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Abstract
Automatic term extraction (ATE) is a natural language processing task that eases the effort 
of manually identifying terms from domain-specific corpora by providing a list of candi-
date terms. In this paper, we treat ATE as a sequence-labeling task and explore the efficacy 
of XLMR in evaluating cross-lingual and multilingual learning against monolingual learn-
ing in the cross-domain ATE context. Additionally, we introduce NOBI, a novel annotation 
mechanism enabling the labeling of single-word nested terms. Our experiments are con-
ducted on the ACTER corpus, encompassing four domains and three languages (English, 
French, and Dutch), as well as the RSDO5 Slovenian corpus, encompassing four additional 
domains. Results indicate that cross-lingual and multilingual models outperform monolin-
gual settings, showcasing improved F1-scores for all languages within the ACTER dataset. 
When incorporating an additional Slovenian corpus into the training set, the multilingual 
model exhibits superior performance compared to state-of-the-art  approaches in specific 
scenarios. Moreover, the newly introduced NOBI labeling mechanism enhances the clas-
sifier’s capacity to extract short nested terms significantly, leading to substantial improve-
ments in Recall for the ACTER dataset and consequentially boosting the overall F1-score 
performance.

Keywords Term extraction · XLMR · Sequence labeling · Cross-lingual · Cross-domain · 
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1 Introduction

Terms are textual expressions that denote concepts in a specific field of expertise. They 
are beneficial for several terminographical tasks performed by linguists (e.g., construction 
of specialized terminological dictionaries (Le Serrec et  al., 2010)). Moreover, terms can 
also support and improve several downstream natural language processing (NLP) tasks 
(e.g., topic detection (ElKishky et al., 2014), information retrieval (Lingpeng et al., 2005), 
machine translation (Wolf et al., 2011)). To ease the time and effort needed to manually 
identify terms in domain-specific corpora, automatic term extraction (ATE) approaches 
were proposed.

The TermEval 2020 shared task, organized as part of the CompuTerm workshop (Rig-
outs et al., 2020a), presented one of the first opportunities to systematically study and com-
pare several ATE architectures with the introduction of the Annotated Corpora for Term 
Extraction Research (ACTER) dataset (Rigouts et al., 2020a, b). While the workshop was a 
significant step forward in systematic comparison, the less-resourced languages (e.g., Slo-
venian) have not yet been sufficiently explored and remain a research gap. Furthermore, 
there is still room for improvement in performance. In our previous study (Tran et  al., 
2022a), the conducted error analysis pointed out that the two most common errors that the 
tested classifiers made were to predict a shorter term nested in the ground truth term and 
vice versa, i.e., the model sometimes generates the terms not covered in the ground truth, 
containing a nested term. This insight leads to a hypothesis about the insufficiency of the 
widely used BIO labeling regime (Hazem et al., 2020). This regime does not allow labe-
ling the nested terms and giving the model the necessary information to avoid the above 
mistakes.

Inspired by the success of Transformers (Hazem et al., 2020) and the rise of cross-lin-
gual learning (Lang et al., 2021), our research delves into the effectiveness of the XLMR 
(Conneau et  al., 2020) in multilingual and cross-lingual scenarios. First, having a single 
model that works across several languages is important, as it can be used also in the lan-
guages not seen during the training. Instead of having to construct language-specific mod-
els, multilingual and cross-lingual models can be directly used on any new language that 
is supported by XLMR. In addition, for the languages where the data is available, having a 
single model instead of many language-specific models is a much simpler solution, and can 
also make the models less dataset-specific.

Our approach frames the ATE task as a sequence-labeling problem, as this strategy has 
proven successful in various NLP tasks like Named Entity Recognition (NER) (Lample 
et al., 2016; Tran et al., 2021) and Keyword Extraction (Martinc et al., 2021). Additionally, 
we extend our previous work (Tran et al., 2022a) by introducing an innovative nested term 
labeling mechanism, incorporating two extra labels for single nested terms, and rigorously 
evaluating the model’s performance in cross-lingual and multi-lingual settings. This com-
prehensive exploration showcases the power of a multilingual pretrained language model 
with cross-lingual and multi-lingual settings in capturing and understanding diverse lin-
guistic nuances. The experiments are conducted in the cross-domain setting on the ACTER 
dataset1 containing texts in four domains (Corruption, Wind energy, Equitation, and Heart 
failure) with three languages (English, French, and Dutch) and the RSDO5 corpus2 (Jemec 

1 https:// github. com/ AylaRT/ ACTER.
2 https:// www. clarin. si/ repos itory/ xmlui/ handle/ 11356/ 1470.

https://github.com/AylaRT/ACTER
https://www.clarin.si/repository/xmlui/handle/11356/1470
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Tomazin et al., 2021) containing Slovenian texts from four domains (Biomechanics, Chem-
istry, Veterinary, and Linguistics).

The main contributions of this paper can be summarized as follows:

– We propose a new NOBI annotation mechanism to better capture single nested terms. 
When a dataset contains a relevant proportion of nested terms, the new labeling regime 
improves the Recall of the models by a large margin, leading also to further improve-
ments in the F1-score. This is also the main novelty compared to the shorter conference 
version (Tran et al., 2022a) of this paper.

– We systematically evaluate the performance of the XLMR on the cross-domain term 
extraction task in two datasets covering English, French, Dutch, and a less-resourced 
Slovenian in both standard BIO and the novel NOBI scheme.

– We compare the performance among cross-lingual, multilingual, and monolingual 
approaches to determine the general applicability of multilingual language models for 
sequence labeling in both rich- and less-resourced languages. The datasets using BIO 
and NOBI annotation regimes are both considered.

2  Related work

The history of ATE has its beginnings during the 1990s with research done by Damerau 
(1990)  and Justeson and Katz (1995). ATE systems usually employ the two-step proce-
dure: (1) extracting a list of candidate terms, and (2) determining which candidate terms 
are correct.

2.1  Approaches based on term characteristics

Traditional approaches relied on distinctive linguistic aspects of terms to extract possi-
ble candidates. Several NLP tools (e.g., tokenization, lemmatization, stemming, PoS tag-
ging) are employed to obtain linguistic profiles of term candidates. As a heavily language-
dependent approach, the better the quality of the pre-processing tools (e.g., FLAIR (Akbik 
et al., 2019), Stanza (Qi et al., 2020)), the better the quality of linguistic methods. More 
recent studies preferred the statistical approach, which commonly relies on the assumption 
that a higher candidate term frequency in a domain-specific corpus implies a higher likeli-
hood that a candidate is an actual term. Some measures relying on this assumption include 
termhood (Vintar, 2010), unithood (Daille et al., 1994) or C-value (Frantzi et al., 1998). 
More popular statistical approaches also considered the frequency of the term internal 
words compared to the term frequency to identify rare terms and remove frequent words. 
Many current systems still apply this approach’s variation, or hybrid mechanisms that com-
bine linguistic and statistical information (Kessler et al., 2019; Repar et al., 2019).

2.2  Approaches based on machine learning and deep learning

Recent advances in representation learning and deep neural networks have also influenced 
term extraction. Several embedding techniques have been investigated for the task at hand, 
e.g., uni-gram (Amjadian et  al., 2016), non-contextual (Zhang et  al., 2018), contextual 
(Kucza et al., 2018) word embeddings, and the hybrid ones (Gao & Yuan, 2019). The first 
use of language models for the ATE task was in the TermEval 2020 (Rigouts et al., 2020a) 
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where the winning approach on the Dutch corpus used BiLSTM-based neural architecture 
with GloVe embeddings while the winning solution on the English corpus (Hazem et al., 
2020) extracted all possible n-gram combinations, which are then fed into a BERT binary 
classifier that determines for each n-gram inside a sentence, whether it is a term. Besides, 
several Transformer-based variations have also been investigated (e.g., RoBERTa, Cam-
emBERT (Hazem et al., 2020)). Further work includes HAMLET by Terryn et al., 2021, 
which proposes a hybrid adaptable machine learning classifier that combines linguistic and 
statistical clues to detect terms.

Recently, sequence-labeling and cross-lingual approaches toward ATE have been gain-
ing traction. Kucza et al. (2018) was one of the first to model term extraction as a sequence-
labeling task. Cross-lingual sequence labeling was, on the other hand, explored in Conneau 
et al. (2020), Lang et al. (2021), Hazem et al. (2022), and Tran et al. (2022a), who took 
advantage of XLMR, the model we also employ in this work. Lang et al. (2021) compared 
different cross-lingual approaches, including a sequence classifier, and a token classifier 
on this sequence-labeling task, and further proposed a sequence-to-sequence (seq2seq) 
approach, which used mBART (Liu et  al., 2020) to generate sequences of comma-sepa-
rated terms from the input. The results demonstrate the capability of multilingual models 
to outperform monolingual ones in some specific scenarios and the potential of cross-lin-
gual learning.

Finally, in our conference paper (Tran et al., 2022a) that we extend in this journal paper, 
we leveraged the multilingual setup by fine-tuning the model using training datasets from 
several languages and then applying the model to their test sets, separately. By doing so, we 
examined whether adding more data from other languages to the training set that matches 
the target language in the testing set improves the model’s predictive performance. After 
adding the Slovenian corpus into the ACTER training set, our multilingual model dem-
onstrated a significant improvement in Recall across all test languages compared to the 
monolingual one.

2.3  Approaches for Slovenian term extraction

For Slovenian, the language used in our study, and for less-resourced languages in gen-
eral, the research is still hindered by the lack of gold standard corpora and limited use 
of neural methods. Things are nevertheless slowly improving. In recent years, the Slove-
nian KAS corpus was compiled (Erjavec et al., 2021), quickly followed by another corpus 
designed for term extraction, the RSDO5 corpus.3 Regarding the methods, Vintar (2010) 
was one of the first to propose statistical approaches for Slovenian ATE tasks. After that, 
Ljubešić et al. (2019) introduced a hybrid one, in which they extract the initial candidate 
terms using the CollTerm tool (Pinnis et al., 2019), a rule-based system employing a com-
plex language-specific set of term patterns from the Slovenian SketchEngine (Fišer et al., 
2016). Meanwhile, Repar et al. (2019) focuses on term extraction and alignment, where the 
novelty is the evolutionary algorithm for the term alignment.

The deep neural approaches have not been sufficiently explored for Slovenian data yet. 
The only neural approach towards Slovenian ATE was proposed in our recent study (Tran 
et al., 2022b). There, we implemented the Transformers-based sequence-labeling approach, 
which we extend in this study, in a cross-lingual and multilingual evaluation. Another 

3 https:// www. clarin. si/ repos itory/ xmlui/ handle/ 11356/ 1470.

https://www.clarin.si/repository/xmlui/handle/11356/1470
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problem is that often no open-sourced code is available for most current benchmark sys-
tems, hindering their reproducibility (for Slovenian, only the code from Ljubešić et  al. 
(2019) and Tran et al. (2022b) methods are available).

2.4  Extraction of nested terms

In many practical applications, it is common that the terms have a nested structure where 
a term could contain other terms or be part of others. Vintar (2004) first suggested rank-
ing and/or discarding nested terms using the C-value, but their results were unsatisfac-
tory. Marciniak and Mykowiecka (2015) later identified them by combining grammatical 
correctness and normalized pointwise mutual information (NPMI) based on bigrams in a 
corpus. However, this method’s efficiency relies heavily on corpus features (e.g., size, the-
matic homogeneity, and phrase frequency). Recently, Gao and Yuan (2019) proposed an 
end-to-end architecture that employs classification and ranking for n-gram candidates in 
text sequences. Nonetheless, this suffers from reduced Recall due to ranking and its thresh-
old output is not applicable to new, unseen domains. Since then, no further methodologies 
have been proposed, leaving a gap in extracting nested terms for term extraction tasks.

Regarding other NLP downstream tasks sharing the same mechanisms (e.g., NER, Key-
word Extraction), besides the common sequence tag schemes (e.g., BIO (Ramshaw & Mar-
cus, 1999), IOBES (Lester, 2020), BMEWO (Ratinov & Roth, 2009), BILOU (Ratinov & 
Roth, 2009)) for both flat and nested ones, we can categorize the methods to capture nested 
entities into four main types: (1) sequence labeling, (2) hypergraph-based, (3) sequence-to-
sequence (Seq2Seq), and (4) span-based methods. However, none of them except the BIO 
regime for the sequence-labeling approach has been applied for term extraction yet.

3  Methodology

Section 3.1 presents a brief description of our chosen datasets. We demonstrate the general 
methodology, experimental setup, and implementation details in Sects. 3.2 and 3.3. Finally, 
in Sect. 3.4, we present our chosen evaluation metrics.

3.1  Datasets

The experiments were conducted on ACTER (Rigouts et  al., 2020a) and RSDO5 ver-
sion 1.1 (Jemec Tomazin et al., 2021), both comprising texts from diverse languages and 
domains. The ACTER dataset is a collection of 12 corpora covering four domains (Cor-
ruption (corp), Equitation (equi), Wind energy (wind), and Heart failure (htfl)) in three 
languages (English (en), French (fr) and Dutch (nl)). The dataset has two types of gold 
standard annotations: one containing both terms and named entities (NES), and the other 
one containing only terms (ANN). The second dataset is the RSDO5 version 1.1 (Jemec 
Tomazin et al., 2021), which contains texts in Slovenian (sl), a less-resourced Slavic lan-
guage with rich morphology. The corpus contains 12 documents collected from 2000 to 
2019 covering domains of Biomechanics (bim), Chemistry (kem), Veterinary (vet), and 
Linguistics (ling). The data analysis is depicted in Figs. 14, 15 , 16, 17 and 18 and Table 7.
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3.2  Experimental setup

We consider ATE as a sequence-labeling task where the model returns a label for each 
token in a text sequence using two different labeling regimes: the benchmark BIO labeling 
scheme (Lang et al., 2021; Rigouts et al., 2021) and our novel annotation scheme called 
NOBI. In the BIO regime, B stands for the beginning word in the term, I stands for the 
word inside the term, and O stands for the word not part of the term. The terms from a 
gold standard list are first mapped to the tokens in the raw text and each word inside the 
text sequence is annotated with one of three labels (see the upper example in Fig. 1). How-
ever, it is not optimized for nested term extraction. Thus, we propose NOBI, an annotation 
regime with two additional labels BN and IN, referring to a word being in the beginning 
or inside the nested term, respectively (see the lower example in Fig.  1). An annotation 
regime with two additional labels BN and IN, where N refers to nested single-word terms, 
which can be at the beginning (BN) or inside (IN) position of a longer term.

In Fig. 1, the gold standard contains the following terms: “stent”, “bottleneck stent”, 
“myocardial”, “infarction”, “myocardial infarction”, etc. In the BIO regime, we ignore 
the single nested terms, thus, we only mark “bottleneck” as the beginning (B) and “stent” 
as the inside (I) of the full term “bottleneck stent”. Similarly, “myocardial” is the begin-
ning (B), and “infarction” is the inside (I) of the full term “myocardial infarction”. 
However, in the NOBI regime, we consider “bottleneck stent” and “stent” as two differ-
ent terms where “stent” is the nested term of “bottleneck stent”, in contrast to the BIO 
scheme, where the model extracts just the “bottleneck stent” as a term. Similarly, “myo-
cardial” and “infarction” are two separate terms that are nested in “myocardial infarc-
tion”. Therefore, an additional label N is added to the label of “stent”, “myocardial”, and 
“infarction”.

We do not consider either multi-word nested terms or terms nested in other nested terms 
– so-called nested terms on the second or higher levels – due to their rarity in the corpora 
and gold standards (see the nested frequency in the gold standard from Figs. 16 and 18 in 
Appendix). Despite the difference in the number of terms in each language and domain, 
the percentage of unique nested terms in all languages and domains is somewhat consist-
ent, ranging around one-third of the total unique terms in the gold standards. However, the 
number of terms nested in other nested terms only takes one-tenth and one-twelfth of the 
total amount of unique terms in both corpora, respectively, and the amounts are even much 
smaller if we specify the ratio per nested level (e.g., in the second level, third level). We 
also demonstrate in Table 7 in Appendix the proportion of the nested terms with different 

Fig. 1  An example of BIO and NOBI annotation regimes in the ACTER corpus
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word lengths k where k = {1, 2, 3, 4,≥ 5} for each domain and language of both corpora. 
The last column on the right calculates the percentage of single-word nested terms in total 
nested terms in the first level. On average, the amount of single-word nested terms accounts 
for 78.06% above all the nested terms on the first levels in the corpora. Therefore, we only 
label single-word nested terms on the first level.

For both labeling regimes, we experiment with XLMR, a Transformer-based model pre-
trained on 2.5TB of filtered CommonCrawl data containing 100 languages. The model is 
first trained to predict a label for each token in the input text sequence (e.g., we model the 
task as token classification) and then applied to the unseen text (test data). Finally, from the 
tokens or token sequences labeled as terms, the final candidate term list for the test data is 
composed. Note that when the NOBI annotation regime is used, the terms labeled with BN 
and IN are added to the final term list separately, together with the terms in which they are 
nested.

We evaluate the cross-domain performance of XLMR in monolingual, cross-lingual, 
and multilingual settings. Altogether, 78 different scenarios per annotation regime are 
tested. The distinct settings are described below. 

1. Monolingual setup. We evaluate how well the model performs when there is a lan-
guage-specific training corpus available and there is a match between the language of 
the train set and the language of the test set. For better comparison with other existing 
approaches, we apply the same configuration as in the TermEval 2020 shared task 
where Heart failure of each language is considered as the test set. Thus, we fine-tune our 
model on a single language, which means we train three monolingual models for three 
languages (English, French, Dutch) and test each model in the same language for each 
annotation regime. Besides, we train 12 monolingual models for each annotation regime 
for Slovenian given 12 different combinations of train-validation-test split regarding the 
domains.

2. Cross-lingual setup. We evaluate the capability of the model to apply the knowledge 
learned in one or more languages for ATE in another unseen language. Therefore, we 
fine-tune the ATE model on one or more languages (e.g., English and Dutch) and test 
it on another language not appearing in the train set (e.g., French). In this scenario, we, 
therefore, examine how well the model performs without the language-specific training 
corpus and how good the knowledge transfer between different languages is.

3. Multilingual setup. We fine-tune our model using a.) training datasets from the lan-
guages in the ACTER dataset (English, French, and Dutch) or b.) training datasets from 
the languages in the ACTER dataset plus the Slovenian training dataset from the RSDO5 
corpus, and then apply the model to the test sets of all languages in the ACTER dataset. 
By doing so, we examine whether adding more data from other languages to the training 
set in the target language improves the predictive performance of the model.

All three settings are applied in a cross-domain evaluation scenario, where we use two 
domains for training, another domain for validation, and the rest for testing. One excep-
tion is the multilingual and cross-lingual settings with the additional Slovenian corpus in 
the training set, where we use two domains from ACTER corpora and all domains from 
the RSDO5 corpus for the training. This way, we can evaluate the model’s generaliza-
tion capabilities to adapt knowledge in one or more domains to a new, unseen arbitrary 
one and, therefore, much more useful. In the ACTER dataset, we use the Corruption and 
Wind energy domains for training, the Equitation domain for validation, and the Heart 
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failure domain for testing, in order to allow for a direct comparison with other benchmark 
approaches from the related work, which employ the same train-validation-test setting 
(Lang et al., 2021). Meanwhile, in the RSDO5 corpus, we explore different train-valida-
tion-test combinations.

We divide the dataset into train-validation-test splits. The model is fine-tuned on the 
training set to predict the probability for each word in a word sequence whether it is a part 
of the term (B, I), whether it is a nested term (BN for nested terms at the beginning of a 
multi-word term, IN for nested terms at non-beginning positions of a multi-word term), or 
not part of the term (O). To do that, an additional token classification head containing a 
feed-forward layer with a softmax activation is added on top of each model.

3.3  Implementation details

We employ the XLMR token classifier from Huggingface.4 We fine-tune the model for up 
to 20 epochs (i.e., the early stopping regime via the validation set) using the learning rate 
of 2e-05, training and evaluation batch size of 32, and sequence length of 512 tokens, since 
this hyperparameter configuration performed the best on the validation set. First, the docu-
ments are split into sentences. Then, the sentences with more than 512 tokens are trun-
cated, while those with less than 512 tokens are padded with a special < PAD > token at 
the end.

During fine-tuning, the model is evaluated on the validation set after each training 
epoch, and the best-performing model is applied to the test set. Note that the model with 
BIO annotation regime will predict the probability of whether the word is a part of the 
terms (B, I) or not (O) while the one with NOBI regime will predict the probability in the 
same manner as BIO except for the additional information on the nested terms of the first 
level (BN, IN) where each word with the N label will be considered as an individual single-
word candidate term. The sequences identified as terms are extracted from the text and put 
into a set of all predicted candidate terms. A post-processing step to lowercase all candi-
date terms is applied before we compare our derived candidate list with the gold standard.

3.4  Evaluation metrics

We evaluate the performance of the ATE systems by comparing the candidate list extracted 
from the test set with the manually annotated gold standard term list for that specific test 
set. We use exact string matching to compare the retrieved terms to the ones in the gold 
standard and calculate Precision (P), Recall (R), and F1-score (F1). These evaluation met-
rics have also been used in related work (Hazem et al., 2020; Lang et al., 2021; Rigouts 
et  al., 2020a; Ljubešić et  al., 2019), therefore, our results are directly comparable to the 
benchmarks.

4 https:// huggi ngface. co/ models.

https://huggingface.co/models
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4  Results

In this Section, we determine the predictive power of monolingual, cross-lingual, and 
multilingual learning in ACTER and RSDO5 test sets as well as compare the results 
from our proposed approaches to the SOTA from the related work.

Table 1  Evaluation on the ACTER dataset given Heart failure as a test set. For each test set, bold is used 
to indicate the best model in terms of P, R, and F1 for each test set (ANN and NES) and each annotation 
scheme separately (BIO and NOBI). The arrows are used for the comparison of BIO and NOBI for each set-
ting, where ↑ is used to show the better performance of NOBI compared to BIO, while ↓ denotes the lower 
performance of NOBI compared to BIO. In blue, we indicate the best model in terms of the F1 for each test 
set

Train ANN NES
language BIO NOBI BIO NOBI

P R F1 P R F1 P R F1 P R F1

English test set.

en 58.1 48.1 52.6 ↓ 57.5 ↑ 48.6 ↑ 52.7 62.1 52.1 56.7 ↓ 58.6 ↑ 55.2 ↑ 56.9

fr 56.9 33.2 42.0 ↓ 54.2 ↑ 34.7 ↑ 42.3 60.0 39.1 47.4 ↓ 57.8 ↑ 44.3 ↑ 50.2
nl 55.6 56.4 56.0 ↑ 57.6 ↑ 58.4 ↑ 58.0 54.4 57.7 56.0 ↑ 56.9 ↑ 61.2 ↑ 59.0

fr, sl 47.1 65.8 54.9 ↓ 42.5 ↑ 68.8 ↓ 52.5 49.2 64.3 55.7 ↓ 44.6 ↑ 66.6 ↓ 53.4
nl, sl 45.7 66.3 54.1 ↑ 46.0 ↑ 67.8 ↑ 54.8 48.1 65.4 55.5 ↑ 49.2 ↑ 67.0 ↑ 56.8
fr, nl 60.8 46.8 52.9 ↓ 57.5 ↓ 41.5 ↓ 48.2 62.3 50.5 55.7 ↓ 58.6 ↑ 52.0 ↑ 55.1

fr, nl, sl 50.0 62.4 55.5 ↓ 48.3 ↑ 67.2 ↑ 56.2 52.1 63.2 57.2 ↓ 49.5 ↑ 65.3 ↓. 56.3

en, fr 57.2 51.2 54.0 ↑ 58.0 51.2 ↑ 54.4 60.4 51.5 55.6 ↓ 59.5 ↑ 54.2 ↑ 56.7
en, nl 58.0 48.7 52.9 ↓ 54.0 ↑ 56.1 ↑ 55.0 62.4 51.4 56.4 ↓ 57.4 ↑ 58.6 ↑ 58.0
en, sl 48.1 63.2 54.6 ↑ 49.0 ↑ 65.7 ↑ 56.1 54.9 63.8 59.0 ↓ 50.8 ↑ 64.4 ↓ 56.8

en, fr, sl 48.1 64.2 55.0 ↑ 51.1 ↑ 67.2 ↑ 58.0 58.4 61.1 59.7 ↓ 55.2 ↑ 63.4 ↓ 59.0
en, nl, sl 48.4 65.0 55.4 ↓ 44.8 ↑ 68.6 ↓ 54.2 54.5 63.3 58.6 ↓ 53.1 ↑ 67.3 ↑ 59.3
en, fr, nl 56.8 53.0 54.9 ↓ 55.7 ↓ 51.0 ↓ 53.3 60.8 52.6 56.4 ↓ 57.4 ↑ 59.8 ↑ 58.6

en, fr, nl, sl 45.9 66.3 54.2 ↓ 45.5 ↑ 69.3 ↑ 54.9 48.3 65.7 55.6 ↑ 51.9 ↑ 68.4 ↑ 59.0

cross-ling. avg. 52.7 55.2 52.6 ↓ 51.0 ↑ 56.4 ↓ 52.0 54.4 56.7 54.6 ↓ 52.8 ↑ 59.4 ↑ 55.1
multi-ling. avg. 51.8 58.8 54.4 ↓ 51.2 ↑ 61.3 ↑ 55.1 57.1 58.5 57.3 ↓ 55.0 ↑ 62.3 ↑ 58.2

French test set.

fr 70.5 44.4 54.5 ↓ 66.3 ↑ 48.9 ↑ 56.3 72.4 48.5 58.1 ↓ 65.9 ↓ 54.7 ↑ 59.8

en 66.7 47.9 55.8 ↑ 67.8 ↓ 44.8 ↓ 53.9 70.6 53.8 61.1 ↓ 65.3 ↓ 53.3 ↓ 58.7
nl 66.5 51.5 58.0 ↓ 64.7 ↓ 47.0 ↓ 55.1 67.6 53.2 59.5 ↓ 67.5 ↓ 53.1 ↓ 59.4

en, sl 60.2 61.4 60.8 ↑ 61.1 ↓ 57.5 ↓ 59.2 57.8 62.5 60.1 ↑ 62.9 ↓ 56.0 ↓ 59.2
nl, sl 61.4 60.4 60.9 ↓ 59.5 ↓ 58.5 ↓ 59.0 61.8 59.9 60.8 ↑ 63.1 ↓ 56.7 ↓ 59.7
en, nl 65.3 44.2 52.7 ↓ 65.2 ↑ 47.9 ↑ 55.2 68.7 52.4 59.4 ↑ 69.3 ↓ 50.6 ↓ 58.5

en, nl, sl 58.7 61.0 59.8 ↓ 55.3 ↑ 63.2 ↓ 59.0 60.9 62.0 61.5 ↓ 59.0 ↑ 62.3 ↓ 60.6

fr, en 63.7 52.4 57.5 ↑ 65.7 ↓ 49.5 ↓ 56.4 68.1 52.8 59.5 ↓ 67.2 ↓ 49.6 ↓ 57.1
fr, nl 69.2 48.3 56.9 ↓ 66.4 ↑ 48.4 ↓ 56.0 70.7 49.5 58.3 ↓ 66.1 ↑ 54.2 ↑ 59.6
fr, sl 65.0 56.6 60.5 ↓ 58.8 ↑ 62.3 60.5 65.3 57.6 61.2 ↓ 56.9 ↑ 64.0 ↓ 60.2

fr, en, sl 61.5 58.6 60.0 ↑ 63.2 ↑ 60.5 ↑ 61.8 67.4 57.5 62.1 ↓ 64.1 ↑ 61.6 ↑ 62.9
fr, nl, sl 64.9 58.2 61.4 ↓ 61.5 ↑ 61.0 ↓ 61.3 65.3 57.9 61.4 ↓ 63.1 ↑ 62.7 ↑ 62.9
fr, en, nl 68.0 50.7 58.1 ↓ 65.4 ↓ 46.9 ↓ 54.6 70.2 52.1 59.8 ↓ 63.8 ↑ 56.5 ↑ 60.0

en, fr, nl, sl 58.1 61.6 59.8 ↑ 60.3 ↑ 62.8 ↑ 61.6 59.5 62.5 61.0 ↑ 64.2 ↓ 59.5 ↑ 61.7

cross-ling. avg. 63.1 54.4 58.0 ↓ 62.3 ↓ 53.3 ↓ 56.9 64.6 57.3 60.4 ↓ 64.5 ↓ 55.3 ↓ 59.4
multi-ling. avg. 64.3 55.2 59.2 ↓ 63.0 ↑ 55.9 ↓ 58.9 66.6 55.7 60.5 ↓ 63.6 ↑ 58.3 ↑ 60.6

Dutch test set.

nl 70.3 62.2 66.0 ↑ 71.2 ↑ 64.1 ↑ 67.5 73.3 61.5 66.9 ↑ 73.5 ↑ 62.6 ↑ 67.6

en 69.2 61.1 64.9 ↑ 71.0 61.1 ↑ 65.7 73.0 63.0 67.6 ↓ 69.4 ↑ 68.4 ↑ 68.9
fr 72.1 51.0 59.8 ↓ 70.4 ↑ 55.6 ↑ 62.2 73.6 55.5 63.3 ↓ 70.4 ↑ 62.4 ↑ 66.2

en, sl 59.5 76.6 67.0 ↑ 61.6 ↑ 78.3 ↑ 68.9 61.1 73.6 66.7 ↑ 61.6 ↑ 75.7 ↑ 68.4
fr, sl 62.5 74.7 68.1 ↓ 58.7 ↑ 79.3 ↓ 67.5 61.6 71.2 66.1 ↓ 59.4 ↑ 75.1 ↑ 66.3
en, fr 72.5 61.7 66.7 ↓ 70.8 ↓ 60.1 ↓ 65.0 73.1 63.5 68.0 ↓ 72.5 ↓ 61.2 ↓ 66.4

en, fr, sl 59.6 77.0 67.2 ↑ 61.1 ↑ 78.2 ↑ 68.6 66.6 69.6 68.1 ↓ 66.4 ↑ 74.9 ↑ 70.4

nl, en 69.3 60.2 64.4 ↓ 68.6 ↑ 62.7 ↑ 65.5 74.4 61.7 67.4 ↓ 70.7 ↑ 66.3 ↑ 68.4
nl, fr 75.7 56.7 64.8 ↓ 73.2 ↑ 58.1 64.8 76.7 59.6 67.1 ↓ 73.0 ↑ 60.6 ↓ 66.2
nl, sl 65.8 72.7 69.1 ↓ 65.0 ↑ 77.0 ↑ 70.5 69.9 69.7 69.8 ↓ 68.6 ↑ 72.5 ↑ 70.5

nl, en, sl 64.7 73.0 68.6 ↓ 60.0 ↑ 80.6 ↑ 68.8 68.7 70.3 69.5 ↓ 67.6 ↑ 74.2 ↑ 70.8
nl, fr, sl 69.2 69.0 69.1 ↓ 65.2 ↑ 76.5 ↑ 70.4 69.4 69.4 69.4 ↓ 65.4 ↑ 74.4 ↑ 69.6
nl, en, fr 69.9 64.3 67.0 ↑ 72.1 ↓ 55.5 ↓ 62.7 73.7 62.9 67.9 ↓ 71.1 ↑ 64.9 ↓ 67.8

en, fr, nl, sl 62.7 75.5 68.5 ↑ 64.5 ↑ 78.1 ↑ 70.6 63.6 73.7 68.3 ↑ 69.2 ↓ 73.2 ↑ 71.1

cross-ling. avg. 65.9 67.0 65.6 ↓ 65.6 ↑ 68.8 ↑ 66.3 68.2 66.1 66.6 ↓ 66.6 ↑ 69.6 ↑ 67.8
multi-ling. avg. 68.2 67.3 67.4 ↓ 66.9 ↑ 69.8 ↑ 67.6 70.9 66.8 68.5 ↓ 69.4 ↑ 69.4 ↑ 69.2
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4.1  Results on the ACTER test set

The performance of the XLMR classifier regarding P, R, and F1 on the ACTER test 
set using BIO and NOBI annotation regimes are presented in Table  1. The comparison 
between BIO and NOBI is indicated with arrows, where ↑ is used to show better perfor-
mance of NOBI in the same setting, while ↓ denotes lower performance. No matter which 
annotation scheme, the results indicate that the cross-lingual and multilingual models in 
both versions of test data, where one excludes the named entities of the test data (ANN) 
and the other includes them (NES), tend to surpass the performance of the monolingual 
ones according to all evaluation metrics, except for the Precision obtained by the French 
monolingual model on the French test set when the BIO scheme is used and Dutch mono-
lingual model on the Dutch test set when NOBI scheme is used.

Multilingual models tend to outperform cross-lingual ones in F1. However, multilin-
gual models have a tendency to lose their competency in Precision toward monolingual 
and cross-lingual ones. By adding the Slovenian corpus with four different domains into 
the training set, the multilingual model demonstrates a significant improvement in Recall 
across all test languages compared with the monolingual setting. It also outperforms other 
models in the F1 when we evaluate it in all three test sets in both annotation schemes. 
However, this improvement is at the cost of Precision.

When it comes to the comparison of the two annotation regimes, using the NOBI 
annotations in many cases improves the Recall of the model. This is especially visible in 

Fig. 2  Parallel Coordinates Plot in performance of XLMR classifier for the English test set

Fig. 3  Parallel Coordinates Plot in performance of XLMR classifier for the French test set
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the monolingual and multilingual settings (see Figs. 2, 3, and 4) in which the models are 
trained in multiple languages including the language of the test sets for all scenarios, and 
cross-lingual settings in which the models are trained on just one language and applied to 
the others except for French test set. A substantial increase in Recall also tends to lead to 
the improvement of the overall F1.

The best models from our combinations include: (1) For the English and French test 
sets, the best results were obtained with English, French, and Slovenian training data; and 
(2) For the Dutch test set, the best results were gained with the multilingual classifiers 
of all four languages. Thus, we compare the multilingual XLMR classifier fine-tuned on 
the pre-defined test language and multiple languages (trained in at least three languages 
including Slovenian and the test set’s language) using the ACTER dataset in both annota-
tion regimes. This showcases the power of a multilingual pretrained language model with 
multilingual settings - using (1) English, French, and Slovenian; and (2) all four languages 
as the training set - in capturing and understanding diverse linguistic nuances in compari-
son with a monolingual one. Additionally, the NOBI regime outperforms BIO ones for 
most of the testing scenarios.

Besides, we also compare the proposed results with the benchmarks as in Table 2 to 
highlight our hypothesis. For comparison, we include the solutions from the winning 

Fig. 4  Parallel Coordinates Plot in performance of XLMR classifier for the Dutch test set

Table 2  F1 comparison between our XLMR classifier in multilingual settings and related work in ACTER 
corpora

Bold indicates the best result for each test set

Methods English French Dutch

ANN NES ANN NES ANN NES

Winning teams (Hazem et al. 2020) 45.0 46.7 45.9 48.2 18.6 18.7
HAMLET (Rigouts et al. 2021) 54.2 55.4 60.2 60.8 66.1 66.0
Sequence Classifier (Lang et al. 2021) x 46.0 x 48.1 x 58.0
NMT (Lang et al. 2021) x 55.3 x 57.6 x 59.6
Token classifier (Lang et al. 2021) x 58.3 x 57.6 x 69.8
NMF-based approaches (Nugumanova et al. 2022) 33.5 33.7 30.9 30.7 30.1 30.3
BIO classifier 54.9 59.7 61.4 62.1 69.1 69.8
NOBI classifier 58.0 59.3 61.8 62.9 70.6 71.1
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teams in the competition (TALN-LS2N (Hazem et  al., 2020)  won on the English and 
French test set, while NLPLab UQAM (Le & Sadat, 2021) won on the Dutch test set) and 
other methods (Rigouts et al., 2021; Lang et al., 2021) described in Sect. 2. Note that all 
the approaches from the related work are (1) cross-domain and (2) use the Heart failure 
domain as the test set, which shares the same mechanism with our approaches’ validation.

Our proposed classifiers, trained using either BIO or NOBI annotation regimes, out-
perform previously described benchmark approaches, showcasing significant performance 
gains as measured by the F1. When comparing classifiers using BIO and NOBI annotation 
schemes, those utilizing BIO regimes demonstrate superior F1 on the English NES gold 
standard, which includes named entities. However, classifiers employing NOBI regimes 
exhibit noteworthy performance, surpassing all existing state-of-the-art (SOTA) models, 
including our BIO classifiers, across the languages present in both ANN and NES versions, 
with the exception of the aforementioned English NES corpus.

Table 3  The evaluation in RSDO5 corpus given each domain as a test set in monolingual setting. Bold indi-
cates the best result for each test set. The comparison between BIO and NOBI as well as the best model in 
F1-score are set in the same mechanism with Table 1

Valid Test BIO NOBI
set set P R F1 P R F1

vet ling 69.6 64.1 66.7 ↓ 65.4 ↑65.4 ↓ 65.4
bim ling 69.5 73.7 71.5 ↓ 66.9 ↓ 69.5 ↓ 68.2
kem ling 66.2 72.4 69.2 ↓ 64.9 ↓ 72.3 ↓ 68.4

ling vet 71.1 66.7 68.8 ↓ 66.6 ↑68.5 ↓ 67.5
kem vet 72.7 65.6 68.9 ↓ 66.9 ↑ 69.7 ↓ 68.3
bim vet 69.3 68.1 68.7 ↓ 67.6 ↓ 62.5 ↓ 65.0

ling kem 68.7 55.1 61.2 ↓ 63.8 ↑ 61.4 ↑ 62.6
bim kem 70.2 60.3 64.8 ↓ 66.1 ↑ 61.4 ↓ 63.7
vet kem 70.2 59.2 64.3 ↓ 68.3 ↑ 60.6 ↓ 64.2

vet bim 63.5 66.8 65.1 ↓ 61.4 ↓ 61.3 ↓ 61.3
ling bim 62.3 65.2 63.7 ↓ 57.2 ↓ 60.1 ↓ 58.6
kem bim 62.4 64.0 63.2 ↓ 61.0 ↓ 61.7 ↓ 61.3

Avg. 68.0 65.1 66.3 ↓ 64.7 ↓ 64.5 ↓ 64.5

Table 4  The evaluation in RSDO5 corpus given each domain as a test set in the multilingual setting. In this 
setting, in addition to Slovenian training data, the data from ACTER in en, fr, and nl is used, and ANN and 
NES training sets are compared

ANN NES
Valid. Test BIO NOBI BIO NOBI
set set P R F1 P R F1 P R F1 P R F1

vet ling 67.7 69.6 68.6 ↓ 67.5 ↓ 62.7 ↓ 65.0 67.2 69.9 68.5 ↓ 64.2 ↓ 67.3 ↓ 65.7
bim ling 69.8 66.2 67.9 ↓ 64.6 ↓ 68.1 ↑ 66.3 67.8 68.5 68.2 ↓ 64.9 ↓ 64.8 ↓ 64.8
kem ling 66.5 71.4 68.8 ↓ 59.6 ↓ 71.0 ↓ 64.8 67.9 69.0 68.5 ↓ 59.9 ↓ 65.1 ↓ 62.4

ling vet 71.0 65.3 68.0 ↓ 62.4 ↑ 70.9 ↓ 66.4 69.2 67.4 68.3 ↓ 61.8 ↑ 70.8 ↓ 66.0
kem vet 69.8 68.8 69.3 ↓ 68.0 ↓ 68.5 ↓ 68.2 70.5 67.8 69.1 ↓ 64.6 ↑ 70.6 ↓ 67.5
bim vet 69.8 68.4 69.1 ↓ 68.7 ↓ 67.1 ↓ 67.9 69.3 64.7 66.9 ↓ 63.0 ↑ 72.8 ↓ 67.5

ling kem 68.3 59.3 63.5 ↓ 66.0 ↓ 52.9 ↓ 58.7 67.5 54.6 60.4 ↓ 62.8 ↑ 60.8 ↑ 61.8
bim kem 69.6 61.2 65.1 ↓ 66.6 ↓ 55.5 ↓ 60.5 69.3 52.7 59.9 ↓ 65.5 ↑ 60.8 ↑ 63.1
vet kem 69.9 58.4 63.6 ↓ 65.9 ↓ 57.7 ↓ 61.5 67.9 59.2 63.3 ↓ 62.8 ↑ 60.8 ↓ 61.8

vet bim 61.2 64.9 63.0 ↑ 62.9 ↓ 62.6 ↓ 62.7 60.9 66.7 63.7 ↓ 59.1 ↓ 64.0 ↓ 61.5
ling bim 60.5 63.8 62.1 ↓ 56.2 ↓ 58.2 ↓ 57.2 62.6 62.3 62.4 ↓ 57.0 ↑ 62.9 ↓ 59.8
kem bim 65.7 59.2 62.3 ↓ 59.5 ↑ 66.7 ↑ 62.9 61.8 67.1 64.3 ↓ 61.0 67.1 ↓ 63.9

Avg. 67.5 64.7 65.9 ↓ 64.0 ↓ 63.5 ↓ 63.5 66.8 64.2 65.3 ↓ 62.2 ↑ 65.6 ↓ 63.8
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Furthermore, we conduct a multilingual evaluation to examine the impact of adding 
additional languages to the training set. In contrast to the findings of Lang et al. (2021), we 
observe that incorporating other languages generally leads to only marginal improvements 
in model performance.

4.2  Evaluation on the RSDO5 test set

We also apply monolingual and multilingual cross-domain approaches to the Slovenian 
RSDO5 dataset. The results grouped by the test domain using BIO and NOBI annotation 
regimes are presented in Tables 3 and 4, respectively. For each annotation regime, we eval-
uate monolingual and multilingual settings where ANN and NES versions are added to the 
training set of the RSDO5 corpus.

The monolingual approach, where we use two domains from the RSDO5 corpus for 
training, validate on the third domain, and test on the last domain, proves to have rela-
tively consistent performance across all the combinations in both annotation regimes. For 
both regimes, we achieve a Precision of more than 61%, Recall of no less than 55%, and 
F1 above 57%. Furthermore, they perform slightly better in the Linguistics and Veterinary 
domains than in Biomechanics and Chemistry. The difference in the number of terms and 
length of terms per domain pointed out in Sect. 3.1 might be one of the factors that con-
tribute to this behavior. Moreover, a significant performance boost can be observed for the 
Veterinary domain when the model is trained in the Biomechanics and Linguistics domains 
and for the Linguistics domain if the Veterinary domain is included in the training set for 
the model in both annotation regimes. Between these two settings, the classifier with BIO 
regime gained a performance of up to 68.9% in the F1 for the Linguistics test set, which 
surpasses other domains in the same regimes as well as outperforms all the cases in the 
monolingual classifier of the NOBI regime.

We also explore the performance of multilingual approaches on the RSDO5 test sets. 
We train the model using the ANN and NES labels from all domains of the ACTER dataset 
and on two domains from the RSDO5 dataset, validate on the third RSDO5 domain, and 
test on the last domain. Table 3 and 4 present the comparative performance of the multilin-
gual and the monolingual approaches. However, from the results, there exists a discrepancy 
in the performance-boosting efficiency among the different combinations of training, vali-
dation, and test sets. This raises a hypothesis of the domain sensitivity in transfer learning 
for ATE tasks. Thus, a careful choice of the domains in the training set is undoubtedly 
necessary for boosting the classifier’s performance.

Table 5  Comparison between our performance and SOTA in RSDO5 dataset

Methods Linguistics Veterinary Chemistry Biomechanics

P R F1 P R F1 P R F1 P R F1

SOTA Ljubešić 
et al. (2019)

52.2 25.4 34.1 66.9 19.3 29.9 47.8 31.4 37.8 53.8 24.8 33.9

Mono BIO 69.5 73.7 71.5 72.7 65.6 68.9 70.1 60.3 64.8 63.5 66.8 65.1
Multi BIO 66.5 71.5 68.8 69.8 68.8 69.3 69.6 61.2 65.1 61.8 67.1 64.3
Mono NOBI 64.9 72.3 68.4 66.9 69.7 68.3 68.3 60.6 64.2 61.4 61.3 61.3
Multi NOBI 64.6 68.1 66.3 68.0 68.5 68.2 65.5 60.8 63.1 61.0 67.1 63.9
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Besides, we compare two different annotation regimes by evaluating the perfor-
mance of classifiers using different training, validation, and testing combinations for 
each regime. Despite the consistency in the predictive power of monolingual and mul-
tilingual settings, the classifiers with NOBI annotation presented a worse performance 
in the Slovenian RSDO5 corpus compared to the BIO regime. This is due to the fact 
that the proportion of nested terms in RSDO5 is too small for the classifier to learn 
nested terms properly, which are visualized in the proportion of unique nested terms 
and terms nested in other nested terms from Figs. 16 to 18.

In Table  5, we present the results from the related work for the RSDO5 dataset 
compared to our proposed monolingual and multilingual approaches. The result 
from Ljubešić et  al. (2019)’s method, which has been re-implemented using the 
same RSDO5 corpus as our studies, is taken from Tran et al. (2022b). In general, our 
approach outperforms Ljubešić et  al. (2019)’s one by a large margin on all domains 
and according to all evaluation metrics, especially when it comes to Recall. We achieve 
results roughly twice as high as Ljubešić et  al. (2019)’s approach in F1-score for all 
test domains regarding both monolingual and multilingual learning. One should note 
that the method (Ljubešić et al., 2019) was primarily meant for extracting terms from 
Ph.D. theses, i.e., documents significantly longer than those available in our training 
data, which explains the low Recall of that approach. However, this result clearly iden-
tifies a significant strength of the sequence-labeling approach - it does not rely on the 
frequency of term occurrences, which makes the approach more robust as shown in 
this comparison. In our case, we show that the multilingual experiments do in several 
cases improve our monolingual results (Tran et al., 2022b), but not systematically.

5  Error analysis

In order to determine whether the term length affects the models’ performance, we 
calculate Precision and Recall for terms of length k = {1,2,3,4, ≥ 5} when predicted 
by  our classifiers on the test set. The number of predicted candidate terms (Preds), 
number of ground truth terms (GTs), number of correct predictions (TPs), Precision 
(P), and Recall (R) regarding different term lengths k and test domains in ACTER and 

Fig. 5  Performance in P and R per term length per domain in English ACTER test set
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RSDO5 corpora are presented in Table 9 and 10 (in Appendix) and Precision (P) and 
Recall (R) of each scenario are visualized below.

5.1  The ACTER dataset

The results for ACTER’s dataset (Table 9) were obtained by employing the best perform-
ing model for a specific language in terms of F1 on the Heart failure test set for the most 
cases (which is the combination of English, French, and Slovenian as the training set).

As demonstrated in Fig. 5, 6, and 7, when using the BIO scheme, the best model proved 
to be good at predicting terms containing up to four words for English and Dutch and up 
to three words for French texts in ACTER corpora. A strong correspondence between the 
F1 and the number of predicted candidate terms has been found where the number of pre-
dicted candidate terms likely corresponds to the situation in the training data (see Table 9 
in Appendix).

The best models trained using the NOBI annotation scheme demonstrated the same 
behavior as the one trained using the BIO annotation regime. They performed well at pre-
dicting terms containing up to four words for English and Dutch and up to three words 
for French texts in ACTER corpora. While our expectation was that the NOBI annotation 
scheme should benefit the model’s ability to predict short one-word nested terms, the clas-
sifiers trained using NOBI annotations show better performance than those using the BIO 
regime on multi-word terms as well, as long as nested terms take a proper proportion as 

Fig. 6  Performance in P and R per term length per domain in French ACTER test set

Fig. 7  Performance in P and R per term length per domain in Dutch ACTER test set
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in ACTER corpora. The Recall therefore generally improves for terms of all lengths, even 
for terms containing 5 words or more. There seems to be some signal in the occurrence of 
nested terms inside multi-word terms, which leads the model to better identify longer terms 
as well. Our current hypothesis is that this effect is a combination of (1) the improvement 
of single-word term identification by having a larger training set available (both nested and 
independent single-word terms) and (2) nested terms being some sort of anchor exploited 
by the model to easier identify multi-word terms around that nested terms. Further experi-
ments and analyses should be conducted to fully understand this phenomenon.

Furthermore, a trend that is noticeable across the majority of scenarios is that the NOBI 
regime reduces the Precision compared to the BIO regime. This seems to be related to 
the number of terms predicted where we can observe that Precision often drops where the 
number of predicted terms is higher, i.e., the BIO regime on the English dataset predicts 
1,009 single-word terms with a Precision of 63.3 % and the NOBI regime predicts 1,341 
terms with a Precision of 59.2%. In a similar but reversed trend, the Dutch NOBI regime 
produced 1,738 terms with a Precision of 73.5% whereas the BIO regime produced 2005 
terms with a Precision of 64.4% (see Table 9 for the statistics).

We performed an additional detailed comparison of the BIO and NOBI monolingual 
results on the English dataset (i.e., the results from the first line in Table 1) in Table 6. The 
NOBI scheme produces a marginal improvement in terms of F1 and Recall but has slightly 
lower Precision. Overall, the algorithm predicted 1,956 candidates when using the BIO 
scheme and 1,996 when using the NOBI scheme. Out of these, the BIO scheme resulted 
in 751 single-word terms (SWU) and 1205 multi-word terms (MWU), while the NOBI 
scheme produced 889 single-word terms and 1,107 multi-word terms. Looking at the per-
formance in Table 6, NOBI results in a better Recall of single-word terms (51.5 vs. 45.9), 

Table 6  A comparison of the 
performance between the BIO 
and NOBI schemes on the entire 
dataset, single-word terms 
(SWU), and multi-word terms 
(MWU)

BIO NOBI

P R F1 P R F1

All terms 58.1 48.1 52.6 57.5 48.6 52.7
SWU 65.0 45.9 53.8 61.6 51.5 56.1
MWU 53.8 50.0 51.8 54.2 46.3 49.9

Fig. 8  Performance in P and R per term length per domain in RSDO Linguistics test set
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Fig. 9  Performance in P and R per term length per domain in RSDO Veterinary test set

Fig. 10  Performance in P and R per term length per domain in RSDO Biomechanics test set

Fig. 11  Performance in P and R per term length per domain in RSDO Chemistry test set
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which leads to an overall improvement of the F1 (52.7 vs. 52.6). It does not improve the 
Precision of SWU terms, but does, perhaps surprisingly, deliver higher Precision on MWU 
terms, which could be due to the fact that the NOBI regime prefers single-word terms (due 
to their higher proportion in the training set) which results in a smaller number of higher 
quality MWU terms being predicted.

5.2  The RSDO5 dataset

The results for the RSDO5 dataset (Table 10 in Appendix and from Figs. 8, 9, 10 and  11) 
were obtained by employing the best-performing model in the F1 for each specific test 
domain for both annotation regimes, which are (1) training on Veterinary and Chemistry, 
validation on Biomechanics, and testing on Linguistics domain; (2) training on Linguistics 
and Biomechanics, validation on Chemistry, and testing on Veterinary domain; (3) train-
ing on Linguistics and Veterinary, validation on Biomechanics, and testing on Chemistry 
domain; (4) training on Linguistics and Chemistry, validation on Veterinary, and testing on 
Biomechanics.

These results are similar to ACTER corpora, showing that the models are good at pre-
dicting short terms containing up to three words for all four domains of the Slovenian cor-
pus. The best model applied to the Linguistics test domain also shows relatively good per-
formance when it comes to the prediction of longer terms, achieving 75.0% Precision and a 
decent 31.0% Recall for terms with at least five words. Despite the relatively high Precision 
for prediction of long terms in the Veterinary and Biomechanics test domains, the Recall is 
pretty low, most likely due to the small amount of longer terms in the dataset on which the 
models are trained. When predicting the Chemistry domain, there are no correct predic-
tions of more than five-word terms.

The NOBI regime often results in a lower Precision compared to the BIO one. Simi-
lar to our findings on the ACTER dataset, this seems to be related to the number of terms 
being predicted. In general, the higher the number of predictions, the lower the Precision 
(if the number of predicted terms is high enough — this trend is less noticeable for longer 
terms of which there are few in the corpus). There are some exceptions, like the Chemistry 
domain, where the NOBI regime results in 909 predicted single-word terms with a Preci-
sion of 61.4% compared to 943 terms with a Precision of 61.5% for the BIO regime, and the 
Veterinary domain where the NOBI regime predicted 2,111 two-word terms (k=2) with a 
Precision of 70.3% while the BIO regime predicted 2062 terms with a Precision of 70.2%.

As mentioned above, as well as in previous work (Tran et  al., 2022b) for the BIO 
regime, since the corpus contains nested terms, the very common mistake the both BIO 
and NOBI models make is to incorrectly predict a shorter term nested in the correct term 
of the gold standard. Vice versa, the model sometimes generates incorrect predictions con-
taining the correct nested terms. However, the NOBI annotation proves to partially reduce 
the effect of these two mentioned error patterns and improves the general Recall in com-
parison to the benchmark BIO scheme.

6  Conclusion

In summary, we demonstrated the possibilities of cross- and multilingual learning com-
pared to the monolingual setting in boosting the predictive performance of the cross-
domain sequence-labeling term extraction via experiments conducted on multi-domain 
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corpora, namely the ACTER and RSDO5 datasets. In addition, we presented the posi-
tive impact of cross- and multilingual models on the ACTER corpora only, and by fur-
ther adding the texts from the Slovenian RSDO5 corpus in the training set. Furthermore, 
we examined the cross-lingual effect of rich-resourced training language on less-resourced 
testing ones such as Slovenian. Last but not least, we proposed a new NOBI annotation 
regime, that boosted the predictive power of classifiers in comparison to the classical BIO 
mechanism, as shown in the ACTER corpus, in which the number of nested terms is sig-
nificant enough. The improvements through the NOBI annotation regime are visible even 
in multi-word term identification, quite likely by improving single-word term extraction 
and exploiting single-word terms as anchors to correctly identify multi-word terms. The 
results demonstrated the potential of the new annotation scheme to enhance the nested term 
extraction and a promising impact of cross- and multilingual cross-domain learning when 
transferring from rich- to less-resourced languages.

In future work, we will test the potential of our proposed NOBI mechanism in similar 
sequence-labeling extraction tasks in other domains (e.g., Named Entity Recognition). In 
addition, we plan to investigate the integration of active learning into our current approach 
to improve the output of the automated method by dynamical adaptation after human 
feedback.

Appendix

Data analysis

Figure  12 presents the structures of two datasets that we used for our work, including 
ACTER corpora and RSDO5 corpus. Note that in ACTER datasets, two versions of the 
gold standard were proposed: (1) ANN version covering only terms; and (2) NES version 
including both terms and named entities.

Figure  13 illustrates an example of the key difference between the ACTER’s ANN 
and NES versions of gold standards. Given the sentence “...This study uses the Medicare 
Patient Safety Monitoring System...”, the gold standard of the ANN version consists of only 
the term “Patient” as the only term was annotated as the ground truth. On the other hand, 
the NES version’s gold standard includes the Named Entity (NE) “Medicare Patient Safety 
Monitoring System” as both domain-specific terms and NEs were annotated in the ground 
truth.

Figure 14 summarizes the number of unique terms (e.g., the term counts excluding the 
duplication) for each domain in both ACTER and the Slovenian RSDO5 corpora. It con-
tains statistics for both ANN (annotating only terms) and NES (annotating both terms and 
named entities as the ground truth terms) versions in the ACTER set. This supports the 
statements in Subsection 3.1 and 3.2.

Table 7 indicates the proportion of the nested terms with different word length k where 
k = {1, 2, 3, 4,≥ 5} for each domain and language of both corpora, which also supports to 
the statements in Subsection 3.3. The last column on the right calculates the percentage of 
single-word nested terms in total nested terms in the first level. On average, the amount of 
single-word nested terms accounts for 78.06% above all the nested terms on the first levels 
in the corpora. That is why we do not consider either multi-word nested terms or terms 
nested in other nested terms - so-called nested terms on the second or higher levels and we 
label single-word nested terms on the first level.
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Regarding ACTER corpora, Figs. 15 and 16 present the term density and the propor-
tion of unique nested terms founded in texts extracted from the ACTER corpora for each 
domain and language, respectively. As can be seen from both figures, a notable disparity 
in data volume and term distribution is observed, particularly between the Heart failure 
domain and the other three domains, with the former containing a more significant number 
of unique terms. Further comprehensive information on the ACTER dataset can be found 
in the TermEval competition by Rigouts et al. (2020a).

Similarly, Figs. 17 and 18 present the term density and the unique term proportion in 
texts captured from the RSDO5 corpus for each domain, respectively. As can be seen, the 
documents from the Linguistics and Veterinary domains contain more terms than Biome-
chanics and Chemistry. Most terms are made of up to three words and only a few terms are 
longer than seven words. For example, an observation of the long multi-word term found in 
the corpus would be “stojo po obračanju v nasprotni smeri urinega kazalca” (stand after 
turning counterclockwise) in Biomechanics.

Fig. 12  The structure of RSDO5 and ACTER regarding languages and domains

Fig. 13  An example of ACTER’s ANN and NES versions were annotated in the BIO regime
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Fig. 14  The number of unique terms in ACTER and RSDO5 corpora

Table 7  The proportion of 
unique nested terms of different 
word lengths in each domain and 
language of ACTER and RSDO5 
corpora

Languages Domains k = 1 k = 2 k = 3 k = 4 k ≥ 5 % (k = 1)

ACTER
en corp 246 89 11 1 1 70.69

equi 469 87 5 1 0 77.90
wind 282 171 36 4 0 83.51
htfl 580 183 55 20 6 83.45

fr corp 289 59 19 2 2 87.60
equi 339 32 13 3 0 86.97
wind 192 38 24 6 1 57.20
htfl 620 99 30 8 9 73.56

nl corp 309 46 12 2 1 84.90
equi 414 44 12 6 0 68.72
wind 253 36 4 4 1 80.94
htfl 574 46 4 4 0 91.40

RSDO5
sl ling 737 177 8 0 0 79.93

vet 835 199 13 5 1 79.30
kem 388 126 7 2 1 74.05
bim 349 111 17 16 14 68.84

Average 78.06
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Annotation regimes

Besides the popular BIO regime, IOBES and BILOU are two different annotation schemes 
commonly used in Natural Language Processing (NLP) tasks. These schemes are used to 
represent and label entities within a sequence of words or tokens in a text. IOBES stands 
for tokens [I]nside an entity; [O]utside an entity (i.e., not part of any entity); [B]eginning 
token of an entity; [E]nd token of an entity; [S]ingle token that forms a whole entity by 
itself. Compared to the BIO scheme, the IOBES scheme is an extension of the BIO scheme 
with the “E” and “S” tags added to represent entities that end at a token or consist of a sin-
gle token. Meanwhile, BILOU represents tokens [B]eginning token of an entity; [I]nside 
an entity; [L]ast token of an entity; [O]utside an entity; and [U]nit token that forms a whole 
entity by itself. Sharing the same “B”, “I”, and “O”, the BILOU scheme is an extension 

Fig. 15  The term density in BIO regime in the ACTER corpora
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of the IOBES scheme, but it offers a more compact representation of entities that consist 
of multiple tokens. We reported the performance of our XLMR classifier fine-tuning on 
ACTER English sets in BIO, NOBI, BIOES, and BILOU with ANN gold standard as dem-
onstrated in Table 8.

Fig. 16  The proportion of unique nested terms in the ACTER gold standards
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The results demonstrate the superiority of our novel annotation regimes in comparison with 
other related schemes. In fact, both IOBES and BILOU are widely used to label entities and 
are often converted into simpler BIO formats during training or evaluation. These annotation 
schemes help models understand the boundaries and types of entities present in a text, ena-
bling them to learn to recognize and extract them effectively. However, the standard IOBES 
and BILOU annotation schemes do not well support nested entities but were used as a founda-
tion (similar to BIO) to improvise on the nested terms. Both IOBES and BILOU are designed 
to represent terms or entities in a flat manner, where each token in the text is associated with 
only one entity tag. In a nested entity scenario, we would have ones that are hierarchically 
structured, with one entity/term fully or partially contained within another entity/term. To rep-
resent nested entities, we propose more custom annotation schemes, namely NOBI, and a sim-
ple designed scheme to handle the single-word nested structures appropriately.

Monolingual vs. multilingual pre‑trained models

We evaluated the performance using monolingual language models, including XLNet5 
(English), CamemBERT6 (French), and DutchBERT7 (Dutch) compared against a multi-
lingual model, XLMR8, which was pre-trained on over 100 different languages and fine-
tuned for the downstream ATE task, as visualized from Figs. 19, 20, 21. The selection of 
the monolingual models is based on their superior performance in the empirical evalua-
tion of various monolingual and multilingual Transformer-based models on monolingual 
sequence-labeling cross-domain term extraction (Tran et al., 2022c).

Fig. 17  The term density in BIO regime per domain of the RSDO5 corpus

Fig. 18  The proportion of unique nested terms in the RSDO5 gold standards

5 xlnet-base-cased (https:// huggi ngface. co/ xlnet- base- cased).
6 camembert-base (https:// huggi ngface. co/ camem bert- base).
7 GroNLP/bert-base-dutch-cased (https:// huggi ngface. co/ GroNLP/ bert- base- dutch- cased).
8 xlm-roberta-base (https:// huggi ngface. co/ xlm- rober ta- base).

https://huggingface.co/xlnet-base-cased
https://huggingface.co/camembert-base
https://huggingface.co/GroNLP/bert-base-dutch-cased
https://huggingface.co/xlm-roberta-base
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Table 8  Evaluation of XLMR 
classifier fine-tuning on ACTER 
English sets in BIO, NOBI, 
BIOES, and BILOU with NES 
gold standard

Models P R F1

BIO 62.1 52.1 56.7
BIOES 62.6 51.9 56.7
BILOU 61.8 52.6 56.8
NOBI 58.6 55.2 56.9

Fig. 19  Performance of monolingual pre-trained classifier finetuned on English test language vs. multilin-
gual one finetuned on the test language and multiple languages in ACTER

Fig. 20  Performance of monolingual pre-trained classifier finetuned on French test language vs. multilin-
gual one finetuned on the test language and multiple languages in ACTER

Fig. 21  Performance of monolingual pre-trained classifier finetuned on Dutch test language vs. multilingual 
one finetuned on the test language and multiple languages in ACTER
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The results using the monolingual models exhibit slightly higher performance in the 
specific language they were pre-trained on. However, when applied in a cross-lingual con-
text (e.g., fine-tuning XLNet on an English corpus and predicting on a French test set), 
the performance is significantly diminished when compared to the multilingual pre-trained 
model (e.g., XLMR). While the difference between the language-specific and multilingual 
models is small, the multilingual models, trained with XLMR on the datasets of multiple 
and all languages, for the most part, outperform the monolingual models by a small mar-
gin. As a result, in order to accommodate and support multiple languages simultaneously, 
we opt to utilize XLMR as the benchmark model for all four languages in ACTER and 
RSDO5 corpora to validate our hypothesis in this study.

Error analysis

We calculate Precision and Recall for terms of length k = {1,2,3,4, ≥ 5} when our classi-
fiers predict on the test set. The number of predicted candidate terms (Preds), number of 
ground truth terms (GTs), number of correct predictions (TPs), Precision (P), and Recall 
(R) regarding different term lengths k and test domains in ACTER and RSDO5 corpora are 
presented in Table 9 and 10.

These Tables provide detailed support for the explanation of the classifier’s behavior 
toward each dataset in terms of term length.

Table 9  Performance per term length per domain in ACTER dataset

k English French Dutch

Preds GTs TPs P R Preds GTs TPs P R Preds GTs TPs P R

BIO regime
1 1,009 1,170 639 63.3 54.6 1,153 1,309 829 71.9 63.3 2,005 1,687 1,292 64.4 76.6
2 985 801 501 50.9 62.6 490 620 320 65.3 51.6 661 391 303 45.8 77.5
3 553 377 256 46.3 67.9 163 266 100 61.4 37.6 108 108 55 50.9 50.9
4 163 142 86 52.8 60.6 47 91 24 51.1 26.4 19 35 10 52.6 28.6
≥5 53 95 26 49.1 27.4 13 88 4 30.8 4.6 1 33 1 100.0 3.0
NOBI regime
1 1,341 1,170 794 59.2 67.9 1,219 1309 844 69.2 64.5 1,738 1,687 1,278 73.5 75.8
2 1,242 801 578 46.5 72.2 683 620 410 60.0 66.1 526 391 291 55.3 74.4
3 606 377 284 46.9 75.5 228 266 130 57.0 49.1 90 108 60 66.7 55.6
4 153 142 83 54.2 57.6 53 91 22 41.5 24.2 25 35 16 64.0 45.7
≥5 56 95 26 46.4 28.6 18 88 6 33.3 6.7 7 33 5 71.4 15.2
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