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Abstract
The identification of anomalous activities is a challenging and crucially important task 
in sensor networks. This task is becoming increasingly complex with the increasing vol-
ume of data generated in real-world domains, and greatly benefits from the use of predic-
tive models to identify anomalies in real time. A key use case for this task is the iden-
tification of misbehavior that may be caused by involuntary faults or deliberate actions. 
However, currently adopted anomaly detection methods are often affected by limitations 
such as the inability to analyze large-scale data, a reduced effectiveness when data pre-
sents multiple densities, a strong dependence on user-defined threshold configurations, and 
a lack of explainability in the extracted predictions. In this paper, we propose a distrib-
uted deep learning method that extends growing hierarchical self-organizing maps, origi-
nally designed for clustering tasks, to address anomaly detection tasks. The SOM-based 
modeling capabilities of the method enable the analysis of data with multiple densities, 
by exploiting multiple SOMs organized as a hierarchy. Our map-reduce implementation 
under Apache Spark allows the method to process and analyze large-scale sensor network 
data. An automatic threshold-tuning strategy reduces user efforts and increases the robust-
ness of the method with respect to noisy instances. Moreover, an explainability component 
resorting to instance-based feature ranking emphasizes the most salient features influenc-
ing the decisions of the anomaly detection model, supporting users in their understand-
ing of raised alerts. Experiments are conducted on five real-world sensor network datasets, 
including wind and photovoltaic energy production, vehicular traffic, and pedestrian flows. 
Our results show that the proposed method outperforms state-of-the-art anomaly detection 
competitors. Furthermore, a scalability analysis reveals that the method is able to scale 
linearly as the data volume presented increases, leveraging multiple worker nodes in a dis-
tributed computing setting. Qualitative analyses on the level of anomalous pollen in the air 
further emphasize the effectiveness of our proposed method, and its potential in determin-
ing the level of danger in raised alerts.
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1 Introduction

Anomaly detection is a challenging and important task in a variety of real-world domains. 
Its goal is to identify observations that are partially or entirely irrelevant as they are not 
generated by an assumed and unknown stochastic model (Chandola et al., 2007). For tasks, 
several statistical approaches have been originally proposed, both parametric (Urvoy & 
Autrusseau, 2014; Rousseeuw & Leroy, 2005; McCallum et al., 2000; Eskin et al., 2002; 
Duda et al., 2006; Jordan & Jacobs, 1994) and non-parametric (Hofmeyr et al., 1998; Javitz 
et al., 1991; Desforges et al., 1998). A different class of approaches is that of information 
theory-based approaches, which analyze the information content of a data set using differ-
ent information-theoretic measures such as entropy, relative entropy etc. (Lee & Xiang, 
2001; Arning et  al., 1996; Li & Vitányi, 1993; He et  al., 2005; Noble & Cook, 2003). 
Another perspective is that of machine learning-based approaches for anomaly detec-
tion, which aim to identify patterns or observations in data that deviate from the expected 
behavior. Approaches involve training a model based on historical data, which can then be 
used to identify instances that do not conform to the observed patterns. Anomaly detec-
tion has a wide range of applications in various fields, including fault detection in system 
diagnostics, credit card fraud, and intrusion detection in cybersecurity (Hale et al., 2019; 
Lebichot et al., 2021; Aldweesh et al., 2020).

In urban areas, anomalies can be identified in sensor network data. This is the case of 
anomalous traffic jams or pedestrian flows, which could be promptly detected so as to pre-
vent potential security threats. The detected anomalies could be timely transmitted to secu-
rity operators who could, in turn, make informed decisions for the situation at hand. Anom-
aly detection for pedestrian flow can be employed, for instance, to promptly detect large 
crowds in unfitting areas (possibly due to unauthorized protests). Another useful applica-
tion in this context is the detection of environmental anomalies, such as abnormal air pol-
lutants, which can potentially compromise citizens’ health (Zhang et al., 2022). Anomaly 
detection is also relevant in the context of smart grids and power systems, which provide 
a wide range of relevant application scenarios mainly indicating overloads, malfunctions, 
etc.

One common approach for anomaly detection in sensor network data is to use super-
vised or unsupervised machine learning techniques. The goal is to identify an anomalous, 
not expected, behaviour for one or many values from different sensors simultaneously, con-
sidering the specific temporal and spatial coordinates of the considered observations so as 
to take into account their spatio-temporal autocorrelation (Kou et al., 2006; Shekhar et al., 
2001; Corizzo et al., 2021).

Although supervised and semi-supervised machine learning methods are often adopted 
for anomaly detection, one of the most challenging issue is determined by the limited avail-
ability of labeled anomaly data. Indeed, the task of manually labeling the anomalous events 
requires: i) the availability of human experts; ii) the ability to identify real events that 
could represent anomalous scenarios in the ground truth; iii) a consistent labeling effort 
by sequentially reviewing large-scale historical data, which is a time-consuming and error-
prone task; iv) labels can be affected by the so-called “contamination” problem, that is, can 
be inaccurate up to a certain percentage. These motivations usually lead researchers to pre-
fer unsupervised machine learning methods, which are able to work with unlabeled data, 
avoiding the effort of manually labeling normal and anomalous events.

A good compromise between supervised and unsupervised approaches is that of semi-
supervised methods that require a limited number of labels. They can also successfully 
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deal with the contamination problem (Wang et  al., 2022). However, a proper estimation 
of the contamination rate is required to yield a satisfactory model performance. An inac-
curate estimation will otherwise negatively result in an inaccurate decision boundary for 
the models. For all these reasons, our study proposes an unsupervised approach to anomaly 
detection.

Additional challenges arise with large-scale high-dimensional data, which is commonly 
present in sensor networks (Thudumu et al., 2020). Big data techniques such as parallel and 
distributed computing, as well as data stream monitoring and processing tools, should be 
used to efficiently process and analyze such data in a timely manner. These techniques can 
be used to allow for early detection of anomalies (Reddy Shabad et al., 2021).

The most popular category of approaches for machine-learning based anomaly detection 
tasks in the literature is that of one-class learning methods. Popular methods include One-
Class Support Vector Machines (OCSVM) (Schölkopf et al., 2000), Isolation Forest (Liu 
et  al., 2008), Auto-Encoders (Najafabadi et  al., 2015; Sakurada & Yairi, 2014; Zhou & 
Paffenroth, 2017; Chong & Tay, 2017), Angle-Based Outlier Detection (ABOD) (Kriegel 
et al., 2008; Pham & Pagh, 2012; Jahromi et al., 2022), and COPula-based Outlier Detec-
tion (COPOD) (Li et  al., 2020). A less popular but intriguing alternative is provided by 
Self-Organizing Maps (SOM). A SOM (Kohonen, 1990) is a neural-network-based model 
for prototype-based clustering, which works by mapping high-dimensional input data into 
a 2-dimensional space implemented as a grid of neurons called feature map. The main 
difference with respect to the classical neural networks is the fact that in SOMs the final 
model is represented by the feature maps, instead of a matrix of weights. SOM approaches 
present the advantage of supporting fully unsupervised model training, as well as the abil-
ity to analyze data presenting multiple densities, and visualize it through the learned fea-
ture map representations (Qu et al., 2021). However, both one-class learning methods and 
SOM-based approaches present a number of limitations that constrain their effectiveness in 
the complex real-world anomaly detection setting described above. First, they are usually 
not designed for handling large-scale data generated by sensor networks. Second, once the 
predictive models are trained, a complex threshold configuration for the final predictive 
function is required and usually depends on a user-defined setting that is difficult to esti-
mate and it is subject to change over time. Third, they do not focus on the explainability 
of the detected anomalies, assuming that the domain experts will be able to understand the 
raised alerts and the underlying motivations that triggered them. Fourth, despite their broad 
applicability in many domains, they are scarcely adopted in real-world domains involving 
sensor network data, such as smart grids and in urban public safety applications.

Although a number of research works have separately addressed such issues, there is a 
substantial lack of methods that holistically combine effective model capabilities to address 
the needs of sensor network data analysis. In this paper, we fill this gap by proposing an 
anomaly detection method that jointly addresses these issues.

Our SOM-based anomaly detection method exploits the attractive properties of SOMs 
described above and adapts them to fit the context of sensor network data. Specifically, 
we consider GHSOMs (Growing Hierarchical SOMs), which are particularly suitable to 
describe the space of normal instances around the neurons and they are sensitive to data 
belonging to low-density spaces. When a single SOM is not adequate enough to describe 
the normal data, the algorithm allows the model to be further extended (with additional 
rows, columns, or entire SOMs) to further fit the data distribution under analysis. How-
ever, since GHSOMs are mostly limited to clustering and data visualization, we extend the 
Spark-GHSOM (Malondkar et al., 2018) algorithm to learn GHSOMs capable of solving 
anomaly detection tasks. To support the analysis of large-scale data arising in our domains 
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of interest, we devise distributed algorithms based on the map-reduce programming para-
digm, which allow us to perform model training efficiently using multiple computational 
nodes. After the training stage, our anomaly detection component leverages the learned 
model to identify anomalies in unseen data points based on their distance relationship with 
respect to the learned normal data distribution. To overcome the limitation of manually set 
threshold configurations, we devise an automated threshold tuning strategy to improve the 
robustness of the method to noisy instances (or anomalies) within the training set. Finally, 
to support practitioners and end users in better understanding model predictions, we pro-
pose an explainability component that leverages feature rankings to reveal which features 
determined the predicted outcome, and should be given higher attention.

Our extensive experiments and comparative analysis with real-world datasets highlight 
the merits of our proposed method from both a quantitative and qualitative viewpoint. 
Specifically, experiments were conducted for different sensor network data applications, 
i.e., renewable energy analysis and urban physical threat detection such as vehicle traffic 
monitoring, pedestrian flow analysis, and monitoring of anomalous pollen level in the air, 
which are less commonly explored in anomaly detection literature despite their real-world 
relevance. Furthermore, we analyzed also time-series for the metrics of different Yahoo! 
web services.

The remainder of the paper is structured as follows. Section 2 surveys relevant related 
works. Section 3 describes our proposed method in terms of its different components. Sec-
tion  4 discusses the analyzed data, the experimental settings, and discusses the results 
obtained by our study. Finally, Sect. 5 concludes the paper and provides relevant directions 
for future work.

2  Background

2.1  Statistical and information‑theoretic methods

Statistical approaches consider as outliers those observations that are partially or wholly 
irrelevant as they are not generated by an assumed stochastic model (Anscombe, 1960). 
These approaches require a training phase for the statistical model estimation (estimating 
the distribution parameters) and a testing phase where a test instance is compared to the 
model to determine if it is an outlier or not. Parametric approaches leverage statistical tests, 
such as the Grubb’s test (Urvoy & Autrusseau, 2014) that assumes a normal data distri-
bution. Parametric approaches also include regression techniques, which fit a regression 
model on the data (Rousseeuw & Leroy, 2005). A number of techniques assume a Marko-
vian nature of the data when modeling sequential data (McCallum et al., 2000). Since real 
world scenarios are often characterized by different distributions, some techniques take this 
aspect into consideration with mixtures of probability distributions (Eskin et  al., 2002). 
Parameter estimation techniques can also be used to estimate the parameters for each of 
the above cases (Duda et al., 2006; Jordan & Jacobs, 1994). Non-parametric approaches 
do not assume any knowledge of the data distribution. One of the most widely used tech-
niques is histogram analysis (Hofmeyr et  al., 1998), only efficient with univariate data. 
Some approaches (Javitz et al., 1991) compute histograms for each feature separately and 
detect outliers independently in each dimension. A popular non-parametric approach is to 
estimate the probability density function using Parzen windows (Desforges et al., 1998).
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From the information theory viewpoint, techniques involve different information theo-
retic measures such as entropy, information gain, information cost, typically in an unsu-
pervised fashion. (Lee & Xiang, 2001) exploited information measures to detect outliers 
in a sequence of operating system calls. The main aim is to find the regularity of a data 
set in order to detect outliers while inducing irregularities in the data. Arning et al. (1996) 
proposed the overall dissimilarity by exploiting the Kolmogorov data complexity (Li & 
Vitányi, 1993). He et al. (2005) leverage the Local Search Algorithm (LSA) to reduce the 
dataset, reducing the entropy of the remaining data set. In Noble and Cook (2003), the 
authors discovered patterns in networked data with the aim to detect changes over time in 
terms of the previously mentioned information measures. A change in the encoding of a 
pattern indicates a meaningful change in the data.

Statistical and information-theoretic approaches have strong theoretical foundations and 
have shown robustness in different applications. However, they present limited effective-
ness in the presence of complex sensor network data characterized by time-evolving, multi-
density and large-scale data.

2.2  Anomaly detection with learned models

Anomalous data instances could be classified as point, collective, and contextual (Chan-
dola et al., 2009). In this work, we mainly focus on detecting contextual anomalies, where 
the context is described through the spatial and temporal dimensions of data (Kou et al., 
2006; Shekhar et al., 2001). An example could be represented by a sudden change in car 
traffic level during the weekend in a suburban area of the city.

One-Class Support Vector Machines (OCSVM) (Schölkopf et al., 2000) is a classical 
method that learns a separating hyperplane in a high-dimensional space. After the training 
stage, the hyperplane model produced by OCSVM can classify a new data observation as 
regular/normal or different/anomaly with respect to the training data distribution, accord-
ing to its geometrical position within the decision boundary.

Isolation Forest (Liu et al., 2008), exploits an ensemble of tree-based models, and com-
putes an isolation score for each data observation. Such a score is calculated as the average 
path length from the root of the tree to the node containing the single observation. The 
shorter the path, the easier is to isolate an observation from the others due to significant 
differences in values w.r.t. training data instances.

Methods based on auto-encoders and stacked auto-encoders (Najafabadi et  al., 2015; 
Sakurada & Yairi, 2014; Zhou & Paffenroth, 2017; Chong & Tay, 2017) have demonstrated 
superior performance constructing representations with a low reconstruction error through 
non-linear combinations of input features (Bengio, 2009). Moreover, the rise in popular-
ity of deep learning led to modern approaches for neural network model training, includ-
ing Stochastic Gradient Descent (SGD), mini-batch training, and adaptive gradients, which 
resulted in an increased efficiency for autoencoder-based anomaly detection approaches, 
among other neural network architectures (Kashyap, 2022; Kingma & Ba, 2015; Draxler 
et  al., 2018). On the other hand, reconstruction-based approaches based on auto-encod-
ers may present a reduced accuracy when anomalies are caused by a few of the available 
features, which result in minimal variations of reconstruction scores compared to benign 
data. The same consideration could be made in the context of multi-density data, where the 
exploitation of a single model may be insufficient to catch multiple distributions.

Angle-Base Outlier Detection (ABOD) (Kriegel et  al., 2008; Pham & Pagh, 2012) is 
another popular approach that computes the variance of weighted cosine scores between 
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each data point and its neighbors and leverages it as the anomaly score. Its key advantages 
are to efficiently identify outliers in high-dimensional spaces, as well as consider rela-
tionships between each point and its neighbors instead of relationships among neighbors, 
which has the potential to reduce the number of false positive detections.

Another recent state-of-the-art anomaly detection method is COPula-based Outlier 
Detection (COPOD) (Li et al., 2020), which models data by constructing an empirical cop-
ula, i.e., a multi-variate cumulative distribution function with a uniform marginal probabil-
ity distribution for each feature in the [0, 1] interval. During detection, the method lever-
ages the copula to predict the tail probabilities of each data sample to determine the degree 
of its “extremeness”.

Despite the diversity, robustness, and high performance showcased by these methods in 
a number of domains, they present one or more limitations, i.e. the inability to deal with 
large-scale data, the lack of explainability for their predicted anomalies, the dependence on 
users for threshold settings, and the inability to analyze data presenting multiple densities.

Similarly to auto-encoder neural network models, SOM-based approaches can be 
trained in a fully unsupervised manner using background data, without explicit use of 
labels. Another similarity is that, unlike more complex neural network approaches, they 
both adopt a simple cost function: while auto-encoders adopt reconstruction error, SOM-
based approaches leverage the quantization error. However, GHSOM approaches present 
a structural advantage over auto-encoder models, since they present a tree-like multi-level 
expandable model structure that support the analysis of data at multiple levels of density 
granularity. The authors in Muñoz and Muruzábal (1998) leverage the interneuron dis-
tance matrix and the projection of the trained map via Sammon’s mapping to detect out-
liers in artificial and real data. The work in Palomo et al. (2010) proposes a hierarchical 
SOM with a particular focus on the reduction of the number of user-dependent parameters. 
The authors showcase its effectiveness in detecting anomalies with the KDD Cup 1999 
intrusion detection dataset. Another SOM-based work on the same application domain 
is proposed in Ippoliti and Zhou (2012), where the authors propose four enhancements: 
threshold-based training, dynamic input normalization, feedback-based quantization, and 
prediction confidence filtering. Common limitations of these works include the inability to 
deal with large-scale data, and a lack of model explainability capabilities. In this work, we 
aim to simultaneously address these challenges by proposing our distributed explainable 
SOM-based approach for anomaly detection.

2.3  Anomaly detection from sensor networks

Among the many application domains that analyze data generated by sensor networks 
in order to identify anomalies, below we examine some works specifically related to the 
application domains considered in this study, namely “anomaly detection in electrical net-
works”, “detection of anomalies from urban data” and ”detection of anomalies in the use of 
web services”.

2.3.1  Anomaly detection in electrical networks

The digitization of the energy infrastructure is a process that offers benefits both for con-
sumers and service providers. Thanks to the first advent of the industrial control systems, 
and currently the industrial internet of things, it is possible to allow a growing level of 
control and supervision (Borges Hink et al., 2014; Pan et al., 2015a, 2015b, 2015c; Shin 
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et al., 2020). One of the most interesting results is the growing availability of applications 
for monitoring the huge amount of data generated in real time and promptly identifying 
any malfunctions, thefts or improper overloads. This has motivated a growing interest in 
anomaly detection from data generated in power grids (e.g. at power plants, distribution 
stations, etc.) (Himeur et al., 2020; Su et al., 2023).

In Himeur et al. (2020), the authors examined thirty-one databases with different fea-
tures, such as the period of collection, geographical location, sampling rate of collected 
data, number of monitored households and so forth. Among the different tasks analyzed, 
the authors also analyzed and discussed energy consumption dataset for the task of anom-
aly detection for reducing wasted energy. Similarly, in Su et  al. (2023), the authors col-
lected a dataset from real-world industrial solar-cell production lines. The dataset was 
analyzed by learning predictive models for the anomaly detection task and performed a 
comparative analysis with four state-of-the-art methods. In De Benedetti et al. (2018), the 
authors analysed energy production data streams from photovoltaic systems and compared 
the output of a trained model in order to analyse the vectors of residuals which are aggre-
gated over 1-day and analyzed to detect a potential system degradation. Triangular Mov-
ing Average (TMA) is considered in analyses to automatically determine the window size. 
The proposed anomaly detection method was used to generate daily maintenance alerts. In 
Reddy Shabad et al. (2021), the authors analyzed smart grid power systems faults focus-
ing on discriminating among normal condition, natural disturbances, or cyberattacks. In 
Malki et al. (2022), the authors integrated anomaly detection methods to improve the main-
tenance of power systems and control as a fundamental part of the smart city concept. The 
authors in Takiddin et  al. (2022) detected electricity theft in smart grids through a deep 
auto-encoder for anomaly detection.

Although these works are specifically tailored for the analysis of energy data, they pre-
sent one or more of the following limitations: i) Limited support in providing predictive 
models capable of explaining the reasons for which anomalies have been detected. ii) Ina-
bility to deal with large-scale data. This issue is typically tackled via sampling approaches, 
which limit their generalization capabilities to a narrow selection of data points. iii) Inabil-
ity to take into account multi-sourced spatio-temporal information (Corizzo et al., 2021) 
such as ambient conditions, outside weather footprints, as well as energy plant character-
istics such as voltages (Ceci et al., 2020), which would greatly increase the scope and the 
robustness of anomaly detection models (Himeur et al., 2021).

2.3.2  Urban anomaly detection

Anomaly detection tasks are particularly useful in urban areas, where data is continuously 
generated by geo-located sensors. Detecting anomalies provides security operators with the 
opportunity to understand potentially anomalous situations and take the appropriate actions 
in a timely manner.

Data refers to physical information (e.g. temperature, number of vehicles crossing an 
intersection, number of pedestrians in a given area, PM10 level at certain physical positions 
in the city, etc.). The authors in Zhang et al. (2022) proposed a relevant survey on urban 
anomaly detection. Specifically, they discussed different types of anomalies in the analyzed 
contexts, i.e., urban anomalies, traffic anomalies, unexpected crowds, environment anoma-
lies, and individual anomalies. Furthermore, the authors emphasized that one of the open 
challenges that undermines the detection accuracy is posed by noisy urban data.
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From a methodological viewpoint, SOM-based approaches have shown promise in this 
domain. In Riveiro et al. (2017), the authors proposed a framework that provides decision 
support for the exploration of multidimensional road traffic data via visual artifacts. The 
method for anomaly detection is based on a classical SOM used for clustering. The number 
of clusters is optimized via Silhouette cluster analysis. This approach is inspired by a pre-
vious work presented in Kraiman et al. (2002) that used a classical approach for anomaly 
detection based on clustering algorithms, SOMs, and Gaussian Mixture Models (GMMs). 
However, such methods do not present growing capabilities, i.e. the number of neurons in 
the model is defined at the beginning and does not increase, which results in a significant 
modeling power reduction in dynamic data scenarios requiring adaptation.

Detecting anomalies with high accuracy in the urban context requires the simultaneous 
analysis of sensor data at multiple locations, exploiting the temporal and spatial coordi-
nates of the considered observations (Corizzo et al., 2021; Mignone et al., 2022; Sofuoglu 
& Aviyente, 2022). In Zhang et al. (2019), the authors proposed a decomposition approach 
to detect urban anomalies of different types, such as abnormal pedestrian flows and traffic 
accidents with varying locations and times. Specifically, they distinguish between the nor-
mal component, i.e., urban dynamics decided by spatio-temporal features, and the abnor-
mal component that is caused by anomalous events.

Overall, anomaly detection with urban data is a challenging task, since data generated 
by sensors is inherently large-scale, and the spatial proximity of sensors introduces spatial 
autocorrelation, which is in contrast with the typical assumption that observations are inde-
pendently and identically distributed (Stojanova et al., 2012). As a result, anomalies such 
as traffic congestion or large crowds can be difficult to detect due to their rarity, and the 
fact that their definition varies based on spatial and temporal data characteristics. In other 
words, a common limitation of anomaly detection methods for urban data is the inabil-
ity to consider the relationships between different points in space and time and specific 
domain-dependent characteristics of the anomalies (Sofuoglu & Aviyente, 2022). In addi-
tion, methods are often unable to deal with the additional challenges presented by large-
scale data and model explainability.

2.3.3  Anomaly detection in the use of web services

Web applications generate real-time web content from online activities including Inter-
net banking, email, social networking, and search engines. Such web services could be 
encoded as data streams for monitoring purposes. Anomaly detection tasks in Key Perfor-
mance Indicators (KPIs) in web applications, i.e., number of orders, service response time, 
CPU utilization, network throughput, and page view counts, received attention in several 
applications to protect web services from system failures proactively (Tama et al., 2020). 
These applications are enabled by sensor networks allowing the collection of real-time data 
from different sources, such as physical sensors, mobile devices or other data sources. Spe-
cifically, a bulk of data is mainly generated and trasmitted by wireless sensor networks 
(Duan et al., 2019) that can be used to measure and evaluate the performance of web ser-
vices through KPIs.

In Zhang et al. (2022), the authors proposed an unsupervised method, based on a vari-
ational auto-encoder, for learning predictive models that could be used to timely detect 
anomalies of KPI indicators. The method consists of a module for offline pre-training of 
shape models, through clustering, to select only the closest shape models, in terms of cen-
troid closeness, to the online stream in an adaptive transfer learning strategy. In a similar 
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manner, transfer learning was considered also in Duan et al. (2019) for anomaly detection 
tasks in web services. It clusters historical KPIs and then it considers all KPIs in each clus-
ter as input into a shared-hidden-layers variational auto-encoder model. Variational auto-
encoders are exploited effectively also in Xu et al. (2018), where the authors analyzed the 
noise distribution in KPI anomaly detection problems.

In Hagemann and Katsarou (2020), the authors evaluated PCA, auto-encoders and long 
short-term memory encoder-decoders for anomaly detection in cloud-specific metrics of 
various Yahoo! services. For the Yahoo! Webscope S5 dataset [71] the results showed that 
PCA is the most robust and fastest way to detect anomalies, while neural networks without 
regularization tend to overfit the data.

While these works are clearly effective for anomaly detection in the use of web ser-
vices, they do not have growing capabilities, do not provide explanations associated with 
the detected anomalies and do not provide scalable solutions to deal with the challenges 
presented by large-scale data.

3  Proposed method

In this section we describe in detail our proposed distributed and explainable anomaly 
detection method. First, we provide an overview of SOM-based model training. Subse-
quently, three subsections focus on the training process in detail, how threshold auto-tuning 
is performed, and our approach to enrich model predictions with explanations.

A SOM layer contains a two-dimensional grid of neurons, where each neuron is 
described by a weight vector. Conceptually, the training stage incrementally presents 
instances1 to the model and takes place for a given number of iterations, i.e. epochs. During 
this process, the neuron with the shortest distance for a given instance (also known as the 
winner neuron) is identified, and its neighborhood is adapted to get closer to the instance.

For this purpose, the SOM and GHSOM algorithms leverage a metric called Mean 
Quantization Error (MQE) (Dittenbach et al., 2000). The MQE of a neuron is calculated as 
the total deviation of such neuron from the input instances mapped to it. Another important 
concept is the MQE associated to the entire SOM layer, which is calculated as the average 
MQE of all its constituent neurons.

The first step for model training is to compute the MQE of the level-0 neuron with 
respect to all input instances, denoted as mqe0.

Subsequently, a first neuron map of 2 × 2 neurons is created at level-1. This map is 
trained according to the conventional SOM training process. Once the training process is 
complete, the map is analyzed and the MQE for the map m denoted as MQEm is calculated. 
High values of MQEm indicate that the map m does not accurately represent the input data 
and, therefore, may require more neurons to reach this goal, which is formalized by the τ1 
training criterion in Eq. (1):

where mqep represents the MQE of the parent neuron which is responsible for the expan-
sion of the map m, while τ1 is a weight value governing the sensitiveness of the single 

(1)MQEm < τ1 × mqep,

1 In this paper, the terms instance, data point, input vector are used interchangeably.
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SOM expansion, i.e., the higher the τ1 , the smaller the SOM, which results in a faster 
model training phase.

The map growing process has the goal to reach the condition in Eq.  (1). Specifically, 
to realize the map growing process, the neuron presenting the highest MQE is identified 
and denoted as the error neuron e. Subsequently, its most dissimilar direct neighbouring 
neuron d is selected, and a new row or column of neurons is added into the grid between e 
and d.

Each newly inserted neuron is a vector initialized considering the average of the 
weight vectors at its corresponding adjacent neighbours. By doing so, the process yields 
an updated (grown) layer, which is evaluated and trained once again. This dual process 
characterized by growth and training continues until the τ1 criterion is met. When the τ1 
criterion is satisfied, each neuron in the map is then analyzed according to the criterion in 
Eq. (2) ( τ2 criterion):

where mqek represents the MQE of the kth neuron under analysis, and τ2 is a weight value 
governing the sensitiveness of the hierarchy expansion, i.e., the higher the τ2 , the smaller 
the hierarchy, which results in a faster model training phase.

The neurons which do not satisfy the τ2 criterion are expanded into new maps at the 
next level of hierarchy. These new maps undergo the same process of training, growth and 
hierarchical expansion as the level-1 map.

The training of the GHSOM model stops when all the neurons in the maps at the last 
level of the hierarchy satisfy Eq. (2). The resulting GHSOM structure thus contains mul-
tiple SOM layers arranged as a hierarchy, with each SOM representing the data at a finer 
granularity than its parent layer.

3.1  Detailed training process

The first step of the GHSOM algorithm consists in computing the global value of dis-
similarity in the input dataset denoted by mqe0 (i.e. the Mean Quantization Error of the 
level-0 neuron). First, the mean of all input vectors m0 in the dataset is computed. Second, 
to obtain the value of mqe0 , the mean distance of the input vectors from the mean vector is 
computed as follows:

where Cn denotes the set of n input instances, x(⋅,i) denotes the vector representing the i-th 
instance currently presented to the model, and mqe0 denotes the overall dissimilarity of the 
input dataset. In our work, we replace mqe0 with the classical variance, denoted as var0 , as 
a measure of deviation that is more robust to outliers.

Subsequently, in the training process, a 2 × 2 SOM layer is created. If this is the layer 
at level 1, the neuron weight vectors are initialized at random. For each subsequent level, 
SOM layers can be initialized as a function of their parent neuron and their neighbours. 
To realize this goal, we adopt the approach devised in Chan and Pampalk (2002). Figure 1 
graphically describes the training of a single SOM starting from level 1.

(2)mqek < τ2 × mqe0,

(3)mqe0 =
1

n

�

x(⋅,i)∈Cn

‖m0 − x(⋅,i)‖,
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Let epochs be the number of desired iterations for SOM model training. For each 
training instance x(⋅,i) in the dataset, the winner neuron w(x(⋅,i)) is identified. Such neuron 
is considered to adapt a SOM S at epoch t (hereinafter S(t)), represented as a matrix of 
L-dimensional neurons defined as:

where m(⋅,k,k�)(t) represents a L-dimensional neuron in position k and k′ of S(t). The adapta-
tion process can be formalized as:

where h(⋅, ⋅) is the neighborhood function defined as:

and �(t) corresponds to the width of the neighborhood function:

(4)S(t) = {m(⋅,k,k�)(t)}(k,k�),

(5)

m(⋅,k,k�)(t + 1) = m(⋅,k,k�)(t) +

�∑n

i=1
h(w(x(⋅,i)),m(⋅,k,k�)(t)) × (x(⋅,i) − m(⋅,k,k�)(t))∑n

i=1
h(w(x(⋅,i)),m(⋅,k,k�))

�

l=1,…,L

,

(6)h(m
(1)

(⋅,k1,k
�
1
)
(t),m

(2)

(⋅,k2,k
�
2
)
(t)) = exp

(
−
(|k1 − k�

1
| + |k2 − k�

2
|)2

2�(t)2

)
,

Fig. 1  Training process of a single SOM layer showing the adaptation of the layer throughout the presenta-
tion of multiple training instances (normal and noisy)
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where R and C denote the number of rows and columns in the SOM, respectively.
Once the SOM has been trained, the growing process (consisting in the creation of new 

rows and columns in the SOM) and the hierarchical growth process (consisting in the addi-
tion of new SOMs which represent data at a finer granularity level) follow the GHSOM 
training procedure described above. Each SOM layer is evaluated for the τ1 criterion for 
two-dimensional growth. Once the τ1 criterion is satisfied (Eq. 1), we evaluate each neuron 
for the hierarchical growth considering the τ2 criterion (Eq.  2). Algorithm  1 and Fig.  2 
describe the GHSOM training process.

(7)�(t) =

�√
R2 + C2

2

�
× exp

�
−

t

epochs
× log

�√
R2 + C2

2

��
,

Fig. 2  A graphical representation of the GHSOM training phase following the τ
1
 and τ

2
 criteria. While τ

1
 

controls the horizontal (rows) and vertical (columns) growth of a single SOM layer, τ
2
 controls the hierar-

chical growth, generating new SOM layers. The entire model is capable to analyze data at multiple densities
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Algorithm 1  GHSOM model training

Algorithm 2  Distributed SOM training
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3.2  Multi‑density anomaly detection

Once the entire set of training instances is processed, the learned SOM with its constituent 
neurons represents a spatial memory of the training instances. This capability allows our 
model to be trained with training instances that mostly refer to normal cases that may just 
be marginally affected by noise (background data)2, without representing anomalies in the 
model. By doing so, the final predictive model has the ability to discriminate between nor-
mal and anomalous cases considering the distance between a new unlabeled instance and 
the part of the model that describes a subset of normal instances and is the most closely 
related to the new instance.

Once the set of neurons within the hierarchical structure of SOMs is set, the hierarchy 
obtained can thus be used to tackle the anomaly detection task. In particular, when a new 
unlabeled instance is provided to the hierarchy, the algorithm looks for its winner neu-
ron. Once found, it is used to predict the class (anomaly/not anomaly) of the new instance, 
based on the distance between the instance and the winner neuron.

More formally, let x(⋅,i) be the new example to be considered, and N  the entire set of 
neurons of the trained hierarchy of SOMs defined as N =

⋃
S∈G m(⋅,k,k�) ∈ S, , where S is a 

single SOM once the training process is completed, and G represents the entire hierarchical 
GHSOM model with its constituent SOMs. The closest winner neuron to x(⋅,i) is defined as:

Therefore, the unlabeled instance is considered an anomaly if the following inequality 
holds:

where dist(a, b) is the Euclidean distance between two input vectors a and b, � is the stand-
ard deviation of the distances among the training instances and the neurons after the train-
ing, and tf the threshold governing the sensitiveness of the final predictive function.

Conceptually, tackling anomaly detection with this hierarchical spatial memory has the 
ability to naturally fit multi-density distributions, which can be comprised of sub-distribu-
tions. In this context, samples can assume values within sub-ranges of a larger distribution, 
and anomalies may be hidden at different density levels. Formalizing the multi-density dis-
tribution can be achieved leveraging the notion of mixture of distributions. More formally, 
assuming that the underlying data distribution is normal, a multi-density distribution can 
be defined using the following notation:

where F(X) is the (multi-density) multidimensional probability density function (PDF), 
which combines several (single-density) multidimensional normal distributions Fi(X) . 
In the formula, X ∈ ℝ

p represents a data point as a p-dimensional vector, D is the total 
number of single-density multidimensional distributions, �� and �� are the p-dimensional 

(8)w(x(⋅,i)) = argmin
w∈N

{dist(x(⋅,i),w)}.

(9)dist(x(⋅,i),w(x(⋅,i))) > mqe0 + tf × 𝜎,

(10)F(X) =

D�

i=1

wi

exp
�
−

1

2
( X − ��)

T��
−1(X − ��)

�

√
(2�)p|��|

=

D�

i=1

wi Fi(X),

2 Note that our model does not exploit labels during training. As a result, background data containing a 
degree of noise or anomalies is acceptable.
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mean vector and the positive finite covariance matrix of size p × p of the i-th distribu-
tion respectively. |��| represents the determinant of the covariance matrix. wi represents the 
weight assigned to each i-th multidimensional single-density normal distribution governing 
the various shapes and peaks that the F(X) can assume. A graphical representation of the 
resulting multi-density distribution F(X) is depicted in Fig. 3.

We note that, in our work, we assume that all parameters of the multi-density distribu-
tion are not known in advance, but can be automatically learned by the GHSOM model 
during the training process. We argue that identifying anomalies with a hierarchy of SOM 
models should, in principle, allow for a more precise detection of anomalies than a single 
flat model, which is the most widely adopted approach.

If we refer to a single-density distribution Fi from the entire multi-density distribution 
F(X) , a data point is classified as normal by the GHSOM model if it can be recognized 
by at least one single-density distribution. Therefore, the set of normal data points can be 
defined as

Therefore, we can define the set of anomalous instances as A = ℝ
p ⧵ N , that is, the set of 

each other possible p-dimensional data point resulting out-of-distribution w.r.t. F(X) . Or, 
in other terms, the set of each possible p-dimensional data point that does not follow any 
single-density distribution Fi(X).

This aspect of our method is particularly relevant considering that multi-density data 
and anomalies can be identified in many real-world applications with sensor data contexts. 
In vehicular traffic analysis, for instance, levels of traffic could be minimal during the night 
and reach their peak at noon, due to events such as the end of the school day. The same 
phenomenon can be observed in domains such as pedestrian flows, brightness levels, and 
so forth. In addition to variations of behavior due to different temporal phases, multiple 
densities can be also identified in geo-distributed settings. In these settings, multiple geo-
graphic locations naturally exhibit a varying degree of intensity for a phenomenon under 

(11)N =

D⋃

i=1

Ni, where Ni ⊂ ℝ
p is the set of examples generated according to Fi .

Fig. 3  An example of a multi-density distribution following Eq. (10)
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analysis, due to their inherent spatial characteristics and external factors such as weather 
conditions, which are also subject to seasonal dependencies. Examples also include renew-
able energy production and air pollen distribution.

3.3  Threshold autotuning for anomaly detection

The key idea of our autotuning approach is to leverage the predictive function to compute 
distances between neurons (normal prototypes) and unlabeled instances. The assumption is 
that the distance between anomalous instances and prototypes is, in principle, greater than 
the distance between normal cases and prototypes. Following this assumption, our method 
identifies the correct threshold factor (tf) used in the predictive function according to a 
false positive rate (fp%) tolerance within the training set.

Algorithms 3–4 and Fig. 4 further illustrate the tf autotuning process w.r.t. the consid-
ered fp% .

Since the precise configuration of tf is often impractical and error-prone in real settings, 
this step is crucial to support properly calibrating the predictive function. Domain experts 
and final users can more easily understand fp% as the rate of false alarms which corre-
sponds to the sensitivity of the final predictive model. Furthermore, it is possible to prop-
erly configure the fp% to account for noisy or contaminated instances residing in training 
data. Let us consider a case with background data that only contains normal cases (free 
of anomalies). A straightforward scenario is to define fp% = 0 so that no false alarms are 
issued on training data. Another case is that of background data containing noise or con-
tamination. In such a case, setting a low percentage of false alarms, i.e., fp% = 1, 2,… , n , 
where n is the estimated contamination rate, will allow the model to be more robust and 
account for the estimated anomalies residing in training data.

Once the ratio of acceptable false positives w.r.t. the training set cardinality is achieved, 
the final predictive model is configured for detecting anomalies in real-domain sensor net-
work data scenarios. Obviously, the higher fp% the lower the precision, and the higher the 
recall of anomalies. In any case, fp% is independent on the data distribution, while tf is not. 
A graphical representation of the predictive phase is provided in Fig. 5.

Fig. 4  The tf autotuning phase to determine the final predictive function w.r.t. the considered fp% tolerance. 
From left to right, it is possible to observe a reduction of the fp rate, achieved through threshold adaptation. 
This process is illustrated by the growing radius of the decision boundary of the model
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3.4  Explainable anomaly detection

The anomaly detection step supports two types of output, depending on the desired level of 
detail. The simplest approach provides the classification of an unlabeled instance in the form 
of a Boolean response (normal/anomaly). This type of output is useful to raise alerts when the 
instance is an anomaly. Its drawback is that interpreting the raised alert could be difficult for 
domain experts. To deal with this issue, we propose a second type of output that combines the 
boolean response with a feature ranking that indicates the importance that each feature had in 
the anomaly identification process. Feature importance is a numerical value between 0 and 1, 
indicating how anomalous the value expressed by the feature is with respect to the training 
data. The sum of all features importance values in the feature ranking is equal to 1. To esti-
mate feature importance, we compute the distance between the current instance under analysis 
and the winner neuron. Specifically, in a normalized space, the ranking is proportional to the 
contribution provided by each single vector component in the Euclidean distance between x(⋅,i) 
and w(x(⋅,i)) . More formally, the feature importance function for the instance x(⋅,i) , fimp(x(⋅,i), l) , 
is computed as follows:

where l represents the feature index, l� ∈ {1, 2, ...,L} a varying feature index, L the feature 
set cardinality, while the ranking is defined as follows:

(12)fimp(x(⋅,i), l) =
(x(⋅,i)[l] − w(x(⋅,i))[l])

2

∑L

l�=1
(x(⋅,i)[l

�] − w(x(⋅,i))[l
�])2

(13)rank(x(⋅,i)) = ∇({fimp(x(⋅,i), 1), fimp(x(⋅,i), 2), ..., fimp(x(⋅,i), L)})

Fig. 5  A graphical illustration of the predictive phase. At inference time, all instances within the model’s 
decision boundary are considered as normal, while all instances outside the decision boundary are classified 
as anomalies. Geometrically, the decision boundary defined through the radius (right side of Eq. 9) and the 
prediction are based on the distance between the instance and the winning neuron (left side of Eq. 9)



 Machine Learning

1 3

where ∇ is a descending ordering operator.
This approach effectively supports the identification of feature(s) that contributed the 

most for detecting the anomaly and, therefore, enhancing our method with explainabil-
ity capabilities. Algorithms 4 and 5 include the pseudo-code for the prediction and the 
explainability phases of our method. In Fig.  6, we graphically illustrate the instance-
based feature ranking process for each detected anomaly.

Fig. 6  A graphical illustration of the feature ranking for anomaly explanation in two dimensions ( L = 2 ). 
The features F1 and F2 have an importance 0.75 and 0.25 respectively for the detected anomaly on the top 
figure, while for the bottom figure, F1 and F2 have an importance 0.2 and 0.8 respectively
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4  Experiments

In this section, we present our experiments and discuss their quantitative and qualitative 
outcomes. We considered different application domains that could be supported by anom-
aly detection tasks. First, quantitative analyses were conducted for anomaly detection in 
the context of electrical grids with two real-world datasets (Wind NREL, PV Italy). To 
set up the training regimen in these experiments, we adopted sliding windows of differ-
ent sizes (Gama, 2010). Second, we carried out experiments for urban anomaly detection 
by analyzing two real world datasets: pedestrian flows encountered in the Oslo city and 
vehicular traffic flow in one Italian city. The training regimen followed for this task is that 
of landmark windows, where models are trained with all data available until a given time 
point (Gama, 2010).

Third, the experiments with landmark windows for anomaly detection in web services 
are presented by considering the Yahoo! dataset (Hagemann & Katsarou, 2020, https:// 
resea rch. yahoo. com.

Further experiments are reported in Appendices 1 and 2. Specifically, in Appendix 1, 
we present the scalability analysis conducted to emphasize the capability of the proposed 
method to distribute the computational workload over multiple nodes. While, in Appendix 
2, we present the qualitative analyses for detecting anomalous allergenic pollens in the air 

https://research.yahoo.com
https://research.yahoo.com
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for the Veneto region in Italy, emphasizing the capability of the proposed method to dis-
criminate among different types of anomalies occurring in this context.

4.1  Quantitative results

Comparative analyses were performed to quantitatively assess the effectiveness of the pro-
posed method when compared with state-of-the-art anomaly detection methods. In line 
with our discussion of existing works, we considered popular methods from the most rep-
resentative class of approaches to address the task of interest in our study, i.e., one class 
learning. Indeed, this class of approach offers the flexibility to learn a model from an initial 
(regular) data distribution that is able to flag data that significantly differ from the learned 
distribution. In particular, we considered five well-known and widely adopted competi-
tor methods: OCSVM (Schölkopf et al., 2000), Isolation Forest (Liu et al., 2008), ABOD 
(Kriegel et al., 2008; Pham & Pagh, 2012; Jahromi et al., 2022), COPOD (Li et al., 2020), 
and an Auto-encoder architecture that detects anomalies based on the reconstruction error 
(Beggel et  al., 2019; Zhou & Paffenroth, 2017). Such methods were configured by per-
forming ablation analyses on a set of parameters’ values suggested in the respective origi-
nal papers. Specifically, for OCSVM, we considered two different kernel functions, i.e., 
Linear and Radial Basis Function (RBF), and we varied the � parameter within the set 
� ∈ {0.5, 1.0}.

For Isolation Forest, we considered the number of trees in the ensemble 
n_estimators ∈ {10, 20, 50} , while the whole feature set was considered for every single 
tree.

For ABOD and COPOD, we used the default configuration proposed in the pyod (Zhao 
et al., 2019) library. For ABOD, the number of neighbors considered for each data point is 
set to 10 (Zhao et al., 2019).

For the auto-encoders, we used the architecture suggested by Bengio et al. in Bengio 
(2012). Specifically, we used a standard contractive model architecture with four layers 
using the Sigmoid activation function. Additional experiments using ReLU activations did 
not yield any significant reduction in model training time nor differences in terms of model 
performance. We experimented with different negative powers of 10 for the configuration 
of the learning_rate and with different powers of 2 for the batch_size . Preliminary experi-
ments suggested that the different configurations did not provide a significant difference 
in terms of performance metric values. Therefore, the experiments were executed with 
the following configuration: epochs = 50 , learning_rate = 0.0001 , batch_size = 32 . Since 
auto-encoders are sensitive to the embedding space dimensionality, we considered two 
sizes proportional to the feature set cardinality of the input space. Specifically, let orig_dim 
be the number of features of the original dataset, we considered embedding spaces of 
dim ∈ {orig_dim∕4, orig_dim∕2} sizes. This choice allowed us to be flexible with respect 
to different feature dimensionalities of the different datasets. During the inference phase, 
if the reconstruction error of an unlabeled instance exceeds p × � (corresponding to a 
3-sigma rule when p = 3 ) from the average reconstruction error observed on the training 
set, the instance is marked as an anomaly.

In our proposed method, the τ1 and τ2 parameters were set considering a range of values 
balancing between computational time, model complexity (number of neurons), and model 
accuracy. We selected τ1, τ2 ∈ {0.9, 0.8, 0.7, 0.6, 0.5} . This choice takes into consideration 
the fact that model training time becomes unsustainable with values smaller than 0.5 since 
the quality criteria become too difficult to satisfy and that, on the other hand, the accuracy 
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is likely negatively affected by values higher than 0.9 due to the shallowness of the model 
that this choice implies. After preliminary experiments, the final configurations used in 
the experiments reported in our results are: Wind NREL ( τ1 = 0.9 , τ2 = 0.9 ), PV Italy 
( τ1 = 0.7 , τ2 = 0.9 ), Oslo Pedestrian Flow ( τ1 = 0.5 , τ2 = 0.9 ), vehicular traffic ( τ1 = 0.8 , 
τ2 = 0.9 ), and Yahoo! web services ( τ1 = 0.8 , τ2 = 0.8).

4.1.1  Energy results

In this section, we describe the experiments and analyze the results extracted for anomaly 
detection in the context of electrical grids. To this aim, we considered the following two 
datasets.

• Wind NREL. This dataset3 includes time series data from five wind farms of wind speed 
and production recorded every 10 minutes for a two-year period from January 1, 2005, 
to December 31, 2006. The data was then aggregated at an hourly level.

• PV Italy. The dataset includes data collected every 15 minutes (from 2:00 AM to 8.00 
PM, every day) by sensors at 17 photovoltaic power plants located in Italy, spanning 
from January 1 st , 2012 to May 4 th , 2014. Anomalies consists in perturbations of the 
correct attribute values. This is done on 25% of instances and 50% of the features. Fur-
ther information on the data preprocessing steps can be found in Corizzo et al. (2021); 
Ceci et al. (2016).

For both datasets, we consider the following features: latitude and longitude of each plant; 
day and hour; altitude and azimuth; weather conditions, i.e., ambient temperature, irradi-
ance, pressure, wind speed, wind bearing, humidity, dew point, cloud cover, and a descrip-
tive weather summary. Weather conditions are either measured (training phase) or fore-
casted (detection phase). In particular, all weather observations were extracted using the 
Forecast.io API, except for the expected altitude and azimuth, which were extracted from 
SunPosition4, and the expected irradiance (PV Italy dataset only), that was extracted from 
PVGIS5.

We performed experiments considering sliding windows of 60 consecutive days for 
model training. Once models are trained, their anomaly detection performance is assessed 
on data observed the following day (61st day), considered as the prediction day. Experi-
ments are repeated 10 times with 10 distinct sliding window selections, and the obtained 
results are averaged.

Figures 7 and 8 show the detailed results, in terms of macro F1-Score, for each of the 10 
considered prediction days (for Wind NREL and PV Italy, respectively), while Fig. 9 shows 
the ablation analyses according to different fp% tolerance settings chosen for the predictive 
models. According to our ablation analyses, we selected 2% and 9% of false positive toler-
ance for Wind NREL and PV Italy, respectively. On average, with the Wind NREL dataset, 
the proposed method achieved an improvement of 9.5% w.r.t. the second ranked method 
OCSVM. Regarding PV Italy, our method achieved an improvement of 3.7% compared to 
the second ranked method OCSVM (see Table 3).

3 https:// www. nrel. gov/ wind
4 https:// www. susde sign. com/ sunpo sition
5 https:// re. jrc. ec. europa. eu/ pvg_ tools/ en

https://www.nrel.gov/wind
https://www.susdesign.com/sunposition
https://re.jrc.ec.europa.eu/pvg_tools/en
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Fig. 7  Results in terms of macro F1-Score for each of the considered prediction days (Wind NREL dataset). 
The performance curves reported consider the best configuration for each method

Fig. 8  Results in terms of macro F1-Score for each of the considered prediction days (PV Italy dataset). The 
performance curves reported consider the best configuration for each method

Fig. 9  Ablation analysis for threshold autotuning conducted considering a range of false positive percentage 
for Wind NREL (left) and PV Italy (right)
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4.1.2  Vehicular traffic results

The experiments were conducted considering the vehicle traffic observed in an Italian city. 
Specifically, 93 sensors located at every access to the city center were considered for data 
collection. For each sensor, the GPS position was exploited for geo-tagging instances with 
latitude and longitude coordinates. Data was collected continuously (ISO 8601, resolution: 
seconds) for the time frame between November 8, 2021 and November 23, 2021. Instances 
were aggregated every 5 minutes in order to quantify the number of vehicles approaching 
or leaving the city center, for a total of 370, 775 instances. Table 1 summarizes the descrip-
tive features of the dataset.

Experiments were performed considering a landmark time window approach, where 
models are trained with all available data observed so far to predict on subsequent time 
steps. Specifically, for each hour of the time frame covered by the dataset, we trained a 
model to predict the possible anomalies occurring in the next hour. Multiple train and pre-
diction sets were created where the n-th split includes n hours for training and the (n + 1)-th 
hour for prediction. Since anomalies were not provided, 36 of the available prediction win-
dows randomly selected were perturbed by adding random values in the interval [0,100] 
to the number of vehicles with direction approaching and unknown, without changing the 
original values for the vehicles leaving the area. The idea was to simulate an anomalous 
but realistic scenario when cars are only approaching without the possibility to leave the 
city center. Therefore, we trained models from the beginning of the time series until the 
hour that precedes the prediction window. By doing so, we collected 36 predictive models, 
trained with a progressively increasing amount of training data. Quantitative results are 
illustrated in Fig. 10.

Results show that, at the beginning of the considered time frame, models are more 
unstable, possibly due to the distinct distribution of patterns observed during the day and 
the night. However, after 150 hours of training, predictive models appear more stable and 
accurate, as expected. In the latest time windows it is possible to observe, in some cases, 
an unsatisfactory model performance. This behavior can be observed in three specific situ-
ations with limited or no sunlight: November 19th 2021 (10:05pm), November 20th, 2021 
(7:05pm), and November 20th (11:05pm), as shown by the three drops in the final part of 

Table 1  Descriptive features of the vehicular traffic dataset

Feature name Description

TimeId Starting time of the 5-minutes time window
No_approaching # vehicles with direction “approaching”
No_leaving # vehicles with direction “leaving”
No_unknown # vehicles with direction “unknown” (i.e., unclassified)
X GPS latitude
Y GPS longitude
Camera_name The name of the camera/sensor
Month The month of the measurement
Day The day of the measurement
Hour The hour of the measurement
Minute The minute of the measurement
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the curve. This could be explained by a reduced number of observations available during 
the night, motivated by the reduced vehicular traffic.

It can be noted that Auto-encoder yielded perfectly accurate predictions with this data-
set, resulting in a macro F1-Score of 1.0. This behavior was expected and can be attributed 
to the perturbation strategy adopted, which is fully compliant with the 3 × � rule used for 
the Auto-encoder predictive function, and results in a simplification of the task for this 
particular method. It should be also noted that experiments with Auto-encoder required a 
significantly high training time, due to training regimen followed for this dataset. Moreo-
ver, since the method does not provide explanations for its inferences, it fails to provide a 
trade-off between accuracy and explainability.

For the proposed method, experiments were conducted to automatically tune the tf 
parameter. To this aim, we considered different values for the fp% parameter, i.e., the toler-
ance on the percentage of training instances labeled as anomalies by our method that actu-
ally represent normal cases in the training set. Considering fp% rather than tf simplifies the 
adoption of the tuning mechanism from the perspective of non-expert security operators, 
since it is easier to understand. To set up the correct value of fp% , we considered the latest 
window containing all the training instances (i.e., after 358 training hours). As shown in 
Fig. 11, the highest macro F1-Score was obtained by considering 0.02% of false positives. 
We note that the results improved as the number of false positives within the training set 
is reduced, as visible in the decreasing curve shown in the top-left sub-figure. This is an 
expected result, since a low number of errors on training data corresponds, in principle, to 
a more robust predictive model that avoids recognizing normal cases as anomalous. Fig-
ure 11 also highlights that with 0% of false positives the model has a tendency to become 
flat, considering all the instances as normal cases. This behavior should be avoided, since 
the final models would become useless in practical real scenarios, and would not be able 
to discriminate between normal and anomalous instances. To avoid this phenomenon, we 
tuned the fp% parameter between 0% and 0.1% as shown in Fig. 11. Values close to 0% 
emphasized that the proposed method is capable to tolerate a few noisy instances that could 
be significantly different from historical data. This behavior is motivated by a potential 
degree of contamination in training data, i.e. anomalous instances considered as normal 
and not removed from training instances. This phenomenon is frequent in real applications 
such as vehicle flow analysis, where the effort of removing car accidents or unconventional 

Fig. 10  Vehicular traffic analysis. Each curve considers the best configuration for each method in terms 
of macro F1-Score (y-axis). The x-axis represents the width of the time window spanning the entire time 
frame of the analyzed dataset



Machine Learning 

1 3

vehicle flows due to municipal road works is too high. As a result, such instances are likely 
to remain within the training set. However, it is remarkable to observe that our method was 
capable of handling this problem via the specific fp% parameter tuning.

4.1.3  Oslo pedestrians flow analysis

We considered a dataset describing the flow of people in the city of Oslo between two 
areas identified by the following GPS coordinates:

• ⟨59.91301053377869, 10.733979291595263⟩
• ⟨59.912625158578805, 10.734914979884614⟩

Collected data covers a time period ranging from April to May 2019 to 2022. This time 
frame was decided in order to catch the abrupt increase in pedestrian flows occuring dur-
ing the Constitution Day of Norway on May 17. To this aim, we considered all instances of 
May 17 as anomalous, whereas the remaining instances were considered as normal cases, 
i.e. regular pedestrian flows. The detailed descriptions of the features covered by this data-
set are reported in Table 2.

In Fig. 12, we show the results in terms of macro F1-Score. We note that, for this data-
set, we did not resort to any perturbation strategy, since it already contained real anomalies.

4.1.4  Yahoo! web services

We considered the Yahoo! S5 dataset6 (https:// resea rch. yahoo. com) containing real 
time-series with labeled anomalies for the metrics of various Yahoo! services. The 
dataset consists of 67 univariate time series that were joined considering the temporal 
dimension as the join key to obtain a multivariate dataset. In the raw version of the data-
set, the ground truth label information is available separately (anomaly/normal) for each 

Fig. 11  Ablation analysis for the proposed method (vehicular traffic data). A different number of false posi-
tives within the training set were considered to identify the ideal parameter configuration. Macro F1-Score 
values w.r.t. close to zero false positive percentages emphasized that a few false positives are necessary to 
better tune predictive models for this dataset

6 https:// websc ope. sandb ox. yahoo. com/ catal og. php? datat ype=s% 20& did= 70.

https://research.yahoo.com
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s%20&did=70
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feature. One time point refers to a specific hour of production traffic. Our experiments 
consider a training window of two weeks and a testing window of one week, resulting in 
landmark training windows of increasing time: two, three, and four weeks. We removed 
anomalies from the training windows and we considered a testing instance as anomalous 
if the time window contained at least 3 out of the 67 features labeled as anomalous. 
We considered 3 features since choosing 1 or 2 features would have resulted in several 
anomalies being skipped in the training sets, leading to empty or very small training 
window sizes, while choosing 4 features would have resulted in testing windows with-
out anomalies, leading to a more complex evaluation. In Fig. 13, we show the results in 
terms of macro F1-Score. The results show that, on average, our method outperforms 

Table 2  Descriptive features of 
the Oslo pedestrians flow dataset

Feature name Description

interval_start_time Timestamp for the current 5-min-
ute time window

X GPS latitude
Y GPS longitude
dateTimeDayofTheWeek The number of the day of the week
Year The year of the measurement
Month The month of the measurement
Day The day of the measurement
Hour The hour of the measurement
Minute The minute of the measurement
People # people passing over the sensor

Fig. 12  Results for the Oslo pedestrian flows dataset (left) and ablation analysis for the fp% parameter opti-
mized w.r.t. the macro F1-Score (right)

Fig. 13  Results for the Yahoo! web services dataset (left) and ablation analysis for the fp% parameter opti-
mized w.r.t. the macro F1-Sscore (right)
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competitor methods. It can be seen that the proposed method presents an opposite 
behaviour w.r.t. Isolation Forest for this dataset. Our interpretation of this result is that 
the second evaluation window contains more peripheral anomalies that lie very close 
to normal instances. These anomalies are likely easier to detect with simple classifica-
tion rules rather than with clusters of neurons that model multi-densities. However, our 
method presents a higher performance than Isolation Forest in the other two evaluation 
windows. Ablation analysis was conducted by considering fp% ∈ [0, 1] by step 0.1. Fig-
ure 13 (right) showed that the best results obtained with this dataset are when fp% = 0.2 
attesting that this dataset could contain few to no noisy or anomalous instances within 
the training windows.

4.2  Quantitative analysis

Overall, the experiments show that the proposed method outperforms the considered 
state-of-the-art methods in the majority of the proposed scenarios described through dif-
ferent datasets (see Table  3). In Table  4 we show the ranking achieved by each method 
on all considered datasets, and their final average ranking. It can be noted that the pro-
posed method is the best performing for all datasets except for the vehicular traffic analysis, 
where Auto-encoder outperforms all other approaches. We attribute this result to the per-
turbation strategy followed for this dataset, which matches with the biases of the predictive 
function of the Auto-encoder method and, as a result, translates to a simplified setting. 
The OCSVM method positions itself in the middle, providing an acceptable second-best 
performance for Wind NREL and PV Italy, a sub-par performance for Oslo pedestrians, 

Table 3  Macro F1-Score summary of the comparative analysis for all the datasets describing five different 
real-domain applications

The best results are highlighted in bold

Method Wind NREL PV Italy Vehicular traffic Oslo pedestrians Yahoo!

ABOD 0.43 0.42 0.44 0.44 0.49
Auto-encoder 0.46 0.53 1.00 0.53 0.64
COPOD 0.43 0.42 0.44 0.44 0.49
Isolation forest 0.43 0.53 0.56 0.32 0.57
OCSVM 0.63 0.54 0.42 0.47 0.30
Our method 0.69 0.56 0.72 0.60 0.65

Table 4  Average ranking of all methods considered in our experiments

The best results are highlighted in bold

Method Wind NREL PV Italy Vehicular 
traffic

Oslo pedes-
trians

Yahoo! avg rank

ABOD 4 5 4 4 4 4.2
Auto-encoder 3 3 1 2 2 2.2
COPOD 4 5 5 4 4 4.4
Isolation forest 6 4 3 6 3 4.4
OCSVM 2 2 6 3 6 3.8
Our method 1 1 2 1 1 1.2
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and an unsatisfactory performance for the Vehicular traffic dataset and on Yahoo!. We can 
observe that the widely adopted Isolation Forest method suffers in most of the considered 
applications. Indeed, such method presents high robustness when the anomalies lie at the 
boundaries of training instances, and are easy to isolate by means of very simple trees with 
limited depth. A similar behavior is observed for COPOD, and ABOD, resulting in a sub-
par anomaly detection performance. Therefore, in cases where the anomalies are very close 
to normal instances, better suited methods are characterized by the ability of catching finer 
diversities among normal and anomalous cases. In such a setting, we attribute the superior 
performance of our method to its ability to model multiple densities in the background data 
thanks to multiple SOMs.

5  Conclusion and future works

In this paper, we proposed a distributed and explainable SOM-based anomaly detection 
method. The method supports the analysis of background data characterized by multiple 
densities, by means of multiple SOMs arranged as a hierarchy. Moreover, the method is 
able to process large-scale data occurring in real-world domains leveraging the map-reduce 
programming paradigm and the Apache Spark framework. Differently than popular anom-
aly detection systems, the proposed method is capable of automatically identifying the 
threshold for the classification rule during the training stage. Its sensitiveness can be also 
configured to tolerate different levels of false positives during the training stage. Further-
more, the proposed method is enhanced with an explainability component that facilitates 
the interpretation of predicted anomalies leveraging instance-based feature ranking. The 
results show the effectiveness of the proposed approach, both qualitatively and quantita-
tively, in five different real-world applications. Qualitative analysis emphasized that the 
explainability component is effective in highlighting the severity of the detected anoma-
lies. In future work, we will extend our automatic threshold estimation mechanism to auto-
matically learn the ideal false positive percentage, without any dependence on user inputs. 
Moreover, possible extensions of the method include its adaptation to biological domains, 
where the identification of possible variations in subcellular genetic information is impor-
tant to detect the onset of diseases.

Appendix 1. Scalability analysis

A key characteristic of our proposed method is its ability to distribute the computational 
workload over multiple nodes. In order to assess this capability, we conducted a scalability 
analysis. considering three synthetically generated datasets of 1, 2, and 3 million instances 
respectively, consisting of 10 features. Our evaluation of the method’s ability to exploit 
additional computational nodes involved measuring the execution times and calculating the 
Speedup and Scaleup factors. Our computational cluster is equipped with one driver and 
three worker nodes with the following characteristics: 6 Intel(R) Core(TM) i7-8700 CPUs 
@ 3.20GHz and 64.0 GB RAM.

The results, as shown in Figs. 14, 15, and 16 highlight that our method is able to take 
advantage of additional nodes to efficiently process large-scale data. Specifically, as the 
data size increases, we observe an increase of the speedup factors with a minimal com-
munication overhead using 3 computational nodes w.r.t 2 and 1. The resuls in terms of both 
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speedup and scaleup practically demonstrate that our proposed method presents satisfac-
tory scalability.

This property translates in a significant advantage w.r.t. other methods, since it enables 
the analysis of arbitrarily large datasets by simply provisioning additional nodes to the 
cluster computing infrastructure. Other methods, on the other hand, may entirely fail to 
analyze large-scale data or may be impacted by significant delays, resulting in a major pit-
fall that limits their applicability in real-world applications.

Fig. 14  The running times measured for conducting the experiments on synthetic datasets of 1,2, and 3 mil-
lions instances with 10 features

Fig. 15  Speedup factor calculated as the ratio between execution times observed with a single computa-
tional node (1) and with multiple computational nodes (2,3)

Fig. 16  Scaleup factor with 
simultaneously increasing 
problem complexity and com-
putational nodes, i.e., 1 million 
instances with 1 node, 2 millions 
with 2 nodes, and 3 millions with 
3 nodes
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Appendix 2. Qualitative analysis

2.1 Qualitative analysis

In this section, we show the capability of our proposed method to quantify the severity 
of different detected anomalies resorting to the instance-based feature ranking approach. 
We considered the task of pollen analysis using data collected by Arpa Veneto, an Ital-
ian environmental monitoring institution focused on measuring air and water quality over 
time. The extracted data contains daily environmental information from the city of Padova 
(Italy), in the time frame from years 2014 to 2019. Data is observed at a time granularity of 
one observation per day, with the exception of days in which measurements are not present. 
Data was extracted using the open data API of the ARPA Veneto website7. The information 
extracted includes the following features:

• Date of measurement (dd/mm/yyyy)
• Air temperature at 2 meters (°C), respectively mean, min and max temperature
• Total precipitation on the day (mm)
• Humidity at 2 metres (%), respectively min and max humidity
• Concentrations of allergenic pollen in the air (granules/m3) per family, for a total of 25 

families.

The bar plots in Fig. 17 highlight that the temperature attributes, as well as the min-
imum humidity, follow a normal distribution, whereas distributions of precipitation and 

Fig. 17  Data distributions for the attributes mean, min and max temperature, precipitation, min and max 
humidity

7 https:// www. arpa. veneto. it/

https://www.arpa.veneto.it/
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max humidity are asymmetrical. The 25 families of pollens are considered as 25 distinct 
descriptive features. For the aim of the anomaly detection task, the focus was on determin-
ing whether a given instance/measurement belonging to the dataset is representative of a 
scenario characterized by anomalous levels of pollens in the air. To carry out an evaluation 
of the anomaly detection models, in this step, the main focus was to identify pollen levels 
that semantically describes an anomalous scenario depending on value frequencies. To this 
aim, we considered a publicly available source of data from an Italian network for aero-
biological monitoring8 and manually annotated the pollen dataset. In this experiment, we 
exploited some conclusions drawn from the feature ranking returned by our method. The 
first step is to identify, for each feature, reference tables containing concentration classes. 
An example of a reference table for the precipitation attribute is provided in Table 59.

We formulated the anomaly detection problem by attributing an anomaly weight for 
each value in the reference table in the [0, 1] range, where values 0 and 1 are associated 
with the lowest and highest anomalous values, respectively. Table  6 shows the anomaly 
weights for the precipitation attributes, associated with each value in the reference table. 
Similarly, we computed the frequencies for the other 25 pollen families considered as 
descriptive features (see Fig. 18).

This step allows us to enable a quantitative evaluation of the output generated by our 
method considering the available reference tables. To this end, we adopted a measure that 
we refer to as anomaly level @ k (a_lv@k). Such measure has the advantage to emphasize 
the most severe anomalies, quantifying their level of severity cumulatively. This key fea-
ture is often needed in order to build an anomaly detector capable of issuing alerts only for 
severely anomalous cases, reducing the number of false alarms. Formally, given k, the k-th 
position in the feature ranking of the current prediction instance, the anomaly level at the 
k-th position is defined as a_lv@k =

∑k

i=1
wi , where wi is the anomaly weight of the feature 

at the top i-th position of the feature ranking, with i ≤ k if the reference table of the feature 
at the top i-th position is defined, wi = 0 otherwise, for each possible value of such feature, 
due to the lack of a reference map among the anomalous cases and the values of that spe-
cific feature. Thus, leveraging the anomaly level, it is possible to identify instances contain-
ing more anomalous values. By keeping track of the value assumed by the anomaly level at 
each position k in the feature ranking, it is possible to graphically represent the trend of the 
anomaly level. For instances identified as anomalous, we expect to see curves with a high 
slope at the first positions of the feature ranking and a gradual stabilization, until they no 
longer grow.

Table 5  Reference table for the 
precipitation attribute

Rainfall intensity mm/6 h mm/12 h mm/24 h

Weak [0, 5] [0, 10] [0, 15]
Moderate [0, 15] [10, 30] [15, 45]
Strong [15, 30] [30, 60] [45, 90]
Very strong [30, +∞] [60, +∞] [90, +∞]

8 http:// www. polln et. it/ valori_ di_ rifer imento_ it. asp.
9 https:// www. arpa. piemo nte. it/ risch inatu rali/ appro fondi menti/ meteo/ fenom eni_ param etri_ meteo/ piogg ia. 
html

http://www.pollnet.it/valori_di_riferimento_it.asp
https://www.arpa.piemonte.it/rischinaturali/approfondimenti/meteo/fenomeni_parametri_meteo/pioggia.html
https://www.arpa.piemonte.it/rischinaturali/approfondimenti/meteo/fenomeni_parametri_meteo/pioggia.html
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We note that our approach does not necessarily rely on the availability of reference 
tables for all features. To deal with this issue, we assign an anomaly weight of 0 to fea-
tures with missing reference tables. By doing so, our cumulative approach used for top-k 
anomaly level curves is still able to distinguish the severity of different anomalies using the 
available information for a subset of the features.

Figure 19 shows the trend of the anomaly level for each instance identified as anom-
alous. Let us consider the curve characterized by the highest anomaly level (green), 
which identifies the day characterized by the highest amount of anomalous values with 

Fig. 18  Visualization of frequencies for each pollen family

Table 6  Anomaly weight for 
each concentration value of the 
precipitation attribute

Rainfall intensity mm/6 h mm/12 h mm/24 h

Weak 0.00 0.00 0.00
Moderate 0.34 0.34 0.34
Strong 0.67 0.67 0.67
Very strong 1.00 1.00 1.00
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respect to other days, considering the descriptive features. The day identified is 4 April 
2014, as indicated in Fig. 19.

Our objective is to understand whether the feature ranking returned by our method 
is consistent with the anomalous values recorded during that day. Table 7 describes the 
most anomalous instance in terms of anomaly level among the anomalous instances 
detected by the proposed method.

The features at the top in the feature ranking describe pollen families which, as 
expected, are characterized by high concentrations during the spring season. This 
approach helps us to discriminate among different anomalous scenarios, and devoting 
more attention to more anomalous situations. We can observe that the computation of 
the anomaly level assumes independence among features and, as mentioned above, the 
existence of a small set of reference tables for the features under analysis.

Fig. 19  Anomaly level curves 
for each considered day. Each 
curve represents a daily instance 
detected as anomaly, described 
through the top-ranked features 
and the anomaly level calculated 
from the ground truth

Table 7  Feature ranking for the most anomalous instance ( a_lv@10 = 8.01)

Top ranked position Feature name Anomaly weight Anomaly level

1 Urticaceae 1.00 a_lv@1 = 1.00
2 Salix 0.67 a_lv@2 = 1.67
3 Cupressaceae/Taxaceae 1.00 a_lv@3 = 2.67
4 Fagaceae 1.00 a_lv@4 = 3.67
5 Quercus 1.00 a_lv@5 = 4.67
6 Pinaceae 0.67 a_lv@6 = 5.34
7 Corylaceae 0.67 a_lv@7 = 6.01
8 Platanaceae 1.00 a_lv@8 = 7.01
9 Betulaceae 0.67 a_lv@9 = 7.68
10 Fagus Sylvatica 0.33 a_lv@10 = 8.01
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Figures  20, 21, 22, and 23 show the annual concentrations of pollens Urticaceae, 
Cupressaceae / Taxaceae, Corylaceae, and Betulaceae relative to the year 2014. These 
plots have been acquired from the ARPA report on allergenic fungal pollens and spores of 
Veneto, the Italian region10. From these results, it is clearly visible that high concentrations 
of the described pollens occurred simultaneously on 4 April 2014. Furthermore, consider-
ing that the plots are represented using different scales, the feature ranking associated with 
4 April 2014 appears consistent with the trend assumed by the plots in that period. Overall, 
these results show that our method is able to discriminate anomalies based on their level of 
severity, and to present them in a visual and understandable manner for end users.

Author contributions The authors contributed equally to this work.

Funding Open access funding provided by Università degli Studi di Bari Aldo Moro within the CRUI-
CARE Agreement. The authors acknowledge the support of the European Commission through the H2020 
project “IMPETUS-Intelligent Management of Processes, Ethics and Technology for Urban Safety” (Grant 
n. 883286). Dr. Paolo Mignone acknowledges the support of Apulia Region through the project “Metodi per 
l’ottimizzazione delle reti di distribuzione di energia e per la pianificazione di interventi manutentivi ed evol-
utivi” (CUP H94I20000410008, Grant n. 7EDD092A) in the context of “Research for Innovation—REFIN”.

Data availability Data and materials used in this work are available at: http:// www. di. uniba. it/ ~migno ne/ 
syste ms/ distr ibuted_ expla inable_ anoma ly_ detec tion/ index. html.

Code availability The software implemented and used in this work is available at: http:// www. di. uniba. it/ 
~migno ne/ syste ms/ distr ibuted_ expla inable_ anoma ly_ detec tion/ Softw are. 7z.

Declarations 

 Conflict of interest The authors declare that they have no conflict of interests.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Chandola, V., Banerjee, A., & Kumar, V. (2007). Outlier detection: A survey. ACM Computing Surveys, 14, 
15.

10 https:// www. arpa. veneto. it/ temi- ambie ntali/ polli ni/ file-e- alleg ati/ rappo rto- 2014/ RAPPO RTO_ Polli ni_ 
2014. pdf

http://www.di.uniba.it/%7emignone/systems/distributed_explainable_anomaly_detection/index.html
http://www.di.uniba.it/%7emignone/systems/distributed_explainable_anomaly_detection/index.html
http://www.di.uniba.it/%7emignone/systems/distributed_explainable_anomaly_detection/Software.7z
http://www.di.uniba.it/%7emignone/systems/distributed_explainable_anomaly_detection/Software.7z
http://creativecommons.org/licenses/by/4.0/
https://www.arpa.veneto.it/temi-ambientali/pollini/file-e-allegati/rapporto-2014/RAPPORTO_Pollini_2014.pdf
https://www.arpa.veneto.it/temi-ambientali/pollini/file-e-allegati/rapporto-2014/RAPPORTO_Pollini_2014.pdf


Machine Learning 

1 3

Urvoy, M., & Autrusseau, F. Application of grubbs’ test for outliers to the detection of watermarks. In 
Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security (pp. 49–60) 
(2014).

Rousseeuw, P. J., & Leroy, A. M. Robust regression and outlier detection (2005).
McCallum, A., Freitag, D., & Pereira, F. C. (2000). Maximum entropy Markov models for information 

extraction and segmentation. In Icml (Vol. 17, pp. 591–598).
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., & Stolfo, S. (2002). A geometric framework for unsupervised 

anomaly detection: Detecting intrusions in unlabeled data. Applications of data mining in computer 
security (pp. 77–101). Springer.

Duda, R. O., & Hart, P. E. (2006). Pattern classification. John Wiley & Sons.
Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Com-

putation, 6(2), 181–214.
Hofmeyr, S. A., Forrest, S., & Somayaji, A. (1998). Intrusion detection using sequences of system calls. 

Journal of Computer Security, 6(3), 151–180.
Javitz, H. S., & Valdes, A. (1991). The SRI IDES statistical anomaly detector. In IEEE Symposium on Secu-

rity and Privacy (pp. 316–326).
Desforges, M., Jacob, P., & Cooper, J. (1998). Applications of probability density estimation to the detection 

of abnormal conditions in engineering. Proceedings of the Institution of Mechanical Engineers, Part 
C: Journal of Mechanical Engineering Science, 212(8), 687–703.

Lee, W., & Xiang, D. (2001). Information-theoretic measures for anomaly detection. In Proceedings 2001 
IEEE Symposium on Security and Privacy, S &P 2001 (pp. 130–143).

Arning, A., Agrawal, R., & Raghavan, P. (1996). A linear method for deviation detection in large databases. 
In: A. Press (Ed.), KDD’96 (pp. 164–169).

Li, M., & Vitányi, P. M. B. (1993). An introduction to Kolmogorov complexity and its applications. Springer.
He, Z., Deng, S., & Xu, X. (2005). An optimization model for outlier detection in categorical data. In 

D.-S. Huang, X.-P. Zhang, & G.-B. Huang (Eds.), Advances in intelligent computing (pp. 400–409). 
Springer.

Noble, C. C., & Cook, D. J. (2003). Graph-based anomaly detection. In Proceedings of the Ninth ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining. KDD ’03 (pp. 631–636). 
Association for Computing Machinery. https:// doi. org/ 10. 1145/ 956750. 956831

Hale, W. T., Wilhelm, M., Palmer, K. A., Stuber, M. D., & Bollas, G. M. (2019). Semi-infinite programming 
for global guarantees of robust fault detection and isolation in safety-critical systems. Computers & 
Chemical Engineering, 126, 218–230. https:// doi. org/ 10. 1016/j. compc hemeng. 2019. 04. 007

Lebichot, B., Paldino, G. M., Siblini, W., He-Guelton, L., Oblé, F., & Bontempi, G. (2021). Incremental 
learning strategies for credit cards fraud detection. International Journal of Data Science and Analyt-
ics, 12(2), 165–174. https:// doi. org/ 10. 1007/ s41060- 021- 00258-0

Aldweesh, A., Derhab, A., & Emam, A. Z. (2020). Deep learning approaches for anomaly-based intrusion 
detection systems: A survey, taxonomy, and open issues. Knowledge-Based System, 189, 105124. 
https:// doi. org/ 10. 1016/j. knosys. 2019. 105124

Zhang, M., Li, T., Yu, Y., Li, Y., Hui, P., & Zheng, Y. (2022). Urban anomaly analytics: Description, detec-
tion, and prediction. IEEE Transactions on Big Data, 8(3), 809–826. https:// doi. org/ 10. 1109/ TBDATA. 
2020. 29910 08

Kou, Y., Lu, C. T., & Chen, D. (2006). Spatial weighted outlier detection. In Proceedings of the 2006 SIAM 
International Conference on Data Mining 2006 (pp. 614–618). SIAM.

Shekhar, S., Lu, C. T., & Zhang, P. (2001). Detecting graph-based spatial outliers: Algorithms and applica-
tions (a summary of results). In ACM SIGKDD (pp. 371–376).

Corizzo, R., Ceci, M., Pio, G., Mignone, P., & Japkowicz, N. (2021). Spatially-aware autoencoders for 
detecting contextual anomalies in geo-distributed data. In C. Soares & L. Torgo (Eds.), Discovery sci-
ence (pp. 461–471). Springer.

Wang, G., Zhan, Y., Wang, X., Song, M., & Nahrstedt, K. (2022). Hierarchical semi-supervised contrastive 
learning for contamination-resistant anomaly detection (Vol. 13685, pp. 110–128). https:// doi. org/ 10. 
1007/ 978-3- 031- 19806-9_7

Thudumu, S., Branch, P., Jin, J., & Singh, J. J. (2020). A comprehensive survey of anomaly detection 
techniques for high dimensional big data. Journal of Big Data, 7(1), 42. https:// doi. org/ 10. 1186/ 
s40537- 020- 00320-x

Reddy Shabad, P. K., Alrashide, A., & Mohammed, O. (2021). Anomaly detection in smart grids using 
machine learning. In IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Soci-
ety (pp. 1–8). https:// doi. org/ 10. 1109/ IECON 48115. 2021. 95898 51

Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., & Platt, J. C. Support vector method for 
novelty detection. In Advances in neural information processing systems (pp. 582–588) (2000)

https://doi.org/10.1145/956750.956831
https://doi.org/10.1016/j.compchemeng.2019.04.007
https://doi.org/10.1007/s41060-021-00258-0
https://doi.org/10.1016/j.knosys.2019.105124
https://doi.org/10.1109/TBDATA.2020.2991008
https://doi.org/10.1109/TBDATA.2020.2991008
https://doi.org/10.1007/978-3-031-19806-9_7
https://doi.org/10.1007/978-3-031-19806-9_7
https://doi.org/10.1186/s40537-020-00320-x
https://doi.org/10.1186/s40537-020-00320-x
https://doi.org/10.1109/IECON48115.2021.9589851


 Machine Learning

1 3

Liu, F. T., Ting, K. M., & Zhou, Z. H. Isolation forest. In 2008 Eighth IEEE International Conference on 
Data Mining pp. 413–422. IEEE.

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). 
Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21.

Sakurada, M., & Yairi, T. (2014). Anomaly detection using autoencoders with nonlinear dimensionality 
reduction. In MLSDA 2014 (pp. 4–11).

Zhou, C., & Paffenroth, R. C. (2017). Anomaly detection with robust deep autoencoders. In ACM SIGKDD 
2017 (pp. 665–674).

Chong, Y. S., & Tay, Y. H. (2017). Abnormal event detection in videos using spatiotemporal autoencoder. In 
International Symposium on Neural Networks (pp. 189–196). Springer.

Kriegel, H., Schubert, M., & Zimek, A. (2008). Angle-based outlier detection in high-dimensional data (pp. 
444–452). https:// doi. org/ 10. 1145/ 14018 90. 14019 46

Pham, N., & Pagh, R. (2012). A near-linear time approximation algorithm for angle-based outlier detection 
in high-dimensional data (pp. 877–885). https:// doi. org/ 10. 1145/ 23395 30. 23396 69

Jahromi, A. F., Hajiloei, M., Dehghani, Y., & Lahoninezhad, S. (2022). Improved subspace-based and 
angle-based outlier detections for fuzzy datasets with a real case study. Journal of Intelligent & Fuzzy 
Systems, 42(6), 5471–5481. https:// doi. org/ 10. 3233/ JIFS- 211955

Li, Z., Zhao, Y., Botta, N., Ionescu, C., & Hu, X. (2020). Copod: Copula-based outlier detection. In 2020 
IEEE International Conference on Data Mining (ICDM) (pp. 1118–1123). https:// doi. org/ 10. 1109/ 
ICDM5 0108. 2020. 00135

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480. https:// doi. org/ 
10. 1109/5. 58325

Qu, X., Yang, L., Guo, K., Ma, L., Sun, M., Ke, M., & Li, M. (2021). A survey on the development of 
self-organizing maps for unsupervised intrusion detection. Mobile Networks and Applications, 26(2), 
808–829.

Malondkar, A., Corizzo, R., Kiringa, I., Ceci, M., & Japkowicz, N. (2018). Spark-GHSOM: Growing hier-
archical self-organizing map for large scale mixed attribute datasets. Information Sciences. https:// doi. 
org/ 10. 1016/j. ins. 2018. 12. 007

Anscombe, F. J. (1960). Rejection of outliers. Technometrics, 2(2), 123–146.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys 

(CSUR). https:// doi. org/ 10. 1145/ 15418 80. 15418 82
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 

1–127. https:// doi. org/ 10. 1561/ 22000 00006
Kashyap, R. V. (2022). A survey of deep learning optimizers-first and second order methods. CoRRarXiv: 

2211. 15596
Kingma, D. P., & Ba, J. Adam: A method for stochastic optimization. In Y. Bengio, Y. LeCun (Eds.), 3rd 

International Conference on Learning Representations, ICLR 2015, 7–9 May, 2015, Conference Track 
Proceedings.

Draxler, F., Veschgini, K., Salmhofer, M., & Hamprecht, F. A. Essentially no barriers in neural network 
energy landscape. In J. G. Dy, A. Krause (Eds.), Proceedings of the 35th International Conference on 
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July, 2018. Proceed-
ings of Machine Learning Research. PMLR.

Muñoz, A., & Muruzábal, J. (1998). Self-organizing maps for outlier detection. Neurocomputing, 18(1), 
33–60. https:// doi. org/ 10. 1016/ S0925- 2312(97) 00068-4

Palomo, E. J., Ortiz-de-Lazcano-Lobato, J. M., Domínguez, E., & Luque, R. M. (2010). An anomaly detec-
tion system using a ghsom-1. In The 2010 International Joint Conference on Neural Networks (IJCNN) 
(pp. 1–7). https:// doi. org/ 10. 1109/ IJCNN. 2010. 55969 67

Ippoliti, D., & Zhou, X. (2012). A-ghsom: An adaptive growing hierarchical self organizing map for net-
work anomaly detection. Journal of Parallel and Distributed Computing, 72(12), 1576–1590. https:// 
doi. org/ 10. 1016/j. jpdc. 2012. 09. 004

Borges Hink, R. C., Beaver, J. M., Buckner, M. A., Morris, T., Adhikari, U., & Pan, S. (2014). Machine 
learning for power system disturbance and cyber-attack discrimination. In 2014 7th International Sym-
posium on Resilient Control Systems (ISRCS) (pp. 1–8). https:// doi. org/ 10. 1109/ ISRCS. 2014. 69000 95

Pan, S., Morris, T., & Adhikari, U. (2015). Classification of disturbances and cyber-attacks in power sys-
tems using heterogeneous time-synchronized data. IEEE Transactions on Industrial Informatics, 11(3), 
650–662. https:// doi. org/ 10. 1109/ TII. 2015. 24209 51

Pan, S., Morris, T., & Adhikari, U. (2015). Developing a hybrid intrusion detection system using data min-
ing for power systems. IEEE Transactions on Smart Grid, 6(6), 3104–3113. https:// doi. org/ 10. 1109/ 
TSG. 2015. 24097 75

https://doi.org/10.1145/1401890.1401946
https://doi.org/10.1145/2339530.2339669
https://doi.org/10.3233/JIFS-211955
https://doi.org/10.1109/ICDM50108.2020.00135
https://doi.org/10.1109/ICDM50108.2020.00135
https://doi.org/10.1109/5.58325
https://doi.org/10.1109/5.58325
https://doi.org/10.1016/j.ins.2018.12.007
https://doi.org/10.1016/j.ins.2018.12.007
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1561/2200000006
http://arxiv.org/abs/2211.15596
http://arxiv.org/abs/2211.15596
https://doi.org/10.1016/S0925-2312(97)00068-4
https://doi.org/10.1109/IJCNN.2010.5596967
https://doi.org/10.1016/j.jpdc.2012.09.004
https://doi.org/10.1016/j.jpdc.2012.09.004
https://doi.org/10.1109/ISRCS.2014.6900095
https://doi.org/10.1109/TII.2015.2420951
https://doi.org/10.1109/TSG.2015.2409775
https://doi.org/10.1109/TSG.2015.2409775


Machine Learning 

1 3

Pan, S., Morris, T. H., & Adhikari, U. (2015). A specification-based intrusion detection framework for 
cyber-physical environment in electric power system. International Journal of Network Security, 17, 
174–188.

Shin, H. K., Lee, W., Yun, J. H., & Kim, H. (2020). HAI 1.0: HIL-based augmented ics security dataset. 
USENIX Association. https:// doi. org/ 10. 5555/ 34857 54. 34857 55

Himeur, Y., Alsalemi, A., Bensaali, F., & Amira, A. (2020). Building power consumption datasets: Survey, 
taxonomy and future directions. Energy and Buildings, 227, 110404. https:// doi. org/ 10. 1016/j. enbui ld. 
2020. 110404

Su, B., Zhou, Z., & Chen, H. (2023). Pvel-ad: A large-scale open-world dataset for photovoltaic cell anom-
aly detection. IEEE Transactions on Industrial Informatics, 19(1), 404–413. https:// doi. org/ 10. 1109/ 
TII. 2022. 31628 46

De Benedetti, M., Leonardi, F., Messina, F., Santoro, C., & Vasilakos, A. (2018). Anomaly detection and 
predictive maintenance for photovoltaic systems. Neurocomputing, 310, 59–68. https:// doi. org/ 10. 
1016/j. neucom. 2018. 05. 017

Malki, A., Atlam, E.-S., & Gad, I. (2022). Machine learning approach of detecting anomalies and forecast-
ing time-series of IoT devices. Alexandria Engineering Journal, 61(11), 8973–8986. https:// doi. org/ 10. 
1016/j. aej. 2022. 02. 038

Takiddin, A., Ismail, M., Zafar, U., & Serpedin, E. (2022). Deep autoencoder-based anomaly detection of 
electricity theft cyberattacks in smart grids. IEEE Systems Journal, 16(3), 4106–4117. https:// doi. org/ 
10. 1109/ JSYST. 2021. 31366 83

Ceci, M., Corizzo, R., Japkowicz, N., Mignone, P., & Pio, G. (2020). Echad: Embedding-based change 
detection from multivariate time series in smart grids. IEEE Access, 8, 156053–156066.

Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., & Amira, A. (2021). Artificial intelligence based 
anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. 
Applied Energy, 287, 116601. https:// doi. org/ 10. 1016/j. apene rgy. 2021. 116601

Riveiro, M., Lebram, M., & Elmer, M. (2017). Anomaly detection for road traffic: A visual analytics frame-
work. IEEE Transactions on Intelligent Transportation Systems, 18(8), 2260–2270. https:// doi. org/ 10. 
1109/ TITS. 2017. 26757 10

Kraiman, J. B., Arouh, S. L., & Webb, M. L. (2002). Automated anomaly detection processor. https:// doi. 
org/ 10. 1117/ 12. 474940

Mignone, P., Malerba, D., & Ceci, M. (2022). Anomaly detection for public transport and air pollution anal-
ysis. In 2022 IEEE International Conference on Big Data (Big Data) (pp. 2867–2874). https:// doi. org/ 
10. 1109/ BigDa ta556 60. 2022. 10020 470

Sofuoglu, S. E., & Aviyente, S. (2022). Gloss: Tensor-based anomaly detection in spatiotemporal urban traf-
fic data. Signal Processing, 192, 108370. https:// doi. org/ 10. 1016/j. sigpro. 2021. 108370

Zhang, M., Li, T., Shi, H., Li, Y., & Hui, P. (2019). A decomposition approach for urban anomaly detection 
across spatiotemporal data (pp. 6043–6049). https:// doi. org/ 10. 24963/ ijcai. 2019/ 837

Stojanova, D., Ceci, M., Appice, A., & Džeroski, S. (2012). Network regression with predictive clus-
tering trees. Data Mining and Knowledge Discovery, 25(2), 378–413. https:// doi. org/ 10. 1007/ 
s10618- 012- 0278-6

Tama, B. A., Nkenyereye, L., Islam, S. M. R., & Kwak, K.-S. (2020). An enhanced anomaly detection in 
web traffic using a stack of classifier ensemble. IEEE Access, 8, 24120–24134. https:// doi. org/ 10. 1109/ 
ACCESS. 2020. 29694 28

Duan, X., Chen, N., & Xie, Y. (2019). Intelligent detection of large-scale KPI streams anomaly based on 
transfer learning. In H. Jin, X. Lin, X. Cheng, X. Shi, N. Xiao, & Y. Huang (Eds.), Big data (pp. 
366–379). Springer.

Zhang, S., Zhong, Z., Li, D., Fan, Q., Sun, Y., Zhu, M., Zhang, Y., Pei, D., Sun, J., Liu, Y., Yang, H., & 
Zou, Y. (2022). Efficient KPI anomaly detection through transfer learning for large-scale web services. 
IEEE Journal on Selected Areas in Communications, 40(8), 2440–2455. https:// doi. org/ 10. 1109/ JSAC. 
2022. 31807 85

Xu, H., Chen, W., Zhao, N., Li, Z., Bu, J., Li, Z., Liu, Y., Zhao, Y., Pei, D., Feng, Y., Chen, J., Wang, Z., & 
Qiao, H. (2018). Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in 
web applications. In Proceedings of the 2018 World Wide Web Conference. WWW ’18 (pp. 187–196). 
International World Wide Web Conferences Steering Committee. https:// doi. org/ 10. 1145/ 31788 76. 
31859 96

Hagemann, T., & Katsarou, K. (2020). Reconstruction-based anomaly detection for the cloud: A compari-
son on the yahoo! webscope s5 dataset. In Proceedings of the 2020 4th International Conference on 
Cloud and Big Data Computing. ICCBDC ’20 (pp. 68–75). Association for Computing Machinery. 
https:// doi. org/ 10. 1145/ 34169 21. 34169 34

Yahoo! webscope dataset ydata-labeled-time-series-anomalies-v1_0. https:// resea rch. yahoo. com

https://doi.org/10.5555/3485754.3485755
https://doi.org/10.1016/j.enbuild.2020.110404
https://doi.org/10.1016/j.enbuild.2020.110404
https://doi.org/10.1109/TII.2022.3162846
https://doi.org/10.1109/TII.2022.3162846
https://doi.org/10.1016/j.neucom.2018.05.017
https://doi.org/10.1016/j.neucom.2018.05.017
https://doi.org/10.1016/j.aej.2022.02.038
https://doi.org/10.1016/j.aej.2022.02.038
https://doi.org/10.1109/JSYST.2021.3136683
https://doi.org/10.1109/JSYST.2021.3136683
https://doi.org/10.1016/j.apenergy.2021.116601
https://doi.org/10.1109/TITS.2017.2675710
https://doi.org/10.1109/TITS.2017.2675710
https://doi.org/10.1117/12.474940
https://doi.org/10.1117/12.474940
https://doi.org/10.1109/BigData55660.2022.10020470
https://doi.org/10.1109/BigData55660.2022.10020470
https://doi.org/10.1016/j.sigpro.2021.108370
https://doi.org/10.24963/ijcai.2019/837
https://doi.org/10.1007/s10618-012-0278-6
https://doi.org/10.1007/s10618-012-0278-6
https://doi.org/10.1109/ACCESS.2020.2969428
https://doi.org/10.1109/ACCESS.2020.2969428
https://doi.org/10.1109/JSAC.2022.3180785
https://doi.org/10.1109/JSAC.2022.3180785
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1145/3416921.3416934
https://research.yahoo.com


 Machine Learning

1 3

Dittenbach, M., Merkl, D., & Rauber, A. (2000). The growing hierarchical self-organizing map. In Proceed-
ings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neu-
ral Computing: New Challenges and Perspectives for the New Millennium (Vol. 6, pp. 15–19). IEEE.

Chan, A., & Pampalk, E. (2002). Growing hierarchical self organising map (ghsom) toolbox: Visualisations 
and enhancements. In Proceedings of the 9th International Conference on Neural Information Pro-
cessing, 2002. ICONIP ’02 (Vol. 5, pp. 2537–25415). https:// doi. org/ 10. 1109/ ICONIP. 2002. 12019 52

Gama, J. (2010). Knowledge discovery from data streams.
Beggel, L., Pfeiffer, M., & Bischl, B. Robust anomaly detection in images using adversarial autoencoders. In 

ECMLPKDD 2019 (pp. 206–222). Springer.
Zhao, Y., Nasrullah, Z., & Li, Z. (2019). Pyod: A python toolbox for scalable outlier detection. Journal of 

Machine Learning Research, 20(96), 1–7.
Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures (pp. 

437–478).
Ceci, M., Corizzo, R., Fumarola, F., Malerba, D., & Rashkovska, A. (2016). Predictive modeling of pv 

energy production: How to set up the learning task for a better prediction? IEEE Transactions on 
Industrial Informatics, 13(3), 956–966.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Paolo Mignone1,2  · Roberto Corizzo1,3  · Michelangelo Ceci1,2,4 

 * Paolo Mignone 
 paolo.mignone@uniba.it

 Roberto Corizzo 
 rcorizzo@american.edu

 Michelangelo Ceci 
 michelangelo.ceci@uniba.it

1 Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
2 Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Rome, Italy
3 Department of Computer Science, American University, Washington, DC 20016, USA
4 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia

https://doi.org/10.1109/ICONIP.2002.1201952
http://orcid.org/0000-0002-8641-7880
http://orcid.org/0000-0001-8366-6059
http://orcid.org/0000-0002-6690-7583

	Distributed and explainable GHSOM for anomaly detection in sensor networks
	Abstract
	1 Introduction
	2 Background
	2.1 Statistical and information-theoretic methods
	2.2 Anomaly detection with learned models
	2.3 Anomaly detection from sensor networks
	2.3.1 Anomaly detection in electrical networks
	2.3.2 Urban anomaly detection
	2.3.3 Anomaly detection in the use of web services


	3 Proposed method
	3.1 Detailed training process
	3.2 Multi-density anomaly detection
	3.3 Threshold autotuning for anomaly detection
	3.4 Explainable anomaly detection

	4 Experiments
	4.1 Quantitative results
	4.1.1 Energy results
	4.1.2 Vehicular traffic results
	4.1.3 Oslo pedestrians flow analysis
	4.1.4 Yahoo! web services

	4.2 Quantitative analysis

	5 Conclusion and future works
	Appendix 1. Scalability analysis
	Appendix 2. Qualitative analysis
	2.1 Qualitative analysis

	References


