
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-024-06530-1

1 3

Ijuice: integer JUstIfied counterfactual explanations

Alejandro Kuratomi1  · Ioanna Miliou1 · Zed Lee1 · Tony Lindgren1 ·
Panagiotis Papapetrou1

Received: 8 March 2023 / Revised: 21 December 2023 / Accepted: 14 February 2024
© The Author(s) 2024

Abstract
Counterfactual explanations modify the feature values of an instance in order to alter its
prediction from an undesired to a desired label. As such, they are highly useful for provid-
ing trustworthy interpretations of decision-making in domains where complex and opaque
machine learning algorithms are utilized. To guarantee their quality and promote user trust,
they need to satisfy the faithfulness desideratum, when supported by the data distribution.
We hereby propose a counterfactual generation algorithm for mixed-feature spaces that
prioritizes faithfulness through k-justification, a novel counterfactual property introduced
in this paper. The proposed algorithm employs a graph representation of the search space
and provides counterfactuals by solving an integer program. In addition, the algorithm is
classifier-agnostic and is not dependent on the order in which the feature space is explored.
In our empirical evaluation, we demonstrate that it guarantees k-justification while showing
comparable performance to state-of-the-art methods in feasibility, sparsity, and proximity.

Keywords  Machine Learning · Interpretability · Counterfactuals · Justification · Integer
Programming · Graph Network

Editors: Dino Ienco, Roberto Interdonato, Pascal Poncelet.

 *	 Alejandro Kuratomi
	 alejandro.kuratomi@dsv.su.se

	 Ioanna Miliou
	 ioanna.miliou@dsv.su.se

	 Zed Lee
	 zed.lee@dsv.su.se

	 Tony Lindgren
	 tony@dsv.su.se

	 Panagiotis Papapetrou
	 panagiotis@dsv.su.se

1	 Department of Computer and Systems Sciences, Stockholm University, Borgarfjordsgatan 12,
Kista, 16455 Stockholm, Sweden

http://orcid.org/0000-0002-5460-2491
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06530-1&domain=pdf

	 Machine Learning

1 3

1  Introduction

Recent advances in machine learning have led to the development of post-hoc, model-
agnostic interpretability algorithms. These algorithms are designed to explain the decisions
and structure of the machine learning models, aiming to increase the users’ understand-
ing of them and promote their trustworthiness (Molnar, 2020; Laugel et al., 2019; Ribeiro
et al., 2016). A subset of these interpretability algorithms, known as counterfactual (CF)
explanations, attempts to assist the decision-making process by indicating what changes
need to be applied to a subset of features so that the original prediction label switches
to a desired one (Kuratomi et al., 2022; Wachter et al., 2017; Kyrimi et al., 2020). More
concretely, given an instance of interest (IOI) x in a binary classification task and a trained
classification model f that assigns x with a class label, a CF explanation provides an answer
to the following question: How should x be transformed to a CF x′ , so that the predicted
label is switched (Bobek & Nalepa, 2019). CF explanations can be very valuable in differ-
ent domains. For example, in financial text classification, they may help to understand the
sentiment associated with financial asset performance predictions (Yang et al., 2020), or
in the image domain, to understand which parts should be blurred or modified in an image
to relabel it into another class (Vermeire et al., 2022). Consider, in the medical domain,
a complex ML model built on a large medical dataset that accurately predicts the risk of
future severe disease occurrence. Given a patient with a predicted high risk of severe dis-
ease development, a CF can suggest the shortest action path to prevent this disease (Mol-
nar, 2020; Kyrimi et al., 2020). As the search space for performing this transformation
is huge, a variety of CF explanations exist (Molnar, 2020; Rudin, 2019; Lindgren et al.,
2019; Tolomei et al., 2017; Laugel et al., 2017; Poyiadzi et al., 2020; Mothilal et al., 2020;
Karimi et al., 2020; Pawelczyk et al., 2020) depending on what type of changes and which
CF quality measure is prioritized. There is currently no consensus on the best metric to
optimize for better CF quality (Molnar, 2020; Rudin, 2019). This paper focuses on generat-
ing CFs that satisfy desiderata, such as proximity, feasibility, sparsity, and, most impor-
tantly, faithfulness so that the CFs are supported by and connected to observations.

Particularly, proximity between the IOI and the CF (Wachter et al., 2017; Tolomei et al.,
2017; Lindgren et al., 2019) can be quantified using different distance metrics, e.g., l2-
norm or l0-norm (the latter known as sparsity or minimality Guidotti (2022), which is the
number of features that are changed) (Wachter et al., 2017; Byrne, 2019; Miller, 2019;
Kuratomi et al., 2022). Another measure is feasibility (Wachter et al., 2017), which indi-
cates whether (1) the values in the CF x′ are possible to occur (plausibility), (2) only muta-
ble features are modified (mutability), and (3) the changes are done in a possible direction
only (directionality), e.g., age may only increase.

Last but not least, faithfulness (Pawelczyk et al., 2020; Rudin, 2019; Laugel et al.,
2019) indicates whether the CF is supported by the data distribution. Faithfulness pro-
motes user trust in decisions based on the CF and may be achieved through CF likeli-
hood (Dandl et al., 2020; Pawelczyk et al., 2020) and/or through justification (Laugel
et al., 2019; Kuratomi et al., 2022). A given CF is justified if it has a connection to a
correctly classified CF training observation, e. A connection between two instances is
defined as the existence of a path between them, such that all the points in the path
belong to the same class as the two connected instances, i.e., the CF lies in the same
classification region as one or more CF training points. Since counterfactual explana-
tions are able to provide actionable statements for a given instance (which could be a
patient with a high risk of developing severe disease, as in the previous example), it is of

Machine Learning	

1 3

utmost importance that the ground truth observations support such explanations (Laugel
et al., 2019), such that the proposed potential treatments or medical advice embedded
in it, adhere to reality as faithfully as possible. Justification is a property that indicates
whether the link between the CF explanation obtained and ground truth observations
exists or not. It is easier to trust a feasible, justified, and likely CF according to the data,
even if it is not the closest CF to its corresponding IOI x. Therefore, the property of
justification is important because it increases the faithfulness of the obtained CFs, pro-
viding a stronger and more trustworthy CF explanation, as described in Kuratomi et al.
(2022). The CF explanation could then be presented in the following manner: x is pre-
dicted to have a negative label, but this label changes to a positive one if x is changed
to x′ , which is justified by the observation e. Different algorithms have been developed,
each aiming to satisfy a different subset of these measures and other measures discussed
in this field’s state of the art.

The recently proposed JUstIfied Counterfactual Explanations (JUICE) algorithm by
Kuratomi et al. (2022) obtains a faithful (justified) CF by connecting the generated CF x′
to a single training observation e in mixed-feature (heterogeneous) spaces. For binary and
one-hot encoded categorical features, a connection is defined by performing a set of binary
flips, hence traversing the feature space from the CF to a training example or vice-versa.
A similar process is followed for ordinal features, where changes are applied sequentially
in the order of the ordinal feature. Finally, for continuous features, the values are changed
in small steps. If there are several features of the same type, then the permutations of the
features that are different are considered. JUICE first starts by navigating from the clos-
est feasible CF training observation, towards the IOI following three sequential steps: (1)
search for binary connections, (2) search for ordinal connections, and (3) search for con-
tinuous connections. Only feasible feature value changes are considered (changes that hold
the properties of plausibility, mutability, and directionality with respect to the IOI). Since
JUICE starts from the closest feasible nearest neighbor CF, the JUICE CF is feasible.

However, JUICE’s CF is only guaranteed to be justified (connected to) one single train-
ing observation, and is not able to examine whether this justifier instance is representative
of the CF class data distribution or not, i.e., it does not differentiate between an outlying or
a likely instance. This can be a problem, since justifying the CF with an outlier may imply
supporting the explanation to the users with a non-representative observation of the desired
class, possibly hindering the explanation’s trustworthiness. An experiment showed that the
probability of obtaining an outlier instance as justifier through JUICE is almost 10%.

Additionally, the explanation’s potential credibility may be greatly increased if instead
of outputting a single justifier, which could be an outlier, the algorithm was able to attain
a higher number of justifiers, i.e., obtaining justified CFs that are connected to several CF
observations instead of just one. Obtaining a CF that is justified by more than one instance
would provide more complete explanations of the following form: x is predicted to have
a negative label, but this label changes to a positive one if x is changed to x′ , which is
justified by the set of observations Tk , where |Tk| > 1 (See Table 1). This more complete
form provides a higher number of observations that support the region where the CF is
located, thereby increasing the trustworthiness of the explanation when compared to hav-
ing only one justifier. To the best of our knowledge, there is no algorithm for counterfactual
explanation generation that focuses on the justification of the counterfactuals from a set of
training observations and not just a single justifier, which could be an outlier. We hereby
propose such an algorithm, which outputs CF explanations with higher credibility which
could increase the utilization of the ML algorithms in different sectors. Our contributions
can be summarized as follows:

	 Machine Learning

1 3

1.	 We formulate the problem of k-justification, a stronger formulation of CF justification,
which consists of finding the k closest training instances that can potentially justify a
CF instead of a single justifier instance, hence increasing the faithfulness of the CF and
avoiding justifications by single outliers.

2.	 We introduce the iJUICE algorithm, shorthand for integer JUstIfied Counterfactual
Explanations, a novel algorithm that solves the k-justification problem and generates CFs

Table 1   List of variables and definitions

Variable Definition

A Adjacency matrix of graph network G
b Number of binary features in dataset D
B(a, b) Binary connection between instances a and b
c Number of one-hot encoded categorical features in dataset D
Ci Cost parameter of node ni ∈ N

CFT Closest feasible CF training observation
C(a, b) Continuous connection between instances a and b
D Training dataset
d(a, b) Distance function between instances a and b
dir Feature directionality vector
e Justifier training observation
E Set of edges in the graph G
f Classifier function
G Graph network
hu Number of ordinal values in ordinal feature u
k Number of potential justifier training observations (defined by the user)
K Set of potential justifier training observations
L1(⋅),L2(⋅) Cost functions for problems 1 and 2, respectively
� Distance and justification ratio weight parameter
mut Feature mutability vector
N Set of nodes in graph G
o Number of ordinal features in dataset D
O(a, b) Ordinal connection between instances a and b
p Number of bins used to discretize the continuous features
Ψ(a, b) Connection (of any type) between instances a and b
pla Feature plausibility vector
q Number of training observations in D
r Number of continuous features in dataset D
sv Justifier decision variable for node nv ∈ K in the iJUICE IP
Tk Set of justifier training observations of x′

w Total number of features ( w = b + c + r + o)
x, x′ Instance of interest and its corresponding counterfactual
xi CF decision variable for node ni ∈ N in the iJUICE IP
X Mixed-feature space
yij Edge decision variable between nodes ni, nj ∈ N in the iJUICE IP
Y Binary class label space

Machine Learning	

1 3

in mixed-feature spaces that are proximity-optimal, feasible, stable, valid, and at most
k-justified by extending JUICE. The main novelty of iJUICE includes k-justification
and treating the problem as a graph-based integer program, to guarantee connectivity
between the counterfactuals and training observations.

3.	 We provide an extensive experimental evaluation of iJUICE against 10 model-agnostic
competitors on 14 publicly available datasets using different CF evaluation metrics, on
which we show that iJUICE improves over JUICE and other state-of-the-art algorithms
in terms of proximity while maintaining similar computational times. We additionally
perform an ablation study, evaluating the impact of different distance measures and
weights of k-justification as well as the impact of parameter k in proximity and justi-
fication ratio performance. We demonstrate the monotonic behavior of proximity and
justification ratio, and how k may allow for a large amount of justifiers, increasing the
trustworthiness of the explanations.

4.	 Finally, we propose a mixed-feature space justification verification process that builds
a graph network using a subset of training CF observations, and uses this network to
prevent unseen paths to be missed, and hence possibly fail at detecting connection paths
to training observations lying in the same classification region.

The rest of the document is divided as follows: Sect. 2 is dedicated to the relation of state-
of-the-art counterfactual generation methods that are presented in the literature. Section 3
introduces the notation and concepts required to understand the justification counterfac-
tual generation problem which is ultimately described in Sect. 4. Section 5 introduces the
iJUICE method, whilst Sect. 6 presents the evaluation of iJUICE along other state-of-the-
art counterfactual generation methods in a set of 14 binary classification datasets. Finally
we have Sect. 7 dedicated to the discussion of the usage of the justification property and
Sect. 8 presenting the conclusions of the work.

2 � Related work

The related work is divided into two subsections. The first subsection describes the dif-
ferent measures used for the evaluation of the CF explanations, and the second subsection
describes different methods that contrast with the iJUICE algorithm presented here.

2.1 � Evaluation of CF explanations

The evaluation of the CF explanations is an ongoing research topic, and may be performed
through different measures related to different CF properties (Guidotti, 2022; Miller, 2019;
Sharma et al., 2020; Molnar, 2020; Rudin, 2019; Karimi et al., 2022). Different CF gen-
eration algorithms prioritize different counterfactual properties. Several documents exist
where these properties, along with the algorithms that prioritize them are reviewed. Gui-
dotti (2022) provides the most recent, extensive overview and benchmark of the CF genera-
tion algorithms and their desiderata. Verma et al. (2020) also discuss these CF and algo-
rithm properties, whilst also relating to some of the challenges faced by the current CF
generation algorithms. Karimi et al. (2022) focus on the property of recourse and its rela-
tion to actionability and feasibility of CFs. We leverage the knowledge gathered in these
reviews and other documents to provide an overview on the different evaluation measures
and the methods prioritizing them in CF explanations.

	 Machine Learning

1 3

The property of validity indicates whether the obtained CF has another predicted label
compared to the original instance of interest (Verma et al., 2020; Wachter et al., 2017;
Mothilal et al., 2020; Guidotti, 2022; Karimi et al., 2022, 2020). This property is not guar-
anteed by all the CF generation algorithms (Guidotti, 2022), meaning that these algorithms
could output instances that still present the factual label (Mothilal et al., 2020) and are
therefore not valid CFs.

The properties of plausibility, feasibility, actionability and causality are highly con-
nected and discussed throughout the literature, and different researchers have different
connotations for these terms. Guidotti indicates that an instance should be plausible if it
lies inside the observed range of values (mentioned as domain-consistency in Karimi et al.
(2022)) and is not considered an outlier with respect to the dataset Guidotti (2022) (men-
tioned as density-consistency in Karimi et al. (2022) and as feasibility in de Oliveira and
Martens (2021)). In this sense, the closeness to the data, a property mentioned and ana-
lyzed by Verma et al. (2020), is highly related to plausibility, since the closer the CF to
denser spaces, the better it is in terms of its likelihood with respect to the data. In Russell
(2019), coherence is related to this closeness to the data, as it is defined as the property of a
CF that can be mapped back to the original data. Additionally, the justification property of
interest in the present study which was initially proposed by Laugel et al. (2019), is consid-
ered an approximation of plausibility (Guidotti, 2022). Guidotti also states that plausibility
is sometimes also referred to as feasibility or reliability (Guidotti, 2022). Karimi et al. also
defines a third category for plausibility, which is known as prototype-consistency, which
indicates that a CF is plausible if it is similar to a prototype instance in the dataset (Karimi
et al., 2022). However, it is not enough that a CF is plausible. Verma et al. point out that
the closeness to the data should be accompanied by a measure of feasibility. In their study,
feasibility is defined as the compliance with the causality constraints: if a given CF does
not comply with causal relations among features, then the CF is unfeasible (Verma et al.,
2020). This is also specified by Guidotti, who explains causality as a prerrequisite to plau-
sibility and actionability (Guidotti, 2022). In Karimi et al. (Karimi et al., 2022) feasibility
is defined as actionability, meaning that a CF must only be feasible if the interventions pro-
posed are actually possible, i.e., only actionable features are manipulated, but this does not
mean that only actionable features can be changed. In this sense, if a given actionable fea-
ture is changed, other non-actionable features may change due to causality among features
(Karimi et al., 2022), but these non-actionable features should then be mutable. In Guidotti
and Karimi et al., actionability implies mutability (Guidotti, 2022; Karimi et al., 2022).

Another property is known as diversity, defined as the difference among a set of CFs
(if the algorithm is designed to extract more than one CF) (Guidotti, 2022; Karimi et al.,
2020, 2022; Verma et al., 2020; Mothilal et al., 2020). It may be measured in different
ways, based on the distance between the CFs or the sparsity among them (Mothilal et al.,
2020; Karimi et al., 2020). Sparsity or minimality is simply the number of features changed
between the instance of interest and the CF (Guidotti, 2022; Verma et al., 2020; Karimi
et al., 2020, 2022).

Finally, other properties are described in the literature, such as discriminative power
(which is not related to discrimination or fairness). Discriminative power is defined as a
subjective property shown by CFs that, when read by humans, can easily show why the fea-
ture changes proposed would lead to a different predicted class label (Guidotti, 2022). Sta-
bility, also known as robustness (Guidotti, 2022; Verma et al., 2020; Karimi et al., 2022),
is a property of the CF generation algorithm, stating that a stable CF generator should not
change its output when run several times for the same instance of interest, or should only
change slightly when run for two different but very close instances. Fairness, a property

Machine Learning	

1 3

associated to both the CF and the CF generation algorithms (Guidotti, 2022) is important
for trustworthiness since biased explanations may shed light into biases in the model or
hinder its credibility. Guidotti indicates that a fair counterfactual should be indicating simi-
lar changes required between a person in a given demographic or sensitive group to reach
the desired class label as another belonging to another sensitive group (the concept of bur-
den described by Sharma et al. (2020)). Kuratomi et al. (2022) indicate that there are dif-
ferent ways to measure fairness using counterfactuals and propose a way by combining
burden with the false negative rate of that specific sensitive group. We now briefly describe
some of the algorithms mentioned in the literature that prioritize these properties.

2.2 � Counterfactual generation methods

There are different CF generation methods available (Guidotti, 2022). The Nearest Neigh-
bor (NN), Minimum Observable (MO) (Wexler et al., 2019), and Random Forest Tweaking
(RT) algorithms (Lindgren et al., 2019) obtain justified CFs at the cost of proximity per-
formance, as they are restricted to searching the CF among existing observations. Both NN
and MO search among observations, but NN searches only among training observations,
while MO also uses the test data with the predicted label. Similarly, Counterfactual Condi-
tional Heterogeneous Autoencoder (CCHVAE) sacrifices proximity in favor of faithfulness
by optimizing for likelihood in an autoencoder latent space with respect to the training
data (Pawelczyk et al., 2020). Additionally, just as in the RT method, Actionable Feature
Tweaking (FT) must use a random forest classifier to search for CFs (Tolomei et al., 2017).

Furthermore, the Growing Spheres (GS) (Laugel et al., 2017) algorithm expands a
sphere centered around the IOI until the decision boundary is met, in the continuous fea-
ture space only, which maximizes proximity, while the Diverse Counterfactual Explanation
(DiCE) (Mothilal et al., 2020) algorithm is able to output a sparse and diverse set of CFs.
The Feasible and Actionable Counterfactual Explanation (FACE) (Poyiadzi et al., 2020)
algorithm searches for feasible paths to generate the counterfactual but attains lower prox-
imity performance while also not considering CF faithfulness.

Finally, other algorithms use optimization frameworks to find an optimal CF with
respect to an objective function. The Model-Agnostic Counterfactual Explanation (MACE)
(Karimi et al., 2020) algorithm uses the Satisfiability Modulo Theory (SMT) to maxi-
mize CF proximity or sparsity while preserving feasibility. The Actionable Recourse (AR)
(Ustun et al., 2019) algorithm uses an Integer Program (IP) to find the CF by consider-
ing feature changes that maximize CF actionability while preserving feasibility, however,
it demands a linear classifier. This heavily constraints the applicability of the CF method,
since the most accurate ML models present a highly nonlinear behavior (Molnar, 2020;
Rudin, 2019). However, as compiled by Guidotti (2022), there are several other optimi-
zation-based CF generation algorithms that are constrained on the type of classifier they
can explain. Other linear classifier-oriented algorithms are the Diverse Coherent Expla-
nations (DCE) (Russell, 2019), which discretizes continuous features to formulate integer
constraints to optimize for diversity and plausibility, and the Distribution-Aware Counter-
factual Explanation (DACE) (Kanamori et al., 2020), which is constrained to either lin-
ear classifiers or tree ensembles, and considers the Local Outlier Factor (LOF) to output a
CF that is close enough to the data distribution (plausible). Among the tree classifier-ori-
ented algorithms are the Counterfactual Explanation for Oblique Decision Trees (CEODT)
(Carreira-Perpiñán & Hada, 2021), which provides a distance-optimal CF for tree-based
models and can handle oblique function trees and the Optimal Counterfactual ExplAiNer

	 Machine Learning

1 3

(OCEAN) (Parmentier & Vidal, 2021), which focuses on actionability and is applied on
tree ensembles. These methods share the mathematical programming approach of iJUICE,
but they assume a given classifier structure (either linear or tree-based) which makes them
not ideal for comparison. We do not constrain the classifiers to have any structure so as to
prioritize a higher classifier performance that justified the requirement for explainability
algorithms.

Another tree-based counterfactual generator is the LOcal Rule-based Explainer (LORE)
(Guidotti et al., 2019; Guidotti, 2022) which is a local surrogate model that builds a tree on
synthetic data to provide both feature relevance and counterfactual rules. Moreover, addi-
tional methods that output both feature relevance in the form of regression coefficients and
counterfactuals (Guidotti, 2022) based on a set of randomly generated points or perturba-
tions are LIME-C and SHAP-C (by Ramon et al. (2020)) and Counterfactual Local Expla-
nations via Regression or CLEAR (by White and Garcez (2019)) which focus on a measure
called fidelity for the regression and CF sparsity. Although these methods focus on coun-
terfactual extraction, their main contribution is their capability to deliver both counterfac-
tual explanations and feature relevance-based explanations, which is an aspect iJUICE does
not focus on. Therefore, we have chosen to focus on known methods that are similar to
iJUICE and focus only on counterfactual generation.

In addition, some solutions employ evolutionary algorithms, like the Multi-Objective
Counterfactual (MOC) (Dandl et al., 2020), and the CERTIFAI algorithms (Sharma et al.,
2020) to derive diverse and sparse CFs. These methods are also quite interesting, but, due
to the randomness associated to the genetic algorithms and their potential non-optimal
solutions (obtaining local optima), we believe they would not exactly fit as baselines for the
iJUICE algorithm.

Other algorithms that may focus on non-tabular data, like the Search for Evidence Coun-
terfactual (SEDC), initially proposed by Martens and Provost (2014) and later adapted for
image counterfactuals by Vermeire et al. (2022), and extended to its multiclass version,
SEDC-T, with a given target T class. Furthermore, Guidotti and Ruggieri (2021) propose
a novel approach of ensembles for counterfactual generation, with different weak explain-
ers and each focusing on a different measure, among them sparsity, stability, actionability,
plausibility and discriminative power. Although interesting, iJUICE currently aims to pro-
vide counterfactuals on tabular datasets as a single generation method. Therefore, we have
excluded SEDC and its variants and this ensemble method.

Fig. 1   As shown in JUICE: a connection is obtained through the binary path B
B
 , the ordinal paths O

C
 or O

D

and the continuous path C
B

Machine Learning	

1 3

A counterfactual can also be referred to as recourse, which, in general, is a term used
to define explanations and recommendations in the form of counterfactuals (Verma et al.,
2020; Karimi et al., 2022; Ustun et al., 2019; Rawal & Lakkaraju, 2020). Karimi et al.
(2022) indicate that recourse explanations are usually sought after by current CF genera-
tion algorithms, and that they try to answer the question what is the set of values that are
required to be classified in the desired label?, while recourse recommendations answer the
question what actions are needed to reach the set of values that are required to be clas-
sified in the desired label?. These two are different and answering the second question is
much harder than the first, since it requires the knowledge of causality among features.

Moreover, in the survey by de Oliveira and Martens (2021), algorithms are selected
based on their capability to deal with neural network-based classifiers. Finally, the reader is
referred to Guidotti (2022) for further details on the different algorithms and their compari-
son, and to the CARLA framework, which is a benchmarking library that contains several
of the counterfactual generation algorithms already implemented, and on which we base
ourselves to implement the CCHVAE and FACE algorithms (see Sect. 6.3 and “Appen-
dix A”). None of the described algorithms however guarantee justification as a CF property.

3 � Preliminaries

Table 1 summarizes the notation and variables used throughout the rest of the paper. Let
D be a dataset used to train a classifier f ∶ X → Y , where X is defined as a mixed-feature
space of binary, categorical, ordinal, and continuous features, and Y is a binary class label
space. We use x ∈ X to refer to an IOI, and x′ to refer to a CF to x ( f (x�) ≠ f (x) ). Finally,
let us define e ∈ D , and f (e) = f (x�) ≠ f (x) . e is a counterfactual training observation that
may justify x′ . We say that x′ is justified by e, when at least a connection between x′ and e
exists. We define the connection between any pair of instances � and � , where �, � ∈ X as
a path starting on any of them and reaching the other without crossing any decision bound-
ary of the classifier f, i.e., both instances lie in the same classification region constructed
by f.

This definition was initially applied to continuous spaces by Laugel et al. (2019), and
Kuratomi et al. extended it to heterogeneous spaces (Kuratomi et al., 2022). In a heteroge-
neous space, where binary, categorical, ordinal and continuous features exist, the connec-
tion between any pair of instances may be verified by checking that incremental, adjacent

Fig. 2   Point x is surrounded by
3 regions of CF points. The blue
region 1 has only 1 justifier.
The region 2 presents 2 outlier
training observations as justifiers.
The region 3 presents a high
number of justifiers. A CF found
in region 3 has a better support
according to the data distribu-
tion and could lead to higher
explanation trustworthiness and
credibility from users

	 Machine Learning

1 3

and feasible feature changes from any of the instances to the other have always the same
class label as that of both of the instances. We defined three kinds of connections for heter-
ogeneous spaces: binary, which indicates that two instances are binary-connected if incre-
mental binary feature flips (combinations of the values between the binary features of �
and � ) lead to a path of the same label between them. Categorical features are included in
this kind of connection, since they are one-hot encoded; a similar definition is given for
ordinal and continuous connections. We also indicate that whenever the three connection
types exist between two instances, we may say that they are connected in a heterogene-
ous space (Kuratomi et al., 2022). In the case of a training CF observation e and a CF x′ ,
the connection entails justification from e to x′ . If there are no other training CF observa-
tions connecting to x′ in its classification region, this means that x′ is only justified by one
instance (only e justifies x′ ). Figure 1 shows how these connections may look like (from
Kuratomi et al. (2022)).

We now introduce the concept of k-justification which allows the CF to be at most jus-
tified by the k closest training observations. Figure 2 serves to illustrate this concept in
a 2-dimensional space. In this figure, point x is located in the light orange class region,
surrounded by 3 light blue enumerated regions. Each of the blue regions is located at a
different distance from point x and has a different number of supporting instances or blue
training observations (surrounded by a green outline). Any of the 3 regions presents at least
1 justifier for any CF x′ found inside, so justification may be guaranteed inside of them.

Note however that regions 1 and 2 provide not only few justifiers, but also justifiers
that may be considered outliers regarding the distribution of the counterfactual class data
points. These two facts may influence the trustworthiness of the explanations if a counter-
factual is obtained in region 1 or region 2, where outliers (which may not be representative
of the class distribution due to particular characteristics of the instances or measurement
errors) have taught the model to create a blue class region. The same situation could arise
in real datasets, hence, having a higher number of justifiers may increase the credibility

Fig. 3   Fraction of single justifiers that are considered outliers according to the distribution of the counter-
factual, desired class training observations

Machine Learning	

1 3

of the CF. If we focus on maximizing the amount of justifiers connected to the CF as part
of the objective, we may provide higher trustworthiness. Region 3 has a higher density
of blue class instances. Obtaining the CF x′ in region 3 should be better for the trustwor-
thiness, credibility and legitimacy of the obtained explanation from the user perspective,
since it may be supported by a higher number of points in the dataset.

4 � Problem description

Problem 1  (Justified Counterfactual Generation) Given a classifier f trained on a dataset D
and a cost function L1(⋅) , a justified counterfactual example x� ∈ X to instance x is defined
as:

(1)x� = argmin
z
{L1(x, z)|f (x) ≠ f (z) ∧ ∃ e ∈ D ∶ B(z, e) ∧O(z, e) ∧ C(z, e)}

Fig. 4   iJUICE algorithm 2-dimensional example

	 Machine Learning

1 3

where B(x�, e) , O(x�, e) and C(x�, e) denote the existence of a binary, ordinal, and continu-
ous connection, respectively, between x′ and e, e being a training CF observation (Kuratomi
et al., 2022).

We reformulate Problem 1 in order to consider the concept of k-justification and integrate it
into the justified counterfactual generation problem, as follows:

Problem 2  (k-justified Counterfactual Generation) Given a classifier f trained on a data-
set D, a number k ∈ ℤ

+ , with k ≤ |D| , and a cost function L2(⋅) , a justified counterfactual
example x� ∈ X to instance x, which is justified by at most k close training observations, is
defined as:

where Tk is the set of CF training observations that are connected to (i.e., they justify) x′ ,
1 ≤ |Tk| ≤ k , and k (set by the user) is the maximum number of close CF training observa-
tions to x considered to justify x′.

In Eq. 2, Ψ(a, b) is a function that indicates whether points a and b are connected
through any path in the space, regardless of the feature type or the navigation order of the
features. The CF x′ is justified by at least one and at most k training observations. In gen-
eral, this strengthens the faithfulness of the potential CFs found inside by avoiding lack of
justification or justification by a set of potential outliers.

To illustrate the need for k-justification, we measure the probability of obtaining a sin-
gle-justifier that happens to be an outlier. For this, we perform a small set of experiments
on the datasets and classifiers used. We start by estimating the likelihood of each of the
training observations in the desired class, and setting a threshold below which we flag them
as outliers. Then, we randomly select a set of instances from the undesired class and per-
form the JUICE algorithm to obtain a CF, which is guaranteed to be justified by a single
instance and has then the risk of being justified by an outlier. Finally, we count the times
this justifier instance is a training outlier for the set of instances selected. The results are
shown in Fig. 3. In only 2 of the 14 datasets there was no justification from an outlier, how-
ever, the highest fraction of outlier justification was found in the Census dataset with a total
of 47.3% of the sample size. The average fraction of outlier justifications in all datasets is
9.5% , i.e., almost 1 out of 10 CFs obtained could be justified by an outlier, which is a con-
siderable value.

To estimate which of the samples in the desired class are outliers, we implemented a
multivariate kernel density estimation, and selected the instances with the lowest 5 % log-
likelihood according to the density estimation. In order to avoid justifying a CF through a
single outlier observation, the iJUICE algorithm, which prioritizes k-justification, is pro-
posed and discussed next.

5 � iJUICE: integer JUstIfied counterfactual explanations

We hereby make a brief explanation on mixed-feature or heterogeneous spaces and how to
find the connections among instances in it, then proceed to describe the iJUICE algorithm.

(2)x� = argmin
z
{L2(x, z, Tk)|f (x) ≠ f (z) ∧ ∃ Tk ∈ D ∶ Ψ(z,Tk)},

Machine Learning	

1 3

5.1 � Traversing the mixed‑feature space

iJUICE employs a graph network for traversing the mixed-feature space X and generating
candidate CFs. More concretely, let G = {N, E} be the graph network, where each node
ni ∈ N corresponds to a point in the mixed-feature space X  , and an edge exists between
two nodes ni, nj when a single feature value changes between them. Let K be the set of k
close CF training observations to the IOI x, with K ⊆ N  . Let xi be a binary variable that
indicates whether any node ni ∈ N ⧵K is selected as the iJUICE CF. Only a single node ni
may be selected (i.e.,

∑
ni∈N⧵K xi = 1 ). Let sv be a binary variable that indicates whether any

training observation nv ∈ K is chosen as a justifying node for the selected CF by xi . Several
nodes in K (up to |K| = k defined by the user) may justify the selected CF.

Moreover, let yij ∈ ℤ be a variable that indicates the number of times the edge connect-
ing nodes ni, nj ∈ G, i ≠ j is used, and let Ci ∈ ℝ be the cost associated to a node ni ∈ N  ,
defined as the distance between ni and IOI x. We also denote the adjacency matrix of G as
A. Finally, a node is feasible with respect to the IOI x if, when selected as CF, the proper-
ties of mutability, directionality, and plausibility are satisfied. We use Fi to denote the fea-
sibility of node ni ∈ N .

5.2 � The iJUICE algorithm

iJUICE comprises six steps, which are outlined in Algorithm 1, while a 2-dimensional
example of these steps is depicted in Fig. 4. Next, we describe these steps in more detail.

Algorithm 1   iJUICE

The mutability, directionality and plausibility vectors of the dataset are inputs to the
iJUICE algorithm. iJUICE is model-agnostic, but not data-agnotic, i.e., it requires the
user input of the properties of mutability of each feature, the directions on which they can
change, and the values they can possibly take. This information was manually inserted
for each dataset. The details on the properties of mutability and directionality are given

	 Machine Learning

1 3

in “Appendix B”. The property of plausibility is defined as the values that each feature
can take, e.g., for continuous features, from the minimum value to the maximum value
observed in the dataset, and for ordinal, the ordinal values that the feature can take. These
affect how the graph is built, and therefore the solution.

In step 1, we sort all the training observations by the distance function used and select
the set K of k closest instances with the least feature value permutations with respect to the
IOI x (k chosen by the user). We calculate the permutations of the training observations
with respect to the IOI x. This number is at most 2(b+c) ⋅ pr ⋅

∏o

l=1
hu for each instance,

where b, c, r and o indicate the number of binary, one-hot encoded categorical, continu-
ous and ordinal features present in the dataset, respectively; p is the number of steps in the
discretized continuous features, and hu is the number of ordinal values in the ordinal feature
u. We select the nearest neighbors with the least amount of possible changes with respect
to the IOI x, and make the generated graph compact and sparse, which improves the CF
actionability and reduces the overall complexity. Figure 4a shows the IOI x and the k = 10
selected closest CF training observations to instance x with a green outline.

In step 2, the set N of nodes of the graph are generated. To do this, the gradient vector
g = x − nv is calculated for every training observation nv ∈ K . For each changed feature
between x and nv , all the CF nodes (according to classifier f) corresponding to permutations
of the features changed are obtained. Only CF points are considered, which guarantees the
validity of the obtained CF. Figure 4b adds the full set of CF nodes in N .

Ideally, for continuous features, iJUICE should check infinitesimal value changes, which
is unattainable. As in the original JUICE algorithm, a discretization is performed to obtain
a finite number of points. We create p = 100 steps in each continuous feature. In contrast to
JUICE, which simply splits the difference between x and nv in 100, iJUICE locates these p
steps based on the feature distribution, so that the probability of finding an instance is the
same, i.e, the probability of being between two adjacent values is 1% for all step values found.
Therefore, if the feature distribution is more dense around a given point, then the space
between adjacent values close to that point will be smaller, increasing the number of nodes
in the search space as the feature becomes denser, which reduces the probability of uninten-
tionally traversing a decision boundary. Moreover, p is modified to decrease the number of
nodes when dealing with larger datasets. The worst case complexity for all the k instances
is O(k(2(b+c) ⋅ pr ⋅

∏o

l=1
hu)) which is the maximum amount of nodes in the graph (when all

features are different between each node in K and x), defined as �N� = k(2(b+c) ⋅ pr ⋅
∏o

l=1
hu) .

The adjacency of the filtered CF points in space is defined by the adjacency matrix A.
In step 3, the adjacency matrix A is defined, where an edge exists among two nodes if only

one feature is different in the smallest possible value change. Figure 4c shows the edges cor-
responding to one’s in the adjacency matrix. The definition of the adjacency matrix requires at
most O(|N| ⋅ log(|N|) ⋅ w) operations, where w is the total number of features.

In step 4, the simultaneous compliance of the properties of mutability, directionality, and
plausibility is assessed for each node ni ∈ N with respect to IOI x to calculate its feasibility
Fi . Fi is a binary parameter stating the feasibility of node ni ∈ N with respect to the selected
node xi . When non-compliant to any of the three properties, Fi = 0 , forcing xi = 0 . Figure 4d
shows the unfeasible instances that are marked as black. Note that a CF training observation in
K may also be blacked out and that a connection may still exist through the unfeasible nodes
but they cannot be selected as CFs.

In step 5, the cost associated to each node Ci, ni ∈ N is calculated based on the distance
function used. In step 6, we solve problem 2 using an IP formulation. The cost function to be

Machine Learning	

1 3

optimized is described in Eq. 3 and is a weighted average between the distance Ci associated
with selecting xi , and the ratio |Tk|

k
 , given xi . The � coefficient lies in the [0, 1] range. When

� = 1 , only the distance is relevant, and the constraint in inequality 7 forces the selected CF to
have at least one justifier. When 𝜆 < 1 then the formulation will try to increase the number of
justifiers sv so that the second term in Eq. 3 increases and Z decreases. The impact of � may be
observed in the ablation study in Sect. 6.6.2. Given that these parameters are fixed, the solu-
tion will always be stable, meaning that for a unique instance the obtained CF will be the same
for any iterations done.

subject to:

In the IP, constraints 4 and 5 restrict the connections in the graph (they are the multi-
source, single-sink flow constraints in a graph network). Constraint 4 is the outflow con-
straint for each possible justifying training observation: for each of these observations, the
in-out balance should be −sv , indicating that if the node nv ∈ K is selected as a justifier
( sv = 1 ), then there must be an edge starting a connection path to the selected CF from nv .
Constraint 5 is the inflow constraint for all nj ∈ N ⧵K . The right-hand side of this equation
indicates that the number of edges or paths leading to the chosen CF (selected through xj )
must equal the sum of all the selected justifying instances. Note then that �Tk� =

∑
sv.

Constraint 6 forces the selected CF to be feasible. Constraints 7 and 8 enforce at least
one justifying instance to the selected CF in the graph network. Constraints 9, 10 and 11

(3)min Z = �
∑

ni∈N⧵K

Cixi − (1 − �)
1

k

∑

nv∈K

sv

(4)
∑

ni∈N

yivAiv −
∑

ni∈N

yviAvi = −sv, ∀nv ∈ K

(5)
∑

ni∈N

yijAij −
∑

ni∈N

yjiAji = xj

∑

nv∈K

sv, ∀nj ∈ N ⧵K

(6)xi ≤ Fi, ∀ni ∈ N ⧵K

(7)
∑

nv∈K

sv ≥ 1

(8)
∑

ni∈N

xi = 1

(9)xi ∈ {0, 1} ∀ni ∈ N ⧵K

(10)sv ∈ {0, 1} ∀nv ∈ K

(11)yij ∈ ℤ ∀ni ∈ N, nj ∈ N

	 Machine Learning

1 3

indicate the nature of the decision variables. Note that the variable yij is an integer, which
allows a path in the graph to be traversed more than once.

If the problem is unfeasible for a given IOI x, then iJUICE defaults to the feasible near-
est neighbor CF. Figure 4e and f show the optimal solutions when proximity is prioritized
( � = 1 ) and when justification is prioritized ( � = 0 ), respectively. The selected CF x′ is
shown as a yellow dot, and the yellow connection paths to different CF training observa-
tions are observed. Note that the yellow dot has six justifiers in Fig. 4f, instead of the four
shown in Fig. 4e.

5.3 � Complexity

An IP formulation is a NP − complete problem (Lenstra, 1983; Kannan & Monma, 1978;
Papadimitriou, 1981). It may be solved in pseudopolynomial time given that the number
of constraints m is fixed (Papadimitriou, 1981) or that the number of variables n is fixed
(Lenstra, 1983). More specifically, the current IP has a fixed m = 2|N| + 2 and a fixed
n = |N| + |N|2 . Most IP formulations are solved through a combination of branch-and-
bound and cutting planes algorithms (Basu et al., 2022). Basu et al. (2022) have proved
that for an IP with at most s sparsity (all constraints have at most s variables involved),
the minimum size of a tree generated by the branch-and-bound algorithm is 2⌊

n

2 s
⌋ , s = |N|

(constraint 5). Cohen et al. (2021) indicate that the fastest algorithm to solve a linear pro-
gram, which is the relaxed formulation obtained at each node of the branch-and-bound
tree, is expected to have a complexity of O(n2.5) . Therefore, for the IP, the number of nodes
in the branch-and-bound tree is at least: 2⌊

�N�+�N�2
2�N� ⌋

= 2⌊
�N�+1

2
⌋ and the complexity of step 6

is O(2⌊
�N�+1

2
⌋
(�N� + �N�2)2.5) . This is the worst-case complexity of the iJUICE algorithm,

which is considerably higher than its average complexity due to two considerations:

1.	 �N� = k(2(b+c) ⋅ pr ⋅
∏o

l=1
hu) is the worst case scenario. Since the gradient vector is

sparse g = x − nv for all nv ∈ K , because K may be selected based on the lowest per-
mutations between x and nv then the real number of nodes |N| usually complies with
�N� ≪ k(2(b+c) ⋅ pr ⋅

∏o

l=1
hu).

2.	 The solution of the IP is strongly influenced by the sparsity of the constraints (Basu
et al., 2022) and the preprocessing stages of the solver package which reduces both
constraints and variables based on the sparsity. Since the adjacency matrix A is highly
sparse, the practical solution is attained within an acceptable time.

5.4 � Verifying k‑justification for any given CF

iJUICE guarantees justification and is able to output the justification ratio on the k
closest CF training observations. JUICE is able to obtain a justified CF, however,
this CF may be far from its justification instance because of the initialization process
requiring a feasible instance, i.e., the CF may not be justified by nearby observations
to it. For any given CF, we implement an algorithm, shown in Algorithm 2, to measure
justification.

Machine Learning	

1 3

Algorithm 2   k-justification verification

The first step is to find the set K of closest k CF training observations to x′ . From
this set of instances, in line 2 the graph towards the x′ CF is built, obtaining all the
permutation nodes among the K set and x′ . Then the connections are verified for each
of the nodes in K through the adjacency matrix A and finally, the justification ratio is
calculated. This justification process is an improvement over the mixed-feature verifi-
cation process previously proposed (Kuratomi et al., 2022) because it is able to con-
sider k closest CF training observations instead of only the closest one. Theoretically,
one may set k = |q| , in order to consider all the possible justifiers in the dataset, but
this considerably increases the complexity. Therefore, we set k = 10 , which is the same
amount of closest CF training observations considered by the initialization of iJUICE.
To relax the search for connection with other instances and also reduce the compu-
tational complexity, we use 10-bins discretization for the continuous features of the
graph network.

6 � Empirical evaluation

We compare iJUICE with 10 state-of-the-art counterfactual generation methods, using 14
different binary classification datasets. The datasets and methods are described in Sects. 6.1
and 6.3. The iJUICE implementation is available on GitHub.1

6.1 � Datasets

We used 14 binary classification datasets to benchmark iJUICE against 10 competitor CF
generation methods. The datasets have been selected for their mixed-feature space and
their application diversity: three focus on income and professional development, three
on financial and credit information, three on the medical area and disease diagnosis,
three on student education assessment, one on recidivism, and one on athletes perfor-
mance. All datasets have been preprocessed and stored in the GitHub repository. These

1  https://​github.​com/​alku7​660/​iJUICE.

https://github.com/alku7660/iJUICE

	 Machine Learning

1 3

datasets are preprocessed according to the guidelines proposed by Karimi et al. (2020)
and Le Quy et al. (2022). The information on feature feasibility (mutability, directional-
ity) is directly input into the iJUICE algorithm. Further details about the initial amount
of instances, specific prediction task, and features of each dataset may be found in the
“Appendix B”.

6.2 � Classifiers

In order to generate CFs for subsets of instances in each of the datasets studied, we first
select a classification model and tune its hyperparameters. We perform a grid search on
Random Forest (RF) and Multi-Layer Perceptron (MLP) models to obtain the trained clas-
sifiers f used on each dataset (based on the F1 score). The details on the grid search hyper-
parameters, the classification performance, and size of the test subsamples for CF genera-
tion are shown in “Appendix C.1”.

6.3 � Competitors

The selected 10 CF generation competitor algorithms tested have been previously described
in Sect. 2, namely NN, MO, FT, RT, GS, FACE, DiCE, MACE, CCHVAE and JUICE. The
AR method, which also uses an IP to search for CFs, is not implemented since it requires a
linear classifier. For further details about their default configurations and general function,
see “Appendix A”.

6.4 � Parameter setup

There are four parameters to be set in iJUICE:

1.	 � : The weight between the distance function and the justification ratio in the IP cost
function, Eq. 3. We set this equal to 1, in order to prioritize proximity (as other baselines
do) and analyze the impact of � on the performance of iJUICE (see Sect. 6.6.2).

2.	 Distance function: We use a set of distance measures specified in Sect. 6.5 to define
Ci , and study their impact on the performance of iJUICE (see Sect. 6.6.2).

3.	 Continuous features discretization: By default, we use a split of 100 bins for each
continuous feature for most of the datasets. The details on the number of continuous
features bins used for each feature in each dataset are given in “Appendix B”.

4.	 Parameter k: The amount of closest CF training observations to consider for the search
of the iJUICE CF. As noted in Sect. 3, specifically in the example illustrated in Fig. 2, if
the number k surpasses the number of counterfactual training outliers, and the iJUICE
algorithm is set to maximize for the number of justifiers, then iJUICE will eventu-
ally output counterfactuals in regions where the most training observations are found,
namely, region 3 in Fig. 2. According to this, one may define the parameter k based on
the number of counterfactual training outliers, which is not a straightforward problem
to tackle. We however define k = 10 . Additional details on the selection of k may be
found in Sect. 6.6.3.

Machine Learning	

1 3

6.5 � Performance metrics

As mentioned in Sect. 1, we define in this study feasibility as an overarching property
that covers three properties: mutability, directionality and plausibility, the latter satisfied
whenever the values of the CF are in the observed or physically possible range of values.
Although iJUICE does not optimize for sparsity directly, we measure its capabilities in this
property. The performance measures used to evaluate the CFs generated are then listed
below:

1.	 Proximity: Measured through the distance between the IOI x and each of the generated
CF (the lower the better). We use distance functions that have been used in the literature
to address the challenge of evaluating datasets with mixed-feature types:

(a)	 l1 & l0-norm: Weighted average of the l1-norm for ordinal and continuous fea-
tures and a simple matching for binary and categorical, based on Sharma et al.
(2020):

(b)	 l1, l0 & l∞-norm: Weighted average of the l1-norm for ordinal and continuous
features, a simple matching for binary and categorical and the l∞-norm, based
on Karimi et al. (2020):

 We have defined � = 0.25 , � = 0.25 , and � =
1

(�+�)w
 , in accordance with the

description by Karimi et al., where w is the number of processed features.
(c)	 Max. Percentile Shift: The maximum percentile change between any of the fea-

tures j in the dataset, as measured in the training observation distribution, based
on Ustun et al. (2019):

	  We take an interest in three distance measures designed for datasets with a mixed-
feature space (Sharma et al., 2020; Karimi et al., 2020). The Max. Percentile Shift is
able to calculate the distance based on the observed feature distribution regardless of
their potentially different scales or nature (Ustun et al., 2019). We also analyze three
different commonly used metrics in the literature, namely l2-norm, l1-norm, and l∞
-norm and their results may be observed in the “Appendix C.2”.

2.	 Sparsity: The number of features that are different between the instance of interest and
its corresponding CF:

3.	 Feasibility: The product of mutability, directionality, and plausibility:

FCF = 1 if mutability, directionality, and plausibility of the CF are satisfied (as dis-
cussed in Kuratomi et al. (2022)).

(12)d(x, x�) =
o + r

w
l1(x, x�) +

b + c

w
match(x, x�)

(13)d(x, x�) = �match(x, x�) + �l1(x, x�) + �l∞,

(14)d(x, x�) = max
j∈w

|Q(xj) − Q(x�
j
)|

(15)SCF = |{i|xi ≠ CFi, i ∈ {(1, 2,… ,w)}}|

(16)FCF = (mutableCF = 1) ∧ (directionCF = 1) ∧ (plausibleCF = 1),

	 Machine Learning

1 3

4.	 Justification ratio: The ratio of justifier instances in the set K of possible justifiers:

6.6 � Results

The IP is solved by using an academic license of the Gurobi optimizer package for Python.
We compare the performance of iJUICE CFs with respect to CFs generated by other state-
of-the-art generation algorithms, including JUICE. In addition, we present the results of
the ablation study on the � weight parameter with regard to the performance of iJUICE in
proximity and justification ratio.

6.6.1 � CF performance

The scatter plot shown in Fig. 5 compares the performance of the CF generation algorithms
in terms of average ranking in the measures of feasibility, justification (in the x and y axes),
and proximity (through the area of the circles). It is important to note that each of the CF
generation algorithms was run in its default configuration. Most of the baseline methods
use the l2-norm as a default. These configurations are explained more in detail in “Appen-
dix A”. Since iJUICE optimizes for any of the mixed-feature spaces distance measures

(17)JCF =
1

k

∑

nv∈K

sv,

Fig. 5   Each subplot shows the scatter of the methods with respect to a specified distance function. The
x-axis represents the feasibility ranking. The y-axis represents the justification ranking. The dashed lines
indicate the exact ranking of the center of the dots in both axes. Since the axes are inverted, the higher up a
method is, the better the justification ranking, i.e., a relatively higher justification with respect to the other
methods. The further to the right a method is, the better the feasibility ranking, i.e., a relatively higher fea-
sibility with respect to the other methods. The size of the circles represents the performance in proximity
(or CF distance). The bigger the circle, the better the performance of the method in terms of proximity to
the CF. The best method is a big circle located in the upper right corner, whilst the worst method is a small
circle located in the lower left corner

Machine Learning	

1 3

discussed in Sect. 6.5, we use the corresponding distance measure as the cost function for
iJUICE in each subplot.

According to Fig. 5, iJUICE performs best in terms of proximity when compared to
the other baseline methods (it is the largest circle). Only GS outperforms it in the l1, l0
& l∞ norm. We also note that JUICE and iJUICE are close in ranking in feasibility and
justification, with iJUICE being superior in both and considerably better in terms of prox-
imity. MACE matches JUICE in terms of feasibility due to its feasibility constraints on the
CF. JUICE is slightly inferior in feasibility to iJUICE because of its initialization: JUICE
selects the closest feasible CF training observation as the starting point. However, if there
are no feasible CF training observations, then JUICE defaults to NN. In this case, the CF
output, although justified, will be unfeasible. There was an instance in the Athlete dataset
which did not have a feasible CF training observation, so an unfeasible but justified obser-
vation was selected as CF.

In contrast, iJUICE initializes on the k closest CF training observations without requir-
ing them to be feasible with respect to the IOI x. The selected iJUICE CF is the clos-
est instance to the IOI x that belongs to the graph formed by these k closest CF training
observations and their permutations found when navigating in the feature space towards the
IOI. If there is no feasible node in the graph, then the problem is unfeasible, and iJUICE
defaults to the NN (as in JUICE). However, the risk of finding no feasible node in the

Fig. 6   Proximity ranking CD diagrams for all CF generation algorithms for l1 & l0; l1, l0 & l∞ and Max.
Percentile Shift. iJUICE optimizes the corresponding cost function

Fig. 7   Justification and feasibility ranking CD diagrams for all CF generation algorithms for l1 & l0.
iJUICE optimizes the corresponding cost function. Feasibility remains equal for all distance measures

	 Machine Learning

1 3

iJUICE graph is lower than in JUICE, since the initialization considers more than one close
CF training observation.

In the Nemenyi (Critical Difference - CD) tests in Fig. 6, the statistically different meth-
ods are observed for all distance measures applied. iJUICE, GS, NN, MO, FT, and RT are
the best and statistically better than JUICE and MACE in the Max. Percentile Shift dis-
tance measure. However, the GS method has the lowest combined performance, together
with FT, on both feasibility and justification (the lower-left corner circles in Fig. 5). The
worst performance in feasibility was attained by the CCHVAE method, which also was the
worst in proximity to the IOI (it is the smallest point) due to it not minimizing the distance
towards the IOI, but the CF likelihood. Finally, the GS algorithm has the best proximity

Fig. 8   Sparsity ranking CD diagrams for all CF generation algorithms for l1 & l0, l1, l0 & l∞ norms and
Max. Perc. Shift

Table 2   The iJUICE CF changed the marital status, occupation and education level and number of years.
Both justifier examples have the same education level and number of education years as the CF

Feat. IOI x iJUICE x′ Justifier 1 Justifier 2

Sex Male Male Male Male
Country USA USA USA USA
Race White White White White
Workclass Private Private Local-gov Private
Marital Status Single Married Single Married
Occupation Sales Prof-specialty Protection Adm-cleric
Relationship Own-child Own-child Own-child Husband
Education Level HS-grad Some-college Some-college Some-college
Age Group <25 <25 <25 <25
Education Number 9 10 10 10
Capital Gain 0 0 0 0
Capital Loss 0 0 0 0
Work Hr/week 40 40 40 40

Machine Learning	

1 3

performance in the l2, l1, and l∞ norms, as shown in the “Appendix C.2”. We highlight
that the GS algorithm assumes continuous feature spaces and therefore ignores feasible,
mixed-feature values.

Moreover, Fig. 7 indicates which methods are statistically different in terms of justifica-
tion and feasibility. We only present the justification CD diagram corresponding to the l1 &
l0 norm, which is the best ranking for iJUICE, and, since feasibility is guaranteed no matter
the distance function used, we simply present the performance of iJUICE for any distance
function. Note that there is no significant variation in justification among the different dis-
tance functions (All the justification CD diagrams are shown in “Appendix C.3”).

In terms of time, iJUICE is on par with respect to methods that also present an optimi-
zation framework, like MACE, or to methods optimizing for faithfulness, such as CCH-
VAE and JUICE. The GS algorithm is statistically superior to iJUICE in the l2, l1, and l∞
norms, while statistically not different in the rest. iJUICE is statistically superior to GS in
feasibility and justification. Further details on the results are shown in “Appendix C”.

In terms of sparsity, Fig. 8 shows the performance of iJUICE when optimizing for dis-
tance. iJUICE performs not significantly different from the algorithms tested in these data-
sets, but not in the best ranking. iJUICE is not the best in sparsity performance due to
the distance function used. The distance functions are different from the usual sparsity-
associated function, which is the l0-norm. However, the cost function could be changed
to include either a term on sparsity, or the distance function changed to a pure l0-norm
which could be calculated as a parameter for the nodes in the graph, in order to improve
the sparsity of the CF output. DiCE is the best in sparsity, since it outputs a set of CFs that
are sparse in the set of features changed and different among themselves (Mothilal et al.,
2020).

Finally, Table 2, shows an example for an IOI x from the Adult dataset, its iJUICE CF
through the Max. Percentile Shift distance measure and its justifiers. In this example, the

Fig. 9   Impact of � on iJUICE average proximity and justification ratio performance for 4 datasets

	 Machine Learning

1 3

male must increase his education and get college experience and change his occupation to
achieve a high-income label.

6.6.2 � Ablation study on the � parameter

We repeat the experiments varying the weight � in the 0 to 1 range with 0.1 increments
for four datasets, namely Adult, Census, Credit, and Disease. The Adult dataset focuses on
income prediction and has all types of features. Census has the same task but does not have
ordinal features. The Credit dataset focuses on default risk prediction by credit card hold-
ers and does not have categorical features. The Disease dataset is a synthetic dataset with
all feature types. For each � we evaluate three distance measures. The results are shown in
Fig. 9.

We observe in general that the higher the value of � the lower the distance (the better the
proximity) from the IOI x to the iJUICE CF and the lower the justification ratio. This is in
accordance with the cost function of the IP in Eq. 3, where a higher � parameter indicates
a higher weight for the distance function and a lower weight for the justification ratio. In
particular, having a � = 0 is suboptimal in all cases. To minimize distance while maximiz-
ing justification ratio, e.g. for the Adult dataset on the measures of l1 & l0 and l1, l0 &
l∞ , optimal values are � = 0.8 and � = 0.7 , respectively, since these provide the highest
justification ratio (above 40% ) with a lower distance. This behavior is observed through the
Census, Credit, and Disease datasets with other higher-than-zero � values. Additionally, if
proximity is the main priority ( � = 1 ) will output the closest CF whilst maintaining at least
one justifier instance, which is closer to the IOI x than the JUICE CF.

Finally, the Max. Percentile Shift measure is able to provide the highest justification
ratio for the Adult, Census, and Disease datasets, being considerably higher (around 15%
higher) than in the l1 & l0 and l1, l0 & l∞ measures in the Adult dataset. This behavior
is however reversed in the Credit dataset, where Max. Percentile Shift presents the lowest
justification ratio. Finally, note that the Max. Percentile Shift is the only measure limited to
the [0, 1] range, as does the justification ratio.

6.6.3 � Ablation study on the k parameter

Given that real datasets rarely present outlier identifiers (Eiras-Franco et al., 2019), and
that high-dimensionality, heterogeneous spaces present an inherent visualization challenge,
it may be possible to implement an outlier detection algorithm in order to find the num-
ber of outliers in every dataset. An example of this process was done in Sect. 4, when we

Fig. 10   Point � is surrounded by
3 regions of CF points, created
by a classifier. The blue regions
1, 2, and 3 present 2, 5, and 50
justifiers respectively. A CF
found in region 3 has a better
support according to the data
distribution and could lead to
higher explanation trustworthi-
ness and credibility from users
(Color figure online)

Machine Learning	

1 3

estimated that the set of desired class training instances with the lowest 5 % log-likelihood
was assumed to be a set of outlier instances.

However, although practical, this method may output an incorrect number of outliers
(there is no ground truth to identify outliers). Additionally, there is a large set of possible
algorithms for outlier detection (Breunig et al., 2000; Otey et al., 2006; Eiras-Franco et al.,
2019) requiring each a defined set of parameters, i.e., we would be transferring the problem
of the definition of the parameter k to the definition of the parameters associated to the
outlier detection algorithm. An example of this is the LOF algorithm (Breunig et al., 2000),
which requires the specification of a distance function and a number of neighbors that is
adequate to determine the outliers.

Consequently, we performed instead, a set of experiments to evidence the impact of
the parameter k, and provide a reasoning process to select its value. We demonstrate that
this parameter is to be defined by the users for the dataset and classifier of interest, accord-
ing to their justification needs to support the obtained CF. The experiments are performed
on a toy dataset emulating the scenario illustrated in Fig. 2, and 3 additional datasets
used in the paper (Adult, Athlete, and Oulad). We ran iJUICE iteratively with increasing
values for k for a given instance � . We record the proximity of the CF and the justifica-
tion ratio obtained. For the synthetic 2-dimensional dataset we used a MLP with layers
[100, 200, 500, 200, 100] and hyperbolic tangent activations (see Fig. 10). For the publicly
available datasets, we used the classifiers referred in Sect. 6.2. We prioritize the justifi-
cation ratio on both experiments, with � = 0.01 , meaning 0.99 weight on the justification
ratio. The justifier ratio and the average distance are plotted. The results for each dataset
are illustrated in Fig. 11.

In these figures, the red line is the distance from the CF to the IOI whilst the blue
line is the CF justification ratio. We will first focus on the 2-dimensional dataset (2D)
plot (top left corner named). In the range k ∈ [1, 2] , the justifier ratio remains at 100% ,

Fig. 11   The red line is the distance from the CF to the IOI. The blue line is the justification ratio of that CF.
The steps on the distance function, and the changes on the justification ratio are useful to determine where a
large portion of justifiers may be located (Color figure online)

	 Machine Learning

1 3

since there are 2 justifiers in region 1 (see Fig. 2), the closest region. In the range
k ∈ [3, 4] , the justification ratio decreases since having less than 5 potential justifiers
will still provide a CF in region 1, while the distance slightly changes. At k = 5 , the jus-
tification ratio increases because at that moment, 2 of the justifiers are in region 1, and
3 are in region 2. Since we are maximizing for justification ratio, the CF found moves
from region 1 to region 2 (increasing the average distance), having 3 out of 5 potential
justifiers (60% ). In the range k ∈ [6, 7] , the justification ratio keeps increasing because
there are up to 5 justifiers in the region 2. As k increases in this range, more justifiers
are found in region 2, making the distance remain steady until all justifiers found are
connected to the CF at k = 7 , making it 5 out of the 7 potential justifiers (71.4% ). In
the range k ∈ [8, 12] , the justification ratio decreases again, because there are only 5
justifiers in region 2. That means that the potential justifiers that are from the eighth to
the twelfth closest justifiers are located in region 3, but these are not enough to provide
higher justification than the five already found in region 2. In the range k ≥ 13 , the CF
is finally chosen in region 3. The justification ratio then increases until it reaches 87.7%
when it finds 50 justifiers out of 57 (since 7 are in the regions 1 and 2 and 50 are in
region 3), leading to a halt in justification ratio increase. Note also that the distance has
stabilized from k = 13 on, which is expected since the largest, justified counterfactual
region is region 3 and the CF found should remain there.

The 2D dataset (see top left plot of Fig. 11) presents an illustrative scenario of the
behavior of iJUICE with respect to k, but it is rather simple, since it only has continu-
ous features without any feasibility constraint. Additionally, all the CF training instances
in region 1 are closer than all the CF training instances of region 2, and the CF training
instances of region 2 are closer than all the CF training instances of region 3. This creates
the upward ladder behavior in the distance and the see-saw behavior in the justification
ratio. This is also observed in the Oulad dataset (bottom right plot in Fig. 11). However, the
iJUICE performance behavior on other real datasets and classifiers is more complex.

In the Adult dataset (top right plot in Fig. 11), in the range k ∈ [1, 8] , specifically from
the first to the second value of k, the distance decreases, and the justification ratio remains
at 100% . This indicates that the second closest CF observation expands the graph inside the
first CF region, bringing in closer points in space to the instance of interest. Additionally,
it also shows that this region is relatively large, where the first 8 CF training observations
are found. An interesting behavior occurs in the region k ∈ [11, 13] where the justifica-
tion ratio increases and the distance decreases. This must occur because the algorithm has
found another region where the actual CF training instances were located further than the
first 10, but the region has its decision boundary even closer to the instance of interest than
the first region does, therefore outputting a closer CF.

In the Athlete dataset (bottom left plot in Fig. 11), the slight change in distance from
k = 2 to k = 3 is due to the sensitivity of the optimizer caused by the small weight � = 0.01
of the distance component. In the range k ∈ [4, 6] , the justification ratio increases from 75%
to 100% as the distance decreases. This means that the graph that was initially split in two
regions, was connected by adding the fourth, fifth and sixth closest training CF instances.

Note that the experiments shown in Fig. 11 are for single, randomly picked instances
in the undesired predicted label. These indicate that different values of justification ratio
may be achieved with different k, depending on the dataset and classifier trained. In order
to avoid having to experiment on every instance on every dataset to select a given k and
aggregate the results, we define k = 10 for the sake of compactness and simplicity in the
empirical evaluation, and allow the users to modify this value as they see fit. In reality

Machine Learning	

1 3

where the interest is to explain an individual instance, the designer may do a study on that
specific individual to select the most appropriate k value.

7 � Discussion

Integrating the property of justification into the generation process of counterfactuals could
provide improved trustworthiness to the obtained CFs. However, we are aware that the
integration of this property by other established CF generation methods might prove dif-
ficult since this property requires finding the connecting paths from training observations
towards the selected CFs, which is demanding in heterogeneous spaces. One option is to
adapt the iJUICE method to fit as a member of an ensemble of counterfactual generators,
as proposed by Guidotti and Ruggieri (2021). Another option is to integrate other meth-
ods’ generation priorities into the iJUICE framework by using different cost functions con-
sidering other measures. For example, a diversity measure that could enhance and output
diverse and justified counterfactuals may be of use for several applications, such as in the
medical field, where it would be interesting for a doctor or patient to have diverse possible
treatments as options, or a likelihood parameter that could be used to obtain highly likely
CFs according to the data distribution (which are similar objectives to the DiCE and CCH-
VAE methods).

Additionally, it is important to highlight that the verification of the justification property
in heterogeneous spaces can be done for any given CF from another generation method
with a number of close training observations, making it an evaluation measure for the CF.
In order to do this, we developed the verification method, which uses a graph of nodes
from the given CF to the closest k CF training observations. Using knowledge of the nature
of the features (binary, categorical, ordinal, or continuous), the method is able to assess
whether the CF is justified by any of the closest CF training observations and the justifica-
tion ratio from these.

8 � Conclusion

We have hereby developed an IP formulation, called iJUICE, to solve the k-justified coun-
terfactual generation problem, which brings a stronger measure of faithfulness than the
single instance justification, which is important for the trustworthiness and actionability
of the derived explanations. Additionally, iJUICE performs well also in the measures of
feasibility and proximity in heterogeneous spaces. We have empirically demonstrated that
iJUICE attains closer, feasible, and k-justified instances under similar run times compared
to competitor algorithms while guaranteeing that these instances are also valid CFs and
are not changing with iterations of the algorithm, i.e., they are stable. iJUICE may be con-
figured for a set of three different distance functions and convex weights of justification
importance. Finally, we have analyzed the behavior of iJUICE in this regard by performing
an ablation study on the � weight parameter, showing the balance between proximity and
justification. Even at the highest proximity relevance, iJUICE is able to guarantee at least
one justifier for the output CF and may attain a higher justification ratio if desired, where a
weight 𝜆 > 0 is always better with respect to proximity performance.

The consideration of other counterfactual properties, such as discriminative power and
counterfactual fairness, is also of interest. Additionally, one may further develop the IP into

	 Machine Learning

1 3

a Mixed-Integer Linear Programming (MILP) formulation, where both continuous features
may be considered directly without the need to discretize them, as well as their correla-
tions so that more actionable and feasible changes may be proposed. Furthermore, a natural
extension is the consideration of multi-class datasets and several other distance measures to
be prioritized inside the objective function.

Appendix A: Methods

This section provides additional details on the configuration of the baseline methods used.
These baseline algorithms are adapted and found in the GitHub repository of this paper.

A.1 NN

This method uses the l2-norm by default to sort the training observations with respect to
the IOI x. It selects the closest training observation x′ for which l(x�) ≠ f (x) , where l(x�) is
the ground truth label of x′ , and for which x ≠ x′ ( x = x� may occur since duplicates are not
removed during the preprocessing).

A.2 MO

Based on Wexler et al. (2019), this method uses the l2-norm by default to sort all obser-
vations (including testing observations with their corresponding prediction labels) with
respect to the IOI x. It picks the closest observation x′ for which f (x�) ≠ f (x) (if x′ is a
test instance) or for which l(x�) ≠ f (x) (if x′ is a training observation) and for which x ≠ x′
( x = x� may occur since duplicates are not removed during the preprocessing).

A.3 FT

Based on Tolomei et al. (2017), this method uses a random forest to derive CFs through
instance perturbations that may divert the IOI x into a tree path leading to the desired CF
label. The perturbation magnitude � at each node in the path is � = 0.01 , and the l2-norm
is used as the default distance measure to assess the cost of attaining each CF. The original
source of the implemented algorithm may be observed in this repository.2

A.4 RT

Based on Lindgren et al. (2019), this methods uses a random forest to find the CF from the
training observations set that co-occurs the most in the different leaves of the random forest
trees, prioritizing the frequency of presence-at-leaf in the leaf where the IOI x falls into.
The original source of the implemented algorithm may be observed in this repository.3

2  https://​github.​com/​upura/​featu​reTwe​akPy.
3  https://​github.​com/​tony-​lind/​Examp​le-​based-​tweak​ing.

https://github.com/upura/featureTweakPy
https://github.com/tony-lind/Example-based-tweaking

Machine Learning	

1 3

A.5 GS

Based on Laugel et al. (2017), this method samples points in the space enclosed between
two concentric spheres which have the IOI x at the center. The algorithm stops whenever a
CF is sampled (a decision boundary is reached). The method sorts the instances by default
using the l2-norm and returns the closest CF. The original source of the implemented algo-
rithm may be observed in this repository.4

A.6 FACE

Based on Poyiadzi et al. (2020), the method builds a graph based on feasible changes from
the IOI x towards the decision boundary. It then prioritizes feasible paths that have a high
density in order to maximize the potential actionability of the changes from the IOI towards
the CF in the decision boundary. The method uses Dijkstras algorithm to find the shortest
path in the graph which is feasible. By default, the method uses the l2-norm distance func-
tion to assess the distance of the CFs obtained. The algorithm implemented can be found in
the CARLA Framework by Pawelczyk et al. (2021).

A.7 DICE

Based on Mothilal et al. (2020), the method is able to obtain a diverse set of CFs, i.e., a set
of CFs which portray different changed features to alter the predicted label of the IOI x.
The method maximizes tis diversity. In this case, the amount of requested CFs inside the
set is one. The original authors implementation can be found and installed via pip in this
repository.5

A.8 MACE

Based on Karimi et al. (2020), the method uses an optimization model with atomic formu-
lae based on SMT. The SMT allows for feasible CFs which also minimize distance to the
IOI x. The method is theoretically capable of optimizing for different distance functions.
However, due to issues regarding execution using l2-norm, the method is implemented
using the l0-norm. The original code may be found in this repository.6

A.9 CCHVAE

Based on Pawelczyk et al. (2020), the method uses a variational autoencoder to cre-
ate a low-dimensional latent space where highly likely CFs are attained. The variational
autoencoder is, by default, trained with 10 epochs and a batch size of 32. We have imple-
mented 3 hidden layers following a 10-5-10 configuration for the datasets. Once a set
of CFs is obtained, they are sorted based on l1-norm by default. The original authors’

4  https://​github.​com/​thiba​ultla​ugel/​growi​ngsph​eres.
5  https://​github.​com/​inter​pretml/​DiCE.
6  https://​github.​com/​amirhk/​mace.

https://github.com/thibaultlaugel/growingspheres
https://github.com/interpretml/DiCE
https://github.com/amirhk/mace

	 Machine Learning

1 3

implementation may be found in this repository,7 while a more user-friendly implementa-
tion is found in the CARLA Framework repository Pawelczyk et al. (2021).

A.10 JUICE

Based on Kuratomi et al. (2022), the method uses an ordered path-searching algorithm to
find feasible and connected CF to a single training observation, guaranteeing justification
in mixed-feature spaces. The original implementation may be found in this repository.8

Appendix B: Datasets

The prediction task for each dataset is described below. If not specified, the dataset may be
found at the UCI Machine Learning repository9:

	 1.	 Adult: Income prediction.
	 2.	 Athlete (synthetic dataset): Olympic medalist prediction.
	 3.	 Bank: Bank client deposit prediction.
	 4.	 Census: Income prediction.
	 5.	 Compas: Recidivism prediction.10

	 6.	 Credit: A default risk prediction dataset.
	 7.	 Diabetes: Diabetes recovery / readmittance prediction.
	 8.	 Disease (synthetic dataset): Disease diagnosis prediction.
	 9.	 Dutch: Person’s occupation (high or low-level) prediction.11

	10.	 German: Credit risk assessment.
	11.	 Heart: Heart disease diagnosis.
	12.	 Law: Bar exam fail / pass prediction.12

	13.	 Oulad: Exam fail / pass prediction.13

	14.	 Student: High / low grade prediction.

The 14 binary classification datasets are further detailed in Tables 3 and 4.

7  https://​github.​com/​Marti​nPawel/​c-​chvae.
8  https://​github.​com/​alku7​660/​iJUICE.
9  https://​archi​ve.​ics.​uci.​edu/​ml/​index.​php.
10  https://​www.​propu​blica.​org/​datas​tore/​datas​et/​compas-​recid​ivism​risk-​score-​data-​and-​analy​sis.
11  https://​github.​com/​taile​quy/​fairn​ess_​datas​et/​tree/​main/​Dutch_​census.
12  https://​github.​com/​taile​quy/​fairn​ess_​datas​et/​tree/​main/​Law_​school.
13  https://​analy​se.​kmi.​open.​ac.​uk/​open_​datas​et.

https://github.com/MartinPawel/c-chvae
https://github.com/alku7660/iJUICE
https://archive.ics.uci.edu/ml/index.php
https://www.propublica.org/datastore/dataset/compas-recidivismrisk-score-data-and-analysis
https://github.com/tailequy/fairness_dataset/tree/main/Dutch_census
https://github.com/tailequy/fairness_dataset/tree/main/Law_school
https://analyse.kmi.open.ac.uk/open_dataset

Machine Learning	

1 3

Table 3   Mutability and directionality for each feature. ✓means the feature is mutable (may be modified),
while ✗means the feature is immutable. ⇕ means the feature may increase or decrease in value, while ⇑
means the feature may rise only

a OVLM: Over Last 6 Months

Dataset Binary / Categorical Ordinal / Continuous Cont.
Feat.
Split

Adult
488842 ins.
14 feat

Sex (✗,-)
NativeCountry (✗,-)
Race (✗,-)
WorkClass (✓,⇕)
MaritalStatus (✓,⇕)
Occupation (✓,⇕)
Relationship (✓,⇕)

EducationLevel (✓,⇑)
AgeGroup (✗,-)
EducationNumber (✓,⇑)
CapitalGain (✓,⇕)
CapitalLoss (✓,⇕)
HoursPerWeek (✓,⇕)

100

Athlete
1000 ins.
6 feat

Sex (✗,-)
Diet (✓,⇕)
Sport (✓,⇕)
TrainingTime (✓,⇕)

Age (✗,-)
SleepHours (✓,⇕)

100

Bank
45211 ins.
17 feat

Default (✓,⇕)
Housing (✓,⇕)
Loan (✓,⇕)
Job (✓,⇕)
MaritalStatus (✗,-)
Education (✓,⇕)
Contact (✓,⇕)
Poutcome (✓,⇕)

AgeGroup (✗,-)
Balance (✓,⇕)
Day (✓,⇕)
Duration (✓,⇕)
Campaign (✓,⇕)
Pdays (✓,⇕)
Previous (✓,⇕)

100

Census
299285 ins.
41 feat

Sex (✗,-)
Race (✗,-)
Industry (✓,⇕)
Occupation (✓,⇕)

Age (✓,⇑)
WageHour (✓,⇕)
CapitalGain (✓,⇕)
CapitalLoss (✓,⇕)
Dividends (✓,⇕)
WorkWeeksYear (✓,⇕)

100

Compas
7214 ins.
52 feat

Sex (✗,-)
ChargeDegree (✓,⇕)
Race (✗,-)

PriorsCount (✓,⇕)
AgeGroup (✓,⇑)

100

Credit
30000 ins.
24 feat

isMale (✗,-)
isMarried (✗,-)
HistoryOverduePaym. (✓,⇕)

TotalOverdueCounts (✓,⇕)
TotalMonthsOverdue (✓,⇕)
AgeGroup (✓,⇑)
EducationLevel (✓,⇑)
BillAmountOVL6Ma (✓,⇕)
PaymentAmountOVL6M (✓,⇕)
MonthZeroBalanceOVL6M (✓,⇕)
MonthLowSpendOVL6M (✓,⇕)
MonthHighSpendOVL6M (✓,⇕)
RecentBillAmount (✓,⇕)
RecentPaymentAmount (✓,⇕)

5

Diabetes
101766 ins.
50 feat

DiabetesMed (✓,⇕)
Sex (✗,-)
Race (✗,-)
A1CResult (✓,⇕)
Metformin (✓,⇕)
Chlorpropamide (✓,⇕)
Glipizide (✓,⇕)
Rosiglitazone (✓,⇕)
Acarbose (✓,⇕)
Miglitol (✓,⇕)

AgeGroup (✓,⇑)
TimeInHospital(✓,⇕)
NumProcedures (✓,⇕)
NumMedications (✓,⇕)
NumEmergency (✓,⇕)

100

	 Machine Learning

1 3

Table 4   (Continuation) Mutability and directionality for each feature

Dataset Binary / Categorical Ordinal / Continuous Cont.
Feat.
Split

Disease
1000 ins.
7 feat

Smokes (✓,⇕)
Diet (✓,⇕)
Stress (✓,⇕)

Weight (✓,⇕)
Age (✓,⇑)
ExerciseMinutes (✓,⇕)
SleepHours (✓,⇕)

100

Dutch
60420 ins.
12 feat

Sex (✗,-)
HouseholdPosition (✓,⇕)
HouseholdSize (✓,⇕)
Country (✗,-)
EconomicStatus (✓,⇕)
CurEcoActivity (✓,⇕)
MaritalStatus (✓,⇕)

EducationLevel (✓,⇑)
Age (✓,⇑)

100

German
1000 ins.
20 feat

Sex (✗,-)
Single (✓,⇕)
Unemployed (✓,⇕)
PurposeOfLoan (✓,⇕)
InstallmentRate (✓,⇕)
Housing (✓,⇕)

Age (✓,⇑)
Credit (✓,⇕)
LoanDuration (✓,⇕)

5

Heart
303 ins.
7 feat

Sex (✗,-)
BloodSugar (✓,⇕)
ChestPain (✗,-)

ECG (✗,-)
Age (✓,⇑)
RestBloodPressure (✓,⇕)
Chol (✓,⇕)

100

Law
20798 ins.
12 feat

Sex (✗,-)
WorkFullTime (✓,⇕)
Race (✗,-)
FamilyIncome (✓,⇕)
Tier (✓,⇕)

Decile1stYear (✓,⇕)
Decile3rdYear (✓,⇕)
LSAT(✓,⇕)
UndergradGPA (✓,⇕)
FirstYearGPA (✓,⇕)
CumulativeGPA (✓,⇕)

100

Oulad
32593 ins.
12 feat

Sex (✗,-)
Disability (✗,-)
Region (✓,⇕)
CodeModule (✓,⇕)
CodePresentation (✓,⇕)
HighestEducation (✓,⇕)
IMDBand (✓,⇕)

AgeGroup (✓,⇑)
NumPrevAttempts (✓,⇕)
StudiedCredits(✓,⇕)

100

Student
395 ins.
33 feat

Sex (✗,-)
School (✓,⇕)
AgeGroup (✗,-)
FamilySize (✓,⇕)
ParentStatus (✓,⇕)
SchoolSupport (✓,⇕)
FamilySupport (✓,⇕)
ExtraPaid (✓,⇕)
ExtraActivities (✓,⇕)
Nursery (✓,⇕)
HigherEdu (✓,⇕)
Internet (✓,⇕)
Romantic (✓,⇕)
MotherJob (✓,⇕)
FatherJob (✓,⇕)
SchoolReason (✓,⇕)

MotherEducation (✓,⇑)
FatherEducation (✓,⇑)
TravelTime(✓,⇕)
ClassFailures (✓,⇕)
GoOut (✓,⇕)

100

Machine Learning	

1 3

Appendix C: Results

C.1 Classifier models and test samples

Two classifier models are implemented, namely Random Forest (RF) and Multi-Layer
Perceptron (MLP). The best model and configuration for each dataset is selected
through a grid search. Table 5 shows the selected models for each dataset with their
corresponding test F1 score and test instances used for CF generation.

C.2 l2, l1 and l∞ norms distance additional results

When running iJUICE with l2, l1 and l∞ norms as objective, we obtain the results observed
in Fig. 12. The distance ranking is observed in Fig. 13. In this case, iJUICE is able to

Table 5   Selected classifiers, test performance, and test instances utilized

Dataset Best model Hyperparameters F1 score Instances

Adult RF depthmax = 10 , leafminsize = 1,
splitminsize = 1 , n = 100

0.83 17

Athlete MLP act. = tanh , layers = (20, 50, 10),
solver = sgd

0.71 18

Bank RF depthmax = 10 , leafminsize = 1,
splitminsize = 2 , n = 200

0.86 19

Census RF depthmax = 10 , leafminsize = 5,
splitminsize = 10 , n = 100

0.87 19

Compas MLP act. = tanh , layers = (20, 10, 10),
solver = adam

0.68 34

Credit MLP act. = tanh , layers = (50, 1),
solver = adam

0.72 32

Diabetes MLP act. = logistic , layers = (10, 20),
solver = sgd

0.61 24

Disease MLP act. = ReLU , layers = (20, 20, 10),
solver = adam

0.78 37

Dutch RF depthmax = 10 , leafminsize = 3,
splitminsize = 5 , n = 50

0.84 18

German MLP act. = ReLU , layers = (100, 10),
solver = sgd

0.70 43

Heart RF depthmax = 5 , leafminsize = 5,
splitminsize = 5 , n = 50

0.83 17

Law MLP act. = tanh , layers = (50, 1),
solver = adam

0.82 20

Oulad MLP act. = logistic , layers = (100, 10),
solver = sgd

0.67 32

Student RF depthmax = 2 , leafminsize = 5,
splitminsize = 2 , n = 200

0.70 18

	 Machine Learning

1 3

perform statistically better than JUICE in the l2 and l1-norms, while GS is the only method
that is statistically different and better than iJUICE. Note that GS is by this advantage sac-
rificing the consideration of heterogeneous data and feasibility of the obtained CF points.

Fig. 12   Each subplot shows the scatter of the methods with respect to a specified distance function. The
x-axis on each subplot represents the feasibility ranking. The y-axis represents the justification ranking. The
dashed lines indicate the exact ranking of the center of the dots in both axes. The bigger the circle, the bet-
ter the methods performance in terms of proximity to the CF. The best method is a big circle located on the
upper right corner, whilst the worst method is a small circle located in the lower left corner

Fig. 13   Distance ranking CD diagrams for all CF generation algorithms. iJUICE optimizes the correspond-
ing cost function

Machine Learning	

1 3

C.3 Justification

Figure 14 shows the justification ranking for all distance measures considered as cost func-
tion by iJUICE. For these plots, � = 1 , i.e., the weight of the justifier ratio is zero. Even
under this condition, iJUICE always presents at least 1 justifying instance, beating the
other methods in justification.

C.4 Run times

Run times for all the datasets and CF generation methods are shown in Fig. 15. The rank-
ing of the CF generation algorithms with respect to run time are shown in Fig. 16.

C.5 Sparsity

Sparsity (the number of features that are different among the instance of interest and the
CF) for all the datasets and CF generation methods are shown in Fig. 17.

Fig. 14   Justification CD diagrams for all distance measures used as cost function of iJUICE, while using a
� = 1 (no weight on the justification ratio)

	 Machine Learning

1 3

Fig. 15   Average run times (in seconds) per CF generated, for all methods and datasets. iJUICE is optimiz-
ing for l1, l0 distance

Machine Learning	

1 3

Fig. 16   Run time ranking for all CF generation methods and iJUICE with all distance measures considered
as cost functions

	 Machine Learning

1 3

Fig. 17   Average sparsity (number of modified features) per CF generated, for all methods and datasets.
iJUICE is optimizing for l1, l0 distance

Machine Learning	

1 3

Author Contributions  All authors contributed to the preparation of the manuscript and the conceptualiza-
tion. Alejandro Kuratomi initially proposed the approach and developed the solution to the k-justified coun-
terfactual generation problem and the empirical evaluation, as well as the elaboration of the original draft.
Dr. Ioanna Miliou greatly contributed to the conceptualization, design of the algorithm and the original draft
preparation. Dr. Zed Lee has mainly contributed to the elaboration and design of the algorithm and the draft
preparation. Dr. Tony Lindgren contributed both in the conceptualization and draft review and editing. Dr.
Panagiotis Papapetrou contributed in the design of the algorithm, supervised the results and analysis, and
oversaw the research project in general.

Funding  Open access funding provided by Stockholm University. The work of IM and PP has been sup-
ported in part by the Digital Futures EXTREMUM project titledExplainable and Ethical Machine Learning
for Knowledge Discovery from Medical Data Sources.

Data Availability  The data used in this research is publicly available in different repositories online. We pre-
process it and make it available in our own repository for replicability.

Code Availability  The code for the proposed algorithm is made available at the repository (https://​github.​
com/​alku7​660/​iJUICE) together with the mentioned preprocessed datasets.

Declarations 

Conflict of interest  There are no conflicts of interest by any of the authors.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Basu, A., Conforti, M., Di Summa, M., & Jiang, H. (2022). Complexity of branch-and-bound and cutting
planes in mixed-integer optimization. Mathematical Programming (pp. 1–24).

Bobek, S., & Nalepa, G. J. (2019). Explainability in knowledge discovery from data streams. In 2019 first
international conference on societal automation (SA) (pp. 1–4). IEEE.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). Lof: identifying density-based local outli-
ers. In Proceedings of the 2000 ACM SIGMOD international conference on management of data (pp.
93–104).

Byrne, R. M. (2019). Counterfactuals in explainable artificial intelligence (xai): Evidence from human rea-
soning. In IJCAI (pp. 6276–6282).

Carreira-Perpiñán, M.Á., & Hada, S.S. (2021). Counterfactual explanations for oblique decision trees:
Exact, efficient algorithms. In Proceedings of the AAAI conference on artificial intelligence, Vol. 35,
pp. 6903–6911

Cohen, M. B., Lee, Y. T., & Song, Z. (2021). Solving linear programs in the current matrix multiplication
time. Journal of the ACM (JACM), 68(1), 1–39.

Dandl, S., Molnar, C., Binder, M., & Bischl, B. (2020). Multi-objective counterfactual explanations. In
International conference on parallel problem solving from nature (pp. 448–469). Springer.

de Oliveira, R. M. B., & Martens, D. (2021). A framework and benchmarking study for counterfactual gen-
erating methods on tabular data. Applied Sciences, 11(16), 7274.

Eiras-Franco, C., Martinez-Rego, D., Guijarro-Berdinas, B., Alonso-Betanzos, A., & Bahamonde, A.
(2019). Large scale anomaly detection in mixed numerical and categorical input spaces. Information
Sciences, 487, 115–127.

Guidotti, R. (2022). Counterfactual explanations and how to find them: literature review and benchmarking.
Data Mining and Knowledge Discovery (pp. 1–55).

https://github.com/alku7660/iJUICE
https://github.com/alku7660/iJUICE
http://creativecommons.org/licenses/by/4.0/

	 Machine Learning

1 3

Guidotti, R., & Ruggieri, S. (2021). Ensemble of counterfactual explainers. In Proceedings of discovery
science: 24th international conference, DS 2021, Halifax, NS, Canada, October 11–13, 2021, pp. 358–
368. Springer.

Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., & Turini, F. (2019). Factual and coun-
terfactual explanations for black box decision making. IEEE Intelligent Systems, 34(6), 14–23.

Kanamori, K., Takagi, T., Kobayashi, K., & Arimura, H. (2020). Dace: Distribution-aware counterfactual
explanation by mixed-integer linear optimization. In: IJCAI (pp. 2855–2862)

Kannan, R., & Monma, C. L. (1978). On the computational complexity of integer programming problems.
Optimization and Operations Research (pp. 161–172). Chap. 17.

Karimi, A.-H., Barthe, G., Balle, B., & Valera, I. (2020). Model-agnostic counterfactual explanations for
consequential decisions. In International conference on artificial intelligence and statistics (pp. 895–
905). PMLR.

Karimi, A.-H., Barthe, G., Schölkopf, B., & Valera, I. (2022). A survey of algorithmic recourse: Contrastive
explanations and consequential recommendations. ACM Computing Surveys, 55(5), 1–29.

Kuratomi, A., Miliou, I., Lee, Z., Lindgren, T., & Papapetrou, P. (2022). Juice: Justified counterfactual
explanations. In International conference on discovery science (pp. 493–508). Springer

Kuratomi, A., Pitoura, E., Papapetrou, P., Lindgren, T., & Tsaparas, P. (2022). Measuring the burden of (un)
fairness using counterfactuals. In Joint European conference on machine learning and knowledge dis-
covery in databases, (pp. 402–417). Springer

Kyrimi, E., Neves, M. R., McLachlan, S., Neil, M., Marsh, W., & Fenton, N. (2020). Medical idioms for
clinical Bayesian network development. Journal of Biomedical Informatics, 108, 103495.

Laugel, T., Lesot, M.-J., Marsala, C., & Detyniecki, M. (2019). Issues with post-hoc counterfactual explana-
tions: a discussion. arXiv:​1906.​04774.

Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., & Detyniecki, M. (2017). Inverse classification for com-
parison-based interpretability in machine learning. arXiv:​1712.​08443.

Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., & Detyniecki, M. (2019). Unjustified classification regions
and counterfactual explanations in machine learning. In Joint European conference on machine learn-
ing and knowledge discovery in databases (pp. 37–54). Springer.

Le Quy, T., Roy, A., Iosifidis, V., Zhang, W., & Ntoutsi, E. (2022). A survey on datasets for fairness-aware
machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(3),
1452.

Lenstra, H. W., Jr. (1983). Integer programming with a fixed number of variables. Mathematics of Opera-
tions Research, 8(4), 538–548.

Lindgren, T., Papapetrou, P., Samsten, I., & Asker, L. (2019). Example-based feature tweaking using ran-
dom forests. In 2019 IEEE 20th international conference on information reuse and integration for data
science (IRI) (pp. 53–60). IEEE.

Martens, D., & Provost, F. (2014). Explaining data-driven document classifications. MIS Quarterly, 38(1),
73–100.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intel-
ligence, 267, 1–38.

Molnar, C. (2020). Interpretable machine learning: A guide for making black-box models explainable.
https://​chris​tophm.​github.​io/​inter​preta​ble-​ml-​book/​limo.​html

Mothilal, R. K., Sharma, A., & Tan, C. (2020). Explaining machine learning classifiers through diverse
counterfactual explanations. In Proceedings of the 2020 conference on fairness, accountability, and
transparency (pp. 607–617).

Otey, M. E., Ghoting, A., & Parthasarathy, S. (2006). Fast distributed outlier detection in mixed-attribute
data sets. Data Mining and Knowledge Discovery, 12, 203–228.

Papadimitriou, C. H. (1981). On the complexity of integer programming. Journal of the ACM (JACM),
28(4), 765–768.

Parmentier, A., & Vidal, T. (2021). Optimal counterfactual explanations in tree ensembles. In International
conference on machine learning (pp. 8422–8431). PMLR.

Pawelczyk, M., Bielawski, S., van den Heuvel, J., Richter, T., & Kasneci, G. (2021). CARLA: A python
library to benchmark algorithmic recourse and counterfactual explanation algorithms.

Pawelczyk, M., Broelemann, K., & Kasneci, G. (2020). Learning model-agnostic counterfactual explana-
tions for tabular data. In Proceedings of the web conference 2020 (pp. 3126–3132).

Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., & Flach, P. (2020). Face: feasible and actionable
counterfactual explanations. In Proceedings of the AAAI/ACM conference on AI, ethics, and society
(pp. 344–350).

http://arxiv.org/abs/1906.04774
http://arxiv.org/abs/1712.08443
https://christophm.github.io/interpretable-ml-book/limo.html

Machine Learning	

1 3

Ramon, Y., Martens, D., Provost, F., & Evgeniou, T. (2020). A comparison of instance-level counterfactual
explanation algorithms for behavioral and textual data: Sedc, lime-c and shap-c. Advances in Data
Analysis and Classification, 14, 801–819.

Rawal, K., & Lakkaraju, H. (2020). Beyond individualized recourse: Interpretable and interactive summa-
ries of actionable recourses. Advances in Neural Information Processing Systems, 33, 12187–12198.

Ribeiro, M.T., Singh, S., & Guestrin, C. (2016). “why should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1135–1144

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.

Russell, C. (2019). Efficient search for diverse coherent explanations. In Proceedings of the conference on
fairness, accountability, and transparency (pp. 20–28).

Sharma, S., Henderson, J., & Ghosh, J. (2020). CERTIFAI: Counterfactual explanations for robustness,
transparency, interpretability, and fairness of artificial intelligence models. Proceedings of the AAAI/
ACM conference on AI, ethics, and society (pp. 166–172). https://​doi.​org/​10.​1145/​33756​27.​33758​12.
arXiv:​ 1905.​07857. Accessed 2022-03-05.

Tolomei, G., Silvestri, F., Haines, A., & Lalmas, M. (2017). Interpretable predictions of tree-based ensem-
bles via actionable feature tweaking. In Proceedings of the 23rd ACM SIGKDD international confer-
ence on knowledge discovery and data mining (pp. 465–474).

Ustun, B., Spangher, A., & Liu, Y. (2019). Actionable recourse in linear classification. In Proceedings of the
conference on fairness, accountability, and transparency (pp. 10–19)

Verma, S., Dickerson, J., & Hines, K. (2020) Counterfactual explanations for machine learning: A review.
arXiv:​2010.​10596.

Vermeire, T., Brughmans, D., Goethals, S., de Oliveira, R. M. B., & Martens, D. (2022). Explainable image
classification with evidence counterfactual. Pattern Analysis and Applications, 25(2), 315–335.

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the black
box: Automated decisions and the gdpr. Harv. JL and Tech., 31, 841.

Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., & Wilson, J. (2019). The what-if tool:
Interactive probing of machine learning models. IEEE Transactions on Visualization and Computer
Graphics, 26(1), 56–65.

White, A., & Garcez, A. (2019). Measurable counterfactual local explanations for any classifier. arXiv:​1908.​
03020

Yang, L., Kenny, E. M., Ng, T. L. J., Yang, Y., Smyth, B., & Dong, R. (2020). Generating plausible counter-
factual explanations for deep transformers in financial text classification. arXiv:​2010.​12512.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/3375627.3375812
http://arxiv.org/abs/1905.07857
http://arxiv.org/abs/2010.10596
http://arxiv.org/abs/1908.03020
http://arxiv.org/abs/1908.03020
http://arxiv.org/abs/2010.12512

	Ijuice: integer JUstIfied counterfactual explanations
	Abstract
	1 Introduction
	2 Related work
	2.1 Evaluation of CF explanations
	2.2 Counterfactual generation methods

	3 Preliminaries
	4 Problem description
	5 iJUICE: integer JUstIfied counterfactual explanations
	5.1 Traversing the mixed-feature space
	5.2 The iJUICE algorithm
	5.3 Complexity
	5.4 Verifying k-justification for any given CF

	6 Empirical evaluation
	6.1 Datasets
	6.2 Classifiers
	6.3 Competitors
	6.4 Parameter setup
	6.5 Performance metrics
	6.6 Results
	6.6.1 CF performance
	6.6.2 Ablation study on the parameter
	6.6.3 Ablation study on the k parameter

	7 Discussion
	8 Conclusion
	Appendix A: Methods
	A.1 NN
	A.2 MO
	A.3 FT
	A.4 RT
	A.5 GS
	A.6 FACE
	A.7 DICE
	A.8 MACE
	A.9 CCHVAE
	A.10 JUICE

	Appendix B: Datasets
	Appendix C: Results
	C.1 Classifier models and test samples
	C.2 l2, l1 and norms distance additional results
	C.3 Justification
	C.4 Run times
	C.5 Sparsity

	References

