in Lemma 5 we give a simple example of a compressible problem, i.e. a dis-
tribution and function class pair where we have both a low compressive distortion and 
a low compressive complexity.

Definition 3 (Almost low-rank distributions) Given � ∈ [0, 1] and k ≤ d we say that a 
probability measure � is �-almost k-rank on ℝd , if there exists a k-dimensional linear sub-
space Vk ⊆ ℝd such that 𝜇(Vk) > 1 − 𝜃.

Lemma 5 (Compressive distortion and compressive complexity in almost low-rank distri-
butions) Let Gd be the linear function class with an �̄-bounded loss function. Suppose that 
the marginal ℙX is a �-almost k-rank distribution on ℝd , and R is a k × d RP matrix having 
full row-rank a.s. For any N ∈ ℕ , we have

(20)Ck,N(Hd) = ETN∼ℙ
N sup
h∈Hd

ER[D̂R,N(h)] ≤ ETN∼ℙ
N sup
h∈Hd

ER[𝜓R(h, ℙ̂)].
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Lemma 5 will be useful in the construction of a lower bound in Sect.  2.3. The 
idea of the proof is that, knowing that the marginal distribution is almost k-rank, we 
can choose the auxiliary class GR such that R ∈ ℝk×d leaves the linear subspace Vk 
unchanged a.s.

The proof of Lemma 5 is given in Appendix Sect. 2.

2.3  Tightness of the bounds

The upper bounds of Theorems 2 and 4 are attractive when � is small, i.e. for compressible 
problems. Our goal in this section is to show the tightness of these bounds under the same 
conditions as those upper bounds. More precisely, we will show that there exists a func-
tion class for which the dependence of the bound on the parameters �, k and N cannot be 
improved without imposing extra conditions.

First, we need to make explicit the dependence of the relevant quantities on the unknown 
data distribution ℙd . To this end, we shall use the notations Dk(g

∗,ℙd) and Ck,N(Gd,ℙd) for 
the compressive distortion and the compressive complexity respectively. We drop the index 
d as it stays the same throughout this section, so G will stand for Gd , and H will stand for 
Hd . As in the previous sections, we assume �̄-bounded loss functions.

Next, we define the class of distributions for which these quantities are below a speci-
fied threshold.

Definition 4 (Compressible distributions) Let k ≤ d be an integer, and � ∈ [0, 1] . 

1. Given a learning problem with target function g∗(⋅, ⋅) = 𝓁(h∗(⋅), ⋅) , we say that a distri-
bution ℙ is D-compressible with parameters (�, k) , if the compressive distortion of g∗ 
satisfies Dk(g

∗,ℙ) ≤ �̄𝜃 . We denote by Pg∗ (𝜃, k) ∶= {ℙ ∶ Dk(g
∗,ℙ) ≤ �̄𝜃} the set of all 

D-compressible distributions with parameters (�, k).
2. Given a function class G , we say that a distribution ℙ is C-compressible with param-

eters (�, k) , if the compressive complexity of G satisfies Ck,N(G,ℙ) ≤ �̄𝜃 . We denote 
by PG(𝜃, k) ∶= {ℙ ∶ Ck,N(G,ℙ) ≤ �̄𝜃} the set of all C-compressible distributions with 
parameters (�, k).

For a distribution ℙ , we denote by h∗
ℙ
∈ arg inf

h∈H

E[�(h(X), Y)] a best classifier of the 

class H in the underlying distribution ℙ . In the construction of the proof of the forthcoming 
Theorem  6, h∗

ℙ
 will coincide with the Bayes-optimal classifier. A learning algorithm 

A ∶ (X × Y)N → H takes a training set of size N and returns a classifier. The loss of this 
classifier is denoted by gA(TN )

(X, Y) ∶= �((A(TN))(X), Y).
We have the following lower bound in the high-dimensional small sample setting.

Theorem  6 (Lower bound) Consider the 0–1 loss. For any � ∈ [0, 1] , any integers 
k ≤ N ≤ d , and any algorithm A ∶ (X × Y)N × X → H there exists a D-compressible and 
C-compressible distribution ℙ ∈ Pg∗ (k, �) ∩ PG(k, �) (which depends on �, k, d,N and A ) 
such that:

(21)Dk(g
∗) ≤ �̄𝜃

(22)Ck,N(Gd) ≤ �̄𝜃.
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The proof is deferred to Appendix 4. Theorem 6 says that, in the high dimensional set-
ting ( k ≤ N ≤ d ), for any choice of algorithm there is a bad distribution which, despite it 
being compressible (i.e. it satisfies the same condition as our upper bounds), the error of 
the classifier returned by the algorithm on an i.i.d. sample of size N from that distribution 
is large.

We note that the bad distribution is allowed to depend on the sample size. Therefore 
Theorem 6 does not imply that, for some distribution, the excess risk converges at a rate 
no faster than that of the upper bound. However, studying faster rates is beyond the scope 
of this paper, as require additional assumptions and is pursued elsewhere (Reeve & Kabán, 
2021).

The important point here is that, there are function classes for which the lower bound of 
Theorem 6 matches the upper bound up to a constant factor—for instance in k-dimensional 
linear classification it is well-known that R̂N(GR) ∈ Θ

�√
k∕N

�
 (Bartlett & Mendelson, 

2002). Hence, the lower bound of Theorem 6 implies that Theorem 4 cannot be improved 
in general by more than a constant factor. To see this more clearly, we rearrange the upper 
bound from Theorem 4 to have the same left-hand side as (23). Setting 𝜖 ∶= 4�̄

√
log(3∕𝛿)

2N
 

gives 2𝛿 = 6 exp
(
−

N𝜖2

8�̄2

)
 , and we have

This implies that

Hence, noting that �̄  is a constant independent of k, N, d and � , we have for the linear class 
that

This matches the lower bound up to a constant factor.
In the compressed ERM bound of Theorem 2, the term �(k, g∗, �) reflects the variability 

of error due to working in a lower dimensional random subspace of X  . This term is irre-
ducible with N, instead it decays with k through Dk(g

∗) , which is model-specific. The next 
section will analyse this quantity for several learning problems. Moreover, cf. the second 
statement of Property 2.1, there is always some integer k∗ ≤ d such that whenever k ≥ k∗ 

(23)ETN∼ℙ
N [E[gA(TN )

]] − E[g∗
ℙ
] ≥ 1

32

(
� +

√
k

N

)
.

ℙTN

{
E[ĝ] > E[g∗] + 2𝜃 + 2ER[R̂N(GR)] + 𝜖

} ≤ 6 exp

(
−
N𝜖2

8�̄2

)
.

ETN
[E[ĝ]] − E[g∗] − 2𝜃 + 2ER[R̂N(GR)]

≤ �
∞

0

ℙTN

�
E[ĝ] − E[g∗] + 2𝜃 − 2ER[R̂N(GR)] > 𝜖

�
d𝜖

≤ 6�
∞

0

exp

�
−
N𝜖2

8�̄2

�
d𝜖 = 3

�
8𝜋�̄2

N
<

16�̄√
N
.

(24)

ETN
[E[ĝ]] − E[g∗] ≤ 2𝜃 + 2ER[R̂N(GR)] +

16�̄√
N

≤ 2𝜃 + 62

�
k

N
+

16�̄√
N

= O

�
𝜃 +

�
k

N

�
.
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we will have �(k, g∗, �) = 0 , making the upper bound again match the lower bound up to a 
constant factor.

3  Discovering problem‑specific benign traits

The previous section focused on bounds of a general form, and we argued that these are 
tight when the problem is compressible. In this section we study the question of what 
makes learning problems compressible. The answers will depend on the particular learn-
ing problem, and we demonstrate how the novel quantities we introduced (the compressive 
distortion and the compressive complexity) can exploit the structure-exposing ability of 
random projections to reveal more answers to this question.

The forthcoming subsections are devoted to instantiating these quantities in several 
models associated to learning tasks, in order to demonstrate their use in revealing structural 
insights. The proofs of the forthcoming propositions are relegated to Appendix 3, where 
we also give details on how to use the obtained expressions in the general form of our 
bounds from the previous sections.

3.1  Thresholded linear models

We start with the classical example of binary classification with linear functions 
Hd = {x → hTx ∶ h, x ∈ ℝd} , and where the loss function of interest is the 0–1 loss, that 
is �01 ∶ Y × Y → {0, 1},�01(ŷ, y) = 1(ŷy ≤ 0) . By a slight abuse of notation, we iden-
tify the linear classifiers with their weight vectors. As before, we let Gd = 𝓁01◦Hd , and 
GR = 𝓁01◦HR its compressive counterpart. In this setting, we have the following, proved in 
Appendix Section “Thresholded linear models”.

Proposition 7 Consider the linear function class with the 0–1 loss, as above. We have

In the above, ∡h
X
) is the angle, in radians, between the vectors X and h, so cos(∡h

X
) is 

the normalised margin of a point X in terms of its distance to the hyperplane with normal 
vector h. Consequently, we see that in the case of halfspace learning, the compressive dis-
tortion is bounded by the moment generating function of the square of margin distribution. 
This example recovers as a special case, the main findings of Kabán and Durrant (2020) in 
a nutshell.

(25)Dk(g
∗) ≤ EX

[
exp

(
−k cos2(∡h

X
)

8

)]
⋅ 1(k < d)

(26)Ck,N(Gd) ≤ EX

[
sup
h∈Hd

exp

(
−k cos2(∡h

X
)

8

)]
⋅ 1(k < d).
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3.2  Linear model with Lipschitz loss

Next we consider the linear function class Hd = {x → hTx ∶ h, x ∈ ℝd} , with 
� ∶ Y × Y → [0, �̄] a bounded loss function that is L

�
-Lipschitz in its first argument. Com-

mon examples of bounded Lipschitz loss functions may be found e.g. in (Rosasco et al., 
2004), several of which are surrogates for the 0–1 loss. As before, we let Gd = 𝓁◦Hd , and 
GR = 𝓁◦HR its compressive version. Let Σ ∶= EX[XX

T ] , and we require that Tr(Σ) < ∞ . In 
this setting, we have the following.

Proposition 8 Consider the linear model class described above. For any p ∈ ℕ s.t. 
2 ≤ p ≤ k − 2 , and k ≤ rank(Σ) , we have

where

From the form of (27)–(28) we infer that both the compressive distortion and the com-
pressive complexity decrease with the inverse margin and the rate of decay of the eigen-
spectrum of the data covariance. In conjuction with Theorem 2 this means that the larger 
the margin of h∗ , or/and the faster the eigen-decay of the data covariance, the better the 
chance that compressive classification with the considered linear model class succeeds. 
Likewise, in the light of Theorem  4, learning the model in high dimensional settings is 
eased in situations where compressive complexity is small—i.e. when the margin is large, 
and the eigen-spectrum has a fast decay.

The proof is deferred to Appendix Section  “Linear models with bounded Lipschitz 
loss”. Essentially, we relate the problem to a weighted OLS problem, which was previously 
analysed (Kabán, 2013; Slawski, 2018), and then manipulate the expressions to apply a 
seminal result by Halko et al. (Halko et al., 2011).

It may be interesting to note that a coarser alternative that nevertheless retains the main 
characteristics can be obtained with less sophisticated tools, as the following.

Proposition 9 Consider the linear model class described above. We have

Proof Using the Lipschitz property of the loss, and relaxing the infimum in the definition 
of Dk(g

∗) , we have Dk(g
∗) ≤ L

�
EXER

��hTRTRX − hTX�� ≤ L
�

�
EXER

�
(hTRTRX − hTX)2

��1∕2 ≤
�

2

k
Tr(Σ)‖h∗‖

2
. 

Here we used Lemma 2 of Kabán (2014) to compute the matrix expectation, which in our 

(27)Dk(g
∗) ≤ L

𝓁
‖h∗‖2 ⋅ Ξ(k, p, {�j(Σ)}j)

(28)Ck,N(Gd) ≤ L
𝓁
ETN∼ℙ

N [Ξ(k, p, {𝜆j(Σ̂)}j)] ⋅ sup
h∈Hd

‖h‖2

(29)Ξ(k, p, {𝜆j(Σ)}j) ∶=

�
1 +

�
k − p

p − 1

��
𝜆k−p+1(Σ) +

e
√
k

p

� �
j>k−p

𝜆j(Σ)

(30)Dk(g
∗) ≤ L

�

�
2

k

√
Tr(Σ)‖h∗‖2

(31)Ck,N(Gd) ≤ L
�

�
2

k

√
Tr(Σ) sup

h∈Hd

‖h∗‖2.
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case of R with i.i.d. entries from N(0, 1∕k) says that ER[R
TRΣRRT ] =

1

k
((k + 1)Σ + Tr(Σ)Id) . 

We also have ER[R
TR] = Id , and the final expression (30) then follows by rearranging, and 

using the Cauchy-Schwartz and Jensen’s inequalities.
By the factorised form of (30), Property 2.3 immediately gives (31).   ◻

We see the expressions in Propositions 8 and 9 are driven by the eigen-decay of the 
unknown true covariance, the margin of the classifier, and k with a decay of order 1∕

√
k.

3.3  Two‑layer perceptron

The purpose of this section is to examine the effect of adding a hidden layer by consider-
ing the class of classic fully-connected two-layer perceptrons. It turns of that the distortion 
bounds can still be expressed in terms of structures that we encountered in the simpler 
model of the previous section.

Let Hd = {x →
∑m

i=1
vi�(w

T
i
x) ∶ x ∈ Xd, ‖v‖1 ≤ 1} be the class of classic two-layer per-

ceptrons, where �(⋅) is a L�-Lipschits activation function. We do not regularise the first 
layer weights, as the RP has a regularisation effect on these. Let � ∶ Y × Y → [0, �̄] be an 
L
�
-Lipschitz and �̄-bounded loss function as before, and let Gd = 𝓁◦Hd , and GR = 𝓁◦HR 

its compressive version. The �1-regularisation on the higher-layer weights has the practical 
benefit of pruning unnecessary components. Again we will assume Tr(EX[XX

T ]) < ∞ . In 
this setting we obtain the following, proved in Appendix Section “Two-layer perceptron”.

Proposition 10 Consider the feed-forward neural network class above. For any p ∈ ℕ s.t. 
2 ≤ p ≤ k − 2 , and any k ≤ rank(Σ) , we have

where Ξ(k, p, {𝜆j(Σ̂)}j) is defined in Eq. (29).

We have not considered adding further hidden layers, as the RP only affects the input 
layer, so deeper networks are unlikely to present further insights on the effect of compress-
ing the data. We have also not attempted to extend our analysis to other types of neural nets 
in this fast developing field, as analytic bounds of the specific quantities we are interested 
in would quickly become difficult to obtain and interpret. However, we will return with a 
generally applicable approach later in Sect. 3.7, where we show how one can use additional 
unlabelled data to estimate the compressive complexity instead of analytically bounding 
it. Finally, in the light of multiple equivalent formulations of bounds for layered networks 
(Munteanu et al., 2022) (under certain conditions), one can argue that the question of what 
exactly the bounds depend on becomes less interesting for the study of neural nets. Indeed, 
our only purpose in this section was to demonstrate the intuition that, structures that help 
learning the linear model also help learning the two-layered model—hence, learning has at 
least as many (and probably more) benign structures to exploit in the richer class.

(32)Dk(g
∗) ≤ L

𝓁
L𝜙‖v∗‖2‖W∗‖F ⋅ Ξ(k, p, {𝜆j(Σ)}j) ⋅ 1(k < d)

(33)Ck,N(Gd) ≤ L
𝓁
L𝜙ETN∼ℙ

N [Ξ(k, p, {𝜆j(Σ̂)}j)] ⋅ sup
v,W

‖v‖2‖W‖F ⋅ 1(k < d)
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3.4  Quadratic model learning

Another interesting non-linear learning problem where we can showcase the ability of RP 
to discover meaningful structure and eliminate dimension-dependence is learning quad-
ratic models, including Mahalanobis metric learning. Let Md be the set of d × d symmetric 
matrices, and consider the quadratic function class Hd = {x → xTAx ∶ A ∈ Md, x ∈ ℝd} , 
with � an �̄-bounded L

�
-Lipschitz loss, and we denote be Gd = 𝓁◦Hd the loss class of Hd . 

It is known from related analysis of Verma and Branson (2015) that the error of learning 
a Mahalanobis metric tensor A ∈ Md necessarily grows with 

√
d if no structural assump-

tions are imposed on the metric tensor. We will use our RP-based analysis to discover a 
benign structural condition that eliminates the dependence of the error on d.

Let HR be the compressive version of Hd , with R having i.i.d. Gaussian entries with 
0-mean and variance 1/k, as before, and GR = 𝓁◦HR . In Appendex section “Quadratic 
models” we show the following.

Proposition 11 In the quadratic function class above, for any k ≤ d , we have

where ‖ ⋅ ‖∗ is the nuclear norm of the matrix in its argument.

Equation 34 in conjunction with Theorem 2 highlights that, the smaller the nuclear norm of 
the true parameter matrix A∗ , the better the generalisation guarantee for compressively learn-
ing the quadratic model. Equation (35) further suggests that learning a quadratic model in 
high dimensions becomes easier when the nuclear norm of the parameter matrix is small. In 
addition, both bounds of Proposition 11 scale with the trace of the true covariance of the data 
distribution, suggesting that spectral decay of the data source is a benign trait.

We find it interesting to relate our findings to recent results by Latorre et al. (2021) which 
have shown for the quadratic class of classifiers that nuclear norm regularisation in the origi-
nal data space (no dimensionality reduction considered) has the ability to take advantage of 
low intrinsic dimensionality of the data to achieve better accuracy, which other regularisers 
studied therein do not. The fact that the nuclear norm appears in our distortion bounds further 
validates the ability of our RP-based approach to find meaningful structural traits for the learn-
ing problem at hand. In fact, Theorem 4 essentially turns the expression (35) into a regulariser, 
which is realised by the nuclear norm regulariser in this case, since all the other factors are 
independent of the model’s parameters. Therefore the RP-based analysis following the same 
recipe as we did in the former sections for other function classes, again succeeded in revealing 
a meaningful benign trait for the function class under study.

3.5  Nearest neighbour classification

The previous sections concerned various parametric classes. Here we take a representative 
of a nonparametric class, namely a simplified version of the nearest neighbour classifier pro-
posed by Kontorovich and Weiss (2015).

(34)Dk(g
∗) ≤

�
4

k2
+

3

k
L
𝓁
Tr(Σ)‖A∗‖∗ ⋅ 1(k < d)

(35)Ck,N(Gd) ≤
�

4

k2
+

5

k
L
𝓁
Tr(Σ) sup

A∈Md

‖A‖∗ ⋅ 1(k < d)
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The nearest neighbour rule can be expressed as the following (Crammer et  al., 
2002; Kontorovich & Weiss, 2015; von Luxburg & Bousquet, 2004). Denote by 
T +

N
, T−

N
⊂ T

N
, T+

N
∪ T −

N
= T

N the positively and negatively labelled training points respec-
tively. Define the distance of a point x ∈ X  to a set S as d(x, S) = infz∈S{‖x − z‖} . Then, 
N

+(x) ≡ d(x, T +

N
) and N−(x) ≡ d(x, T−

N
) are the nearest positive / nearest negative neighbours 

of x, and the label prediction for x ∈ X  is given by the sign of the following:

Throughout this section we use Euclidean norms. Like Kontorovich and Weiss (2015), 
we assume a bounded input domain, Xd ⊆ B(0,B) . (This can be relaxed, as we will 
do in the next subsection for a more general case.) We consider the class of classifiers 
H

d
= {x → h(x ∶ T +

N
, T−

N
) =

1

2

�‖x − N
−(x)‖ − ‖x − N

+(x)‖� , and Gd = 𝓁◦Hd where we 
take 𝓁(⋅) to be the ramp-loss defined as �(h(x), y) = min{max{0, 1 − h(x)y∕�}, 1} , which 
is 1∕�-Lipschitz.

In the RP-ed domain, we use subscripts: N+
R
(x) and N−

R
(x) denote the points whose 

images under the random projection R is the nearest positive or nearest negative to Rx. So 
the compressive class HR contains functions of the form:

Composed with the 1∕�-Lipschitz loss, we have by construction that d ⊆ {x → g(x):
x ∈ d, g is 1∕�-Lipschitz} , and G

R
⊆ {(Rx) → g

R
(Rx) ∶ x ∈ Xd, gR is 1∕�-Lipschitz} . That 

is, the function classes of interest are subsets of the d and k-dimensional class of 1∕�-Lip-
schitz functions respectively. By the Lipschitz extension theorem (von Luxburg & Bous-
quet, 2004), for any �-separated labelled sample there exists a 1-Lipschitz function has the 
same predictions as the 1-NN induced by that sample, for all points of the input domain X .

For a given value of � , the ERM classifier in the class of 1∕�-Lipschitz functions of the 
form defined above is obtained by choosing a sub-sample from the training points such 
that this sub-sample is �-separated, and the 1-NN induced by it makes the fewest errors on 
the full training set (including the points left out). This procedure was proposed by Kon-
torovich and Weiss (2015) along with an efficient algorithmic implementation.

Let g∗ be the best d-dimensional 1∕�-Lipschitz function of the form (36), and gR the best 
k-dimensional 1∕�-Lipschitz function of the form (37). We have the following, proved in 
Appendix Section “Nearest neighbours classification”.

Proposition 12 Let T =
�

x−x�

‖x−x�‖ ∶ x, x� ∈ Xd, x ≠ x�
�

 . For the class of nearest neighbour 
classifiers described above, we have

where w(T) = Er∼N(0,1) supt∈T{⟨r, t⟩} is the Gaussian width of the set T.

In this example, we have the same upper bound on both the compressive distortion and 
the compressive complexity, featuring the Gaussian width of the normalised distances on 
the support set. The Gaussian width (see e.g. Vershynin, 2018, sec. 7.5 and references 

(36)h(x ∶ T +
N
, T−

N
) =

1

2
(d(x, T−

N
) − d(x, T +

N
)) =

1

2

�‖x − N
−(x)‖ − ‖x − N

+(x)‖�

(37)hR(Rx ∶ RT+
N
,RT−

N
) ∶=

1

2

�‖Rx − N−
R
(Rx)‖ − ‖Rx − N+

R
(Rx)‖�

(38)Dk(g
∗) ≤ 2B ⋅ w(T)

�
√
k

; Ck,N(Gd) ≤ 2B ⋅ w(T)

�
√
k

.
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therein) is a measure of complexity for sets (justifying the name ‘compressive complex-
ity’), and it is sensitive not just to the algebraic intrinsic dimension of the support set but 
also takes fractional values reflecting weakly represented directions in the set, and it is 
sensitive to structure embedded in Euclidean spaces, such as the existence of a sparse rep-
resentation, smooth manifold structure, spectral decay, and so on.

The bound we obtain by instantiating Theorems 2 and 4 with the expressions from 
Proposition 12 and the Rademacher complexity of GR holds true with any integer value of k 
chosen before seeing the data. An interesting connection is obtained if we set k to the value 
that ensures that the compressive complexity term is below some specified � ∈ (0, 1) , i.e. 
k ≳

w2(T)

𝜂2𝛾2
 . With this choice, the associated generalisation bound (Eq. 123) recovers a bound 

of the form obtained previously for this classifier in doubling metric spaces (Gottlieb et al., 
2016; Kontorovich & Weiss, 2015), with the squared Gaussian width taking the place of 
the doubling dimension. Indeed, there is a known link between the doubling dimension and 
the squared Gaussian width (Indyk, 2007). In an Euclidean metric space with algebraic 
dimension d they are both of order Θ(d) , but are otherwise more general and can take frac-
tional values. However, if w(T) is unknown or the sample size N is too small relative to 
w(T)2 , then one may opt to set k proportional to N instead, which is typically known while 
the Gaussian width or the doubling dimension may be unknown in practice.

3.6  General Lipschitz classifiers

The nearest neighbour example from the previous section generalises to the class of all Lip-
schitz classifiers (Gottlieb & Kontorovich, 2014; von Luxburg & Bousquet, 2004), exam-
ples of which, besides nearest neighbours, also include the support vector machine and 
others (von Luxburg & Bousquet, 2004). Let Hd and HR be the sets of Lh-Lipschitz func-
tions on Xd and XR respectively. We take the exact same setting as previous margin-based 
analyses (Gottlieb et al., 2016), including an L

�
-Lipschitz loss functions bounded by �̄  . For 

instance �̄  can be 1, since classification losses (e.g. the hinge loss), are surrogates to the 
0–1 loss, so clipping at 1 makes sense, as it was done by Gottlieb et al. (2016). We restrict 
ourselves to the Euclidean space to leverage the computational advantages of random pro-
jections. In addition, we relax the requirement for the input space Xd to be bounded, and 
instead only require that most of the probability lies in a bounded subset. This relaxation is 
also applicable to our previous section.

Let ℙX denote the marginal probability, and for each � ≥ 0 we define

This lets us relax the boundedness assumption of the domain Xd , instead we only need it 
to have a bounded subset A of 1 − � probability mass for w�(ℙX) to be finite. The familiar 
Gaussian width is recovered when � = 0 , i.e. w0(Xd,ℙ) = w(Xd) . In the sequel, we use the 
shorthand

In this setting, we have the following, proved in Appendix Section  “General Lipschitz 
classifiers”.

Proposition 13 Consider the class of Lipschitz classifiers described above. We have

(39)w𝜖(Xd,ℙX) ∶= inf
A⊆Xd∶ℙX (X∈A)≥1−𝜖w(A)

X𝜖

d
∶= {A ⊆ Xd ∶ ℙ(X ∈ A) ≥ 1 − 𝜖,w𝜖(Xd,ℙX) = w(A)}.
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Originally, the Lipschitz classifier (Gottlieb & Kontorovich, 2014) was proposed as a 
classification approach in doubling metric spaces. The analysis of Gottlieb and Kontorovich 
(2014) highlighted that the generalisation error can be expressed in terms of the doubling 
dimension of the metric space. As we commented in the Nearest Neighbour section a par-
ticular choice of k proportional to the square of the Gaussian width makes this connection 
explicit, while in contrast we are also free to choose other values of k. Another difference is 
in the methodological focus: In (Gottlieb & Kontorovich, 2014; Kontorovich & Weiss, 2015; 
Gottlieb et al., 2016), bounding the error in terms of a notion of intrinsic dimension was made 
possible due to a specific property of the Lipschitz class, by which the covering numbers of 
the function class are upper bounded in terms of the covering numbers of the input space. By 
contrast, in our strategy the starting point was to exploit random projection to obtain an auxil-
iary class of a lower complexity, and as such, the Lipschitz property of the classifier functions 
is not in generally required in our framework. Indeed, we have seen throughout the various 
examples in this section that the same starting point has drawn together some widely used 
regularisation schemes in the case of parametric models, as well as the Gaussian width in the 
nearest neighbour and Lipschitz classifier examples.

3.7  Turning compressive complexity into a regulariser

In several examples of the previous section, the upper bound on Ck,N has taken the form 
supg∈Gd

Ck(g) , where Ck is some function that only depends on the data through g. Structural 
Risk Minimisation (SRM) (Vapnik, 1998) is a classic approach that can be applied to turn the 
expression of Ck into a regulariser—this would ensure that ERM is confined to an appropriate 
subset of Gd that satisfy the compressibility constraint in our theorems.

For more complicated models, however, bounding the compressive complexity in a use-
ful way may be difficult or out of reach. In the absence of a suitable analytic upper bound, in 
this section we show that one can instead estimate it from unlabelled data, whenever the loss 
function is Lipschitz, yielding semi-supervised regularisation algorithms that learn the regu-
larisation term from an independent unlabelled data set. This recovers a form of consistency 
regularisation (Laine & Aila, 2017)—a semi-supervised technique widely used in practice—
giving it a theoretical justification. We describe this in the sequel.

Exploiting the uniform nature of the bound of Theorem 4, we use structural risk minimisa-
tion (SRM). This will give us a regulariser whose general form comes from the compressive 
distortion of the function class, and which takes care of the required low-distortion constraint 
so the resulting predictor enjoys the guarantee stated in Theorem 4. The reason this works is 
that, by construction, a uniform bound is equivalent to the objective of a learning algorithm 
(as it can be iterated as many times as needed, so this algorithm enjoys the generalisation guar-
antee indicated by the bound).

Suppose we have an independent unlabelled data set drawn i.i.d. from the marginal distri-
bution of the data. For each 𝜃 ∈ [0, �̄] , we define the class

(40)Dk(g
∗) ≤ L

𝓁
Lhdiam(X𝜖

d
)
w(X𝜖

d
)√

k
+ 𝜖 ⋅ 𝓁

(41)Ck,N(Gd) ≤ L
𝓁
Lhdiam(X𝜖

d
)
w(X𝜖

d
)√

k
+ 𝜖 ⋅ 𝓁
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Note, these classes depend on the independent unlabelled data set, but not on the labelled 
data. Fix an increasing sequence (�i)i∈ℕ . This defines a nested sequence of subsets of the 
function class Gd , as we have G𝜃1

d
⊆ G

𝜃2
d
⊆ ... ⊆ Gd . Let (�i)i∈ℕ be an associated sequence of 

probability weights s.t. 
∑

i∈ℕ �i ≤ 1 . By Theorem 4 applied to G�

d
 , for any fixed value of � , 

we have uniformly for all g ∈ G�

d
 , w.p. 1 − � that

where G�

R
 is the RP-ed version of G�

d
 , and note that R̂N(G

𝜃

R
) ≤ R̂N(GR) . We now use this 

bound for each i ∈ ℕ with failure probabilities ��i . By the union bound, w.p. 1 − � uni-
formly for all i ∈ ℕ and all g ∈ G

�i
d
,

This suggests the following algorithm. For each g ∈ Gd , let i(g) denote the smallest integer 
such that g ∈ G

�i(g)

d
 ; more precisely, i(g) ∶= min{i ∈ ℕ ∶ D̂k(g) < 𝜃i} . Define the following 

minimisation objective as a learning algorithm:

In practice, one can set (�i)i∈ℕ as a uniform distribution on a finite sequence, so the last 
term becomes constant and omitted. Regarded as a guiding principle, the above suggests a 
practical algorithm using D̂k(g) directly in place of its discretised version �i(g) . We have the 
following guarantee about greg.

Theorem 14 With probability at least 1 − �,

Proof of Theorem 14 We apply the uniform bound of Eq. (44) with the choice � ∶= �i(greg) , 
so

By the definition of greg , for any g ≠ greg, g ∈ Gd , the right hand side is further upper 
bounded as

(42)G𝜃

d
∶=

{
g ∈ Gd ∶ D̂k(g) ≤ 𝜃

}
⊆ Gd.

(43)E[g] ≤ ÊTN
[g] + 2𝜃 + 2ER[R̂N(G

𝜃

R
)] + 3

√
log(2∕𝛿)

2N

(44)E[g] ≤ ÊTN
[g] + 2𝜃i + 2ER[R̂N(GR)] + 3

√
log(2∕𝛿𝜇i)

2N
.

(45)greg ∶= arg min
g∈Gd

⎧⎪⎨⎪⎩
ÊTN

[g] + 2𝜃i(g) + 3

�
log(1∕𝜇i(g))

2N

⎫⎪⎬⎪⎭
.

(46)E[greg] ≤ E[g∗] + 2𝜃i(g∗) + 2ER[R̂N(GR)] + 4

√
log(4∕(𝛿𝜇i(g∗)))

2N
.

(47)E[greg] ≤1−𝛿∕2 ÊTN
[greg] + 2𝜃i(greg) + 2ER[R̂N(GR)] + 3

√
log(4∕(𝛿𝜇i(greg)))

2N

(48)≤ ÊTN
[g∗] + 2𝜃i(g∗) + 2ER[R̂N(GR)] + 3

√
log(4∕(𝛿𝜇i(𝜃g∗ )

))

2N
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We subtract E[g∗] from both sides, and use Hoeffding’s inequality to bound 
ÊTN

[g∗] − ETN
[g∗] , yielding

Combining (47) and (50) by the union bound completes the proof.   ◻

Comments. The bound contains �i(g∗) , which, is an upper estimate of D̂k(g
∗) . This might not 

be a quantity of particular interest in itself, but we can relate it to Dk(g
∗) , as follows. Provided 

sufficient unlabelled data to ensure, for a given � ∈ (0, 1) , that supg∈Gd
|D̂k(g) − Dk(g)| ≤ 𝜂 

w.p 1 − � , then whenever we have D̂k(g
∗) ≤ 𝜃i(g∗) this also implies Dk(g

∗) ≤ �i(g∗) + � w.p. 
1 − � ; consequently, with the overall probability of 1 − 2� , we have

where �∗ = �i(g∗) + � is our high probability upper estimate on Dk(g
∗) . Thus, for the chosen 

k < d , if a learning problem exhibits small Dk(g
∗) , and provided we have a large enough 

unlabelled set, then the algorithm (45) adapts to take advantage of this structure.
We have not elaborated here on how much unlabelled data would be needed. One can 

leverage and adapt the findings of Turner and Kabán (2023), where it was found (albeit in a 
deterministic model-compression setting) that the problem of ensuring a that � is as small as 
we like is in general statistically as difficult as the original learning problem, but it becomes 
surprisingly easy in many natural problem settings, namely when the compression only affects 
the predictions for a small number of sample points.

As a final comment, we assumed throughout that the choice of k is made before seeing the 
data, e.g. based on the available sample size N. Instead, if desired, one can pursue a hierarchical 
SRM to allow the value of k to be also determined from the training sample. The parameter k 
needs to be large enough to ensure that �g∗ is sufficiently small, and it needs to be small enough 
to match the available sample size N in order to keep the Rademacher complexity term small.

4  Conclusions

We presented a framework to study the general question of how to discover and exploit 
such hidden benign traits when problem-specific prior knowledge is insufficient, using ran-
dom projection’s ability to expose structure. We considered both compressive learning and 
high dimensional learning, and give simple and general PAC bounds in the agnostic setting, 
in terms of some general notions of compressive distortion and compressive complexity that 
we introduced. We have also shown the tightness of our bounds when these quantities are 
small. The novel quantities of compressive distortion and compressive complexity take dif-
ferent forms in different learning tasks, and we instantiate these in several of these. This dem-
onstrated their ability to capture and discover interpretable structural characteristics that make 

(49)

E[greg] − E[g∗] ≤ ÊTN
[g∗] + 2𝜃i(g∗) + 2ER[R̂N(GR)] + 3

√
log(4∕(𝛿𝜇i(g∗)))

2N
− E[g∗]

(50)≤1−𝛿∕2 2𝜃i(g∗) + 2ER[R̂N(GR)] + 4

√
log(4∕(𝛿𝜇i(g∗)))

2N

(51)E[greg] ≤ E[g∗] + 2𝜃∗ + 2ER[R̂N(GR)] + 4

√
log(4∕(𝛿𝜇i(g∗)))

2N
.
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high dimensional instances of these problems solvable to good approximation in a random lin-
ear subspace. In the examples considered, these turned out to resemble the margin, the margin 
distribution, the intrinsic dimension, the spectral decay of the data covariance, or the norms of 
parameters. In future work it will be interesting to use this strategy to discover benign struc-
tural traits in further PAC-learnable problems, and to develop regularised algorithms sug-
gested by the bounds.

Appendix 1 Proof of Theorem 1

Proof By construction, all data live on the set S. Let J ≡ {j1,… jN} ⊆ {2,… d} denote 
the set of indices of basis vectors that appear in the training set. The training set must 
have the form TN = {(Xn, Yn) ∶ n = 1,… ,N} with (Xn, Yn) = ((e1 + ejn )Yn, Yn) where 
jn ∈ J, n ∈ [N].

We define hbad ∈ ℝd with components (hbad)j, j = 1,… , d as the following

Observe this is an ERM, since for all n = 1,… ,N we have 
hT
bad

Xn = hT
bad

(e1 + ejn )Yn = (1 + 0)Yn = Yn , so the training error of hbad is zero.
Now, take a new input point X = (e1 + ej)Y  ; its correct target is Y. There are two 

cases: If j ∈ J then we have (hbad)TX = (1 + 0)Y = Y  , so the prediction is correct. But if 
j ∉ J ∪ {1} then (hbad)TX = (1 − 2)Y = −Y  , so the prediction is wrong. Thus, the generali-
sation error is the probability that, out of d − 1 basis vectors, a uniform sampling returns an 
element outside of J. The cardinality of J is at most N, hence we have

This completes the proof of the first part.
We now turn to the second part, considering the compressive ERM. The classes are 

separable by construction, so in ℝd we are in the realisable case. Let us fix TN , and choose 
the smallest k for random projection to preserve realisability with high probability.

Let ĥR ∈ HR be a compressive ERM, and h∗ ∈ Hd the unknown best high dimensional 
classifier. Note that Rh∗ ∈ HR , so we have ÊTN

[1((ĥR)
TRXY ≤ 0)] ≤ ÊTN

[1(h∗TRTRXY ≤ 0)] , 
and we evaluate this further.

Fix X ∈ S . By the Johnson-Lindenstrauss lemma for dot products (Kaban, 2015), for 
any � ∈ (0, 1) it holds w.p. 1 − 2 exp(−k�2∕8) that

Choose � ∶=
���

h∗TX

‖h∗‖2‖X‖2
��� =

√
2√

2⋅
√
2
=

1√
2
 , i.e. the normalised margin of h∗ in the data sup-

port. By realisability with margin � in the original space, we have (h∗)TX

‖h∗‖2‖X‖2 Y ≥ � . This 
combined with Eq. (54) gives

(52)(hbad)j ≡
⎧⎪⎨⎪⎩

1 if j = 1

0 if j ∈ J

−2 otherwise.

(53)ℙX,Y

{
hT
bad

XY ≤ 0
}
=

E[|{2,… , d} ⧵ J|]
d − 1

≥ d − 1 − N

d − 1
= 1 −

N

d − 1
.

(54)
����
h∗T

‖h∗‖2R
TR

X

‖X‖2 Y −
h∗T

‖h∗‖2
X

‖X‖2 Y
���� < 𝛾 .



Machine Learning 

1 3

Taking union bound over the training examples, w.p. at least 1 − 2N exp(−k�2∕8) , we have 
that (55) holds for all (Xn, Yn), n = 1,… ,N simultaneously. Hence, with the same probabil-
ity, the training error of ĥR is ÊTN

[1(h∗TRTRXY ≤ 0)] = 0.
By setting 2N exp(−k�2∕8) ≤ �∕2 , we have k ≥ k∗ = ⌈ 8

�2
log

4N

�
⌉ = ⌈16 log 4N

�
⌉ . Hence, 

for such values of k the problem remains realisable in the compressed space w.p. �∕2 . 
Therefore all compressive ERMs will have zero training error w.p. 1 − �∕2.

Now, to evaluate the genralisation error, we apply the fundamental theorem of statistical 
learning theory in the realisable case (Kearns & Vazirani, 1994; Vapnik, 1998), and use the 
fact that the VC dimension of HR is k in this example. We have

Setting the r.h.s. to �∕2 and combining with (55), w.p. 1 − � the following holds for any 
compressive ERM ĥR ∈ ℝk , ℙX,Y [ĥ

T
R
RXY ≤ 0] ≤ 2

N

(
k log

2eN

k
+ log

4

𝛿

)
 .   ◻

Appendix 2 Proof of Lemma 5

Proof Choose GR as the linear class of functions constructed from Gd such that gR ∈ GR 
has parameter wR ∈ ℝk equal to the least square solution of the system of equations 
wT
R
RA = wTA , where A ∈ ℝd×k contains in its columns an orthonormal basis of the sub-

space Vk , and w ∈ ℝd is the parameter of some g ∈ Gd . Since R is full row-rank a.s., 
RA ∈ ℝk×k is invertible a.s., so wR = (RA)−TATw.

Hence, for any point of the subspace, X ∈ Vk , we have wT
R
RX = wTX ; therefore 

|�(wT
R
RX, Y) − �(wTX, Y)| = 0 for all X ∈ Vk , all w ∈ ℝd and all Y ∈ {−1, 1}.

Using the above, given a pair of functions g ∈ Gd and gR ∈ GR we have

Hence, the compressive distortion of the target g∗ is bounded as

To prove (22), we have for the compressive complexity that

(55)h∗TRTRXY > 0.

(56)
ℙN

{

∃hR ∈ R:ÊN [1(h
T
RRXY ≤ 0)] = 0, ℙX,Y [hTRRXY ≤ 0] > �

}

≤ 2
(2eN

k

)k
exp

(

−�N
2

)

(57)EX,Y |(g◦R − gR)(X, Y)| = EX,Y [1(X ∉ Vk)|(g◦R − gR)(X, Y)|]

(58)≤ 𝓁 ⋅ PX∼ℙX
[X ∉ Vk] = 𝓁 ⋅ 𝜃.

(59)Dk(g
∗) = ER

[
inf

gR∈GR

EX,Y |(g◦R − gR)(X, Y)|
]
≤ 𝓁𝜃.

(60)1

N

N∑
n=1

|(g◦R − gR)(Xn, Yn)| = 1

N

N∑
n=1

1(Xn ∉ Vk) ⋅ |(g◦R − gR)(Xn, Yn)|
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Consequently,

as required.   ◻

Appendix 3 Proofs of Propositions for Section 3, and additional 
Corollaries

Thresholded linear models

Proof of Proposition 7 

 Eq. (64) holds because both hR and Rh∗ belong to HR . Equation (65) tells us that the com-
pressive distortion is related to the average effect that the input perturbation has on the 
decision boundary. In conjuction with Theorem 2, this means that the smaller this effect, 
the better for the compressive classifier.

The expectation w.r.t. R that appears in (65) was extensively studied by Durrant and 
Kabán (2013),Kabán and Durrant (2020) when R has i.i.d. Gaussian or sub-gaussian 
entries, and is known to be bounded as

Moreover, by property 2.3, Eq. (65) also implies a bound for the compressive complexity, 
which again turns out to be a function of the margin distribution.

(61)≤ 𝓁 ⋅
1

N

N∑
n=1

1(Xn ∉ Vk).

(62)

Ck,N(Gd) = ETN∼ℙ
N

[
sup
g∈Gd

{
ER

[
inf

gR∈GR

{
1

N

N∑
n=1

|(g◦R − gR)(Xn, Yn)|
}]}]

≤ 𝓁 ⋅ ETN∼ℙ
N

[
1

N

N∑
n=1

1(Xn ∉ Vk)

]

(63)= 𝓁 ⋅
1

N

N∑
n=1

P[Xn ∉ Vk] = 𝓁𝜃

(64)

Dk(g
∗) = ER

[
inf

gR∈GR

E(X,Y)∼ℙ

[|gR(RX, Y) − g∗(X, Y)|]
]

= ER inf
hR∈HR

E(X,Y)∼ℙ

[|1{hT
R
RXY < 0

}
− 1

{
h∗TXY < 0

}|] ⋅ 1{k < d}

≤ ERE(X,Y)∼ℙ

[|1{h∗TRTRXY < 0
}
− 1

{
h∗TXY < 0

}|] ⋅ 1{k < d}

(65)≤ EXER

[
1
{
sign(h∗TRTRX) ≠ sign(h∗TX)

}]
⋅ 1{k < d}.

(66)EXER

[
1
{
sign(hTRTRX)

] ≠ sign(hTX)
} ≤ EX

[
exp

(
−k cos2(∡h

X
)

8

)]
.
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 where (67) follows from (66), and (68) from Jensen’s inequality.   ◻

Corollary 15 (Binary linear classification) Consider the linear function class as above, and 
let Gd = 𝓁01◦Hd . Take any k ≤ d, � ∈ (0, 1).

a) Suppose that the best classifier in the class, h∗ , satisfies 

EX

[
exp

(
−k cos2(∡h∗

X
)

8

)]
⋅ 𝛿(k < d) ≤ 𝜃 = 𝜃(k) . Then, w.p. 1 − 2� , the compressive ERM 

satisfies

where � is defined in Theorem 2.

b) If EX

[
suph∈Hd

exp
(

−k cos2(∡h
X
)

8

)]
⋅ 1(k < d) ≤ 𝜃 , then, for any 𝛿 > 0 , w.p. 1 − � the fol-

lowing holds uniformly for all g ∈ 𝓁01◦Hd

Proof We plug the expressions from Proposition 7 into the bounds of Theorems 2 and 4 
respectively, and bound the Rademacher complexity of the compressive function class with 
its VC dimension (with explicit constant given by (Wolf, 2020,  Corollary 1.25)) as 
R̂N(GR) ≤ 31

√
k

N
 . Putting everything together completes the proof.   ◻

Preliminary Lemmas for proving the results of Sects. 3.2‑3.3

The following lemma is inspired by (Slawski, 2018), with a concise proof tailored to 
Gaussian RP so we can deploy a bound by Halko, Martinsson, Tropp (Halko et  al., 
2011).

Lemma 16 Given a matrix W∗ ∈ ℝd×m , a random vector X ∈ ℝd with Σ ∶= E[XXT ] , and 
a random matrix R ∈ ℝk×d, k ≤ d with i.i.d. 0-mean Gaussian entries. For any p ∈ ℕ s.t. 
2 ≤ p ≤ k − 2 and k ≤ rank(Σ) , we have:

(67)

Ck,N(Gd) ≤ ETN∼ℙ
N

[
sup
h∈Hd

ÊX∼TN
ER

[
1
{
sign(h∗TRTRX) ≠ sign(h∗TX)

}]]
⋅ 1(k < d)

≤ ETN∼ℙ
N

[
sup
h∈Hd

ÊX∼TN
exp

(
−k cos2(∡h

X
)

8

)]
⋅ 1(k < d)

(68)≤ EX

[
sup
h∈Hd

exp

(
−k cos2(∡h

X
)

8

)]
⋅ 1(k < d),

(69)E[ĝR] ≤ E[g∗] + 𝜃 + 𝜉(k, g∗, 𝛿) + 62

√
k

N
+ 4

√
log(3∕𝛿)

2N
.

(70)E[g] ≤ Ê[g] + 2𝜃 + 62

√
k

N
+ 3

√
log(2∕𝛿)

2N
.
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As commented by Halko et al. (2011), the parameter p is an oversampling factor, for a 
target dimension k − p . If we increase p the second term declines quicker than the first. If p 
is chosen proportional to k then the first term is proportional to 

√
�k−p+1 (which is the mini-

mum (k − p)-rank approximation error of Σ1∕2 in the spectral norm, by the Eckart-Young-
Mirsky Theorem), and the second term decreases at the rate k−1∕2 . The spectral tail �∑

j>k−p 𝜆j(Σ) in the second term is the minimum (k − p)-rank approximation error in the 
Frobenius norm.

Proof of Lemma 16 By Jensen’s inequality,

The infimum is at WT
R
= W∗TΣRT (RΣRT )−1 , so

by the idempotent property of projection matrices. In the above, �max(⋅) denotes the larg-
est eigenvalue of the matrix in its argument, and we will use �j(⋅) to denote the j-th largest 
eigenvalue.

Now, using (Halko et  al, 2011,  Theorem  10.6), for any p ∈ ℕ s.t. 2 ≤ p ≤ k − 2 and 
k ≤ rank(Σ) , this is bounded by:

  ◻

(71)

ER

�
inf

W̃∈ℝm×k
EX‖W̃TRX −W∗TX‖

�

≤ ‖W∗‖F min

⎧
⎪⎨⎪⎩

�
1 +

�
k − p

p − 1

��
𝜆k−p+1(Σ) +

e
√
k

p

� �
j>k−p

𝜆j(Σ)

⎫
⎪⎬⎪⎭

(72)ER

�
inf

WR∈ℝ
m×k

EX‖WT
R
RX −W∗TX‖

�
≤ ER inf

WR∈ℝ
m×k

�
EX‖WT

R
RX −W∗TX‖2�1∕2

.

(73)Eq. (72) = ER

[
EX(W

∗TΣRT (RΣRT )−1RX −W∗TX)2
]1∕2

(74)= ER

[
W∗TΣW∗ −W∗TΣRT (RΣRT )−1RΣW∗

]1∕2

(75)≤ ‖W∗‖FER

�
�max(Σ

1∕2(I − Σ1∕2RT (RΣTRT )−1RΣ1∕2)Σ1∕2)
�1∕2

(76)≤ ‖W∗‖FER

�
�max((I − Σ1∕2RT (RΣTRT )−1RΣ1∕2)Σ)

�1∕2

(77)≤ ‖W∗‖FER

�
�max((I − Σ1∕2RT (RΣTRT )−1RΣ1∕2)Σ1∕2)

�

Eq. (77) ≤ ‖W∗‖F
⎧⎪⎨⎪⎩

�
1 +

�
k − p

p − 1

��
𝜆k−p+1(Σ) +

e
√
k

p

� �
j>k−p

𝜆j(Σ)

⎫⎪⎬⎪⎭
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The following lemma gives a dimension-dependent bound on the empirical 
Rademacher complexity of bounded Lipschitz functions of a linear class when the 
parameter domain is unconstrained.

Lemma 17 Let Fk = {x → f (wTx) ∈ [0, 1] ∶ x ∈ ℝk} , where f is 1-Lipschitz and bounded 
by 1. Then, R̂N(Fk) ≤ c

√
k

N
 , where c ≤ 92.

Proof of Lemma 17 By Dudley’s entropy integral inequality (Dudley, 1999), the 
Rademacher complexity of any [0,  1]-valued function class can be bounded in terms of 
covering numbers,

where ‖ ⋅ ‖2 is the L2-norm with respect to the empirical measure i.e. for an f ∈ Fk , 
‖f‖2 =

�
1

N

∑N

n=1
f 2(Xn).

The covering number can be further bounded in terms of the fat shattering dimension1. 
We use a result of (Alon et al., 1997) (see also Theorem 2.18 of Mendelson (2003)), which 
yields for every sample and any scale � ∈ (0, 1):

where fat� (⋅) is the fat shattering dimension of the function class, and the constants have 
been computed by (Guermeur, 2017, Lemma 3) (see also (Lauer, 2019, Lemma 6)).

It is known that linear function classes have fat shattering dimension upper bounded 
by their input dimension (Gurvits & Koiran, 1995) for any � , and composition with a Lip-
schitz function does not change the fat shattering dimension by more than a constant (Gur-
vits & Koiran, 1995).

Plugging this back, Eq. (78) is bounded as:

where c = 12
√
20(log(13∕2) + 1) ≤ 92 .   ◻

Linear models with bounded Lipschitz loss

Proof of Proposition 8 Recall that R has i.i.d. 0-mean 1/k-variance Gaussian entries. So for 
any p ∈ ℕ s.t. 2 ≤ p ≤ k − 2 and any k ≤ rank(Σ) we have

(78)R̂N(Fk) ≤12�
1

0

�
logN(𝛼,Fk, ‖ ⋅ ‖2)

N
d𝛼

(79)N(�,Fk, ‖ ⋅ ‖2) ≤
�
13

2�

�20⋅fat96� (Fk)

(80)R̂N(Fk) ≤ 12�
1

0

√
20 k log

13

2𝛼

N
d𝛼 = c

√
k

N

1 The fat shattering dimension is a measure of the complexity of a real valued function class. Definition. 
Let 𝛾 > 0 be fixed, and let F  be a function class. We say that F �-shatters a set A ⊂ X if ∃s ∶ A → ℝ s.t. 
∀E ⊆ A,∃f

E
∈ F  satisfying that ∀x ∈ A⧵E, f

E
(x) ≤ s(x) − � and ∀x ∈ E, f

E
(x) ≥ s(x) + � . The maximum 

cardinality of A ⊆ X that is �-shattered by F  is defined as the fat-shattering dimension of F  , denoted 
fat� (F).
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where

This follows by Lemma 16, which made use of (Halko et  al., 2011,  Theorem  10.6). As 
noted by Halko et al. (2011), with the choice of p of order k, the second term on the right 
hand side of (84) decreases as 1∕

√
k.

Moreover, by property 2.3 applied to (83), we also have the following upper bound on 
the compressive complexity

where the function Ξ is defined in (84).   ◻

Corollary 18 (Linear models with bounded Lipschitz loss) Let Gd be the class of gen-
eralised linear models of the form Gd = 𝓁◦Hd , where Hd = {x → hTx ∶ h, x ∈ ℝd} , 
and the loss function � ∶ Y × Y → [0, �̄] is L

�
-Lipschitz in its first argument. 

Let TN = {(Xn, Yn)
N
n=1

} ∼ ℙN
d

 be a training set in Xd × Y , where ℙd satisfies 
Tr(EX∼ℙd

[XXT ]) < ∞ . Take ant k ≤ d, � ∈ (0, 1).

a) Suppose that ‖h∗‖2 ≤ � = �(k) . Then, with probability 1 − 2� , the compresive ERM 
satisfies

b) If suph∈ℝd ‖h‖2 ≤ � = �(k) , then, w.p. 1 − � we have uniformly for all g ∈ Gd that

Proof We plug the expressions from Proposition 8 in the bounds of Theorems 2-4, and 
bound the Rademacher complexity of the reduced class. There is no constraint on the 
parameters or the input domain, but we exploit that the loss function is bounded, and by 

(81)Dk(g
∗) = ER

[
inf

hR∈HR

E(X,Y)|�(hTRRX, Y) − �(h∗TX, Y)|
]

(82)≤ L
𝓁
ER

[
inf

hR∈HR

EX|hTRRX − h∗TX|
]
⋅ 1(k < d)

(83)≤ L
𝓁
‖h∗‖2 ⋅ Ξ(k, p, {𝜆j(Σ)}j) ⋅ 1(k < d).

(84)Ξ(k, p, {𝜆j(Σ)}j) ∶=

�
1 +

�
k − p

p − 1

��
𝜆k−p+1(Σ) +

e
√
k

p

� �
j>k−p

𝜆j(Σ)

(85)Ck,N(Gd) ≤ L
𝓁
ETN∼ℙ

N [Ξ(k, p, {𝜆j(Σ̂)}j)] ⋅ sup
h∈Hd

‖h‖2 ⋅ 1(k < d)

(86)

E[ĝR] ≤ E[g∗] + L
𝓁
⋅ 𝜏 ⋅ Ξ(k, p, {𝜆j(Σ))}j ⋅ 1(k < d) + 𝓁 ⋅ 𝜉(k, g∗, 𝛿)

+184𝓁

√
k

N
+ 4𝓁

√
log(3∕𝛿)

2N

(87)
E[g] ≤ ÊTN

[g] + 2L
𝓁
⋅ 𝜏 ⋅ ETN

[Ξ(k, p, {𝜆j(Σ̂)}j)] ⋅ 1(k < d) + 184𝓁

√
k

N

+3𝓁

√
log(2∕𝛿)

2N
.
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Lemma 17 given in the Appendix we have R̂N(GR) ≤ �̄R̂N(GR∕�̄) ≤ 92�̄

√
k

N
 . Putting eve-

rything together, completes the proof.   ◻

Two‑layer perceptron

Proof of Proposition 10 For R having i.i.d. Gaussian entries, the compressive distortion 
can be bounded similarly as before, using the Lipschitz property of � and � , along with 
Hölder’s inequality, as follows.

 where s, q ≥ 1, 1∕s + 1∕q = 1 , and the matrices W∗ and WR have the parameter vectors w∗
i
 

and (wR)i in their i-th columns. For simplicity, let us choose s = q = 2 , so by Lemma 16 we 
have the following upper bound on (90), for any p ∈ ℕ s.t. 2 ≤ p ≤ k − 2

where Ξ(k, p, {�j(Σ)}j) is the expression defined in Eq. (84).
Moreover, noting that in (91) the effect of the predictor factorises from that of the data 

distribution, by Property 2.3 we also have an upper bound on the compressive complexity 
of the original class,

where Ξ(k, p, {𝜆j(Σ̂)}j) is defined in Eq. (84).   ◻

Recall Hd = {x →
∑m

i=1
vi�(w

T
i
x) ∶ x ∈ Xd, ‖v‖1 ≤ 1} is the class of classic two-layer per-

ceptrons, and take � ∶ ℝ → [−b, b] to be an L�-Lipschitz anti-symmetric activation func-
tion (i.e. �(−u) = −�(u),∀u ∈ ℝ ; for instance tanh). A bounded activation function is 
chosen here for convenience, to allow us to easily work with un-regularised input layer 
weights—since the RP itself exerts a regularisation effect. Then we have the following.

Corollary 19 (Two-layer perceptron) Let Hd be the class of 2-layer net-
works as above, and Gd = 𝓁◦Hd , and � ∶ Y × Y → [0, �̄] an L

�
-Lipschitz loss 

(88)

Dk(g
∗) = ER

[
inf

WR∈ℝ
m×k ,vR∈ℝ

m
E(X,Y)|𝓁

(
m∑
i=1

(vR)i𝜙((wR)
T
i
RX), Y

)
− 𝓁

(
m∑
i=1

v∗
i
𝜙(w∗T

i
X), Y

)
|
]

= L
𝓁
ER

[
inf

WR∈ℝ
m×k

EX|
m∑
i=1

v∗
i
𝜙((wR)

T
i
RX) −

m∑
i=1

v∗
i
𝜙(w∗T

i
X)|

]
⋅ 1(k < d)

(89)≤ L
𝓁
‖v∗‖sER

⎡⎢⎢⎣
inf

WR∈ℝ
m×k

EX

�
m�
i=1

�𝜙((wR)
T
i
RX) − 𝜙(w∗T

i
X)�q

�1∕q⎤⎥⎥⎦
⋅ 1(k < d)

(90)≤ L
𝓁
L𝜙‖v∗‖sER

�
inf

WR∈ℝ
m×k

EX‖WT
R
RX −W∗TX‖q

�
⋅ 1(k < d)

(91)Dk(g
∗) ≤ L

𝓁
L𝜙‖v∗‖2‖W∗‖F ⋅ Ξ(k, p, {𝜆j(Σ)}j) ⋅ 1(k < d)

(92)Ck,N(Gd) ≤ L
𝓁
L𝜙ETN∼ℙ

N [Ξ(k, p, {𝜆j(Σ̂)}j)] ⋅ sup
v,W

‖v‖2‖W‖F ⋅ 1(k < d)
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function. Let TN = {(Xn, Yn)
N
n=1

∼ ℙN
d
} be a training set in Xd × Y , where ℙd satisfies 

Tr(EX∼ℙd
[XXT ]) ≤ ∞ . Take any k ≤ d, � ∈ (0, 1).

a) Suppose that ‖v∗‖2‖W∗‖F ≤ � = �(k) . Then, with probability 1 − 2� , the compressive 
ERM satisfies

b) Suppose that supv,W ‖v‖2‖W‖F ≤ � = �(k) . Then, w.p. 1 − � we have uniformly for all 
g ∈ Gd,

Proof We plug the expressions from Proposition 10 into Theorems 2-4, and bound the 
Rademacher complexity of the class of compressive networks. Since the first layer weights 
are unconstrained, we use the boundedness of �(⋅) to do this. Assume ‖v‖1 ≤ 1 , so we can 
use the property of empirical Rademacher complexities by which for any class H it hold 
that R̂N(conv(H)) = R̂N(H) (Bartlett & Mendelson, 2002). Using this combined with Tala-
grand’s contraction lemma,

and FR = {x ↦ �(wTx)∕(2b) + 1∕2 ∶ ℝk
→ [0, 1] s.t. w ∈ ℝk, x = Rx, x ∈ Xd} . We bound 

the empirical Rademacher complexity of FR using the fact that this class has a bounded 
range of values. Using Lemma 17 we have R̂N(FR) ≤ 92

√
k

N
 , and plugging back we have 

R̂N(GR) ≤ L
�
184b

√
k

N
 . Putting everything together completes the proof.   ◻

Quadratic models

Proof of Proposition C.5 We will first consider the case where A∗ is positive semi-definite, 
so all of its eigenvalues are non-negative.

By the Lipschitz property of � , and using Jensen’s inequality, we have

Let ai be the i-th column of A∗1∕2 . Then,

(93)

E[ĝR] ≤ E[g∗] + L�L�‖v∗‖2‖W∗
‖F ⋅ Ξ(k, p, {�j(Σ)}j) ⋅ 1(k < d)

+ �̄ ⋅ �(k, g∗, �) + 286L�b
√

k
N

+ 4�̄
√

log(3∕�)
2N

(94)
E[g] ≤ ÊTN

[g] + 2L
𝓁
⋅ 𝜏 ⋅ ETN

[Ξ(k, p, {𝜆j(Σ̂)}j)] ⋅ 1(k < d)

+ 268L
𝓁
b

√
k

N
+ 3𝓁

√
log(2∕𝛿)

2N

(95)R̂N(GR) = R̂N(𝓁◦HR) ≤ L
𝓁
R̂N(HR) = L

𝓁
2bR̂N(FR),

(96)Dk(g
∗) = ER

[
inf

Ã∈Mk

EX,Y [�(X
TRTÃRX, Y) − �(XTA∗X, Y)]

]

(97)⩽ L
�
EXER

[|XTRTRA∗RTRX − XTA∗X|]

(98)Eq. (97) = L
�
EX,R[|

∑
i≥1

{
(aT

i
RTRX)2 − (aT

i
X)2

}|]
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where the last line used the Cauchy-Schwartz inequality.
Now, the first expectation is of the form we encountered before, and the second expec-

tation can be treated similarly. We can use Lemma 2 of Kabán (2014) to compute matrix 
expectations, as

where we denoted Σ = E[XXT ] . Note also that E[RTR] = Id . So after some algebra we have

Finally, if A∗ is not positive definite, recall that it is symmetric and any symmetric matrix 
can be written as A∗ = A∗

+
− A∗

−
 , where A∗

+
,A∗

−
 are positive semi-definite. Indeed, writing 

A∗ = UΛUT for the SVD of A∗ , and decomposing Λ = Λ+ + Λ− where Λ+ and Λ− con-
tain the positive and the absolutes of the negative eigenvalues of A∗ respectively and their 
remaining eigenvalues area zero, we have A∗

+
= UΛ+U

T and A∗
−
= UΛ−U

T . By the trian-
gle inequality,

(99)= L
�
EX,R[|

∑
i≥1

(aT
i
RTRX − aT

i
X)(aT

i
RTRX + aT

i
X)|]

(100)≤ L
𝓁
EX,R[

∑
i≥1

|aT
i
RTRX − aT

i
X| ⋅ |aT

i
RTRX + aT

i
X|]

(101)≤ L
𝓁

∑
i≥1

EX,R[|aTi RTRX − aT
i
X| ⋅ |aT

i
RTRX + aT

i
X|]

(102)≤ L
𝓁

∑
i≥1

{
EX,R[(a

T
i
RTRX − aT

i
X)2] ⋅ EX,R[(a

T
i
RTRX + aT

i
X)2]

}1∕2
.

(103)aT
i
EX,R[R

TRXXTRTR]ai =
1

k
aT
i
((k + 1)Σ + Tr(Σ)Id)ai.

(104)

Eq. (C51) = L�
∑

i≥1

{(1
k
aTi Σai +

1
k
Tr(Σ)‖ai‖2

)

⋅
(1
k
aTi Σai +

1
k
Tr(Σ)‖ai‖2 + 4aTi Σai

)}1∕2

(105)≤ L
�

�
i≥1

�
1

k2
+

5

k
‖ai‖2Tr(Σ)

(106)=

√
4

k2
+

5

k
L
�

∑
i≥1

A∗
ii
Tr(Σ)

(107)≤
√

4

k2
+

5

k
L
�
Tr(Σ)Tr(A∗)

(108)|XTRTRA∗RTRX − XTA∗X| ⩽ |XTRTRA∗
+
RTRX − XTA∗

+
X|

(109)+ |XTRTRA∗
−
RTRX − XTA∗

−
X|
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We invoke (107) twice, i.e. for A∗
+
 and A∗

−
 respectively, and note that 

Tr(A∗
+
) + Tr(A∗

−
) = ‖A∗‖∗ is the nuclear norm of A∗ . This yields

  ◻

Moving on to the compressive complexity, and noting the factorised form of Dk(g
∗) , by 

Property 2.3 we also have

Corollary 20 (Quadratic classifier learning) Let Gd be the class Gd = 𝓁◦Hd , where 
Hd = {x → xTAx ∶ A ∈ Md, x ∈ ℝd} , Md is the set of d × d symmetric matrices, and 
� ∶ Y × Y → [0, �̄] is L

�
-Lipschitz in its first argument. Let TN = {(Xn, Yn)

N
n=1

} ∼ ℙN
d

 be a 
training set in Xd × Y , where ℙd satisfies Tr(EX∼ℙd

[XXT ]) < ∞ . Take any k ≤ d, � ∈ (0, 1).

a) Suppose that ‖A∗‖∗ ≤ � = �(k) . Then, with probability 1 − 2� , the compresive ERM 
satisfies

b) If supA∈Md
‖A‖∗ ≤ � = �(k) , then, w.p. 1 − � we have uniformly for all g ∈ Gd that

Proof Note that any h ∈ Hk has the form h(X) = XTAX =
∑k

i=1

∑k

j=1
AijXiXj , where Xi and 

Xj are the i-th and j-th feature components of the point X. Hence Hd is equivalent to a linear 
model over a k(k + 1)∕2-dimensional instance space, so we can apply the Rademacher 
complexity bound from the previous section, yielding R̂N(GR) ≤ 92�

√
k(k+1)

2
 . Plugging 

this, along with the upper bounds obtained on Dk(g
∗) and Ck,N(Gd) into the general Theo-

rems 2 and 4 respectively completes the proof.   ◻

Nearest neighbours classification

Proof of Proposition 12 We will need the following result by Gordon (1985).

Lemma 21 (Gordon) Let T ⊆ �d−1 , and R with entries (Rij)i=1,…k,j=1,…d

i.i.d

∼ N(0, 1∕k) . Then,

(110)Dk(g
∗) ≤

�
4

k2
+

5

k
L
�
Tr(Σ)‖A∗‖∗.

(111)Ck,N(Gd) ≤
�

4

k2
+

5

k
L
�
Tr(Σ) sup

A∈Md

‖A‖∗

(112)
E[ĝR] ≤ E[g∗] + L

𝓁
⋅ 𝜏 ⋅

√
4

k2
+

5

k
L
𝓁
Tr(Σ) ⋅ 1(k < d) + 𝓁 ⋅ 𝜉(k, g∗, 𝛿)

+ 184𝓁

√
k(k + 1)

2N
+ 4𝓁

√
log(3∕𝛿)

2N

(113)

E[g] ≤ ÊTN
[g] + 2L

𝓁
⋅ 𝜏 ⋅

√
4

k2
+

5

k
Tr(Σ) ⋅ 1(k < d) + 184𝓁

√
k(k + 1)

2N
+ 3𝓁

√
log(2∕𝛿)

2N
.
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where w(T) = Er∼N(0,1) supt∈T{⟨r, t⟩} denotes the Gaussian width of the set in its argument.

We proceed to bound compressive distortion,

On a given sample, we have |gR(RX, Y) − g(X, Y)|

 Note that ‖RX − RN±
R
(X)‖ ≤ ‖RX − RN±(X)‖ , and ‖X − N±(X)‖ ≤ ‖X − N±

R
(X)‖ , hence 

(117) is further bounded as

 To make this independent on the given sample, we take the supremum over the neighbour-
ing points involved, and plugging this back yields:

where T =
�

x−x�

‖x−x�‖ ∶ x, x� ∈ Xd

�
 , and the last step used a result by Gordon (1985) (Lemma 

21) (see also (Vershynin, 2018), sec. 7.5 and references therein).
Moreover, by applying Property 2.3 to (121), we also have

  ◻

(114)ER

�
sup
x∈T

�‖Rx‖2 − 1�
�
≤ w(T)√

k

(115)Dk(g
∗) = ER inf

gR∈GR

E(x,y)|gR(Rx, y) − g∗(x, y)|

(116)≤ ERE(x,y)|g∗R(Rx, y) − g∗(x, y)|.

(117)

≤ 1

2�
�‖RX − RN−

R
(X)‖ − ‖RX − RN+

R
(X)‖ − ‖X − N−(X)‖ + ‖X − N+(X)‖�

≤ 1

2�

��‖RX − RN−
R
(X)‖ − ‖X − N−(X)‖� + �‖RX − RN+

R
(X)‖ − ‖X − N+(X)‖��.

(118)

≤ 1

2�
(max

��‖RX − RN−(X)‖ − ‖X − N−(X)‖�, �‖RX − RN−
R
(X)‖ − ‖X − N−

R
(X)‖��

+max
��‖RX − RN+(X)‖ − ‖X − N+(X)‖�, �‖RX − RN+

R
(X)‖ − ‖X − N+

R
(X)‖��)

(119)Dk(g
∗) ≤ 1

�
EXER sup

x�∈Xd

�‖RX − Rx�‖ − ‖X − x�‖�

(120)≤ 1

�
EXER sup

x�∈Xd

�‖RX − Rx�‖
‖X − x�‖ − 1� ⋅ diam(Xd)

(121)≤ 2B ⋅ w(T)

�
√
k

(122)Ck,N(Gd) ≤ 2B ⋅ w(T)

�
√
k

.
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Corollary 22 (Nearest Neighbour) Let Gd be the class of nearest neighbour classifiers of the 
form (36) with the 1∕�-Lipschitz ramp-loss. Let Xd ⊆ B(0,B),Y = {−1, 1} , and 
T ≡ �

x−x�

‖x−x�‖ ∶ x, x� ∈ Xd

�
 . Take any k ≤ d, 𝛾 > 0, 𝛿 ∈ (0, 1).

a) With probability 1 − 2�,

where w(⋅) is the Gaussian width of the set in its argument, and g∗ is the best 1-Lipschitz 
classifier.

b) With probability 1 − � , uniformly for all g ∈ Gd we have

Proof Before we plug the expressions from Proposition 12 into Theorems 2-4, we need a 
bound on the complexity of the compressive class. We make use of the existing estimate 
for the class of Lipschitz functions with a fixed Lipschitz constant given by Gottlieb et al. 
(2016), which in our case takes the following form:

Here we used that

and noted that 342∕(k+1)
(

k−1

2

)2∕(k+1)

 has maximum at k = 2 taking value ≤ 6.62 , and 
uk∕(k+1) ≤ u . Putting everything together completes the proof.   ◻

(123)

E[ĝR] ≤ E[g∗] +
2B

𝛾
⋅
w(T)√

k
⋅ 1(k < d) + 𝓁 ⋅ 𝜉(k, g∗, 𝛿)

+
56B

𝛾

�
1 +

w(T)√
k

�
⋅ N

−
1

k+1 + 4𝓁

�
log(1∕𝛿)

2N

(124)

E[g] ≤ ÊTN
[g] +

4B

𝛾
⋅
w(T)√

k
⋅ 1(k < d) +

112B

𝛾

�
1 +

w(T)√
k

�
⋅ N

−
1

k+1 + 3𝓁

�
log(2∕𝛿)

2N

(125)ER[R̂N(GR)] ≤ ER

⎡⎢⎢⎢⎣

⎡⎢⎢⎣

34(4
1

𝛾
diam(RXd))

k∕2

√
N

�
k − 1

2

�⎤⎥⎥⎦

2

k+1 ⎤⎥⎥⎥⎦

(126)≤ 28
1

�
ER[diam(RXd)]N

−
1

k+1

(127)≤ 112B

�

�
1 +

2w(T)√
k

�
⋅ N

−
1

k+1

(128)

ER[diam(RXd)] = ER[ sup
x,x�∈Xd

‖R(x − x�)‖] ≤ ER

�
sup

x,x�∈Xd

‖R(x − x�)‖
‖x − x�‖

�
diam(Xd)

(129)≤
�
1 +

w(T)√
k

�
diam(Xd) ≤

�
1 +

w(T)√
k

�
2B,
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General Lipschitz classifiers

Proof of Proposition 13 We will need the following lemma, proved later in this section.

Lemma 23 Let A ⊂ ℝd be a bounded set, f ∶ A → ℝ a given L-Lipschitz function, and 
R ∶ ℝd

→ ℝk a linear mapping. There exists an L-Lipschitz function fR ∶ R(A) → ℝ , such 
that for all x ∈ A,

We proceed to bound Dk(g
∗),

 where the last line used that for any gR ∈ GR , |gR(RX, Y) − g∗(X, Y)| ≤ �̄  by the bounded-
ness of the loss function.

Now, using Lemma 23, we further upper bound the expression in (130) on the set X�

d
 

by choosing hR ∈ HR to be the Lh-Lipschitz function associated with h∗ from Lemma 
23. So for all x ∈ X�

d
 we have �hR(Rx) − h∗(x)� ≤ Lh ⋅ supx�∈X�

d
�‖x − x�‖ − ‖Rx − Rx�‖� . 

Hence, bounding Eq. (130) gives:

where (132) follows from Gordon’s lemma (Lemma 21).
Moreover, by using Property 2.3, this also gives us the same upper bound for the 

distortion-complexity,

  ◻

Proof We use the Rademacher complexity of the L
�
Lh-Lipschitz function class, adapted to 

the relaxation of bounded domain.

�fR(Rx) − f (x)� ≤ L ⋅ sup
x�∈A

�‖x − x�‖ − ‖Rx − Rx�‖�.

Dk(g
∗) = ER[ inf

gR∈GR

E(X,Y)[|gR(RX, Y) − g∗(X, Y)|]]

= ER

[
inf

gR∈GR

E(X,Y)

[
1(X ∈ X𝜖

d
) ⋅ |gR(RX, Y) − g∗(X, Y)| + 1(X ∉ X𝜖

d
)|gR(RX, Y) − g∗(X, Y)|]

]

≤ L
𝓁
ER

[
inf

hR∈GR

EX[1(X ∈ X𝜖

d
) ⋅ |hR(RX) − h∗(X)|]

]
+ 𝜖 ⋅ 𝓁

(130)Dk(g
∗) ≤ L

𝓁
LhExER[ sup

x�∈X𝜖
d

�‖x − x�‖ − ‖Rx − Rx�‖�] + 𝜖 ⋅ 𝓁

(131)≤ L
𝓁
LhExER sup

x�∈X𝜖
d

�‖Rx − Rx�‖
‖x − x�‖ − 1� ⋅ diam(X𝜖

d
) + 𝜖 ⋅ 𝓁

(132)≤ L
𝓁
Lhdiam(X𝜖

d
)
w(X𝜖

d
)√

k
+ 𝜖 ⋅ 𝓁

(133)Ck,N(Gd) ≤ L
𝓁
Lhdiam(X𝜖

d
)
w(X𝜖

d
)√

k
+ 𝜖 ⋅ 𝓁
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 The last step follows from bounding the expected diameter of the projected set RX�

d
 in 

terms of the diameter of X�

d
 in the first term, as before in Eqs. (128–129), and the Hölder 

and Jensen inequalities in the second term.
Finally, putting everything together with the expressions from Proposition 13 completes 

the proof.   ◻

Corollary 24 (Lipschitz classifiers) Let Gd be the class of Lh-Lipschitz classifiers with an L
�

-Lipschitz loss function. Let T ≡ �
x−x�

‖x−x�‖ ∶ x, x� ∈ Xd

�
 . Take any k ≤ d, 𝛾 > 0, 𝛿 ∈ (0, 1).

a) With probability 1 − 2� the compressive Lipschitz classifier satisfies

where w(⋅) is the Gaussian width of the set in its argument, and g∗ is the best Lh-Lipschitz 
classifier.

b) W.p. 1 − � , all g ∈ Gd satisfy

Proof of Lemma 23 We define the following function, and show that it satisfies the required 
properties.

(134)

ER[RN(GR)] =
1

N
ERETN∼ℙ

NE�

[
sup
gR∈GR

N∑
n=1

�n ⋅
(
gR(Rxn)1(xn ∈ X�

d
) + gR(Rxn)1(xn ∉ X�

d
)
)]

(135)≤ 28L
𝓁
Lh ⋅ ER[diam(RX𝜖

d
)]N

−
1

k+1 +
1

N
ETN

E𝜎

[
|

N∑
n=1

𝜎n1(xi ∉ X𝜖

d
)|
]
𝓁

(136)≤ 28L
𝓁
Lh ⋅ diam(X𝜖

d
)

�
1 +

2w(X𝜖

d
)√

k

�
⋅ N

−
1

k+1 +
𝜖 ⋅ 𝓁√

N

(137)

E[ĝR] ≤ E[g∗] +

�
L
𝓁
Lh ⋅ diam(X𝜖

d
) ⋅

w(X𝜖

d
)√

k
+ 𝜖 ⋅ 𝓁

�
⋅ 1(k < d) + 𝓁 ⋅ 𝜉(k, g∗, 𝛿)

+ 56L
𝓁
Lh ⋅ diam(X𝜖

d
)

�
1 +

2w(X𝜖

d
)√

k

�
⋅ N

−
1

k+1 +
2𝜖 ⋅ 𝓁√

N
+ 4𝓁

�
log(3∕𝛿)

2N

(138)

E[g] ≤ Ê[g] + 2

�
L
𝓁
Lh ⋅ diam(X𝜖

d
) ⋅

w(X𝜖

d
)√

k
+ 𝜖 ⋅ 𝓁

�
⋅ 1(k < d)

+ 56L
𝓁
Lh ⋅ diam(X𝜖

d
)

�
1 +

2w(X𝜖

d
)√

k

�
⋅ N

−
1

k+1 +
2𝜖 ⋅ 𝓁√

N
+ 3𝓁

�
log(2∕𝛿)

2N
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This function is L-Lipschitz: For all x̃1, x̃2 ∈ ℝk,

by the reverse triangle inequality.
Using the definition of fR and the L-Lipschitz property of f, we have:

Furthermore, by choosing z ∶= x in the supremum,

Hence, �f (x) − fR(Rx)� ≤ L supz∈A �‖z − x‖ − ‖Rz − Rx‖� .   ◻

(139)fR ∶ ℝ
k
→ ℝ, fR(x̃) = sup

z∈A

�
f (z) − L ⋅ sup

z∈A

‖Rz − x̃‖
�

(140)�fR(x̃1) − fR(x̃2)� = � sup
z∈A

�
f (z) − L ⋅ ‖Rz − x̃1‖

�
− sup

z∈A

�
f (z) − L ⋅ ‖Rz − x̃2‖

��

(141)≤ L ⋅ sup
z∈A

�‖Rz − x̃2‖ − ‖Rz − x̃1‖�

(142)≤ L ⋅ ‖x̃2 − x̃1‖

(143)fR(Rx) − f (x) = sup
z∈A

{f (z) − L ⋅ ‖Rz − Rx‖} − f (x)

(144)≤ L sup
z∈A

{‖z − x‖ − ‖Rz − Rx‖}.

(145)f (x) − fR(Rx) = f (x) − sup
z∈A

{f (z) − L ⋅ ‖Rz − Rx‖}

(146)≤ f (x) − {f (x) − L ⋅ ‖Rx − Rx‖}

(147)= 0

(148)≤ L sup
z∈A

�‖z − x‖ − ‖Rz − Rx‖�
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Appendix 4 Proof of lower bound, Theorem 6

Roadmap and tools

The proof uses techniques from (Tsybakov, 2004). The high level idea is to replace the 
infinite set of distributions ℙg∗ (k, �) or ℙG(k, �) with a finite family, which we need to con-
struct to satisfy a balance between two antagonistic goals: Firstly, the distributions must be 
similar enough to make it difficult to determine which distribution generated a given i.i.d. 
sample of size N, and secondly, they must be different enough so that failure in doing so 
incurs a sufficiently high loss.

For the sake of intuition, suppose a finite support set of size q; then there are a total 
of 2q possible binary classifiers, each of which can be identified with a binary string that 
encodes its outputs for on the points in the support. Equivalently, the set of all possible 
classifiers corresponds to the vertices of a q-dimensional hypercube. Our goal is to con-
struct and associate a distribution to each � ∈ Σ from the set of distributions of interest i.e. 
from Pg∗ (�, k) and from PGd

(�, k) . As the two compressibility notions are related, the same 
construction involving �-almost rank k distributions will work for both.

The following result from nonparametric statistics, known as the Assouad lemma (Tsyb-
akov, 2004, Chapter 2, pp. 77–136), will guide our construction.

Lemma 25 (Assouad lemma) Let Σ = {0, 1}q be the set of binary strings of length q index-
ing a set {P� ∶ � ∈ Σ} of 2q probability measures on Z . If KL(P𝜎||P𝜎� ) ≤ 𝜁 < ∞ for all 
pairs �, �� ∈ Σ with Hamming distance H(�, ��) = 1 , then

where the infimum is with respect to all measurable functions �̂� ∶ Z → Σ , and KL(⋅||⋅) is 
the Kullback–Leibler divergence between a pair of distributions.

Lemma 25 says that, if we can find a family of 2q distributions such that the ones hav-
ing neighbouring indexes on the hypercube are close in the KL sense, then for every esti-
mator �̂� (which also corresponds to a vertex of the hypercube) there is another vertex � 
whose associated distribution expects the Hamming distance of their hypercube-indexes to 
be large.

In the context of classification, P� will correspond to the distribution of the training set, 
and for any learning algorithm that returns a classifier from a sample set drawn from P� , �̂� 
will be an encoding the outputs of this classifier. We shall see that the excess error of this 
classifier relative to the best classifier, when the underlying distribution is P� , can be lower 
bounded in terms of the Hamming distance H(�̂�, 𝜎).

We start by specifying the family of distributions in a parameterised form. We will later 
determine appropriate values for the parameters to ensure both the KL condition of the 
Assouad lemma, and that all distributions are in the required compressible classes.

Construction of a parameterised set of distributions

Take an integer q ≤ d and a parameter � ∈ [0, 1] , to be determined later. We define the fol-
lowing family of 2q distributions indexed by binary strings of length q, supported on the 

(149)inf
�̂�
sup
𝜎∈Σ

EP𝜎
[H(�̂�, 𝜎)] ≥ q

2
⋅max

�
1

2
exp(−𝜁 ), (1 −

√
𝜁∕2)

�
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following finite set: {e1,… eq, 0d} , where ei is the i-th canonical basis vector. The q basis 
vectors will support a q-dimensional Euclidean space, and the setting of q, along with the 
parameter � , and the inclusion of the origin 0d into the support set will be used to handle 
the case when a relatively large probability mass lies outside of this subspace.

Our family of distributions will differ only in their class-conditional probability for the q 
basis vectors, while the marginals on X  and the class conditional probability at 0d are taken 
to be identical in all distributions.

With a slight abuse of notation, we will write ℙ(�)(x) for ℙ(�)({x}) . We define the mar-
ginals as the following

and one can easily verify that 
∑q

i=1
ℙ(�)(ei) + ℙ(�)(0d) = 1.

With appropriate choices of the parameters � and q, a marginal distribution of this form 
is able to represent compressible distributions that belong to both Pg∗ (�, k) and PGd

(�, k) . 
For instance, if q = d and � = � , we have a �-almost k-rank distribution; if q = k, 𝜆 > 0 
then we have an exactly rank-k distribution.

The class-conditional probabilities at ei, i ∈ [q] are defined to fluctuate around 1/2.

where 𝜎 = (𝜎1, ..., 𝜎q) ∈ Sq ⊂ {−1,+1}q , and Δ ∈ (0, 1∕2) is another parameter to be deter-
mined later in a way to ensure that the distributions ℙ(�) indexed by neighouring strings are 
similar enough in the KL sense, as required in Assouad’s lemma.

Observe that there is a bijection between the above family of distributions 
P ≡ {(ℙ(�))N}�∈Sq and the set of binary strings Σ (or the hypercube vertices).

Setting the parameter 1

Take two strings �, �′ that only differ in one coordinate, i� ∈ [q] . We shall set the parameter 
Δ with the aim to have KL(ℙ(�)||ℙ(��)) below a threshold of 1/2—this will make the maxi-
mum on the r.h.s. of Assouad’s lemma is 1 −

√
1∕4 = 1∕2 . First, note that, since the sam-

ple is i.i.d., we have KL((ℙ(�))N||(ℙ(��))N) = N ⋅ KL(ℙ(�)||ℙ(��)) . We bound KL(ℙ(�)||ℙ(��)) 
using the �2 distance, and using the definition of the latter, as follows.

The last term is zero, since the probability at (0d, y) was defined identically in both ℙ(�) and 
ℙ(��).

Writing P(X, Y) = P(X)P(Y|X) , we will condition on X. It is also useful to rewrite 
the label conditional probability can be written as the following

ℙ
(�)(0d) ∶= 1 − �

ℙ
(�)(ei) ∶= �∕q, i = 1,… q

ℙ
(�)[Y = 1|X = 0d] ∶= 1∕2;

ℙ
(�)[Y = 1|X = ei] ∶=

1 + �iΔ

2
, i = 1,… q

(150)KL(ℙ(�)||ℙ(��)) ≤ �2(ℙ(�),ℙ(��))

(151)=

q∑
i=1

∑
y∈{−1,1}

(
ℙ(�)(ei, y) − ℙ(��)(ei, y)

)2
ℙ(��)(ei, y)

+
∑

y∈{−1,1}

(
ℙ(�)(0d, y) − ℙ(��)(0d, y)

)2
ℙ(��)(0d, y)
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Plugging this into (151), and taking into account that only the i = i� term is nonzero in the 
sum (since � and �′ only differ in their i′-th coordinate), we have

In (155) we used that ��
i�
, �i� ∈ {−1, 1} , hence (��

i�
− �i� )

2 ≤ 4 . The last inequality used the 
assumption that Δ ∈ (0, 1∕2).

In sum, for the product distribution we have KL((ℙ(�))N||(ℙ(��))N) ≤ 8�Δ2N∕q . Now 
we set Δ by putting this quantity below 1/2, and also ensuring that Δ ∈ (0, 1∕2) , as 
follows

Before we can set the remaining parameters, q and � , we need to link in the learning 
algorithm.

Defining �̂ and �

We start by defining �̂� and � in the context of a learning problem as follows. An arbitrary 
learning algorithm A receives an i.i.d. sample from ℙ(�) and returns a classifier, which we 
map onto �̂� ∈ Σ . Likewise, we map h∗ to � ∈ Σ . Using these definitions, we then lower bound 

ℙ
(�)(Y = y|X = ei) =

[
ℙ
(�)(Y = 1|X = ei)

]1(y=1)[
ℙ
(�)(Y = −1|X = ei)

]1(y=−1)

=

(
1 + �iΔ

2

)1(y=1)(
1 − �iΔ

2

)1(y=−1)

=
1 + y�iΔ

2

(152)Eq. (151) =
�

q

∑
y∈{−1,1}

(
ℙ(�)(Y = y|X = ei� ) − ℙ(��)(Y = y|X = ei� )

)2
ℙ(��)(Y = y|X = ei� )

(153)=
�

q

∑
y∈{−1,1}

(
1+y�i� Δ

2
−

1+y��

i�
Δ

2

)2

1+y��

i�
Δ

2

(154)≤ �

q

∑
y∈{−1,1}

((��
i�
− �i� )Δy)

2

1 + ��
i�
Δy

(155)≤ 4�

q

∑
y∈{−1,1}

Δ2

min{1 − Δ, 1 + Δ}

(156)≤ 4Δ2�

q

1

1 − Δ

(157)≤ 8�Δ2∕q

(158)Δ ∶=
min{1,

√
q∕(�N)}

4
.



Machine Learning 

1 3

the excess error of the classifier learned by the algorithm in terms of the Hamming distance 
H(�̂�, 𝜎).

Given any learning algorithm A ∶ (X × Y)N → Hd trained on a training set TN ∈ (X × Y)N 
drawn from (ℙ(�))N , we let ŵi ∶= (A(TN))(ei), i = 1,… , q , and ŵ = (ŵ1,… , ŵq) ∈ ℝq . Fur-
thermore, let �̂�i = sign(ŵi), i = 1,… , q , and �̂� = (�̂�1,… , �̂�q).

Likewise, we let w∗
ℙ(�)

= (w∗
1
,…w∗

q
) ∈ ℝq with w∗

i
∶= h∗

ℙ(�)
(ei), i = 1,… , q 

the outputs of the best classifier in the class, h∗ , and � = (�1,… , �q) ∈ Σ with 
�i = sign((w∗

ℙ(�)
)i), i = 1,… , q It may be worth observing that, on the constructed family of 

distributions any learning algorithm is equivalent to a halfspace classifier, since the q canoni-
cal basis vectors are the only inputs where the function outputs can differ. For the same reason, 
h∗ (equivalently w∗ ) is also a Bayes-optimal classifier under the distribution ℙ(�) . Hence, for 
any x in the support, we can write (A(TN))(x) = ŵTx , and h∗

ℙ(�)
(x) = w∗T

ℙ(�)
x.

Lower bounding the excess risk by a Hamming distance

Our next goal is to lower bound the excess risk of the learned classifier in terms of a Hamming 
distance. In particular, the following holds, where � is the 0–1 loss

To see (159), we lower bound the l.h.s. using the law of iterated expectation

since the multiplier of 1 − � in the last term of Eq. (160) evaluates to zero.
Consequently, by using the definitions of ℙ(�)

Y|X,

(159)E(X,Y)∼ℙ(𝜎) [𝓁((A(TN))(X),Y)] − E(X,Y)∼ℙ(𝜎) [𝓁(h∗
ℙ(𝜎) (X), Y)] ≥ 𝜆

q
Δ ⋅ H(�̂�, 𝜎).

(160)

q∑
i=1

(
ℙ
(𝜎)

Y|X[Y ≠ sign(ŵTX)|X = ei] − ℙ
(𝜎)

Y|X[Y ≠ sign(w∗T
ℙ(𝜎)X)|X = ei]

)
𝜆

q

+
(
ℙ
(𝜎)

Y|X[Y ≠ sign(ŵTX)|X = 0d] − ℙ
(𝜎)

Y|X[Y ≠ sign(w∗T
ℙ(𝜎)X)|X = 0d]

)
(1 − 𝜆)

(161)=

q∑
i=1

(
ℙ
(𝜎)

Y|X[Y ≠ sign(ŵTX)|X = ei] − ℙ
(𝜎)

Y|X[Y ≠ sign(w∗T
ℙ(𝜎)X)|X = ei]

)
𝜆

q

(162)Eq. (161) ≥
q∑
i=1

(
ℙ
(𝜎)

Y|X[Y ≠ �̂�i] − ℙ
(𝜎)

Y|X[Y ≠ 𝜎i]
)
𝜆

q

(163)=

q∑
i=1

∑
y∈{−1,1}

𝜆

q
⋅
1 + y𝜎iΔ

2
⋅
(
1(�̂�i ≠ y) − 1(𝜎i ≠ y)

)

(164)=

q∑
i=1

∑
y∈{−1,1}

𝜆

q
⋅
1 + y𝜎iΔ

2
⋅ 1(�̂�i ≠ 𝜎i)
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If �i = y , then 1+y�iΔ
2

=
1+Δ

2
 ; if �i ≠ y , then 1+y�iΔ

2
=

1−Δ

2
 . Consequently, (163) equals

which concludes the statement of Eq. (159).

Applying Assouad’s lemma

Having constructed the family of distributions in a way that neighbouring ones on the 
hypercube are similar in the KL sense, we now want to show that a classifier trained on a 
sample drawn from one of these distributions will have high expected error for some set-
ting of the remaining distributional parameters.

To recall the setting, suppose that one of the members of our family of distributions, 
ℙ(�), � ∈ Σ is the true underlying distribution from which we have a sample TN ∼ (ℙ(�))N . 
An arbitrary learning algorithm trained on TN returns the classifier A(TN) . Using Assouad’s 
lemma, we want to show that, we can set q and � such that A(TN) has high expected risk of 
failing to identify the correct distribution—in other words its expected excess error will be 
higher than some lower bound.

We use the encoding of the classifier A(TN) into �̂� = �̂�(TN) described earlier—this is an 
estimator of � – and use the lower bound on its excess error from (159),

where we made explicit the dependence of �̂� on TN.
Taking expectation w.r.t. the distribution of TN on both sides, we now apply the Assouad 

lemma (Lemma 25) with the distribution family {(ℙ(�))N}�∈Σ on Z = (X × Y)N . Hence, the 
expectation of (166) is lower bounded as

The lower bound (169) still depends on the distributional parameters q, � . It now remains 
to set these so as to ensure that ℙ(�) is both D-compressible and C-compressible.

(165)

q∑
i=1

𝜆

q

[
1 + Δ

2
1(𝜎i ≠ �̂�i) −

1 − Δ

2
1(𝜎i ≠ �̂�i)

]
=

q∑
i=1

𝜆

q
1(𝜎i ≠ �̂�i)Δ =

𝜆

q
Δ ⋅ H(�̂�, 𝜎)

(166)

E[gA(TN )
]] − E[g∗

ℙ
] = E(X,Y)∼ℙ(𝜎) [𝓁((A(TN))(X),Y)] − E(X,Y)∼ℙ(𝜎) [𝓁(h∗

ℙ(𝜎) (X), Y)]

≥ 𝜆

q
Δ ⋅ H(�̂�(TN), 𝜎),

(167)ETN∼(ℙ
(𝜎))N

[
E[gA(TN )

]] − E[g∗
ℙ
]
] ≥ 𝜆

q
Δ ⋅ ETN∼(ℙ

(𝜎))N [H(�̂�(TN), 𝜎)]

(168)≥ �

q
⋅
min{1,

√
q∕(�N)}

4
⋅
q

4

(169)=
�

16
min

{
1,

√
q

�N

}
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Final construction of a bad distribution

We are finally ready to set the parameters q and � in the family of distributions con-
structed early in the proof; these will be set with the aim to construct the required bad 
distribution.

We apply the findings of the previous section, Eq. (169). There are 2 cases to consider: 
small � and large � . 

1. Case � ≥
√

k

N
 . In this case we choose q = d, � = � , and the marginal on X  becomes 

 Observe, this is a �-almost k-rank distribution, cf our Definition 3, with the under-
lying linear subspace Vk – indeed, 0d ∈ Vk and ℙ(�)(0d) = 1 − � , so we have 
ℙ(𝜎)(Vk) = 1 − 𝜃 + k𝜃∕d > 1 − 𝜃 . Hence, this distribution is both D-compressible and 
C-compressible, with the same parameters (�, k) . Plugging these parameter choices 
back into (169), we have 

 The inequality (171) holds because N < d and � ∈ [0, 1] so the minimum is 1; the 
inequality (172) follows from � ≥ √

k∕N.
2. Case 𝜃 <

√
k

N
 . Now we choose q = k, � = 1 , so the marginal becomes 

 This is again a �-almost k-rank distribution (with � = 0—exactly k-rank in fact), there-
fore it belongs to both D-compressible and C-compressible distributions with the same 
parameters (�, k) . By Eq. (169), in this case we have: 

(170)ℙ
(�)(0d) = 1 − �; ℙ

(�)(ei) = �∕d, i = 1,… d.

(171)

E(X,Y)∼ℙ(�) [�((A(TN))(X),Y)] − E(X,Y)∼ℙ(�) [�(h∗
ℙ(�) (X), Y)]

≥ �

16
min

{
1,

√
d

�N

}

≥ �

16
=

1

32
2�

(172)≥ 1

32

(
� +

√
k

N

)
.

(173)ℙ
(�)(0d) = 0; ℙ

(�)(ei) = 1∕k, i = 1,… k.

(174)

E(X,Y)∼ℙ(�) [�((A(TN))(X),Y)] − E(X,Y)∼ℙ(�) [�(h∗
ℙ(�) (X), Y)]

≥ 1

16
min

{
1,

√
k

N

}

(175)

≥ 1

16

√
k

N
=

1

32
2

√
k

N

≥ 1

32

(
� +

√
k

N

)
.
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 The inequality (174) holds because k < N so the minimum is 
√
k∕N , and inequality 

(175) follows from � ≤ √
k∕N.

Therefore, in both cases we found a distribution for which the excess risk of A(TN) is greater 
than c(� +

√
k∕N) , where c = 1

32
.

Appendix 5 Standard inequalities

For reference, here we list the classic inequalities that we made use of; these can be found in 
textbooks such as (Shalev-Shwartz & Ben-David, 2014; Mohri et al., 2012).

Property 5.1 (Johnson-Lindenstrauss) Let {x1, x2,… , xN} ⊂ ℝd be a set of N points, and a 
random matrix R ∈ ℝk×d . For any � ∈ (0, 1), � ∈ (0, 1) , if k ≥ C�−2 log(N∕�) , we have

with probability at least 1 − � , where C > 0 is a constant.

Lemma 26 (Markov inequality) Let X be a non-negative random variable. Then, for any 
𝛿 > 0 , with probability at least 1 − � , we have

Lemma 27 (Hoeffding inequality) Let X1,X2,… ,Xn be independent random variables such 
that Xi ∈ [a, b] a.s. for all i ∈ [n] . Then, for any 𝜖, 𝛿 > 0 , w.p. at least 1 − � , we have

Lemma 28 (McDiarmid inequality) Let X  be a set, and f ∶ XN
→ ℝ be a function s.t. for 

some c > 0 , for all i ∈ [N] and for all x1,… xN , x
�
i
∈ X  we have

Let X1,… ,XN be N independent random variables taking values in X  . Then, w.p. at least 
1 − � we have

The following classic generalisation bound is derived using McDiarmid inequality.

Theorem 29 (Rademacher bounds (Shalev-Shwartz & Ben-David, 2014) Lemma 3.3.) Let 
G be the loss class of a function class, and suppose the loss is bounded by �̄  . With prob-
ability at least 1 − � we have each of the following uniformly for all g ∈ G:

(176)∀i, j ∈ [N], (1 − �)‖xi − xj‖2 ≤ ‖Rxi − Rxj‖2 ≤ (1 + �)‖xi − xj‖2

(177)ℙ(X ≥ �) ≤ E[X]

�
.

(178)
||||||
1

n

n∑
i=1

Xi − E

[
1

n

n∑
i=1

Xi

]||||||
≤
√

(b − a)2 log(2∕�)

2n
.

(179)|f (x1,… , xN) − f (x1,… , xi−1, x
�
i
, xi+1,… , xN)| ≤ c.

(180)�f (X1,… ,XN) − E[f (X1,… ,XN)]� ≤ c
√
N log(2∕�)∕2.
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