
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-024-06519-w

1 3

Utilizing reinforcement learning for de novo drug design

Hampus Gummesson Svensson1,2 · Christian Tyrchan3 · Ola Engkvist1,2 ·
Morteza Haghir Chehreghani1

Received: 29 March 2023 / Revised: 23 August 2023 / Accepted: 14 February 2024
© The Author(s) 2024

Abstract
Deep learning-based approaches for generating novel drug molecules with specific proper-
ties have gained a lot of interest in the last few years. Recent studies have demonstrated
promising performance for string-based generation of novel molecules utilizing reinforce-
ment learning. In this paper, we develop a unified framework for using reinforcement
learning for de novo drug design, wherein we systematically study various on- and off-pol-
icy reinforcement learning algorithms and replay buffers to learn an RNN-based policy to
generate novel molecules predicted to be active against the dopamine receptor DRD2. Our
findings suggest that it is advantageous to use at least both top-scoring and low-scoring
molecules for updating the policy when structural diversity is essential. Using all generated
molecules at an iteration seems to enhance performance stability for on-policy algorithms.
In addition, when replaying high, intermediate, and low-scoring molecules, off-policy
algorithms display the potential of improving the structural diversity and number of active
molecules generated, but possibly at the cost of a longer exploration phase. Our work pro-
vides an open-source framework enabling researchers to investigate various reinforcement
learning methods for de novo drug design.

Keywords De novo drug design · Reinforcement learning · Policy optimization · Replay
buffer · Recurrent neural network

1 Introduction

In recent years, there has been an increased interest in using machine learning for drug dis-
covery. It has been applied to a large range of different tasks, including virtual screening,
synthesis prediction, property prediction, and computer-assisted molecular design (Chen
et al., 2018; Yang et al., 2019; Vamathevan et al., 2019). Machine learning has obtained an
important position in de novo drug design — the design of novel chemical entities that fit
certain constraints. De novo drug design is an iterative optimization problem whose navi-
gation in the optimization landscape relies on finding local optima of molecular structures,

Editors: Emma Brunskill, Minmin Chen, Omer Gottesman, Lihong Li, Yuxi Li, Yao Liu, Zonging Lu,
Niranjani Prasad, Zhiwei Qin, Csaba Szepesvari, Matthew Taylor.

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0765-1837
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06519-w&domain=pdf

 Machine Learning

1 3

which does not necessarily lead to identifying the global optimum (Schneider & Fechner,
2005). Therefore, it is of interest to find a diverse set of local optima, meaning structurally
different molecules with a high probability of being active against a desired target, i.e.,
with high activity.

Numerous deep learning-based methods have been developed for de novo drug design,
including approaches based on reinforcement learning (Olivecrona et al., 2017; Zhou et al.,
2019; You et al., 2018; Jin et al., 2020; Yang et al., 2021; Horwood & Noutahi, 2020;
Gottipati et al., 2020; Neil et al., 2018) and variational autoencoders (Gómez-Bombarelli
et al., 2018; Maus et al., 2022; Jin et al., 2018; Bradshaw et al., 2020). These approaches
use several different ways to encode molecules into something that the model can learn,
such as fingerprint-, string- and graph-based encodings. The string-based simplified molec-
ular-input line-entry system (SMILES) (Weininger, 1988) is a popular way to encode the
2D structure of molecules. Previous work has demonstrated that graph-based and string-
based generative models show equivalent performance in terms of chemical space coverage
(Zhang et al., 2021). It is expected that the conclusions of this work are independent of
how the molecules are represented. Moreover, recent evaluations of sample efficiency of
de novo molecular generation methods have concluded good performance when using rein-
forcement learning (RL) for learning a recurrent neural network (RNN) (Rumelhart et al.,
1985) to generate SMILES strings representing high-scoring molecules (Gao et al., 2022;
Thomas et al., 2022). The objective is to learn a policy that can sample sequences of tokens
to generate SMILES strings. Hence, policy optimization algorithms might have a signifi-
cant impact on this task.

To further improve the sample efficiency of RL, it has been proposed to combine RL
with a Hill-climb algorithm, which learns on the k top-scoring sequences (Thomas et al.,
2022; Neil et al., 2018; Brown et al., 2019). This method focuses the training on good
samples from the current round of sequences. This can be interpreted as an off-policy algo-
rithm with a replay buffer, filtering out low reward sequences and initializing the buffer
memory between learning rounds.

The use of replay buffers is crucial in off-policy algorithms and is known to improve the
sample efficiency of these algorithms (Fedus et al., 2020). However, to our knowledge, no
previous work in de novo drug design has investigated off-policy algorithms with replay
buffers utilizing past sequences. This work builds upon previous work in de novo drug
design using a reward-based replay mechanism. Many of the state-of-the-art replay mecha-
nisms used in reinforcement learning are often based on the temporal difference (TD) error
(Schaul et al., 2015). However, since the TD error is not necessarily computable in a pol-
icy-based algorithm, a more general mechanism is needed for a fair comparison of algo-
rithms. This paper focuses on reward-based replay mechanisms.

In this paper, we explore in a systematic way different on-policy and off-policy pol-
icy optimization reinforcement learning algorithms, in combination with several ways of
replaying previous sequences or restricting the learning to a subset of the sequences sam-
pled in the current episode. The objective is to investigate how large fraction of the gener-
ated molecules are predicted, with high probability, to be active to a desired target, and
how structurally diverse these predicted active molecules are. Our work can be used as an
open-source framework for researchers to investigate various RL methods for de novo drug
design.1

1 The source code of our framework is publicly available at: https:// github. com/ Molec ularAI/ SMILES- RL.

https://github.com/MolecularAI/SMILES-RL

Machine Learning

1 3

2 Problem setup

The first step of de novo drug design using RL involves training a pre-trained policy (and/
or encoding certain structures into the policy), as illustrated in Fig. 1. Subsequently, a batch
of molecules is sampled by the policy, e.g., by the policy choosing a sequence of characters
in a SMILES string. In the next step, the sampled molecules are scored by an unknown
“black box” objective function, i.e., the objective function can be evaluated at any point
of its domain but its full expression is unknown. The molecules and corresponding scores
are both stored for final inspection and replay (optional). The current molecules and cor-
responding scores are also fed into the RL algorithm, where the molecular sampling policy
is updated. Depending on the use of the replay buffer, current and/or previous samples
are provided for the learning step. Using the updated policy, a new batch of molecules is
sampled. This continues until a stopping criterion has been reached, such as a pre-defined
budget of samples.

2.1 Problem definition

Molecular de novo design using RNNs for optimizing molecules encoded as SMILES
strings, can be formulated as an RL problem. The agent interacts with the environment
over discrete time steps by adding tokens to a SMILES string. The environment is epi-
sodic, where a SMILES string is provided between a start and stop token, and the epi-
sode’s length depends on the SMILES string’s length, which is terminated when the stop
token is added to the string. At time step t = 0 , the start token is added to the string and
defines the first state s1 . At time step t = 1,… , T the agent observes a ns-dimensional state
vector st ∈ S ⊆ ℝ

ns , chooses an action at ∈ A according to a policy �(at|st) . The episode
ends at time step T + 1 , for terminal state sT+1 , when the stop token is chosen as action
aT . Moreover, at the end of the episode, a reward signal R(a1∶T) ∈ [0, 1] is observed for a
sequence of actions a1∶T . The scoring function provides this reward signal by scoring each
valid SMILES string.

The state vector st is given by the output states of the RNN at step t − 1 and
encodes information about the actions taken in previous steps. A discrete action space
A = {0,… , 33} which tokenizes the feasible characters in the SMILES string, including

Fig. 1 Schematic illustration of the de novo drug design process using reinforcement learning (RL)

 Machine Learning

1 3

start and stop tokens, is considered. Under this setup, we explore various policy opti-
mization RL methods, where the goal is to learn the policy directly parameterized by � ,
��(at|st) . The output gates of the RNN are fed into a fully connected layer to provide either
the probability (utilizing a softmax layer) or values of each action.

3 Policy optimization algorithms for de novo drug design

In this paper, we explore the following policy optimization algorithms for de novo drug
design, to generate diverse molecules with high scores: (1) Regularized maximum likeli-
hood estimation (Reg. MLE); (2) Advantage Actor-Critic (A2C); (3) Proximal Policy Opti-
mization (PPO); (4) Actor-Critic with Experience Replay (ACER); (5) Soft Actor-Critic
(SAC). Figure 2 illustrates the taxonomy of these algorithms. These are the major on- and
off-policy policy optimization algorithms.

3.1 Regularized maximum likelihood estimation

The regularized maximum likelihood estimation (Reg. MLE) algorithm is currently used
in REINVENT (Blaschke et al., 2020). Recent evaluations by both Gao et al. (2022) and
Thomas et al. (2022) have concluded good performance compared to both RL-based and
non-RL-based approaches for de novo drug design. The idea is that the likelihood of the
agent’s policy should stay close to that of the pre-trained policy (See Sect. 4.2) while still
focusing on the high-scoring sequences. It minimizes the following policy loss

where �prior(a1∶T) = �prior(a1|s1)⋯�prior(aT |sT) is the likelihood of the pre-trained policy
for a sequence of length T (excluding start token), and ��(a1∶T) = ��(a1|s1)⋯��(aT |sT)
is the corresponding likelihood of the policy that is optimized. The policy has the same
network architecture and is initialized as the pre-trained policy. � is a hyperparameter
(Blaschke et al., 2020) that determines the importance of the reward signal.

Note that it uses a margin guard, which resets the agent to the prior and adjusts
sigma if the margin between the augmented likelihood and the agent likelihood
log�prior(a1∶T) + �R(a1∶T) − log��(a1∶T) is below a pre-defined threshold. Table 1 in
Appendix A displays a list of hyperparameters and the values employed in this paper.

(1)LReg. MLE(�) =
(
log�prior(a1∶T) + �R(a1∶T) − log��(a1∶T)

)2
,

Fig. 2 Taxonomy of the reinforcement learning (RL) algorithms explored in this work

Machine Learning

1 3

3.2 Proximal policy optimization

Proximal Policy Optimization (PPO) (Schulman et al., 2017) uses a clipping loss function
defined by

where r(�) = �� (at|st)
��old

(at|st)
 is the probability ratio and advantage Â(st) = 𝛾T−tR(a1∶T) − V𝜙(st) is

used, where V�(st) is the value function. This corresponds to Monte-Carlo (MC) samples
where the reward R(a1∶T) is only given at time step T. � is the discount factor and � is a
hyperparameter determining the clipping range. We adapt PPO to the setting where the
state vectors are represented by the RNN outputs of the latest recurrent node. The actor is a
neural network with parameters � , providing probabilities ��(a|s) for an action a at state
vector s using a softmax layer. It is initialized as the pre-trained policy (see 4.2) and the
parameters are updated using the loss function in Eq. (2). The value function V�(st) is a
neural network with (non-shared) parameters � . It has the same network architecture as the
actor, but the output layer only consists of one output, i.e., the value, and uses no softmax
layer. The output layer is reset at initialization, while the initial embedding and long short-
term memory (LSTM) (Hochreiter & Schmidhuber, 1997) layer are the same as the pre-
trained policy network. The value network is trained by minimizing the following mean
squared error loss

For each batch of sequences, the actor and critic loss are minimized over 4 epochs, each
doing minibatch updates where sequences are shuffled into 4 mini-batches.

It is possible for the actor to diverge from the pre-trained actor (policy), which has
learned how to sample a valid SMILES string. This rarely happens but should be properly
handled when happening. Therefore, if the fraction of valid SMILES strings (out of the 128
sampled in each episode) is less than 0.8 for more than 10 consecutive episodes, the param-
eters of the algorithm will be reset to that of the pre-trained model. Table 2 in Appendix A
displays a list of hyperparameters and the values employed in this paper.

3.3 Advantage actor‑critic

Advantage Actor-Critic (A2C) is a synchronous version of the A3C algorithm (Mnih et al.,
2016), wherein the following definition of the advantage is used

where V�(st) is the value network with (non-shared) parameters � and discount factor � . We
adapt A2C to the setting where the state vectors are represented by the RNN outputs of the
latest recurrent node. The actor is a neural network with parameters � , providing probabili-
ties ��(a|s) for an action a and state vector s using a softmax layer. It is initialized as the
pre-trained policy (see 4.2) and the parameters are updated using the policy gradient with
the advantage. A discount factor slightly smaller than 1 is used to slightly favor small mol-
ecules. The value network has the same network architecture as the actor, but the output

(2)LCLIP(𝜃) = �̂t

[
min

(
r(𝜃)Â(st), clip

(
rt(𝜃), 1 − 𝜖, 1 + 𝜖

)
Â(st)

)]
,

(3)LMSE(�) = �t

[
1

2

(
�T−tR(a1∶T) − V�(st)

)2]
.

(4)Â(st) = 𝛾T−tR(a1∶T) − V𝜙(st),

 Machine Learning

1 3

layer only consists of one output, i.e., the value, and uses no softmax layer. The output
layer is reset at initialization, while the initial embedding and LSTM layer are the same as
the pre-trained policy network. The value network is trained by minimizing the following
mean squared error loss

If the actor generates a large fraction of invalid SMILES strings, the algorithm is reset in
the same way as for PPO (see Sect. 3.2). Table 3 in Appendix A displays a list of hyperpa-
rameters and the values employed in this paper.

3.4 Actor‑critic with experience replay

Actor-Critic with Experience Replay (ACER) (Wang et al., 2016) is an off-policy actor-
critic algorithm with experience replay. ACER is the off-policy counterpart of the A3C
algorithm (Mnih et al., 2016) where the aim is to stabilize the off-policy estimator, e.g, by
applying a trust region policy optimization (TRPO) method. The algorithm performs one
on-policy update and r ∼ Pois(�) off-policy updates using replay, where each replay sam-
ples 128 sequences. We adapt ACER to the setting where the state vectors are represented
by the RNN outputs of the latest recurrent node. It uses a shared network utilizing the same
architecture as the pre-trained policy network (see Sect. 4.2) but with an additional value
head, i.e., a parallel fully connected layer with output dimension 1. The value head is ran-
domly initialized, while the other weights are the same as the pre-trained policy network,
including the policy head. We add an entropy term to the loss with weight 0.001, slightly
favoring sequences with larger cumulative entropy.

We use retrace Q-value estimation, as proposed in the original algorithm (Wang et al.,
2016). Using retrace Q-value estimations, instead of Monte-Carlo samples, does slightly
improve the stability. For each sequence, a1∶T , reward R(a1∶T) is only given at time step
T for action aT , when the stop token is chosen as action. A reward signal of −1 is given to
invalid SMILES strings, which are by default given a reward of 0 for the on-policy algo-
rithms. The penalty for invalid SMILES bias the algorithm strongly toward valid SMILES.
This seems to be crucial, especially when performing many off-policy updates using the
replay memory. Furthermore, 10 initial steps without updating the policy are performed,
only using the pre-trained policy to store initial sequences in the replay memory. Table 4 in
Appendix A displays a list of hyperparameters and the values employed in this paper.

(5)LMSE(�) = �t

[
1

2

(
�T−tR(a1∶T) − V�(st)

)2]
.

Machine Learning

1 3

3.5 Soft actor‑critic

Algorithm 1 Discrete Soft Actor-Critic for de novo drug design

Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is an off-policy algorithm that incorporates
the entropy of the policy into the reward signal to encourage a stochastic policy with more
randomness, while still fulfilling the task. It is based on the maximum entropy objective,
with the aim of optimal policy �∗ to maximize both its reward and entropy at each visited
state.

It uses an automatic entropy adjustment to control the temperature parameter � that
determines the relative importance of the entropy term. The original algorithm is formu-
lated for a continuous action space, but Christodoulou (2019) has extended it to discrete
action spaces. The soft actor-critic algorithm for discrete action spaces is utilized in this
work, with some adaptions discussed below. We adapt SAC to the setting where the state
vectors are represented by the RNN outputs of the latest recurrent node. The actor is a neu-
ral network with parameters � , providing probabilities ��(a|s) for an action a and state vec-
tor s using a softmax layer. It is initialized as the pre-trained policy (see 4.2) and the param-
eters are updated by minimizing the loss in Eq. (10). The value function Q�(a, s) is given
by a neural network that has the same network architecture as the actor, where each output
corresponds to the action-state value of an action a at current state s but uses no softmax

 Machine Learning

1 3

layer. We initialize the parameters � to that of the parameters of the pre-trained policy
network. We perform no updates of parameters during the Kinit = 10 first episodes, where
only experiences are sampled to the replay buffer. Since a budget of 2000 episodes is con-
sidered in the following experiments, there are 1990 episodes left for learning to generate
high-scoring molecules. When updating parameters, we utilize a reward of −1 for invalid
SMILES. Moreover, we perform one on-policy update, using all current sequences, before
doing any off-policy update. Four off-policy updates are performed, where 64 sequences
are sampled from the replay memory, for each episode. We observed no significant differ-
ence in performance when using the larger replay size of 128 as for ACER (seer Sect. 3.4).

The following entropy-augmented reward is defined

where p is the state transition probability of the environment. Full sequences are used for
updating, i.e., Monte-Carlo (MC) samples, instead of one-step update in Haarnoja et al.
(2018), Christodoulou (2019). The reward signal R(a1∶T) is given at the end of the episode,
at time step T, and uses no discount, i.e., discount factor � = 1 is utilized. This gives the
following target for each soft Q-value update

where ysT+1 = 0 , and ysT−1 = ysT = R(a1∶T) , since it is defined that H
(
��
(
⋅|s

T+1

))
=

H
(
��
(
⋅|s

T

))
= 0 to keep the pre-trained high probabilities of stop tokens at certain states.

This gives each action an equal contribution from the reward signal of the full sequence
and an additional cumulative entropy term that favors actions where future states have high
entropy.

To improve the stability, Zhou et al. (2022) has proposed to include more regularization
in the actor and critic losses. The proposed clipping of the critic loss with target critic(s) is
used, which is found to improve the stability, giving the following loss of the critic network

where Π is a set of sequences (either current sequences or replay memory), T is a
sequence, Q� is the estimate of the critic network, and Q�′ is the estimate of the target-critic
network. When Π contains the current sequences, all sequences are sampled; otherwise, 64
sequences are sampled when using a full replay memory. The weights of the target-critic
are updated using the moving average between the current weights of the target-critic and
critic,

where � is the smoothing coefficient, determining how much of the updated critic network
that will be transferred to the target-critic network. We only use one critic and target-critic
network, since we observe that using the pre-trained model as the initial critic network is
advantageous, instead of using randomly initialized weights. This yields more stable learn-
ing in terms of the validity of generated SMILES strings and biases the learning towards

(6)r�(st, at) ≜ r(st ,at) + �st+1∼p

[
�H

(
��
(
⋅|st+1

))]
,

(7)ysi = R(a1∶T) +

T−2∑

l=i

�sl+1∼p

[
�H

(
��
(
⋅|sl+1

))]
,

(8)
JQ(�|Π) = �T∼Π

[
�(at ,st)∼T

[
max

((
Q�(at, st) − yst

)2
,

(
Q�� (at, st) + clip

(
Q�(at, st) − Q�� (at, st),−c, c

)
− yst

)2)]]
,

(9)��
← ��� + (1 − �)�,

Machine Learning

1 3

what the pre-trained model knows. It could possibly be useful to use two critic networks if
their updates utilize different replay experiences.

For regularizing the actor loss, we include the Kullback–Leibler (KL) divergence term
between the (current) actor and the average policy network. The average policy network ��′
is initialized as the actor and whose parameters �′ is updated using moving average (as in
Eq. (9)) with � = 0.99 . Adding this KL divergence term yields the following actor loss

The temperature � is updated by minimizing the following objective, extending the objec-
tive proposed by Christodoulou (2019),

where H̄ is the target entropy. Algorithm 1 illustrates all steps in the (discrete) soft actor-
critic algorithm used for de novo design. Table 5 in Appendix A displays a list of hyperpa-
rameters and the values employed in this paper.

4 De novo drug design using RNNs for generating SMILES generation

This section describes the experimental setup, including the replay buffers used to investi-
gate the on- and off-policy policy optimization algorithms. A batch of M = 128 sequences
is sampled in each episode, generating 128 SMILES strings in each episode. Any dupli-
cates of SMILES strings are removed afterward, possibly yielding a list of fewer unique
molecules. At the end of each episode, using on-policy or/and off-policy batches, the poli-
cies are updated by the full roll-out of each sequence, as described in Sect. 3. Technical
details of the experiments are discussed in Appendix B.

4.1 Molecular and topological scaffolds

The scaffold of a molecule is defined as its core structure. This is a common structure
characterizing a group of molecules. This provides a basis for a systematic investigation of
molecular cores and building blocks. This assists in finding structurally distinct molecules
having similar activity, providing several structural alternatives when optimizing the prop-
erties of potential drug candidates (Hu et al., 2016). Hence, scaffolds provide a diversity
measure of the identified active molecules.

The molecular scaffold defined by Bemis and Murcko (1996), also known as the Bemis-
Murcko scaffold, is used in this work to generate scaffolds. The topological scaffold is
defined as the generic molecular scaffold where all atom types are converted into carbon
atoms and all bonds are converted into single bonds, as illustrated in Fig. 3. All scaffolds in
this work are generated using (Landrum, 2006).

4.2 Sampling

We use the pre-trained policy network provided by Blaschke et al. (2020). The model
is trained on a data set derived from the ChEMBL databse (Gaulton et al., 2012) and is

(10)
J�(��Π) = �T∼Π

�
�st∼T

�
��(⋅�st)

�
� log

�
��
�
⋅�st

��
− Q�(⋅, st)

�

+DKL

�
��(⋅�st)‖��� (⋅�st)

���
.

(11)J𝛼(𝛼|Π) = �T∼Π

[
�(at ,st)∼T

[
−𝛼

(
log𝜋𝜃(at|st) + H̄

)]]
,

 Machine Learning

1 3

capable of generating molecules in terms of SMILES strings. The parameters of the policy
network are sequentially updated using reinforcement learning (see Sect. 3). The policy
consists of an embedding layer, an LSTM layer, and a fully connected output layer. The
embedding layer consists of 256-dimensional embedding vectors. The LSTM layer has an
input size of 256 and an output size of 512 and consists of 3 recurrent layers, i.e., three
LSTMs stacked together. The LSTM output is fed to an output layer of output dimension
34. Each output entity corresponds to a token in the vocabulary, including start and stop
tokens, defined by Blaschke et al. (2020).

When sampling a sequence, the output layer is fed through a softmax function to obtain
estimates of the probabilities of each token (action). Multimodal sampling, using the esti-
mated probabilities from the softmax function, is performed to select the next action in a
sequence. Small molecules are of interest and, therefore, the length of a sequence is limited
to 256. If a sequence reaches this length, the sampling is stopped, returning the sequence
sampled so far.

4.3 Scoring

A scoring function provides the rewards signal R(a1∶T) of each sequence. The scoring func-
tion is given by a random forest model with 1300 trees and a maximum depth of 300 for
each tree. Class weights, which determine the sample probability during bootstrapping, are
inversely proportional to the class frequencies. The random forest model is trained to pre-
dict the binary activity of a molecule to the Dopamine receptor D2 (DRD2), using the
activity data in ExCAPE-DB (Sun et al., 2017). 2048-bit Morgan-like fingerprints, com-
puted by RDKit (Landrum, 2006), with radius 2, utilizing features and counts are used
as feature vectors. Each SMILES string is encoded into a such feature vector for scoring.
Class probabilities, of the binary activity, are given by the fraction of trees predicting the
corresponding class. The reward of a sequence is defined as the probability of predicting a
positive label for the corresponding sequence. A sequence (or SMILES string) is defined
to be valid if the corresponding SMILES string can be constructed into a Mol object by
RDKit (Landrum, 2006), which is done when computing the fingerprints for scoring.
When constructing a Mol object, RDKit first performs a grammar check and then applies
basic chemical rules. An invalid SMILES string is given a reward of 0 and −1 for the on-
and off-policy algorithms, respectively. The score can also be modified by the diversity
filter, see Sect. 4.4.

A molecule is defined to be active if the corresponding sequence has a reward greater
than or equal to 0.7, and a scaffold is defined as active if it contains at least one active mol-
ecule. These definitions are used to compare the policy optimization algorithm utilizing
different replay buffers.

Fig. 3 The structural formula and SMILES strings for an arbitrary molecule, and its corresponding molecu-
lar and topological scaffold

Machine Learning

1 3

4.4 Diversity filter

A diversity filter is a memory-assisted approach to improve the diversity of generated mol-
ecules. It keeps track of the molecules with similar structures, e.g., scaffolds. We use the
diversity filter based on identical molecular scaffolds, proposed by Blaschke et al. (2020).
This diversity filter consists of a scaffold memory that stores molecules and their corre-
sponding molecular scaffold. A molecule is saved into the scaffold memory if the corre-
sponding sequence reaches at least a reward of 0.4. No molecules with the same canonical
SMILES are allowed in the scaffold memory, hence only storing unique molecules. If the
number of saved molecules with the same molecular scaffold reaches 25, all future mole-
cules with the same molecular scaffold are given a reward of 0, and consequently not saved
in the scaffold memory. This changes the reward function used for learning when a certain
number of molecules with the same molecular scaffold have been generated.

4.5 Replay buffers

In light of the current use of the Hill-climb algorithm (Thomas et al., 2022; Neil et al.,
2018; Brown et al., 2019) for training, we study different approaches using both current and
previous sequences. All of these approaches are collected under the term replay buffers.

In each episode, a batch of M = 128 sequences are sampled. For on-policy algorithms
with replay buffers considering historical data, the current batch of sequences plus k = 64
sequences from history, not including the current sequences, are used for learning. Moreo-
ver, for replay buffers only using current data, k = 64 sequences from the current batch of
sequences are used for learning, except for All current where the entire current batch is used
for training. For the off-policy algorithms, only replay buffers using historical data are con-
sidered, since they are defined to always do one on-policy update with the current sequences.
For each off-policy update, SAC and ACER replay k = 64 and k = 128 sequences, respec-
tively, from the buffer. Opposite of what is done for the on-policy algorithms, the sequences
of the current episode are immediately stored in the replay memory, i.e., sequences from the
current batch can be sampled from the replay memory when performing off-policy updates
in the current episode. Below follow descriptions of each replay buffer investigated in this
paper, seven in total.

All current (AC)
For the All current (AC) replay buffer, the entire batch of sampled sequences in the current
episode is used during learning. No sequences from previous episodes are utilized. In prac-
tice, this corresponds to performing a full on-policy update.

Bin history (BH)
The Bin history (BH)replay buffer sorts sequences into bins with respect to their reward. It
consists of the following fixed binds with respect to rewards: [0, 0.1], (0.1, 0.2],… , (0.9, 1] .
For the off-policy algorithms, the buffer also includes a bin storing invalid SMILES strings,
i.e., SMILES string with a score −1 . Each bin has a maximum size of 1000 sequences. First
in, first out (FIFO) is applied if the bin is full. To the extent possible, it does, without
replacement, sample an equal number of sequences from each bin and otherwise uniformly
samples, without replacement, from the bins with elements that have not been sampled
until k sequences have been acquired.

 Machine Learning

1 3

Bin current (BC)
Bin current (BC) replay buffer sorts the current batch of sampled sequences into bins with
respect to their rewards. It consists of the following fixed binds with respect to rewards:
[0, 0.1], (0.1, 0.2],… , (0.9, 1] . It does, to the extent possible, sample an equal number
of sequences from each bin without replacement. If k sequences have not been acquired
after this, it uniformly samples from the bins with unsampled sequences (i.e., bins whose
sequences are not yet in the set used for update) until k sequences have been sampled in total.

Top-Bottom history (TBH)
When using Top-Bottom history (TBH) replay buffer with an on-policy algorithm, the pre-
vious k/2 highest and k/2 lowest rewarding sequences, and the current sequences, are used
for updating the policy. It prioritizes storing the newest sequence(s) if several sequences
have an equal reward. No duplicates with the same canonical SMILES string are allowed,
keeping the newest sequence with the lowest reward.

For off-policy algorithms, it consists of three sub-buffers, each with a memory size of
1000 sequences. It consists of one sub-buffer with the highest rewarding sequences and
two sub-buffers with low rewarding sequences. One of these low-reward sub-buffers stores
only sequences with −1 reward, i.e., invalid SMILES strings, and the other one stores the
lowest-scoring sequences that correspond to a valid molecule (having a reward of at least
zero). It uniformly samples, without replacement, from a buffer consisting of all three sub-
buffers. FIFO is utilized for each sub-buffer, where the oldest sequences are removed when
a sub-buffer is full. No duplicates with the same canonical SMILES string are allowed,
where the newest sequence with the lowest score is kept.

Top-Bottom current (TBC)
For the Top-Bottom current (TBC) replay buffer, k/2 highest and k/2 lowest rewarding
sequences of the current batch are used for the update.

Top history (TH)
When using the Top history (TH) replay buffer with an on-policy algorithm, the top-k
rewarding sequences from previous episodes and sequences from the current episode are
used for updating the actor and critic. Hence, it only needs to store the top-k sequences
from previous episodes. Any duplicate with the same canonical SMILES string as another
stored sequence is removed.

For off-policy algorithms, it consists of a buffer with the highest rewarding sequences. It
has a memory size of 1000 sequences and does not allow any sequences with the same canon-
ical SMILES string, keeping the newest sequence with the lowest score. It uniformly samples
k sequences, without replacement, from the buffer to use for the update of the parameters.

Top current (TC)
For the Top current (TC) replay buffer, the top-k rewarding sequences of the current batch
is utilized for updating. This is similar to what is utilized in the Hill-climb algorithm.

5 Results

In this section, we investigate various policy optimization algorithms, described in Sect. 3,
for the de novo drug design setup defined in Sect. 4. To compare all algorithms under
the same budget constraint, the generation is limited to 2000 episodes, giving a budget

Machine Learning

1 3

of 256 000 possible SMILES strings in total. We investigate both the use of the diversity
filter based on identical molecular scaffolds (see Sect. 4.4) and the use of no diversity filter.
The results are divided into on- and off-policy algorithms. Figure 4 displays the different
combinations of replay buffer, policy optimization algorithm and diversity filter that are
investigated. Figures 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 in Appendix C display the ten
top-scoring molecules, each from a unique topological scaffold, of one representative run
for each combination. The generated molecules look like what has been published in previ-
ous work targeting DRD2 (Olivecrona et al., 2017; Thomas et al., 2022).

5.1 On‑policy algorithms

Firstly, we study de novo drug design utilizing on-policy algorithms. We investigate the
algorithms A2C, Regularized MLE and PPO, when either using the identical molecular
scaffold diversity filter or no diversity filter.

5.1.1 With diversity filter

Figure 5 shows box plots of the number of (unique) active molecules and active scaffolds
over 11 runs for the on-policy algorithms utilizing different replay buffers, and identical
molecular scaffolds diversity filter. As illustrated in Fig. 5a, for most replay buffers, both
A2C and PPO sample a significantly larger number of active molecules compared to Regu-
larized MLE; whereas there is relatively little difference between A2C and PPO in terms of
the number of active molecules generated. Regularized MLE only generates notably more
unique active molecules when using the top current replay buffer, compared to A2C and
PPO using the same replay buffer. When using PPO and A2C, the replay buffers All cur-
rent and Bin current yield the largest number of active molecules. Moreover, when using
Regularized MLE, utilizing All current generates the largest number, whereas Top current
is the second-best replay buffer.

As seen in Fig. 5b, Regularized MLE utilizing All current show the largest median of
(unique) active scaffolds with low variability, compared to A2C and PPO. This combi-
nation also shows the largest median of generated (unique) active topological scaffolds,
as seen in Fig. 5c. Regularized MLE generates a significantly larger number of active

Fig. 4 Illustration of the different combinations of replay buffer, policy optimization algorithm and diver-
sity filter that are investigated in this paper

 Machine Learning

1 3

topological scaffolds with most replay buffers, compared to A2C and PPO. However, A2C
with Top-Bottom history performs on par, in terms of active scaffolds, with Regularized
MLE but has a larger variability. In fact, A2C with Top-Bottom history displays the best
runs in terms of the number of active scaffolds. Moreover, in most cases, A2C generates a
significantly larger number of topological scaffolds than PPO; while comparable numbers
of active molecular scaffolds are often generated.

Figure 6 displays means and standard deviations, over 11 repeated runs, of the average
episodic rewards of sampled molecules for all combinations of on-policy algorithms and
replay buffers over 2000 episodes of batch size 128. The average episodic rewards are dis-
played using a moving average with a window size of 50. All runs use the identical molec-
ular scaffold filter. For both PPO and A2C, Top current gives the lowest average episodic
reward, as shown in Fig. 6a and b, respectively. Furthermore, PPO utilizing Bin current and
All current performs on par, giving moving averages between 0.8 and 0.7 after roughly 125
episodes. It seems that most replay buffers converge after around 125 episodes. Moreover,
for A2C, All current, Top-Bottom current and Bin current perform among the best in terms
of the average episodic reward, when using a diversity filter. Compared to PPO, it takes
slightly more episodes for the rewards to converge. For Regularized MLE, utilizing All

Fig. 5 Box plots of the number of unique active molecules and active scaffolds for the on-policy algorithms
A2C, Regularized MLE, and PPO (higher is better) when utilizing identical molecular scaffold filter. It
shows mean and standard deviation over 11 runs for each policy and replay buffer. 128 SMILES strings are
sampled in each episode, with a budget of 2000 episodes in total

Machine Learning

1 3

current gives the largest average episodic reward, converging to a reward between 0.7 and
0.8 with low variance. It is the only replay buffer for Regularized MLE that can reach an
average episodic reward above 0.7. Utilizing Top history yields the lowest episodic reward.

5.1.2 Without diversity filter

Figure 7 shows boxplots of the number of (unique) active molecules and active scaffolds
over 11 runs for the on-policy algorithms utilizing different replay buffers. No diversity
filter is used. In this setting, Regularized MLE using either Bin history, Bin current or
All current consistently generates a larger number of active molecules, molecular scaffolds
and topological scaffolds, compared to all other combinations of on-policy algorithm and
replay buffer. Bin current yields the largest number for all these metrics. For all replay
buffers, Regularized MLE gives the largest number of active molecules and scaffolds,
while A2C gives a higher number than PPO.

Figure 8 displays means and standard deviations, over 11 repeated runs, of the aver-
age episodic rewards of sampled molecules for all combinations of on-policy algorithms
and replay buffers using no diversity filter. A budget of 2000 episodes of batch size 128
is investigated. For visualization purposes, the average episodic rewards correspond to

Fig. 6 Average episodic reward computed over a batch of sequences, for the on-policy algorithms A2C,
Regularized MLE and PPO (higher is better) when utilizing identical molecular scaffold filter. It shows
mean and standard deviation of moving average, of window size 50, over 11 runs for each policy and replay
buffer. 128 SMILES strings are sampled in each episode, with a budget of 2000 episodes in total

 Machine Learning

1 3

moving averages using a window size of 50. PPO seems to require the least number of epi-
sodes to converge but, on the other hand, shows a higher variance.

As seen in Fig. 8a, PPO with Top-Bottom current, All current and Top-Bottom history
reaches an average episodic reward 1 approximately. Using Top-bottom history shows a
substantially lower episodic reward but has a larger variance.

For A2C, displayed in Fig. 8b, using replay buffers with data samples from previous
episodes, except for Top current, gives slightly lower episodic reward compared to using
only data sampled in the current episode. All replay buffers only using immediate samples
give an average episodic reward close to 1. One should note that the short drop of reward
for All current occurs due to the resetting of the parameters of one run to that of the pre-
trained model, since the policy samples less than 80% valid molecules for more than 10
consecutive episodes. After restarting, it quickly gets back on track. This run is kept to
highlight that it is possible for the networks to diverge from the pre-trained model and for-
get how to generate valid SMILES strings. When this happens, it can quickly find its way
back by restarting from the pre-trained model.

For Regularized MLE, there is generally a lower variance for the episodic reward com-
pared to PPO and A2C. When using either Top-Bottom history, Top current or Top history,

Fig. 7 Box plots of the number of unique active molecules and active scaffolds for the on-policy algorithms
A2C, Regularized MLE and PPO (higher is better) when utilizing no diversity filter. 128 SMILES strings
are sampled in each episode, with a budget of 2000 episodes in total

Machine Learning

1 3

the average episodic reward converges to 1, as illustrated in Fig. 8c. Note that neither PPO
nor A2C consistently reaches such high episodic reward. Also, for regularized MLE, All
current is not among the best ones, which is the case for both PPO and A2C.

5.2 Off‑policy algorithms

To further investigate the benefits of a replay buffer, two off-policy algorithms have been
explored: (1) Soft Actor-Critic (SAC); (2) Actor-Critic with Experience replay (ACER).

The off-policy algorithms perform one step of on-policy update (using all sampled data
in the current episode) and several off-policy updates using sequences from both current
and previous episodes. The off-policy updates use replays from either Bin history, Top his-
tory or Top-Bottom history. Opposite to the on-policy algorithms, the sequences of the cur-
rent episode are stored in the replay memory before use in the current episode, i.e., it is
possible to utilize sequences from the current batch for off-policy updates in the current
episode.

Fig. 8 Average episodic reward computed over a batch of sequences, for the on-policy algorithms A2C,
Regularized MLE and PPO (higher is better) when utilizing no diversity filter. It shows mean and stand-
ard deviation of moving average, of window size 50, over 11 runs for each policy and replay buffer. 128
SMILES strings are sampled in each episode, with a budget of 2000 episodes in total

 Machine Learning

1 3

5.2.1 With diversity filter

Figure 9 displays box plots of the number of active molecules and scaffolds for 11 repeated
runs of each combination of off-policy algorithm and replay buffer. 128 molecules are gen-
erated in each episode, not necessarily valid and/or unique molecules, with a total budget
of 2000 episodes. ACER using Bin history generates the largest number of active mol-
ecules and scaffold. It is able to yield numbers close to or better than the best on-policy
results in Sect. 5.1.1, which the other off-policy combinations are not able to. However,
in general, ACER shows a larger variability compared to SAC, where ACER using Top-
Bottom history shows the largest variability over the repeated runs.

Figure 10 shows means and standard deviations, over 11 repeated runs, of the average
episodic rewards of sampled molecules for all combinations of off-policy algorithms and
replay buffers using the identical molecular scaffold filter. A budget of 2000 episodes, each
sampling a batch of 128 molecules, is investigated. For visualization purposes, each aver-
age episodic reward corresponds to the moving average using a window size of 50. Note
that, in this figure, invalid SMILES are displayed with a reward of 0 but are given a reward
of −1 during training.

Fig. 9 Box plots of the number of unique active molecules and active scaffolds for the off-policy algorithms
ACER and SAC (higher is better) when utilizing identical molecular scaffold filter. The box plot is com-
puted over 11 repeated runs for each combination of policy and replay buffer. 128 SMILES strings are sam-
pled in each episode, with a budget of 2000 episodes in total

Machine Learning

1 3

When using SAC, both Bin history and Top-Bottom history reach an average episodic
reward of 0.5 approximately; while Top history reaches an average episodic reward of 0.4
approximately, which is the minimum reward for a sequence to be saved in the diversity
filter. For ACER, Bin history reaches an episodic reward of around 0.75; while using the
other two replay buffers yields substantially lower episodic rewards and higher variances,
in particular for Top-Bottom history. Top history reaches an episodic reward below 0.3, not
reaching above the diversity filter threshold. ACER with Bin history is the only combina-
tion that is able to obtain an average episodic reward comparable to the best on-policy algo-
rithms, but with a slower increase in average episodic reward. SAC displays a significantly
slower increase in average episodic reward than both ACER and the on-policy algorithms.

5.2.2 Without diversity filter

Figure 11 displays box plots of the number of active molecules and scaffolds, over 11
repeated runs for each combination of off-policy algorithms and replay buffers. Note that
invalid SMILES are displayed again with a reward of 0 in this figure but are given a reward
of −1 during training. No diversity filter is used, i.e., the generation of similar molecules
is not penalized between episodes. It is observed that SAC using Top history generates the
largest number of (unique) active molecules and scaffolds, on par with the best on-policy
without a diversity filter, Regularized MLE with Bin current. For all replay buffers, SAC
seems to generate a significantly larger number of active molecules and scaffolds compared
to ACER, except for topological scaffolds when using Top-bottom history where they dis-
play similar performance.

Figure 12 displays means and standard deviations, over 11 repeated runs, of the average
episodic rewards of sampled molecules for all combinations of off-policy algorithms and
replay buffers using no diversity filter. For SAC, using Top-Bottom history gives an average
episodic reward of over 0.8; while Bin history converges to an average episodic reward of
around 0.6 and Top history keeps improving, almost reaching an average episodic reward
of 0.8. For ACER, Top-Bottom history reaches an average episodic reward close to 1. When
using Bin history, a significantly faster improvement in the first 500 episodes, compared to

Fig. 10 Average episodic reward computed over a batch of sequences, for the off-policy algorithms SAC
and ACER (higher is better) when utilizing identical molecular scaffold filter. It shows mean and stand-
ard deviation of moving average, of window size 50, over 11 runs for each policy and replay buffer. 128
SMILES strings are sampled in each episode, with a budget of 2000 episodes in total. Note that invalid
SMILES are displayed with a reward of 0 in this figure, but are given a reward of −1 during training

 Machine Learning

1 3

Top-Bottom history, is observed but then diverges. A possible explanation for this is that it
finds a mode with higher entropy, but that gives a lower score, it accidentally forgets too
much of the pre-trained model. For Top history, ACER shows a large variability and does
not consistently reach an average episodic reward above 0.4.

6 Discussion

In this section, we discuss the de novo drug design of investigated on- and off-policy algo-
rithms and replay buffers. Both the use of a diversity filter and the use of no diversity filter
are discussed. We consider a diversity filter that penalizes molecules with identical molec-
ular scaffolds. As a result, there is a natural increase in diversity regarding molecular scaf-
folds, but not necessarily topological scaffolds since different molecular scaffolds can have
the same topological scaffold. When using no diversity filter, a large number of molecular
scaffolds seems to lead to a large number of topological scaffolds. However, this is not as

Fig. 11 Box plots of the number of unique active molecules and active scaffolds for the off-policy algo-
rithms ACER and SAC (higher is better) when utilizing no diversity filter. It shows mean and standard
deviation over 11 runs for each policy and replay buffer. 128 SMILES strings are sampled in each episode,
with a budget of 2000 episodes in total

Machine Learning

1 3

evident when using the diversity filter. A reason for this can be that there is a substantially
larger number of molecular scaffolds generated when using a diversity filter which natu-
rally leads to more topological scaffolds being the same.

Molecules are generated using a model pre-trained on a data set derived from the
ChEMBL database which will teach the agent to generate ChEMBL-like molecules. The
DRD2 data set, which is used to create the scoring function, comprises data from both
the ChEMBL and PubChem databases (Wang et al., 2017). Hence, this experimental
setup only considers small molecules and the agent is not anticipated to have the ability to
produce molecules that differ significantly from those present in the ChEMBL database.
Previous work suggests that there are close to 500 000 molecular scaffolds in total in the
ChEMBL database (Liang et al., 2019). On the other hand, all scaffolds do not necessar-
ily contain molecules active toward DRD2. The budget of 2000 episodes used in this work
also limits the search for new scaffolds. Typically, we are able to identify scaffolds consist-
ing of SMILES with a score of 1 and hence successfully traverse the reward landscape.

6.1 On‑policy algorithms

This section discusses the results of the on-policy algorithms and replay buffers; both with
and without a diversity filter.

6.1.1 With diversity filter

Both A2C and PPO generate more active molecules but fewer active scaffolds, compared
to Regularized MLE. One possible explanation for this could be that A2C and PPO stay
for a longer time close to a penalized scaffold before moving to the next scaffold. Regular-
ized MLE uses a fixed pre-trained actor in the loss and can, therefore, easily jump between
scaffolds without forgetting how to generate valid SMILES strings. This comes at the cost
of its likelihood staying close to that of the pre-trained model. However, we do not observe
that this notably limits its performance. We observe that on-policy algorithms can enhance

Fig. 12 Average episodic reward computed over a batch of sequences, for the off-policy algorithms SAC
and ACER (higher is better) when utilizing no diversity filter. It shows mean and standard deviation of
moving average, of window size 50, over 11 runs for each policy and replay buffer. 128 SMILES strings are
sampled in each episode, with a budget of 2000 episodes in total. Note that invalid SMILES are displayed
with a reward of 0 in this figure, but are given a reward of −1 during training

 Machine Learning

1 3

diversity by not only relying on high-scoring molecules, particularly regarding the diver-
sity of topological scaffolds.

A2C and PPO achieve high average episodic rewards both by either using all on-policy
data or a subset comprising both high- and low-scoring molecules. For some combinations
of algorithm and replay mechanism is it advantageous to use historical samples instead of
only current samples. However, there seems to be no significant added performance gain
in using experiences from previous iterations, particularly compared to using all current
samples. One possible explanation for this could be that the diversity filter can impose a
significant change in the reward landscape after each episode by initiating penalization of
frequently generated scaffolds and therefore possibly making previously acquired knowl-
edge outdated, which may need to be accounted for. The investigated diversity filter uses a
discrete threshold to determine when molecules of a scaffold should obtain a zero reward.
A diversity filter that in a stepwise or continuous manner penalizes molecules from the
same scaffold could have other effects on the reward landscape which possibly could be
more suitable for some replay buffers.

6.1.2 Without diversity filter

As expected, the number of actives molecules and scaffolds is significantly lower com-
pared to when using a diversity filter. There is an evident relationship between the num-
ber of active molecules, molecular scaffolds, and topological scaffolds. This is not nec-
essarily evident when utilizing diversity filter.

When using no diversity filter, Regularized MLE generates a substantially larger
number of active molecules and scaffolds, compared to A2C and PPO, especially when
used in combination with the replay buffers Bin current, Bin history and All current.
There is no significant difference in using a replay mechanism utilizing historical or
current samples, except for the bin-based replay mechanisms in combination with Regu-
larized MLE. Bin current in combination with Regularized MLE displays the overall
largest number of active molecules and scaffolds while displaying among the lowest
average episodic reward. This replay buffer seems to be able to enhance the exploration
of Regularized MLE, possibly because it does not only exploit high-scoring molecules.
Hence, it is evidently important to use a diverse set, in terms of reward, for learning
without a diversity filter.

Why Regularized MLE performs better, in general, is likely because it is heavily regu-
larized to stay close to the pre-trained model in terms of likelihood and, therefore, inher-
ently can jump between scaffolds without using the initial knowledge. Without a diversity
filter, PPO generates the least number of active molecules and scaffolds, while still display-
ing a high average episodic reward. This must be because of an early mode collapse, lead-
ing to PPO generating more or less only the same molecules through all episodes.

6.2 Off‑policy algorithms

In this section, the results of the off-policy algorithms and replay buffers are discussed;
both with and without a diversity filter.

Machine Learning

1 3

6.2.1 With diversity filter

For the best off-policy algorithm and replay buffer combination, i.e., ACER with Bin his-
tory, the number of active molecules is on par with the best on-policy combinations. On
the other hand, several off-policy results struggle to reach an episodic reward significantly
above 0.4, which is the minimum reward for a generated SMILES string to be stored in
the diversity filter. Only ACER with Bin history can consistently reach an average epi-
sodic reward above 0.7. With the help of the diversity filter, this leads to the highest num-
ber of active molecules and scaffolds. Hence, the slower convergence rate can possibly be
explained by a more elaborate exploration phase. However, ACER shows a large variabil-
ity. Even though SAC does generally achieve lower average episodic rewards, it is more
stable and shows a larger median of active molecules and scaffolds compared to ACER
utilizing Top history and Top-bottom history. It appears that the average episodic reward
of SAC with Bin history has not converged yet, indicating that it is still in the learning
phase. It is possible that this specific combination requires over 2000 episodes to conduct
adequate exploration.

6.2.2 Without diversity filter

For the off-policy algorithms with no diversity filter, it is observed that SAC using Top
history generates the largest number of unique active molecules and scaffolds. However,
it does not reach the highest average episodic reward in this setting, which is achieved
by ACER. ACER with Top-bottom history converges to the highest average episodic
reward, among the off-policy algorithms without diversity filter, but is still outper-
formed by SAC for the generation of active molecules and scaffolds. This is because it
generates many duplicates of the same high-scoring molecules. Hence, SAC will gener-
ate more unique molecules when no diversity filter is used and, consequently, improve
the exploration. This behavior yields an enhancement in the diversity of the active
molecules, especially when the top-scoring molecules are used for off-policy updates.
Overall, this highlights the positive impact an appropriate replay buffer can have on the
generation of diverse molecules. It also emphasizes the positive effect that the usage of
a diversity filter has and that inherent exploration of the algorithms is not necessarily
enough to generate a structurally diverse set of active molecules.

7 Conclusions

We explore on- and off-policy RL algorithms for SMILES-based molecular de novo
drug design using recurrent neural networks. The investigation has focused on how well
the algorithms sample structurally diverse and high-rewarding molecules for differ-
ent replay buffers. This has been done by studying their behaviors both with and with-
out using a diversity filter that penalizes the generation of similar molecules between
episodes.

For on-policy algorithms, we observe that it is often favorable to use all generated
molecules from the current batch for learning. Regularized MLE utilizing the full batch
for learning, in combination with a diversity filter, leads to the overall best performance
in terms of both the reward and diversity. However, it is possible to obtain similar per-
formance by learning from fewer samples if the training data includes at least both

 Machine Learning

1 3

high-rewarding and low-rewarding data points. For these on-policy algorithms applied
with no diversity filter, it is also important to use intermediate-rewarding samples, either
from the current batch of sampled molecules or previously sampled molecules.

There is a potential performance gain in using off-policy algorithms with a suitable
replay buffer. When using no diversity filter, we observe that SAC provides good explo-
ration, leading to a more structurally diverse generation. Hence, when no diversity filter
is used, the policy must keep its randomness to avoid mode collapse. Interestingly, when
using a diversity filter ACER yields better performance, displaying the potential to be
on par with Regularized MLE or even better.

We release the source code of the methods as an open-source framework, to enable
further exploration of reinforcement learning algorithms and replay buffers mechanisms.

Appendix A: Hyperparameters

Regularized maximum likelihood estimation

See Table 1.

Proximal policy opimization

See Table 2.

Table 1 Regularized MLE
Hyperparameters

Parameter Value

Optimizer Adam
(Kingma &
Ba, 2014)

� 128
Margin threshold 50
Learning rate 0.0001
Gradient steps per update 1

Table 2 PPO Hyperparameters Parameter Value

Optimizer Adam
(Kingma &
Ba, 2014)

Clipping range (�) 0.2
Number of updates per episode 4
Discount (�) 0.99
Number of mini-batches 4
Norm for gradient clipping L2 norm
Maximum gradient norm 0.5
Learning rate 0.0001
Gradient steps per update 1

Machine Learning

1 3

Advantage actor‑critic

See Table 3.

Actor‑critic with experience replay

See Table 4.

Soft actor‑critic

See Table 5.

Table 3 A2C Hyperparameters Parameter Value

Optimizer Adam
(Kingma &
Ba, 2014)

Discount (�) 0.99
Norm for gradient clipping L2 norm
Maximum gradient norm 0.5
Learning rate actor 0.0001
Learning rate critic 0.0001
Gradient steps per update 1

Table 4 ACER Hyperparameters Parameter Value

Optimizer Adam
(Kingma &
Ba, 2014)

Replay rate (�) 4
Discount (�) 0.99
Target smoothing coefficient (�) 0.95
Entropy weight 0.001
Trust factor variance reduction (�) 1
Trust region clipping range (c) 10
Norm for gradient clipping L2 norm
Maximum gradient norm 0.5
Learning rate 0.0001
Number of off-policy replay samples (k) 128
Gradient steps per update 1
Number of initial episodes without update 10

 Machine Learning

1 3

Appendix B: Technical details

For all models, training was done using Python 3.8.15 and PyTorch 1.13.1. Computa-
tions in this work were performed on a Linux cluster using Nvidia Tesla K80 and Nvidia
V100 graphic cards utilizing CUDA 11.4. The experiments were run in parallel on around
50 graphic cards, where each run of an experiment was restricted to one graphic card at
runtime.

For the scoring function and diversity filter, reinvent-scoring 0.0.73 is used with rein-
vent-chemistry 0.0.51. To train the DRD2 predictive model, which is used as scoring func-
tion, scikit-learn 1.2.0 is used. To compute fingerprints and scaffolds, RDKit 2022.9.3 is
used.

Appendix C: Visual comparison of generated SMILES

Top 10 generated SMILES of unique topological scaffolds of one representative run of
each combination.

On‑policy algorithms

With diversity filter

See Figs. 13, 14, 15.

Table 5 SAC Hyperparameters Parameter Value

Optimizer Adam
(Kingma &
Ba, 2014)

Number of off-policy updates 4
Discount (�) 1
Smoothing coefficient (�) 0.99
Initial temperature (�

0
) 0.001

Norm for gradient clipping L2 norm
Maximum gradient norm 0.5
Entropy target (H̄) 0.3
Learning rate actor (��) 0.0001
Learning rate critic (�Q) 0.0001
Learning rate temperature (��) 0.0001
Average policy weight 0.5
Number of off-policy replay samples (k) 64
Gradient steps per update 1
Number of initial episodes without update (K

init
) 10

clipping range (c) 0.5

Machine Learning

1 3

Fig. 13 A2C with diversity filter penalizing the generation of SMILES with the same molecular scaffold.
If no score is displayed, all scores are at least 0.9995. Otherwise, scores are rounded upwards to 3 decimals

Fig. 14 PPO with diversity filter penalizing the generation of SMILES with the same molecular scaffold.
If no score is displayed, all scores are at least 0.9995. Otherwise, scores are rounded upwards to 3 decimals

 Machine Learning

1 3

Without diversity filter

See Figs. 16, 17, 18.

Fig. 15 Regularized MLE with diversity filter penalizing the generation of SMILES with the same molecular scaf-
fold. If no score is displayed, all scores are at least 0.9995. Otherwise, scores are rounded upwards to 3 decimals

Fig. 16 A2C without diversity filter. If no score is displayed, all scores are at least 0.9995

Machine Learning

1 3

Fig. 17 PPO without diversity filter. If no score is displayed, all scores are at least 0.9995

Fig. 18 Regularized MLE without diversity filter. If no score is displayed, all scores are at least 0.9995

 Machine Learning

1 3

Off‑policy algorithms

With diversity filter

See Figs. 19, 20.

Without diversity filter

See Figs. 21, 22.

Fig. 19 ACER with diversity filter penalizing the generation of SMILES with the same molecular scaffold.
If no score is displayed, all scores are at least 0.9995. Otherwise, scores are rounded upwards to 3 decimals

Fig. 20 SAC with diversity filter penalizing the generation of SMILES with the same molecular scaffold.
If no score is displayed, all scores are at least 0.9995. Otherwise, scores are rounded upwards to 3 decimals

Fig. 21 ACER without diversity filter. If no score is displayed, all scores are at least 0.9995

Machine Learning

1 3

Acknowledgements This work was partially supported by the Wallenberg Artificial Intelligence, Auton-
omous Systems, and Software Program (WASP), funded by the Knut and Alice Wallenberg Foundation,
Sweden.

Author’s contribution All authors have contributed significantly to the conception, design, and writing
of this work. HGS developed the algorithms and performed the experimental studies. The work has been
jointly supervised by MHC, OE and CT.

Funding Open access funding provided by Chalmers University of Technology.

Data availibility Only public datasets, clearly cited in the text, are used.

Code availability The code is publicly available at https:// github. com/ Molec ularAI/ SMILES- RL.

Declarations

Conflict of interest There is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bemis, G. W., & Murcko, M. A. (1996). The properties of known drugs. 1. molecular frameworks. Journal of
Medicinal Chemistry, 39(15), 2887–2893.

Blaschke, T., Arús-Pous, J., Chen, H., Margreitter, C., Tyrchan, C., Engkvist, O., Papadopoulos, K., & Patronov,
A. (2020). Reinvent 2.0: An ai tool for de novo drug design. Journal of Chemical Information and Mod-
eling, 60(12), 5918–5922.

Blaschke, T., Engkvist, O., Bajorath, J., & Chen, H. (2020). Memory-assisted reinforcement learning for diverse
molecular de novo design. Journal of Cheminformatics, 12(1), 1–17.

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M., & Hernández-Lobato, J. M. (2020). Barking up the right tree:
An approach to search over molecule synthesis dags. Advances in Neural Information Processing Systems,
33, 6852–6866.

Brown, N., Fiscato, M., Segler, M. H., & Vaucher, A. C. (2019). Guacamol: Benchmarking models for de novo
molecular design. Journal of Chemical Information and Modeling, 59(3), 1096–1108.

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug
discovery. Drug Discovery Today, 23(6), 1241–1250.

Christodoulou, P. (2019). Soft actor-critic for discrete action settings. arXiv preprint arXiv: 1910. 07207

Fig. 22 SAC without diversity filter. If no score is displayed, all scores are at least 0.9995

https://github.com/MolecularAI/SMILES-RL
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1910.07207

 Machine Learning

1 3

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Rowland, M., & Dabney, W. (2020).
Revisiting fundamentals of experience replay. In International Conference on Machine Learning, pp.
3061–3071. PMLR.

Gao, W., Fu, T., Sun, J., & Coley, C. W. (2022). Sample efficiency matters: a benchmark for practical molecular
optimization. arXiv preprint arXiv: 2206. 12411

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Mich-
alovich, D., Al-Lazikani, B., et al. (2012). Chembl: A large-scale bioactivity database for drug discovery.
Nucleic Acids Research, 40(D1), 1100–1107.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla,
D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., & Aspuru-Guzik, A. (2018). Automatic chemical
design using a data-driven continuous representation of molecules. ACS Central Science, 4(2), 268–276.

Gottipati, S. K., Sattarov, B., Niu, S., Pathak, Y., Wei, H., Liu, S., Blackburn, S., Thomas, K., Coley, C., Tang,
J., et al. (2020). Learning to navigate the synthetically accessible chemical space using reinforcement
learning. In International Conference on Machine Learning, pp. 3668–3679 . PMLR.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. (2018). Soft actor-critic algorithms and applications. arXiv preprint arXiv: 1812. 05905

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Horwood, J., & Noutahi, E. (2020). Molecular design in synthetically accessible chemical space via deep rein-

forcement learning. ACS Omega, 5(51), 32984–32994.
Hu, Y., Stumpfe, D., & Bajorath, J. (2016). Computational exploration of molecular scaffolds in medicinal

chemistry: Miniperspective. Journal of Medicinal Chemistry, 59(9), 4062–4076.
Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph genera-

tion. In International Conference on Machine Learning, pp. 2323–2332. PMLR.
Jin, W., Barzilay, R., & Jaakkola, T. (2020). Multi-objective molecule generation using interpretable substruc-

tures. In International Conference on Machine Learning, pp. 4849–4859. PMLR
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412. 6980
Landrum, G. (2006). RDKit: Open-source Cheminformatics. Retrieved from https:// www. rdkit. org/ docs/ Overv

iew. html
Liang, L., Ma, C., Du, T., Zhao, Y., Zhao, X., Liu, M., Wang, Z., & Lin, J. (2019). Bioactivity-explorer: A web

application for interactive visualization and exploration of bioactivity data. Journal of Cheminformatics,
11, 1–6.

Maus, N., Jones, H. T., Moore, J. S., Kusner, M. J., Bradshaw, J., & Gardner, J. R. (2022). Local latent space
bayesian optimization over structured inputs. arXiv preprint arXiv: 2201. 11872

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Pro-
ceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 48, pp. 1928–1937. PMLR, New York, New York, USA . https:// proce edings. mlr. press/ v48/
mniha 16. html

Neil, D., Segler, M., Guasch, L., Ahmed, M., Plumbley, D., Sellwood, M., & Brown, N. (2018). Exploring
deep recurrent models with reinforcement learning for molecule design. In 6th International Conference
on Learning Representations.

Olivecrona, M., Blaschke, T., Engkvist, O., & Chen, H. (2017). Molecular de-novo design through deep rein-
forcement learning. Journal of Cheminformatics, 9(1), 1–14.

Rumelhart, D.E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propaga-
tion. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized experience replay. arXiv preprint arXiv:
1511. 05952

Schneider, G., & Fechner, U. (2005). Computer-based de novo design of drug-like molecules. Nature Reviews
Drug Discovery, 4(8), 649–663.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algo-
rithms. arXiv preprint arXiv: 1707. 06347

Sun, J., Jeliazkova, N., Chupakhin, V., Golib-Dzib, J.-F., Engkvist, O., Carlsson, L., Wegner, J., Ceulemans, H.,
Georgiev, I., Jeliazkov, V., et al. (2017). Excape-db: An integrated large scale dataset facilitating big data
analysis in chemogenomics. Journal of Cheminformatics, 9, 1–9.

Thomas, M., O’Boyle, N. M., Bender, A., & De Graaf, C. (2022). Re-evaluating sample efficiency in de novo
molecule generation. arXiv preprint arXiv: 2212. 01385.

Thomas, M., O’Boyle, N. M., Bender, A., & De Graaf, C. (2022). Augmented hill-climb increases reinforce-
ment learning efficiency for language-based de novo molecule generation. Journal of Cheminformatics,
14(1), 1–22.

http://arxiv.org/abs/2206.12411
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1412.6980
https://www.rdkit.org/docs/Overview.html
https://www.rdkit.org/docs/Overview.html
http://arxiv.org/abs/2201.11872
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2212.01385

Machine Learning

1 3

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P.,
Spitzer, M., et al. (2019). Applications of machine learning in drug discovery and development. Nature
Reviews Drug Discovery, 18(6), 463–477.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., & de Freitas, N. (2016). Sample efficient
actor-critic with experience replay. arXiv preprint arXiv: 1611. 01224

Wang, Y., Bryant, S. H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B. A., Thiessen, P. A., He, S., &
Zhang, J. (2017). Pubchem bioassay: 2017 update. Nucleic Acids Research, 45(D1), 955–963.

Weininger, D. (1988). Smiles, a chemical language and information system. 1. introduction to methodology and
encoding rules. Journal of Chemical Information and Computer Sciences, 28(1), 31–36.

Yang, S., Hwang, D., Lee, S., Ryu, S., & Hwang, S. J. (2021). Hit and lead discovery with explorative rl
and fragment-based molecule generation. Advances in Neural Information Processing Systems, 34,
7924–7936.

Yang, X., Wang, Y., Byrne, R., Schneider, G., & Yang, S. (2019). Concepts of artificial intelligence for com-
puter-assisted drug discovery. Chemical Reviews, 119(18), 10520–10594.

You, J., Liu, B., Ying, Z., Pande, V., & Leskovec, J. (2018). Graph convolutional policy network for goal-
directed molecular graph generation. Advances in Neural Information Processing Systems, 31, 6410–6421.

Zhang, J., Mercado, R., Engkvist, O., & Chen, H. (2021). Comparative study of deep generative models on
chemical space coverage. Journal of Chemical Information and Modeling, 61(6), 2572–2581.

Zhou, H., Lin, Z., Li, J., Ye, D., Fu, Q., & Yang, W. (2022). Revisiting discrete soft actor-critic. arXiv preprint
arXiv: 2209. 10081

Zhou, Z., Kearnes, S., Li, L., Zare, R. N., & Riley, P. (2019). Optimization of molecules via deep reinforcement
learning. Scientific Reports, 9(1), 1–10.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Hampus Gummesson Svensson1,2 · Christian Tyrchan3 · Ola Engkvist1,2 ·
Morteza Haghir Chehreghani1

 * Hampus Gummesson Svensson
 hamsven@chalmers.se

 Christian Tyrchan
 christian.tyrchan@astrazeneca.com

 Ola Engkvist
 ola.engkvist@astrazeneca.com

 Morteza Haghir Chehreghani
 morteza.chehreghani@chalmers.se

1 Department of Computer Science and Engineering, Chalmers University of Technology
and University of Gothenburg, Gothenburg, Sweden

2 Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
3 Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I),

BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/2209.10081
http://orcid.org/0000-0003-0765-1837

	Utilizing reinforcement learning for de novo drug design
	Abstract
	1 Introduction
	2 Problem setup
	2.1 Problem definition

	3 Policy optimization algorithms for de novo drug design
	3.1 Regularized maximum likelihood estimation
	3.2 Proximal policy optimization
	3.3 Advantage actor-critic
	3.4 Actor-critic with experience replay
	3.5 Soft actor-critic

	4 De novo drug design using RNNs for generating SMILES generation
	4.1 Molecular and topological scaffolds
	4.2 Sampling
	4.3 Scoring
	4.4 Diversity filter
	4.5 Replay buffers

	5 Results
	5.1 On-policy algorithms
	5.1.1 With diversity filter
	5.1.2 Without diversity filter

	5.2 Off-policy algorithms
	5.2.1 With diversity filter
	5.2.2 Without diversity filter

	6 Discussion
	6.1 On-policy algorithms
	6.1.1 With diversity filter
	6.1.2 Without diversity filter

	6.2 Off-policy algorithms
	6.2.1 With diversity filter
	6.2.2 Without diversity filter

	7 Conclusions
	Appendix A: Hyperparameters
	Regularized maximum likelihood estimation
	Proximal policy opimization
	Advantage actor-critic
	Actor-critic with experience replay
	Soft actor-critic

	Appendix B: Technical details
	Appendix C: Visual comparison of generated SMILES
	On-policy algorithms
	With diversity filter

	Without diversity filter
	Off-policy algorithms
	With diversity filter

	Without diversity filter

	Acknowledgements
	References

