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Abstract
In recent years, reinforcement learning (RL) systems have shown impressive performance 
and remarkable achievements. Many achievements can be attributed to combining RL 
with deep learning. However, those systems lack explainability, which refers to our under-
standing of the system’s decision-making process. In response to this challenge, the new 
explainable RL (XRL) field has emerged and grown rapidly to help us understand RL sys-
tems. This systematic literature review aims to give a unified view of the field by reviewing 
ten existing XRL literature reviews and 189 XRL studies from the past five years. Further-
more, we seek to organize these studies into a new taxonomy, discuss each area in detail, 
and draw connections between methods and stakeholder questions (e.g., “how can I get 
the agent to do _?”). Finally, we look at the research trends in XRL, recommend XRL 
methods, and present some exciting research directions for future research. We hope stake-
holders, such as RL researchers and practitioners, will utilize this literature review as a 
comprehensive resource to overview existing state-of-the-art XRL methods. Additionally, 
we strive to help find research gaps and quickly identify methods that answer stakeholder 
questions.

Keywords  Reinforcement learning · Explainable artificial intelligence · Interpretability · 
Explainability · Explanation

1  Introduction

We have recently seen astounding achievements by reinforcement learning (RL) agents. In 
games like Go, Chess, Shogi, and Atari, RL agents have outperformed human players (Sil-
ver et al., 2016, 2017; Schrittwieser et al., 2020). While in real-time strategy games like 
StarCraft II, the RL agent AlphaStar ranks in the top 0.2% of human players as of August 
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2019 (Vinyals et al., 2019a, 2019b). In poker, RL agents have beaten human profession-
als (Brown & Sandholm, 2017). Many of those advancements were achieved by leveraging 
neural networks (NNs) by the RL research community (Mnih et al., 2013, 2015).

Although the research community has achieved many incredible feats, there are still 
unsolved challenges. One of these challenges is the incomprehensibility of the RL agents. 
In high-stake domains like healthcare, autonomous driving, criminal justice, and finance, 
using uninterpretable artificial intelligence (AI) systems is unacceptable. For example, 
Lapuschkin et al. (2019) demonstrate that a classifier trained on the PASCAL visual object 
classes dataset  (Everingham et  al., 2010) could use a watermark on an image to decide 
the image’s label. In another example, the correctional offender management profiling for 
alternative sanctions system used in the United States to assess potential recidivism risk 
has been accused by ProPublica of being racially biased (Angwin et al., 2016; Larson et al., 
2016). When it comes to laws, the launch of the European Union’s General Data Protec-
tion Regulation introduces the right to explanations of all automated decisions for indi-
viduals (Sovrano et al., 2020). All these examples demonstrate problems with the use of AI 
systems, and as a result, using RL and machine learning (ML) in general is getting more 
complicated. Many of these problems become even more problematic when using NNs. 
For example, NNs’ predictions can change based on modifications in images imperceptible 
by human eyes (Szegedy et al., 2014). Furthermore, Nguyen et al. (2015) demonstrate that 
NNs can classify humanly unrecognizable observations wrongly with high confidence.

These aforementioned examples of difficulties have caused a renewed interest in explain-
able artificial intelligence (XAI) (Guidotti et al., 2019; Arrieta et al., 2020; Burkart & Huber, 
2021; Ras et al., 2022; Minh et al., 2022). Likewise, this has resulted in a new emerging sub-
field, explainable reinforcement learning (XRL). XRL is a research field focusing specifically 
on explaining RL agents, whereas XAI focuses on many forms of learning like unsupervised 
and supervised learning. In supervised learning, we assume observations are independent 
and identically distributed. Further, the goal is empirical risk minimization with immedi-
ate response. In contrast, the agent in RL learns to maximize the return with rewards as the 
responses, which are not necessarily provided immediately. Hence, the agent needs to consider 
the short-term and long-term consequences in addition to the immediate response when learn-
ing to make decisions. Accordingly, we must develop new methods to explain these RL spe-
cific characteristics that explanation methods of supervised learning cannot explain.

Researchers have published numerous literature reviews on XRL responding to new chal-
lenges explaining RL agents. However, because of the fast development, many recent stud-
ies on XRL are not covered in these reviews. Moreover, a unified view of the field that 
structures and organizes these XRL reviews is missing. This systematic literature review 
provides a unified view of the XRL field. Furthermore, we aim to help stakeholders (e.g., 
RL researchers and practitioners) become acquainted with the state-of-the-art XRL methods 
and find research gaps. Lastly, we seek to help stakeholders find a suitable method to answer 
their questions. For example, which method should the stakeholder apply if the stakeholder 
wants to know, “how can I get the agent to do _?” We achieve these goals by first finding 
XRL studies through a systematic search and selection process. Afterward, we summarize 
existing literature reviews, structure the XRL studies into a new taxonomy, and outline what 
kind of stakeholder questions they can answer. Next, we provide a detailed view of the state-
of-the-art XRL methods by closely examining the taxonomy and its methods. Finally, we 
look at the XRL research trends, recommend XRL methods for different stakeholder ques-
tions, and propose future directions for XRL based on the reviewed studies.

This systematic literature review is structured as follows. First, we describe the research 
method used to conduct this systematic literature review in Sect. 2. Next, Sect. 3 describes 
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the background on RL and XAI needed to understand this systematic literature review. In 
addition, in the same section, we outline some related research fields. Then, Sect. 4 sum-
marizes existing XRL literature reviews and shows how our systematic literature review 
differs. Section 5 overviews XRL by providing a taxonomy that categorizes the different 
XRL methods. In the same section, we show different explanation types and RL explain-
ability characteristics, which describe stakeholder questions. Afterward, Sects. 6, 7 and 8 
review XRL methods by following the taxonomy. Based on the reviewed methods, we look 
at XRL trends in Sect. 9.1, recommend XRL methods in Sect. 9.2, and discuss future direc-
tions for the XRL research field in Sect. 9.3. We conclude this systematic literature review 
in Sect. 10. Finally, Section Appendix A gives a concise summary of reviewed methods 
with various details. To summarize, our contributions are:

•	 A summary of existing XRL reviews and their contributions.
•	 A new taxonomy reflecting the large body of XRL studies, divided into (1) interpret-

able agent, (2) intrinsic explainability, and (3) post hoc explainability. Furthermore, the 
taxonomy organizes studies based on how explanations are conveyed: (1) via genera-
tion, (2) via representation, or (3) via inspection.

•	 An overview of which explanations types and RL explainability characteristics the dif-
ferent taxonomy categories provide.

•	 A comprehensive look at 189 XRL studies found using a systematic approach with 
a concise overview in Section Appendix A. For each study, the appendix details the 
scope, the focus, experimentation environment(s) or task(s) (or both), if it performs a 
user study, and if the code has been open sourced.

•	 An overview of the trends in XRL, recommendation for XRL methods, and future 
directions to address current challenges based on the reviewed studies.

2 � Research method

This section outlines our systematic approach to identifying, evaluating, and reporting 
studies on XRL methods. To avoid bias in literature selection and make it reproducible and 
complete, we chose to do the review systematically. This systematic literature review was 
carried out by partially following the guidelines by Kitchenham et al. (2020). We describe 
the research questions in Sect. 2.1. Section 2.2 describes the study selection process with 
the overall process depicted in Fig. 1.

2.1 � Research questions

This systematic literature review aims to answer the following research questions:

•	 What are the existing XRL literature reviews and their contributions?
•	 What are the state-of-the-art XRL methods, and how can we organize them?
•	 What kind of stakeholder questions can these methods answer (e.g., “how does the 

agent work?” and “why did the agent do _?”)?
•	 How are the methods evaluated (i.e., were user studies performed? and in what domain 

or task (or both) do they evaluate their method?)?
•	 What are the research trends in XRL?
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2.2 � Study selection process

We started by finding related work (see Sect. 4) and used those as a basis for constructing 
our search string. Next, we created the following search string: (“reinforcement learning” 
AND (“explanation” OR “explainability” OR “explainable” OR “XAI” OR “explainable 
AI” OR “interpretable” OR “transparency” OR “transparent” OR “understandable” OR 
“interpret” OR “black box”)) OR “XRL”.

Using the search string, we searched the title and abstract (when available) in the fol-
lowing electronic databases: (1) ACM Digit​al Libra​ry, (2) DBLP, (3) IEEE Xplore, (4) 
Scien​ceDir​ect, and (5) Web of Scien​ce. We removed the duplicates automatically using 

Fig. 1   The study selection process was performed via three steps, identification, screening, and inclusion. 
In the identification step, we searched five different databases and removed duplicates automatically. Next, 
we screened the studies found using a two-stage process and removed studies using pre-defined selec-
tion criteria. Finally, we added relevant studies and performed forward and backward searches on them to 
add additional studies. The figure structure is adapted from the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses statement (Page et al., 2021)

https://dl.acm.org/
https://dblp.uni-trier.de/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com/
https://www.webofscience.com/


359Machine Learning (2024) 113:355–441	

1 3

Paper​pile (LLC, Cambr​idge, MA) since the databases overlap. Our search is limited 
to studies published after 2017 and before July 2022, with few exceptions. We chose 
2017 since not many XRL studies existed before this year, and other reviews already 
cover them. Moreover, 2017 was the year Defense Advanced Research Projects Agency 
(DARPA) launched its XAI program (Gunning & Aha, 2019).

The author conducted the selection process by following the method Selection pro-
cess for lone researchers (Kitchenham et al., 2020, Page 318). Specifically, we applied 
the test-retest approach, where studies are reassessed later to check if they still fit the 
research questions and selection criteria. When uncertain, studies were discussed with a 
third party. To select studies, we used the following selection criteria: 

(1)	 The study focuses on explainability in RL. Specifically, we omit studies where explain-
ability is the by-product and not driven by it.

(2)	 The study does not focus on the multi-agent RL.
(3)	 The study is peer-reviewed.
(4)	 The study is in English.

Studies were selected in two stages using these selection criteria. In the first stage, 
we screened the title and abstract for relevance. After the first stage, we screened the 
full text to decide on inclusion based on the same selection criteria. We included 136 
studies after two passes of screening. By forward and backward searching those 136 
included studies, we found 53 additional relevant studies. In total, there are 189 relevant 
studies on the XRL topic included. Figure  2 depicts the studies included distributed 
by year. The number of studies included suggests increasing interest in XRL. The first 
study selection process on October 13, 2021, found 121 relevant studies. However, to 
keep this review updated on state-of-the-art XRL methods and reviews, the entire study 
selection process was reperformed on July 24, 2022, resulting in 183 studies. As the 
term “XRL” was not included in the original searches, a new search on the term “XRL” 
was performed on July 6, 2023, resulting in 189 total studies.

3 � Background

This section provides the necessary background to understand the literature review’s con-
tent. We give a general overview of RL in Sect. 3.1 and XAI in Sect. 3.2. Finally, we over-
view some research fields related to XRL in Sect. 3.3.

Fig. 2   The number of studies reviewed, distributed by the year published. 1The number of studies for 2022 
does not include the entire year

https://paperpile.com/
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3.1 � Reinforcement learning

RL (Sutton & Barto, 2018) is a subfield of ML and is also known by its less popular names: 
approximate dynamic programming (DP) and neuro-DP (Bertsekas & Tsitsiklis, 1996). DP 
in the name signifies the importance of DP (Bellman, 1952, 1966) as the foundation of RL. 
RL is a framework for constructing intelligent agents that learn to make decisions through 
interactions with the environment rather than via instructions. In RL, the feedback on deci-
sions is provided through rewards, which in psychology is known as reinforcement. The 
feedback differs from supervised learning because the feedback is not necessarily being 
given on every decision made by an agent. As a result, decisions in RL have short-term and 
long-term consequences in addition to immediate consequences. Moreover, in supervised 
learning, the observations are independent and identically distributed, which is not true 
for RL. The RL framework is built on the reward hypothesis that states we can formu-
late the learning goal as maximizing the expected cumulative reward, thus, focusing on a 
sum instead of a single quantity. The expected cumulative reward is known as the expected 
return.

This section provides the RL background needed to understand the rest of this review. 
First, we formally define the Markov decision process (MDP) in Sect.  3.1.1. Then, in 
Sect. 3.1.2, the RL problem is defined, which is the goal of RL.

3.1.1 � Markov decision process

An MDP formalizes the sequential decision-making problem mathematically. In an MDP, 
the actions affect each other and the feedback is given via rewards that are potentially not 
supplied for every action taken. As a result, the agent in the decision-making problem 
must consider both immediate and future rewards. Formally, an MDP is defined as a tuple 
⟨S,A, p, r, �⟩ where S is a finite set of states, A is a finite set of actions and � ∈ [0, 1] is 
the discount factor. The transition function p(s�|s, a) is a conditional probability distribu-
tion that defines the dynamics of the MDP, where s�, s ∈ S and a ∈ A(s) . In the state s , the 
actions available are indicated by the set A(s) . In the MDP, we assume states have com-
plete information. Furthermore, we assume that the probability of transitioning from s to 
s′ depends solely on s and not the entire history, thus, satisfying the Markov property. The 
reward function r(s, a) provides the reward of taking an action a ∈ A(s) in the state s ∈ S , 
and can optionally rely on the next state s′ . The reward R ∈ R is bounded by ±Rmax . All 
possible rewards are denoted by the set R , which is a finite subset of ℝ . In sum, all of these 
stated elements together form an MDP.

A policy � is a mapping from a state s ∈ S to an action a ∈ A(s) . In the stochastic case, 
the policy yields a probability distribution over all actions. Like the transition function in 
the MDP, the policy is modeled such that it is only conditioned on the current state and 
not the whole history of states and actions. A trajectory is a sequence of states and actions 
defined by � = (s0, a0, s1, s2,…) where s0 ∼ p0 and where p0 denotes the start state distri-
bution. We choose or sample the action from a policy � and sample the next state from the 
transition function. Thus, we can create trajectories with access to these two functions.
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3.1.2 � Problem

The RL problem is about discovering a policy � that maximizes the expected 
return  (Achiam, 2018). Assume that we have an MDP and a policy � as defined earlier. 
Then, the probability of a T-step trajectory � conditioned on the policy � is

Under the policy � , the probability of taking action at given the state st is denoted �(at|st).
We define the infinite-horizon discounted return over a trajectory � by

where 𝛾 < 1 . The infinite-horizon discounted return is used for several reasons (Russell & 
Norvig, 2020): (1) based on empirical results, humans and animals prefer rewards as soon 
as possible, (2) in a financial setting, it is better to invest now than later, (3) the uncertainty 
of rewards increases as time passes, and (4) it is mathematically convenient as shown in 
Eq. (2).

Based on the trajectory probability and the return, we express the expected return given 
an MDP and a policy � by

Finally, we define the RL problem by

That is, finding the optimal policy �∗ that maximizes the expected return.

3.2 � Explainable artificial intelligence

XAI defines an AI that can be understood by a human, including how it works, its strengths 
and weaknesses, and the behavior it will exhibit in unseen situations. A black box is the 
opposite, where the system’s internal mechanisms are either incomprehensible or not 
accessible to a human. The term XAI was popularized by DARPA when they launched the 
XAI program in May 2017. The word explainable was chosen to signify that an XAI system 
actively explains to increase a human’s understanding of it. Furthermore, they use the word 
explainable to emphasize the interest in the human psychology of explanation. XAI has 
been a research interest since the early 1970 s, with expert systems like MYCIN (Buchanan 
& Shortliffe, 1984) and GUIDON (Clancey, 1987). However, increasingly widespread use 
and interest in AI have renewed the attention on XAI, especially since the success of deep 
NN in the ImageNet 2012 challenge (Krizhevsky et al., 2012). The recent interest in XAI 
has quickly created a tremendous amount of new research.

We organized the section as follows. First, Sect.  3.2.1 loosely discusses XAI termi-
nologies. Then, Sect.  3.2.2 explains why we need explainability. Afterward, Sect.  3.2.3 

(1)p(�|�) = p0(s0)

T−1∏

t=0

p(st+1|st, at)�(at|st) where s0 ∼ p0.

(2)r(�) =

∞∑

t=0

� tr(st, at) ≤
∞∑

t=0

� tRmax =
Rmax

1 − �
,

(3)J(�) = ∫
�

p(�|�)r(�)d� = ��∼�[r(�)].

(4)�∗ = argmax
�

J(�).
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describes the different stakeholders that consume explanations. Next, Sect. 3.2.4 introduces 
some explanation properties. Lastly, Sect. 3.2.5 overviews explanation evaluations.

3.2.1 � Terminologies

Interpretability and explainability are often used interchangeably in the literature  (Gilpin 
et  al., 2018; Arrieta et  al., 2020). This section loosely discusses them since there is no 
consensus on a single definition. According to the dictionary  (Merriam-Webster, 2022), 
the word interpret means “to explain or tell the meaning of” or “present in understandable 
terms”. In the context of XAI, Doshi-Velez and Kim (2017) define interpretability as “the 
ability to explain or to present in understandable terms to a human”. The human is what 
we define as the stakeholder, which we elaborate on in Sect. 3.2.3. Murdoch et al. (2019) 
define interpretable ML as “the extraction of relevant knowledge from an ML model con-
cerning relationships either contained in data or learned by the model”. Whereas Lipton 
(2018) suggests that interpretability refers to several ideas and is not limited to one con-
cept. According to Gilpin et  al. (2018), explainability differs from interpretability. An 
interpretable system is not necessarily explainable, while the opposite is true. They define 
an explainable system as a system that: (1) can justify its decisions, (2) is interactable, and 
(3) is auditable. In this review, we follow Gilpin et al. (2018) and distinguish that interpret-
ability is passive while explainability is active. When we want to refer to both terms, we 
write explainability. Thus, we think of both interpretable RL and explainable RL when we 
talk about XRL.

The technical definition of an explanation remains elusive. According to Gilpin et  al. 
(2022), explanations are objects created due to their functional roles, stakeholders (referred 
to as the audience in the study), and capabilities. The functional role refers to why stake-
holders want or need explanations. The stakeholder is the receiver of the explanation, also 
known as the explainee. Capabilities are about the AI system’s logical thinking process and 
its degree of access to the process.

3.2.2 � Explainability needs

Explainability needs aim to answer on a high level why we need XAI in the first place, 
unlike stakeholder questions (i.e., the specific questions a stakeholder wants to get 
answered, for example, “how can I get the agent to do _?”). We need explainability because 
the deployment cost is not included in the AI system’s learning objective (Doshi-Velez & 
Kim, 2017; Lipton, 2018). When the AI system is learning, it tries to optimize the test pre-
dictive performance in supervised learning or the return in RL. However, the test predictive 
performance and the return might not capture the real-world deployment costs because it is 
difficult or impossible to formally write it down mathematically. For example, when the RL 
agent moves from the training environment to deployment, we want robustness to the dis-
tributional shift. Still, like in the supervised setting, it cannot be easily encoded mathemati-
cally. The problem at hand might also require a flexible approximator that is not interpret-
able. Furthermore, ensuring the objectives are sound by auditing all possible situations is 
infeasible. The literature has defined several reasons for explainability needs (Doshi-Velez 
& Kim, 2017; Lipton, 2018; Arrieta et al., 2020; Burkart & Huber, 2021). We list some 
examples here:

Trust The concept of trust is difficult to define and has been defined differently by differ-
ent researchers across disciplines (Simpson, 2012; Robbins, 2016). One way to understand 
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trust is whether a stakeholder is willing to delegate the decision-making to the AI system. 
Thus, if a stakeholder is inclined to let the AI system decide on its behalf, then it trusts 
the system. Also, trust can be a stakeholder’s confidence that the system will behave as 
intended.

New insight This need is about the ability to extract knowledge from the AI system to 
gain a new understanding of the problem at hand. We create the system not necessarily to 
make decisions but to gain novel insight into the domain.

Making adjustments The idea of changing an AI system encompasses correcting and 
improving it. Different quantities, such as accuracy and return indicate the system’s perfor-
mance but lack in their ability to find, fix, and improve the system. Hence, knowing how 
the system works and its strengths and weaknesses is required to find bugs, fix them, deter-
mine when the system might fail, and improve it.

Fairness and being ethical These two needs are related to ensuring that the AI system 
does not make decisions that, for example, might discriminate based on skin color or gen-
der and complies with ethical standards (Goodman & Flaxman, 2017).

Apart from the aforementioned reasons, there are other reasons like effective human and 
AI collaboration  (Hayes & Shah, 2017), privacy  (Arrieta et  al., 2020), and accountabil-
ity (Doshi-Velez et al., 2017) that motivate the need for explainability.

3.2.3 � Stakeholders

When we discuss explainability, we should reason about it in relation to an audience and 
their need for explanation (Kirsch, 2017). This signifies that XAI is not an isolated field 
concerning only ML researchers, but an interdisciplinary field that involves, for instance, 
human-computer interaction. Suppose that some explanations might be helpful and under-
standable for AI researchers. However, they might not be helpful or even understandable 
for the AI system’s end-users. The reason is that these two groups have different goals for 
explainability and expertise. In short, to talk meaningfully about explainability, it should be 
in the context of a specific stakeholder, such as developers, domain experts, or end-users.

There have been several works in the literature discussing and proposing stakeholder 
frameworks for ML explainability (Weller, 2017; Preece et al., 2018; Tomsett et al., 2018; 
Ribera & Lapedriza, 2019; Hohman et al., 2019; Mohseni et al., 2021; Langer et al., 2021). 
The stakeholder frameworks differ between studies, but there are generally two ways to 
group stakeholders based on their role or expertise (Suresh et al., 2021). In the role-based 
frameworks, stakeholders are grouped by their roles and the explainability needs align with 
their role. In the second group, the stakeholders are grouped by their expertise, and their 
explainability needs result from their expertise.

3.2.4 � Explanation properties

Researchers have proposed different explanation properties with the growing research on 
XAI  (Lipton, 2018; Murdoch et  al., 2019, Murphy et  al., 2023,  Chapter  33.3). Depend-
ing on the situation, we need different explanation properties. In this section, we overview 
some of these properties:

Fidelity and faithfulness Fidelity describes the extent an explanation can accurately 
explain the model  (Robnik-Sikonja & Bohanec, 2018; Guidotti et  al., 2019; Jacovi & 
Goldberg, 2020). For example, how a distilled model explains the original model can 



364	 Machine Learning (2024) 113:355–441

1 3

be measured through accuracy in agent distillation methods. Accuracy is defined as the 
number of correct predictions divided by the total number of predictions. Faithfulness 
also expresses the accuracy of an explanation. Jacovi and Goldberg (2020) state that the 
term faithfulness often differs between studies and is used inconsistently. Murphy et  al. 
(2023)  (Page 1076) define fidelity and faithfulness together. They discuss a measure of 
faithfulness in terms of how often a distilled model provides the same outputs as the origi-
nal model. This is the same as how the other aforementioned studies use the term fidelity. 
Similarly, Robnik-Sikonja and Bohanec (2018) use these two terms in the same context. 
This shows that there is no clear distinction between these two terms in the literature.

Completeness This indicates whether an explanation conveys all factors relevant to the 
decision-making process.

Sparsity It refers to the notion of an explanation being small and compact, which is 
important since it is easier to understand explanations with fewer components to inspect.

Actionability It expresses changing the content of an explanation such that it only con-
tains components that a stakeholder can adjust.

A more exhaustive overview of different properties can be found in the aforementioned 
book and studies.

3.2.5 � Explanation evaluation

Evaluating explanations is difficult since there is not a single mathematical definition of 
explanations. Moreover, we must evaluate explanations by considering the explainability 
needs, the task, stakeholders, and constraints, such as time and attention. For instance, 
given two explanations and two tasks, the stakeholder might find the first explanation more 
helpful for the first task but not for the second task, which is explained better by the sec-
ond explanation. The dependence on the overall setup makes the explanation evaluation 
difficult, emphasizing the importance of evaluating explanations using the intended setup. 
Researchers have proposed explanation evaluation taxonomies in the literature  (Doshi-
Velez & Kim, 2017; Mohseni et al., 2021). Doshi-Velez and Kim (2017) proposed to divide 
explanation evaluation into three levels:

Functionally grounded evaluation This evaluation type involves evaluating explana-
tions computationally, such as measuring explanations’ fidelity or sparsity. This type of 
evaluation involves no stakeholders and is cheap but does not evaluate explanations on the 
intended setup.

Human grounded evaluation It involves evaluating explanations using stakeholders but 
with simplified tasks. For example, participants recruited via Amazon Mechanical Turk 
with tasks in games. On the one hand, the evaluation does not include the intended stake-
holders and tasks, giving only a partial picture. On the other hand, this evaluation form 
allows for a larger user pool and more feedback with fewer resources.

Application grounded evaluation It is the most accurate evaluation but also the most 
expensive since the evaluation involves the intended stakeholders and tasks. For instance, 
we can use medical doctors in medical diagnosis tasks to test explanations.

3.3 � Related research fields

This systematic literature review investigates RL studies focusing explicitly on explain-
ability. There exist other interesting research fields within RL that strive for similar goals 
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as explainability but achieve it in a different way, including human-in-the-loop RL and 
safe RL. We do not discuss works from these research areas to retain a focused scope on 
explainability in accordance with our selection criteria. Instead, we briefly describe them 
and point to more in-depth resources on these topics for further reading.

Human-in-the-loop RL includes studies where a human oracle provides the agent with 
feedback in real-time. With human-in-the-loop RL, it is possible to align humans’ mental 
models of RL agents’ behavior. In turn, this increases the predictability and trust in RL 
agents, which are similar to the goals of XRL. Studies within human-in-the-loop RL ranges 
from reward function specification  (III & Sadigh, 2022) to exploration  (Arakawa et  al., 
2018). One of the challenges in this field is how feedback from the human oracle should 
be modeled. In our review, we only included studies where human-in-the-loop is explicitly 
used for explainability (Fukuchi et al., 2017a, 2017b, 2022; Bewley & Lécué 2022; Cruz & 
Igarashi, 2021; Tabrez et al., 2019). For further reading, there are many human-in-the-loop 
RL surveys (Wirth et al., 2017; Li et al., 2019a; Cruz & Igarashi, 2020).

Safe RL aims to learn policies that perform well but at the same time ensure specified 
safety constraints are respected in training and deployment despite uncertainty. Safe RL is 
about making sure a policy avoids visiting states that are considered unsafe (Hans et al., 
2008). Also, it is about making sure the policy can reach any state from the states it vis-
its so that a negative outcome can be amended (Moldovan & Abbeel, 2012). Surveys that 
comprehensively cover this topic for further reading include García and Fernández (2015) 
and Gu et al. (2022).

4 � Related work

The success of RL and the recent increasing interest in XAI have resulted in many 
XRL literature reviews. In this section, we give an overview of previous XRL literature 
reviews. Furthermore, Table 1 provides a detailed overview of these literature reviews’ 
contributions and the number of studies they cover. Numerous relevant literature reviews 
exist for XAI (Arrieta et al., 2020; Burkart & Huber, 2021; Ras et al., 2022; Minh et al., 
2022), but we only cover literature reviews focusing on RL.

As far as we know, Puiutta and Veith (2020) published the first XRL literature review. 
They provide an overview and categorization of XRL methods based on an existing XAI 
taxonomy (Arrieta et al., 2020). Their discussion points out that the connection between 
stakeholders and explanations is often not considered. They suggest that more studies 
should focus on interdisciplinary work to alleviate this issue. Similarly, Heuillet et al. 
(2021) adapt existing XAI taxonomy to categorize XRL techniques. Wells and Bednarz 
(2021) take a systematic approach to the literature review and follow the methodology 
by Kitchenham et  al. (2009). Their systematic literature review focuses on answering 
two questions regarding XRL methods. First, what XRL methods exist in the literature? 
And second, what are their limitations? In contrast to the previous studies, Alharin et al. 
(2020) propose a novel taxonomy for categorizing XRL methods. Additionally, they 
described the taxonomy regarding different method properties.

Glanois et  al. (2022) focus on interpretable RL. Several reasons motivate their 
review: (1) the need for interpretability, (2) the increasing number of studies on inter-
pretable RL, and (3) the limited number of studies reviewed by previously mentioned 
literature reviews. They propose a new interpretable RL taxonomy and more thorough 
coverage of interpretable RL methods than Puiutta and Veith (2020), Alharin et  al. 
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(2020), and Heuillet et  al. (2021). They focus mainly on studies published in the past 
ten years.

The reviews by Puiutta and Veith (2020), Heuillet et al. (2021), and Wells and Bed-
narz (2021) provide a deep dive into XRL methods, but the scope is limited. As a result, 
Milani et al. (2022) propose a more extensive and newer literature review on XRL tech-
niques. Additionally, they propose a new taxonomy for XRL methods. Building on the 
knowledge of the previous literature reviews, Krajna et al. (2022) introduce a new tax-
onomy for XRL techniques and explore XRL for the multi-agent setting. Vouros (2022) 
comprehensively reviews XRL methods, concentrating on the deep reinforcement learn-
ing (DRL) counterpart. He describes each reviewed XRL method thoroughly, detailing 
the motivation, assumptions, technical details, evaluation, and more. Finally, Hickling 
et al. (2022) introduce another XRL review and describe XRL methods and two existing 
XRL literature reviews (Wells & Bednarz, 2021; Vouros, 2022).

Differently from the other literature reviews, Dazeley et  al. (2021a) go beyond 
reviewing existing XRL methods and concentrate on Broad-XAI. They define Broad-
XAI as combining and integrating explanation strategies into an individual explana-
tion that satisfies a stakeholder’s need. Contrasting all previous studies, Zelvelder et al. 
(2021) review RL application domains and to what degree XRL is investigated in those 
application domains. Sakai and Nagai (2022) introduce a literature review on explaina-
ble autonomous robots, a related field to XRL. Lastly, Sado et al. (2023) describe meth-
ods that focus on explaining autonomous robots and agents, which overlap with XRL.

Our work differs in several ways compared to previous surveys and reviews:

•	 We propose a novel taxonomy from the perspective of the reviewed studies. Our 
taxonomy accommodates the large spectrum of XRL methods and has the finesse 
needed to compare and discuss categories of methods and methods within a cat-
egory. We believe the categorization of methods in previous works makes doing 
these comparisons and discussions more challenging. First, in previous works, 
methods within a category can produce explanations using different mechanisms. 
For instance, both agent distillation and policy summarization methods produce 
global explanations but use different strategies. Second, they can express different 
types of information. For example, feature importance is mostly limited to where the 
agent looks, while textual justifications allow for explanations with richer seman-
tics. Third, they can produce explanations that answer different stakeholder ques-
tions. For example, agent distillation methods can answer specific why questions, 
but policy summarization methods cannot. Fourth, they can convey explanations in 
different ways. Our taxonomy takes these points into account. Considering these dif-
ferences from ours, we believe our taxonomy with finer divisions makes discussions 
and comparisons easier. We illustrate these issues below.

	   Puiutta and Veith (2020), Heuillet et al. (2021) and Hickling et al. (2022) use tax-
onomy from XAI and do not propose a XRL specific taxonomy. Wells and Bednarz 
(2021) propose a new taxonomy, but some of their categories like Visualization and 
Policy Summarization are expansive. For example, the category Policy Summari-
zation includes methods commonly known as policy summarization  (Amir & Amir, 
2018; Lage et al., 2019b) in the literature. Yet, it also includes agent distillation meth-
ods  (Verma et al., 2018) and methods aimed at human-robot collaboration  (Hayes & 
Shah, 2017). Alharin et  al. (2020) introduce a new taxonomy but makes it difficult 
for the reader to compare categories. Categories on the same level range from Com-
puter Vision and Natural Language to Decision Trees and Summarization. The former 
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denotes large research fields, while the latter is a machine learning model and a XRL 
technique. Similarly, the Feature contribution and visual methods category in Krajna 
et al. (2022) would be easier to discuss using finer divisions instead of as a single cat-
egory. Glanois et al. (2022) include many useful studies that can promote interpretabil-
ity, but they do not provide a taxonomy for XRL. In Milani et al. (2022), the subcate-
gory Directly Generate Explanations contains both textual justification methods (Ehsan 
et al., 2018; Wang et al., 2019b; Hayes & Shah, 2017), feature importance methods that 
require specific architecture (Goel et al., 2018; Mott et al., 2019), and agnostic feature 
importance methods that do not involve training an agent (Greydanus et al., 2018; Shi 
et al., 2022). Vouros (2022) introduce an explainable deep RL specific taxonomy that 
consists of the large categories: Solving the (1) Model Inspection, (2) Policy Explana-
tion, (3) Objectives Explanation, and (4) Outcome Explanation Problem. These cat-
egories can be extended to enable more nuanced comparisons and discussions. But in 
its current form, categories in the taxonomy are very broad. For instance, the category 
Solving the Policy Explanation contains both policy summarization  (Amir & Amir, 
2018; Huang et al., 2018) and agent distillation methods (Verma et al., 2018; Hüyük 
et al., 2021).

•	 Our literature review is the only systematic one besides Wells and Bednarz (2021) that 
aims for exhaustive and comprehensive searching for literature explicitly related to 
XRL. However, they cover less than a fifth of the number of studies compared to ours.

•	 Beyond reviewing XRL studies, we extensively summarize existing XRL surveys and a 
systematic review. This includes outlining their contributions and what challenges they 
consider currently unsolved in XRL. We believe this enables us to provide a broader 
view of the XRL field.

•	 We divide the category that is often known as post hoc explainability (as seen in Puiutta 
& Veith 2020; Heuillet et al., 2021; Arrieta et al., 2020) into two categories, post hoc 
explainability and intrinsic explainability. We believe such a division is important when 
stakeholders decide on a method to use, as the methods have different use cases and 
requirements. While the categories overlap, they also have some significant differences, 
such as performance impact, agent design and training, access to the agent’s internal 
logic and the environment, and applicability. For instance, only post hoc explainability 
methods can be used if the stakeholder does not want to train or fine-tune an agent. We 
discuss these differences later in detail when we present the taxonomy.

•	 We describe the explanation types and RL explainability characteristics that different 
XRL method categories satisfy. This is an important aspect since stakeholders are the 
consumers of explanations. Furthermore, our review outlines how explanations are 
communicated. Whether explanations are conveyed via generation, representation, 
or inspection. These two things make it easier for stakeholders to find methods more 
suited for their use case that previous reviews lack.

•	 We outline trends in XRL and recommend methods based on stakeholder questions 
(e.g., “how does the agent work?” and “why did the agent do _?”). This is in addition to 
future directions that other surveys and reviews focus on.

•	 All reviewed methods are concisely summarized in the appendix. This includes, what is 
the motivation of the method, what it explains, and its evaluation.
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5 � Explainable reinforcement learning

Learning via interaction, potentially delayed feedback via reward, and short-term and 
long-term consequences set RL apart from supervised learning. To gain an in-depth under-
standing of the agent’s decision-making process, RL explainability needs to solve new 
challenges in addition to those from supervised learning. We illustrate this explainability 
difference in Fig. 3. These new challenges include understanding the short-term and long-
term consequences of the agent’s behavior and not just the immediate reasons. Moreo-
ver, understanding the agent’s learning objective based on how the environment assigns 
rewards. Finally, in the event of a distributional shift, understand how changes in the start-
ing state distribution and transition function affect the agent. Section  5.1 describes how 
we organize and classify XRL studies. Section  5.2 describes explanation types and RL 
explainability characteristics, indicating the types of stakeholder questions groups of meth-
ods can answer.

5.1 � Taxonomy

Our taxonomy was constructed through several iterations and changed numerous times 
based on (1) existing XAI taxonomies for supervised learning (Arrieta et al., 2020; Gui-
dotti et al., 2019; Burkart & Huber, 2021; Minh et al., 2022; Ras et al., 2022), (2) previ-
ously proposed taxonomies for XRL, and (3) studies from the searches. As a result, our tax-
onomy is a product of studies from our searches and previous taxonomies. We divide XRL 
methods into three categories: (1) interpretable agent (IA), (2) intrinsic explainability (IE), 
and (3) post hoc explainability (PHE), as seen in Fig. 4. IA refers to the agent being readily 
comprehensible and providing an understanding of the underlying learned relationships. 
These methods achieve inherent interpretability by representing the agent with a simple 
function approximator. IE describes methods modifying the RL system before training to 
make it explainable. PHE is similar to IE but endows the RL system with explainability 
without modifying it. The methods within PHE aim to extract information about the agent 
and its behavior after training. Although the categories IE and PHE overlap, we divide the 
methods into two categories for several reasons:

Fig. 3   The MDP of the agent interacting with the environment (abbreviated as env) unrolled.  illus-
trates comprehending immediate reasons for the agent’s action, in other words, what explanation methods 
from supervised learning can explain.  and  depict what we want to understand in addition to what 

 already provides. That is, we are interested in understanding the sequential nature of RL, including, 
for instance, short-term and long-term consequences of actions. Moreover, we are interested in understand-
ing the environment as a way to comprehend the agent (Color figure online)
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Performance impact The performance of RL agents is often positively affected or 
unchanged for methods in the IE category. Mott et al. (2019) show improved performance 
compared to models without attention bottlenecks. Likewise, Cultrera et al. (2020) show 
that adding attention leads to superior performance in addition to increased explainability. 
Tang et al. (2020) display better performance and generalization. Pan et al. (2019) indicate 
better data efficiency with their method. Other methods like Kim and Canny (2017) dem-
onstrate competitive performance, but not significantly better. Similarly, Lin et al. (2021) 
do not show performance degradation and, in some cases, even perform better. Methods 
from other subcategories also show better performance. For example, Wang et al. (2021a) 
demonstrate that their method both converges faster and obtains higher episodic reward 
compared to other policies without modifications. Similar results are exhibited in Chen 
et  al. (2022). Likewise, Kim et  al. (2018) display better performance in comparison to 
other state-of-the-art methods. In Fukuchi et  al. (2017a, 2017b), the explanation mecha-
nism not only explains but also improves learning. In summary, IE methods increase the 
performance while methods in PHE do not affect the performance.

Agent architecture and training algorithm For methods in IE, the agent might require 
a specific neural network architecture, for example, Mott et al. (2019) with their model 
that has soft top-down attention mechanism, Lin et al. (2021) with their two-part agent, 
or Yang et al. (2019) with their variational autoencoder modified agent. Many methods 
in PHE have no such requirement. Nevertheless, some methods in PHE require spe-
cific prerequisites such as differentiability, but the requirement is less strict than in IE 
methods.

In IE, the agent’s performance shown in studies is linked to the specific RL algorithm 
tested. Thus, the performance of methods in IE is uncertain on untested RL algorithms. 
PHE methods do not have such a concern since the training algorithm is detached from 
the explanation algorithm.

Training the agent For methods in IE, agents are trained from scratch or fine-tuned. 
Thus, a pre-trained agent cannot be explained unless it is modified and trained from the 
beginning or fine-tuned. This is disadvantageous if the performance of the already trained 
agent is satisfactory, and the stakeholder only wants to debug it for final verification. For 
PHE methods, the agent is not changed if training is involved. For example, training a dis-
tilled agent does not involve changing the original agent.

Applicability Methods from PHE can be applied to IE agents if certain prerequisites like 
functions being differentiable are satisfied. For example, a model with decomposed Q-val-
ues can be distilled into a decision tree or explained using feature importance methods.

Flexible agent access Many methods from PHE do not require access to the agent’s 
internal logic. For example, the methods from the agent distillation category only require 

Explainable
Reinforcement Learning
(189 studies)

Interpretable Agent (IA)
(Section 6 and Table 6, 18 studies)

Intrinsic Explainability (IE)
(Section 7 and Table 7, 61 studies)

Post Hoc Explainability (PHE)
(Section 8 and Table 8, 112 studies)

Fig. 4   Taxonomy of XRL methods. The categories do not sum to 189 studies because some span multiple 
categories
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the state and the agent’s corresponding action or Q-values. Another example is the impor-
tant state and transition category in PHE, where many of the methods only require access 
to the agent’s output in the form of Q-values, but not the internal logic. However, since 
the category is large, this does not apply to all methods in PHE. For instance, many fea-
ture importance methods require access to gradients while other perturbation-based feature 
importance methods only need to be able to probe the agent and receive its output.

Environment access Fewer PHE methods need access to the agent’s internal logic com-
pared to IE methods. But, in turn, greater access to the environment is required. Many of 
the PHE methods require access to input–output tuples that are assumed to be obtainable 
by simulating the agent in the environment or via a preexisting dataset. Although IE agents 
also necessitate this access, this happens during training for IE methods versus after train-
ing for PHE methods.

Our top-level categorization is similar to previous studies in XAI (Lipton, 2018; Mur-
doch et al., 2019; Du et al., 2020; Arrieta et al., 2020). However, the subcategories in this 
taxonomy are new and designed to accommodate the reviewed XRL studies. We go into 
details on these in the coming sections as follows. First, Sect. 6 details the methods that fall 
into the IA category. Next, Sect. 7 describes the methods in the IE category. Finally, Sect. 8 
outlines the PHE method category.

Besides the taxonomy mentioned above, we classify the methods by their scope and 
focus in Section Appendix A. First, we define the method as global if it reveals the over-
all behavior of the agent, making it possible for the stakeholder to understand the agent’s 
behavior in multiple states. In contrast, a local method only provides the logic behind the 
decision-making process that generalizes to a few states. We distinguish between two types 
of local scope: (1) methods explaining the short-term and long-term consequences, and 
(2) methods explaining using only the immediate context. Second, we classify methods by 
whether they try to: (1) solve the XRL problem, (2) solve RL specific problems (e.g., sam-
ple efficiency and generalization), and (3) solve application problems (e.g., applying XRL 
in healthcare, autonomous driving or some other domain).

5.2 � Stakeholder questions: explanation types and RL explainability characteristics

Stakeholders have different questions they want to ask to satisfy their needs, and dif-
ferent XRL techniques provide different explanations. Some techniques might produce 
explanations that answer several questions, while others only answer one. This sec-
tion first outlines six common explanation types used to explain stakeholders’ ques-
tions (Lim et al., 2009; Mohseni et al., 2021). These explanation types are:

How does the agent work? A how explanation aims to give an all-inclusive answer to 
how the agent works and impart an understanding of its global behavior.

What did/will the agent do? A what explanation describes what the agent has done 
or will do. This is a descriptive explanation of the agent’s behavior based on the his-
tory or predicted future.

Why did the agent do_? A why explanation justifies why the agent took a specific action.
Why did the agent not do _? The why not explanation describes why the agent did not 

choose a specific action, for instance, the stakeholder’s anticipated action. This explanation 
type is also known as a contrastive explanation.

What would the agent do if _ happens? A what if explanation explains hypothetical 
questions of how the agent would behave in a specific situation. This type of explanation is 
known as a counterfactual explanation.
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Howcan I get the agent to do _, given the current state? A how to explanation answers 
changes needed to get the agent to do a specific action. This explanation type is also known 
as a counterfactual explanation.

In addition to explanation types, we identify RL explainability characteristics. That is 
if the explanation produced includes information about short-term and long-term conse-
quences or uses model information to explain (or both). We add this extra information since 
the explanation types do not provide the nuance needed to differentiate between different, 
for instance, why explanations. The short-term and long-term consequences describe if the 
explanation informs by referring to the future outcomes (e.g., what happens a few time-
steps into the future or the result at the end of an episode). Model information refers to 
whether methods leverage the model (i.e., the transition and reward function) to explain 
the agent’s behavior. We outline the explanation types and RL explainability characteristics 
for IA and the categories of IE and PHE in Tables 2, 3 and 4. The goal is to indicate what 
kind of stakeholder questions each category of methods can answer. Hence, making it more 
straightforward to find suitable methods to answer a particular question.

6 � Interpretable agent

The interpretable agent (IA) category consists of agents innately understandable to 
humans. These methods do not require modifications to be interpretable. Instead, IA meth-
ods achieve interpretability by carefully choosing simple function approximators to repre-
sent the agent. The interpretable agent category aims to capture methods that are mainly 
motivated by interpretability. While there are many methods that support interpretabil-
ity  (Nikou et  al., 2021; Illanes et  al., 2020), interpretability is not their main motivation 
and is rather a by-product (Burkart & Huber, 2021). We do this in line with the selection 
criteria to keep this literature review focused on interpretability in RL.

The resulting explanation from these methods is the agent’s representation, as illustrated in 
Fig. 5. Suppose that an agent is represented using a decision tree; then the decision tree itself 
is also the explanation. Their functional form allows stakeholders to inspect and understand 
them out of the box. Thus, the explanation is faithful to the policy being explained since it is 
the policy itself. Also, with their functional form comes inductive biases that bring advantages 
to generalization (Trivedi et al., 2021; Jiang & Luo, 2019). For instance, Jiang and Luo (2019) 
point out that relational inductive bias can help the policy generalize better than DRL policies 
that are not understandable. Furthermore, based on experiments on environments with sym-
bolic representation, these methods offer competitive performance compared to their neural 
network counterpart (Silva et al., 2020; Qiu & Zhu, 2022; Trivedi et al., 2021).

Although these methods have many advantages, more complex environments may 
require functions represented using neural networks that are more flexible. Even if these 
methods can obtain high-performing policies in complex environments, decision trees 
might get too deep and rule lists too long, making them difficult to understand. Moreover, 
all of these methods are tested in environments where the state is low-dimensional with 
interpretable features. In environments where this is not the case, applying these inherently 
interpretable methods is not straightforward, for example, in environments using visual 
inputs like Atari  (Bellemare et  al., 2013). In these more complex environments, manual 
feature engineering is one possibility. However, one of the reasons why deep learning is 
performing so well is its ability to automatically extract features. Another approach is to 
use deep learning to extract features, but the feature extraction part is still a black box.
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This section provides an overview of these methods organized by their functional form, 
as depicted in Fig.  6. Table  2 indicates the explanation types and the RL explainability 
characteristics that methods in IA can provide. The IA category does not explain the 
short-term and long-term consequences of actions since the MDP formalism only requires 
the agent to be reactive. The agent only needs to consider the current state and output an 
action. Consequently, we do not understand how the past or future (or both) affect the 
action choices at decision time by only inspecting the agent. Additional mechanisms are 
needed to gain an understanding of RL explainability characteristics for agents in the IA 
category.

6.1 � Rule‑based

The rule-based category presents methods where rules are used to express agents. The 
rules can be simple if-then conditionals or more complicated rules, for instance, incorpo-
rating fuzzy logic. “IF cart=right slope AND speed=high right then accelerate=positive” 
is an example of a rule learned by Hein et al. (2017b) in the mountain car environment to 
control the cart.

Hein et al. (2017b) describe the fuzzy particle swarm RL (FPSRL) method that focuses 
on industrial applications and interpretability. They represent policies using fuzzy rules 
and use a model-based approach to learn these rules. The model is learned and is leveraged 
to evade situations that can be dangerous when exploring while learning.

Real-world data usually includes numerous features, where many might not be helpful 
or redundant. Consequently, the resulting agent from FPSRL can be difficult to interpret 
since it uses all the features in all of its rules. In response to this difficulty, Hein et  al. 
(2018a) describe the fuzzy genetic programming RL (FGPRL) method. To overcome this 
problem, FGPRL includes mechanisms to automatically select features, choose compact 
rules, and optimize policy parameters at the same time. Furthermore, besides introducing 
the new method, they also improved FPSRL by extending it with a new feature selection 
method. Hence, making it possible to apply FPSRL to industrial applications where states 
are high-dimensional.

Huang et al. (2020) present the interpretable fuzzy RL (IFRL) framework that uses the 
actor-critic architecture to learn policies represented as if-then rules. The rules produced 
by the framework are interpretable and allow stakeholders to add prior knowledge. Their 
method is motivated by previous methods’ limitations. These limitations include specify-
ing the policy structure beforehand and the inability to optimize policies before episodes 
end (Hein et al., 2017b, 2018b; Verma et al., 2018). Likmeta et al. (2020) introduce a rule-
based policy for autonomous driving using RL. They sample the parameters from distribu-
tions that they optimize using gradient descent. Their work is based on the policy gradient 
with parameter-based exploration method (Sehnke et al., 2008). The method shifts explo-
ration to the parameters to accommodate deterministic policies. In addition, it relaxes the 
differentiability requirement.

6.2 � Mathematical expression

Physics has expressions that define complex phenomena in simple and compact mathemat-
ical expressions. Several studies present approaches representing RL policies using mathe-
matical expressions to acquire interpretable agents by leveraging the same idea. The 
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equation a =
0.62

log(s2)
 exemplifies a simple policy produced by the method proposed by 

Landajuela et al. (2021) to control the cart in mountain car.
Like Hein et  al. (2017b, 2018a, 2018b) present a model-based batch RL method that 

represents policies as mathematical expressions trained using genetic programming. Their 
work is motivated by interpretability, real-world applications, and difficulties with design 
choices regarding fuzzy rules. To find mathematical expressions representing value func-
tions, Kubalík et al. (2021) use symbolic regression and genetic programming. Specifically, 
they describe three algorithms: symbolic value iteration, symbolic policy iteration, and a 
solution of the Bellman equation that can be obtained directly.

Kubalík et  al. (2021)’s approach needs a model, and Hein et  al. (2018b)’s approach 
results in lower performance than NN policies. Accordingly, Landajuela et al. (2021) pre-
sent the deep symbolic policy method to discover policies represented using mathematical 
expressions where neural-guided search is leveraged. Their deep symbolic policy method 
consists of the policy generator and the policy evaluator. The generator is a recurrent NN 
that produces policies, and the evaluator assesses them and provides feedback to train the 
generator.

6.3 � Logic‑based

This category introduces methods that use logic expressions to represent the RL agent. 
Focusing on generalization and explainability in RL, Jiang and Luo (2019) present the 
framework neural logic RL (NLRL). The framework works with the policy gradient where 
states, actions, and policies are expressed in first-order logic. Their framework takes advan-
tage of differentiable inductive logic programming (DILP)  (Evans & Grefenstette, 2018) 
to learn interpretable and generalizable policies. Zhang et al. (2021b) present the off-pol-
icy differentiable logic RL (OPDLRL) framework. Their method tackles issues of execu-
tion efficiency, stability, and scalability of integrating DILP with DRL. OPDLRL solves 
the execution efficiency problem by using approximate inference and off-policy training. 
They employ maximum entropy RL to make the learning process stable. Lastly, they inte-
grate hierarchical RL into the framework to make DILP scalable. The resulting framework 
resolves problems of combining DILP and DRL and yields interpretable policies. Another 
approach towards logic-based agents proposed by Gorji et  al. (2021) apply a supervised 
learning method, the Tsetlin machine (TM) (Granmo, 2018), to RL by using a customized 
value iteration algorithm. Kimura et al. (2021) introduce a new method to learn interpret-
able rules as the policy using logical neural networks  (Riegel et  al., 2020). By using a 
semantic parser, the method first parses textual observations into first-order logical facts. 
Afterward, a logical neural network is inputted with these facts to learn rules.

Fig. 5   The interpretable agent approach. The explanation is the agent itself communicated via its represen-
tation
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6.4 � Tree‑based

The tree-based category outlines the approaches that represent agents using a tree-based 
representation. Tree-based models such as decision trees (DTs) are considered interpret-
able, presuming they are small in terms of depth and simple based on how splits are exe-
cuted. However, they cannot be trained online using continuous optimizing like NNs, thus, 
they are trained offline. Responding to these considerations, Silva et al. (2020) introduce 
the differentiable DTs (DDTs) approach that learns DTs using online optimization. They 
extend Suárez and Lutsko (1999)’s work by highlighting and fixing two problems that hin-
der interpretability: (1) how to do splits and (2) how many features to use in each split. 
Besides dealing with these two disadvantages concerning interpretability, they also provide 
a theoretical analysis of DDTs.

In DDTs (Silva et al., 2020), function approximators like NNs cannot be taken advantage 
of and the internal representations in the nodes cannot be substituted. Other works on DTs 
for RL, such as VIPER (Bastani et al., 2018) and MoËT (Vasic et al., 2022), use imitation 
learning. Consequently, Topin et al. (2021) propose the iterative bounding MDP (IBMDP). 
The IBMDP extends the MDP formalism by wrapping around it and adding bounds for 
state features and additional actions. The key is that a policy learned using IBMDP will 
equal a decision tree policy for the MDP. Thus, if we learn a neural network policy for the 
IBMDP, then a corresponding decision tree policy can be extracted for the MDP. The same 
work shows how existing RL algorithms can be modified to solve the IBMDP.

Fig. 6   Taxonomy of interpretable 
agent

Interpretable Agent (IA)
(Table 6, 18 studies)

Rule-based (RB)
(Section 6.1, 4 studies)

Mathematical Expression (ME)
(Section 6.2, 4 studies)

Logic-based (LB)
(Section 6.3, 4 studies)

Tree-based (TB)
(Section 6.4, 3 studies)

Program-based (PB)
(Section 6.5, 3 studies)

Table 2   High-level overview of explanation types and RL explainability characteristics provided by IA 
methods

Explanation types RL explainability characteristics

How What Why Why not What if How to Short-term and long-term conse-
quences

Model information

✓ ✓ ✓ ✓ ✓



378	 Machine Learning (2024) 113:355–441

1 3

6.5 � Program‑based

The program-based category introduces methods that represent policies struc-
tured in domain-specific languages. Trivedi et  al. (2021) apply a variational autoen-
coder (Kingma & Welling, 2014) to learn a latent program space. They train the vari-
ational autoencoder to reconstruct randomly produced programs where policies with 
similar behavior are close to each other in the latent space. After learning the latent 
program space, they find the agent’s policy by maximizing the return using the cross-
entropy method. Premade program templates are used by previous work on program-
based policies  (Verma et  al., 2018, 2019). Since they produce the programs without 
templates, Trivedi et  al. (2021) argue that their method produces more flexible poli-
cies. Qiu and Zhu (2022) propose a method to train program-based policies using policy 
gradient via differentiability requirement relaxation. Their method learns the architec-
ture and parameters of the policy simultaneously by taking advantage of the progress in 
the neural architecture search literature. Similar to Trivedi et al. (2021), they avoid the 
issue of fidelity and faithfulness since an imitation learning based approach is not used. 
Unlike Trivedi et al. (2021), they do not need to learn a latent program space utilizing 
a premade dataset of programs. Cao et  al. (2022) propose a domain-specific language 
synthesis method that adds the benefits from both imperative and declarative program-
ming. With their method, they can synthesize hierarchical cause-effect logic programs 
that have good generalization and interpretability. They compare their method with vari-
ous baselines in the MiniGrid environment, showing that their method has better learn-
ing ability, generalization, and interpretability.

7 � Intrinsic explainability

Intrinsic explainability (IE) describes methods that modify the agent or model (or both) to 
make the RL system explainable. When we say model in this context, we refer to the transi-
tion and reward function. For instance, a method that reduces the state space before train-
ing, making the agent operate in the reduced state space. Accordingly, it becomes easier 
to comprehend the agent since the stakeholder needs to inspect fewer situations to gain a 
global understanding of the behavior. Alternatively, if the agent is represented as a NN, a 
method that modifies the NN architecture, such as adding an attention module, so the agent 
can produce saliency map explanations during the forward pass.

The methods change the agent to endow it with the ability to generate explanations. 
Figure 7 illustrates these examples of approaches where methods transform the agent or 
model (or both) into their explainable counterpart. IE methods apply the modifications 
before they train the agent. Consequently, the modifications enabling explainability are 
tied to the agent and its training and affect the agent’s performance. We divide methods 
into categories based on how they represent and communicate the explanations. A com-
plete overview of all IE categories is illustrated in Fig. 8.

Table  3 indicates explanation types and RL explainability characteristics provided 
by the different IE categories. As we can see, the methods in the subcategories produce 
diverse explanation types and can explain sequential information that methods from the 
IA category cannot. By offering this table, we hope it becomes easier for stakeholders to 
find a suitable method for their task.
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7.1 � Explanation via generation

This section describes IE methods that modify the agent to generate an object explicitly 
representing the explanation. The object can be a saliency map, a textual response, or 
some other explanatory object given to the stakeholder as the explanation. For instance, 
the explanation “the car stops because the light is red”  (Ben-Younes et  al., 2022) in 
autonomous driving illustrates the representation of explanations communicated by 
methods in this category.

7.1.1 � Feature importance

In this section, we overview methods that modify the agent so it can explain by highlight-
ing important features using saliency maps. Saliency maps are defined for most methods 
in this section as highlighting task-relevant information in the input. Nevertheless, there 
are some exceptions to how saliency maps are defined, which we outline at the end of 
this section. The modifications to the agent involve changing the agent’s NN architecture. 
These methods mainly aim to answer the why question by pointing out features affecting 
the agent’s behavior.

Kim and Canny (2017) propose an explainable self-driving agent represented using a 
modified convolutional NN architecture. The agent produces explanations in the form of 
saliency maps. Clustering and filtering are used to make the explanations concise after 
generating the saliency maps. These saliency maps emphasize important input parts that 
impact the agent’s behavior causally. In a similar line of work, Cultrera et al. (2020) intro-
duce an end-to-end model for autonomous driving that can explain its decision using sali-
ency maps. Their approach does not involve post-processing in contrast to Kim and Canny 
(2017)’s approach, which does. Also working on driving agents, Bao et al. (2021) intro-
duce the deep reinforced accident anticipation with visual explanation (DRIVE) model. 
In traffic accident anticipation systems that already exist, methods to create visual expla-
nations are lacking. In response, DRIVE was created to make visual explanations in the 
context of accident anticipation. DRIVE merges two kinds of attention by leveraging the 
dynamic attention fusion method proposed by the authors. The result of combining these 
attentions is improved accident anticipation and better saliency maps.

Goel et al. (2018) propose the motion-oriented RL (MOREL) method. Their method 
is motivated by the need for more sample-efficient and explainable systems. In addi-
tion, they point out the disadvantage of requiring hand-crafted templates by a previous 
approach (Iyer et al., 2018). MOREL works by first learning a representation that can be 
used to find and segment objects in inputs. The representation is later utilized to train 
the policy. As a result, learning a high-performing policy requires fewer environmental 
interactions. Moreover, the learned representation makes creating saliency and optical 
flow maps possible. The saliency map emphasizes the agent’s confidence that objects 
exist at given locations. At the same time, the motion of the objects is captured by the 
optical flow map. Mott et  al. (2019) propose a new method that uses soft attention to 
create saliency map explanations. The explanations generated by their system aim to 
focus on features impacting the agent’s behavior both in the present and future. Accord-
ing to the authors, compared to existing saliency methods for RL (Zahavy et al., 2017; 
Greydanus et al., 2018), explanations created by their method are easier to understand. 
Using the asynchronous advantage actor-critic (A3C) algorithm, Itaya et  al. (2021) 
train convolutional NN architectures with two attention modules. The built-in attention 
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modules enable interpretation from two perspectives by explaining the control and state 
value separately. According to the results, the policy performs better with the attention 
modules and, at the same time, facilitates explainability. Aiming to capture the input 
content that causally affects the output, Dai et  al. (2022c) introduce a module named 
conceptual embedding that they integrate into DRL agents. The conceptual embedding 
extracts concepts by compressing the high-dimensional state into a compact representa-
tion. After extracting concepts, importance values are assigned to them via perturbation 
to explain the agent. In this work, they assume that there is a causal relationship from 
observation to action. Thus, they can explain the cause and effect between concepts and 
actions.

Integrating attention modules into an agent’s architecture can hamper its performance   
(Nikulin et al., 2019). Nikulin et al. (2019) describe a new module that can be inserted into 
a convolutional NN agent instead of proposing a new modified architecture. They demon-
strate that the agent does not show degraded performance with the new module via experi-
mentation and at the same time provide explainability.

Visual inputs contain many features, RL agents must distill inputs to obtain the relevant 
features. However, trying to extract them using brute force can affect training and explain-
ability negatively. To resolve the issue, Zhang et  al. (2021c) propose to divide the deci-
sion-making process into two parts, first finding the task-relevant features and then using 
those features to make decisions. To explain decisions, they describe the temporal-adaptive 
feature attention algorithm to explain the importance of the features. Similarly, Wei et al. 
(2022) introduce a feature selection approach based on attention. The introduced method 
identifies important features and then assesses the features’ importance. Liu et al. (2022) 
present the adaptive region scoring (ARS) module, which is motivated by how humans 
process visual data. Their method is incorporated into an agent by modifying the feature 
extractor, which provides explainability.

In addition to explainability, several other reasons motivate many studies. Focused on 
generalization, Tang et al. (2020) use neuroevolution to train agents with self-attention. The 
self-attention module can be used to explain the agent’s decision-making. Also motivated 
by generalization, a NN architecture of the agent with relational reasoning is proposed by 
Zambaldi et al. (2019), which is also used for explainability purposes. Josef and Degani 
(2020) introduce a DRL agent with built-in attention to provide explainability in the con-
text of safe unmanned ground vehicle navigation that happens in rough terrains. Kim et al. 
(2022) describe integrating attention and risk-sensitive agents to yield explainability. In 
addition, they argue for being the first to work on saliency maps and risk-sensitive agents 
by reviewing several XRL studies. Finally, Wang et al. (2022) work on incorporating sali-
ency map explanations into the exploration strategies of agents to explore more effectively.

Below, we concisely list how saliency is defined for each method:

Fig. 7   In the intrinsic explainability approach, methods modify the agent or model (or both) to enable the 
RL system to become understandable and able to produce explanations
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•	 Goel et  al. (2018) provide two different saliency maps, one highlighting objects and 
another highlighting flow information for each moving object.

•	 Mott et al. (2019) highlight important task-relevant information in visual inputs. From 
their method, we can get two different saliency maps, one on where the agent looks and 
the other on what the agent looks at.

•	 Zambaldi et al. (2019) produce saliency maps that show what different entities in the 
input space attend to, which shows the relationship between the entities.

•	 Bao et al. (2021) produce two different saliency maps, one highlighting the most salient 
objects, while the other focuses on risky regions in traffic accident anticipation. These 
two are merged via weighted sum to create a single saliency map that improves traffic 
accident anticipation.

•	 Dai et al. (2022c) highlight relevant concepts using perturbation. Concepts are found 
via a layer termed concept embedding that compresses the observation.

Intrinsic
Explainability (IE)
(Table 7, 61 studies)

Explanation via
Generation
(Section 7.1, 43 studies)

Feature Importance (FI)
(Section 7.1.1, 16 studies)

Intended Behavior (IB)
(Section 7.1.2, 5 studies)

Textual Justification (TJ)
(Section 7.1.3, 4 studies)

Important States and
Transitions (IST)
(Section 7.1.4, 4 studies)

Expected Outcome (EO)
(Section 7.1.5, 10 studies)

Generative Modeling (GM)
(Section 7.1.6, 4 studies)

Explanation via
Representation
(Section 7.2, 16 studies)

State Abstraction (SA)
(Section 7.2.1, 3 studies)

Task Decomposition (TD)
(Section 7.2.2, 8 studies)

Reward Function (RF)
(Section 7.2.3, 5 studies)

Explanation via
Inspection
(Section 7.3, 3 studies)

Exploratory Analysis (EA)

Fig. 8   Taxonomy of the intrinsic explainability. We separate the category based on how the explanation is 
conveyed: (1) via generation, (2) via representation, and (3) via inspection. The categories do not sum to 59 
studies because some span multiple categories
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•	 Kim and Canny (2017), Nikulin et al. (2019), Cultrera et al. (2020), Josef and Degani 
(2020), Tang et al. (2020), Itaya et al. (2021), Zhang et al. (2021c), Kim et al. (2022), 
Liu et al. (2022), Wang et al. (2022), Wei et al. (2022) highlight task-relevant input fea-
tures.

Methods in this category provide explanations that are easy to convey, as long as the stake-
holder understands the features. These explanations can be used to confirm whether an 
agent is looking at “reasonable” features rather than spurious ones. In addition, explana-
tions are generated during the forward pass, and thus, they do not require much more com-
putational power. On the downside, for visual inputs, which most methods in this category 
focus on, the methods are mostly limited to where the agent looks. Ideally, a stakeholder 
would not only like to know where the agent is looking at, but also what it is looking at. 
For example, is it the car, the car’s color, or the edges of the car triggering the agent’s 
response? These ambiguities make it difficult to understand the explanation. Furthermore, 
it has been shown that it is hard for humans to detect spurious signals, even if the sali-
ency explanations can show them (Adebayo et al., 2022). Compared to post hoc saliency 
methods, explanations of these methods are faithful since they are used in decision-mak-
ing. Although this has been contended, for example, attention is not the same as explana-
tion (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019).

7.1.2 � Intended behavior

The intended behavior category describes methods enabling the agent to inform the stake-
holder about planned actions for several steps into the future. For example, the explanation, 
“I will go left”  (Fukuchi et  al., 2017b) by a robot in a human-robot collaboration task. 
Knowing the planned actions makes it possible for the stakeholder to anticipate the agent’s 

Table 3   High-level overview of categories of methods in the IE based on their explanation types and RL 
explainability characteristics

Category Explanation types RL explainability character-
istics

How What Why Why not What if How to Short-term and 
long-term conse-
quences

Model 
infor-
mation

Feature importance ✓
Intended behavior ✓ ✓
Textual justification ✓ ✓
Important states and 

transitions
✓ ✓ ✓

Expected outcome ✓ ✓ ✓
Generative Modeling ✓ ✓ ✓
State abstraction ✓ ✓
Task decomposition ✓ ✓ ✓
Reward function ✓ ✓
Exploratory analysis ✓
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behavior. Thus, answering the what question with sequential information embedded into 
the explanation.

Focusing on human-robot collaboration, Hayes and Shah (2017) introduce a method 
to answer questions like “When do you do _?”, “What do you do when _?” and “Why 
didn’t you do _?”. Their approach consists of parsing the stakeholder’s queries by match-
ing them with pre-made templates, finding states matching the stakeholder’s queries, and 
generating explanations in natural language explaining the matching states. According to 
Fukuchi et al. (2017b), Hayes and Shah (2017)’s approach has three limitations. (1) Needs 
manual engineering, (2) assumes that the policy will not change, and (3) only the immedi-
ate context is used to explain actions. To resolve these issues, Fukuchi et al. (2017b) intro-
duce the instruction-based behavior explanation (IBE) method that uses interactive RL. In 
this framework, an agent gets instructions from an expert. They assume that the agent fol-
lowed the instructions if the agent received high rewards in the episode. The instructions 
can speed up the agent’s learning and are saved for later use by the agent to explain its 
actions over a short term. They use clustering to explain situations with saved instructions. 
However, if the policy parameters get updated, this method will not work and needs to be 
revised. In response to this limitation, Fukuchi et al. (2017a) propose using a supervised 
learning approach instead of clustering to translate from state to explanation. Extending 
these two studies, Fukuchi et al. (2022) focus on the connection between the agent and the 
stakeholder. More specifically, they focus on the communication divergence that may arise 
between them due to different goals.

Leveraging probabilistic graphical models, Chen et  al. (2022) and Wang et  al. 
(2021a) propose an end-to-end driving system. To explain the driving system, they out-
put a semantic mask that provides a bird’s-eye-view of road conditions, objects in the 
car’s surroundings, and routing information. The semantic mask shows the car’s percep-
tion, comprehension of the driving situation, and planned driving route. The planned 
route gives the stakeholder an understanding of the vehicle’s short-term behavior.

For human-robot collaboration, the type of explanation offered by methods in this 
category is useful since it reveals the agent’s intent. The main use for these types of 
explanations is during real-time collaboration and when the main interest is in the 
agent’s future behavior close in time. On the downside, depending on the task and how 
far into the future explanations explain, they may have limited usefulness. For these 
methods to be useful in real-time situations, the explanations must be sparse and fast to 
produce.

7.1.3 � Textual justification

Textual justification methods enable the agent to provide textual explanations in natural 
language to the stakeholder. For example, the explanation “The car slows down because it 
is preparing to turn to the road.” from Kim et al. (2018) explains the behavior of a driving 
policy. Although textual response explanations can answer a variety of questions, the exist-
ing methods in this category mainly respond to the why and why not questions.

To create textual explanations for driving agents, Kim et  al. (2018) introduce a new 
method by extending Kim and Canny (2017)’s work. They create faithful explanations for 
the driving policy rather than making rationalizations that aim to explain how a human 
spectator would explain an action. To achieve this, they utilize visual explanations to 
produce textual justifications. The visual explanation is produced by an attention model 
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represented as a feed-forward neural network that outputs importance values. The neural 
network is given state features and the previous hidden state from the LSTM model that 
represents the policy. The textual explanation is similarly generated by a separate neural 
network, in this case, an LSTM model. In the same work, they create a new dataset, Berke-
ley deep drive-X, that partially enriches the Berkeley deep drive dataset (Xu et al., 2017) 
with textual justifications. Focusing on the same applications, Ben-Younes et  al. (2022) 
describe a new method to create textual justifications. This method differs from the pre-
viously mentioned approach in two ways. First, they use a different approach to create 
faithful explanations. Second, they focus on generating explanations in the online setting. 
Besides these works focusing on autonomous driving, Wang et al. (2019b) describe a new 
method to create faithful textual justifications by leveraging attention.

Cruz and Igarashi (2021) propose interactive explanations using templates in natural 
language. Utilizing these interactive explanations, stakeholders can find and fix bugs. In 
addition, stakeholders can make the agent’s behavior align with their preferences. In short, 
they propose actionable and interactive explanations that are more than just explanatory.

Textual explanations can be easier to understand for a larger group of stakeholders than 
other types of explanations. Depending on the design of the textual explanations, stake-
holders do not need to understand the inner workings of the agent. However, the cost of tex-
tual explanation is higher, since some form of human intervention is often needed. If there 
is a dataset that can be used for explanations, it is often limited to certain domains. For 
example, the Berkeley deep drive-X can only be exclusively used for driving environments.

7.1.4 � Important states and transitions

The methods within this category explain the agent by pinpointing important states and 
transitions encountered during learning or after. These states and transitions can be situa-
tions where an alternative action can significantly affect the agent’s learning or future out-
come (or both). The goal of these methods is to align the agent’s and stakeholder’s men-
tal models through examples of situations. As these situations communicate diverse agent 
behavior and provide a global overview, the aim is to answer the how and what questions.

According to Dao et al. (2018), Zahavy et al. (2017)’s approach requires manual fea-
ture engineering, and Greydanus et al. (2018) provide local explanations that do not give 
insights into the training process (information about these methods is given in Sects. 8.1.1 
and 8.2.1). Motived by these shortcomings, Dao et al. (2018) describe DRL-Monitor. DRL-
Monitor saves important transitions the agent encounters during learning that can later be 
analyzed to gain insights. The approach extends the sparse Bayesian RL (SBRL)  (Lee, 
2017) method, which requires feature engineering that DRL-Monitor does not. On the 
downside, DRL-Monitor saves too many transitions, pointed out by Dao et al. (2021). This, 
in turn, makes it costly to use DRL-Monitor. To overcome this limitation, Dao et al. (2021) 
present a new approach to balance the information retained and the number of transitions 
saved. Accordingly, fewer transitions are saved, making it less laborious to analyze them. 
In a similar line of work, Mishra et  al. (2018) introduce Visual-SBRL that aims to save 
important transitions. However, unlike DRL-Monitor, Visual-SBRL does feature engineer-
ing via an autoencoder.

The standard MDP formalism is extended into the lazy-MDP by Jacq et al. (2022). In 
the lazy-MDP, we have a policy trained to solve the standard MDP called the default pol-
icy. In addition, we have the lazy policy trained to solve the lazy-MDP. For every action the 
agent has to make, the agent can either delegate action selection to the default policy or use 
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the lazy policy and get a penalty. Thus, the lazy policy will only be used to act if the action 
selection is critical, where the penalty matters less than the outcome, showing a new way to 
identify critical states.

This form of explanation is useful if justifications for specific situations are not needed. 
It is valuable if the goal is to understand the agent’s behavior in general. The difficulty with 
these methods is to find states helpful to the stakeholder, which can differ based on their 
needs. Thus, the importance measure used to assess which states to save must be adapted to 
the situation. Another difficulty is whether looking at a state is enough for the stakeholder 
to understand why a state was picked, or if more information is needed.

7.1.5 � Expected outcome

This section presents studies that aim to answer the short-term and long-term consequences 
of the agent’s decisions. The consequence can range from what is encountered for choosing 
a specific action to how much time it will take to reach the goal state because of that action. 
Additionally, the methods in this category can contrast the outcomes of different actions, 
thus, answering why not questions.

A set of methods decomposes the reward into interpretable components, since finer 
details provide a better understanding  (Erwig et  al., 2018; Juozapaitis et  al., 2019; 
Anderson et al., 2019). For example, Juozapaitis et al. (2019) show that in a gridworld 
environment, the reward can be decomposed into the cliff, gold, monster, and treas-
ure. By using decomposed reward rather than a single numerical value, the methods 
can, in turn, learn decomposed Q-values that are more meaningful than plain Q-values. 
These decomposed Q-values can be used to explain by pointing to the outcome and 
contrasting the consequences of various actions in a state. Although more meaningful, 
Anderson et al. (2019) demonstrated that different situations require different explana-
tions. Moreover, they show that reward decomposition and saliency maps complement 
each other. Focusing on safety in human-robot collaboration, Iucci et al. (2021) intro-
duce a new method that integrates the reward decomposition method with Hayes and 
Shah (2017)’s method. When both methods are used together, the stakeholder’s trust 
increases because of better explainability. Likewise, Rietz et al. (2022) propose a new 
XRL method by extending the reward decomposition method. According to the authors, 
the reward decomposition method lacks a high-level overview and context. To resolve 
this issue, they integrate hierarchical RL with the reward decomposition method. Feit 
et al. (2022) focus on explaining deep RL for self-adaptive systems by combining two 
existing methods: reward decomposition  (Juozapaitis et  al., 2019) and interestingness 
elements  (Sequeira et  al., 2019). They argue reward decomposition suffers from not 
providing states that are interesting for a stakeholder to understand. Furthermore, the 
interestingness elements method provides states that may interest a stakeholder but does 
not provide details beyond that. Hence, by combining these methods, both weaknesses 
are addressed. Terra et al. (2022) introduce a new method, both ends explanations for 
RL (BEERL). BEERL aims to explain both input features and output rewards. They 
reason that existing methods like saliency methods only explain input features, while 
reward decomposition  (Juozapaitis et  al., 2019) only considers rewards when explain-
ing. To explain both components, they propose BEERL which utilizes both by correlat-
ing feature importance with output rewards, giving stakeholders more comprehensive 
explanations.
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Building upon the idea of contrasting the outcome in reward decomposition, Lin et al. 
(2021) propose a technique where they first construct interpretable features and then use 
them to predict Q-values. They construct a two-part agent, which they coined the embed-
ded self-prediction model. The first part predicts the expected discounted cumulative 
features. At the same time, the second part utilizes these aggregated features to predict 
Q-values. By contrasting the expected cumulative features of the actions, their method can 
generate contrastive and minimal sufficient explanations  (Erwig et  al., 2018; Juozapaitis 
et al., 2019). Instead of explaining the result of an action, Yau et al. (2020) explain the time 
it takes for the agent to get to an episode’s end. Yau et al. (2020) present an approach to 
estimate the expected discounted number of state visits from a state to explain the policy. 
Their approach is motivated by the fact that goal-oriented explanations are associated with 
70% of daily life explanations. Additional information is saved during policy learning since 
this information cannot be extracted from the Q-function to create these goal-oriented 
explanations. Focusing on autonomous driving, Pan et  al. (2019) introduce the semantic 
predictive control framework. Their method forecasts the evolution of features to explain to 
stakeholders the future outcome of actions.

Similar to the intended behavior category, methods in this category offer explanations 
explaining the future of a specific situation. In contrast, methods in this category offer more 
detailed explanations that justify actions in terms of future outcomes and not only short-
term outcomes of actions. This is more helpful in situations where time is not a pressing 
matter and more detail is needed. To understand explanations presented by methods in this 
category, more domain knowledge is needed, since there is often reference to rewards and 
engineered input features.

7.1.6 � Generative modeling

This category consists of approaches to understanding the agent using generative mod-
els. These generative models can, for example, be variational autoencoders and genera-
tive adversarial networks. By utilizing the latent encoding of these generative models, 
methods in this category can create why not, what if, and how to explanations.

Yang et  al. (2019) propose a new architecture, the action conditioned (AC)-� vari-
ational autoencoder. First, the method disentangles the latent space into interpretable 
dimensions. Then, the policy uses the interpretable dimensions to make decisions and 
reconstructs them by conditioning on the actions. The goal is to understand how the 
interpretable dimensions affect the actions by moving in the latent space and recon-
structing them using the decoder. Rupprecht et  al. (2020) propose a generative model 
similar to the variational autoencoder. The new model comes with a new loss function 
and aims to generate counterfactual states to comprehend the RL agent. First, they mod-
ify the evidence lower bound so that the agent interprets both the inputs and reconstruc-
tions similarly. In addition, they extend the reconstruction loss to concentrate more on 
the crucial input areas. Finally, they introduce a new method to generate counterfactual 
states that can be interesting and useful.

Olson et al. (2019, 2021) present a method using deep generative models to make coun-
terfactual states. The counterfactual states are made by moving in the latent space and used 
by the policy to make decisions. Doing so makes it possible to ask what if questions, in 
turn, understand the policy’s behavior in new states. The proposed architecture utilizes the 
adversarial autoencoder  (Makhzani et  al., 2015) and the Wasserstein autoencoder  (Tol-
stikhin et al., 2018).
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One of the greatest challenges with methods in this category is to generate realistic 
counterfactual states. When generating counterfactual states, it is important for them to be 
in-distribution, something that is actually plausible. The danger is that generated states are 
out-of-distribution, showing an agent’s unrealistic behavior. With unrealistic counterfactual 
states, a stakeholder might trust the results less. On the bright side, these methods offer a 
quicker way to understand an agent’s behavior in interesting states without running numer-
ous simulations to find these interesting states.

7.2 � Explanation via representation

This section outlines methods providing interpretability through communicating the 
agents’ representation like in Sect. 6, for instance, a decision tree agent where the decision 
tree itself is the explanation. Providing interpretability via representation also includes, for 
example, how we express the state space, since reducing it can also alleviate interpretabil-
ity problems. Compared to Sect. 7.1, the methods in this section do not produce explana-
tions by explicitly generating an object.

7.2.1 � State abstraction

The state abstraction category details methods making the agents more interpretable by 
reducing the state space. The reduction typically happens by clustering states into abstract 
states. Reducing the state space reduces the number of situations we must consider when 
trying to understand the agent’s behavior. Thus, not directly addressing explainability, but 
still helps to make it easier to interpret.

For environments where simulation costs are high, Bougie and Ichise (2020) argue that 
Verma et al. (2018)’s method might not be appropriate (information about the method in 
Sect. 8.2.2). Hence, they propose an approach where they create rules and then use them 
to cluster states. They train the agent by leveraging these abstract states deduced from the 
rules. As a result, this makes it possible to modify several Q-values simultaneously, increas-
ing sample efficiency and interpretability. Akrour et al. (2021) introduce an approach using 
a mixture of experts represented using fuzzy logic with interpretable experts. Their agent 
chooses actions by considering the current state with a list of abstract states that has to be 
small to enable interpretability. The states representing each abstract state are chosen from 
interaction data to guarantee interpretability.

Focusing on the time discretization problem in batch RL and the healthcare setting, 
Zhang et al. (2021a) propose to create abstract states by locating states they term decision 
points. Decision points are states deemed important and where patients are given a differ-
ent treatment, although similar. They use batch data to determine these decision points, 
cluster them, and train the agent using the resulting abstract states.

With a reduced state space, it is easier for a stakeholder to understand an agent’s behav-
ior. It might become easier to determine when certain actions are executed and what condi-
tions trigger them. Also, since these reductions are used during the agent’s learning, they 
can speed up learning. However, even the reduced state space can be overwhelming and 
large in complex environments. Thus, methods from this category might work better if they 
are combined with methods from the important states and transitions category to select or 
highlight abstracted states for inspection.



388	 Machine Learning (2024) 113:355–441

1 3

7.2.2 � Task decomposition

The task decomposition category contains methods that make the agent interpretable by 
breaking a task into smaller and more compact problems. Essentially, the methods in this 
category use a divide-and-conquer procedure to solve the XRL problem. A common RL 
approach to dividing a task into subtasks is through hierarchical RL. Hierarchical RL 
decomposes a task into a hierarchy of subtasks, where we can solve the parent task by solv-
ing the child tasks, using them as primitive actions (Hengst, 2010).

Motivated by lifelong learning, Shu et al. (2018) describe a new hierarchical RL frame-
work. In this framework, the agent learns to act by recursively utilizing previously learned 
policies to train new policies to solve a problem. In addition, a stochastic temporal gram-
mar model is used to keep a tab on the connections between the tasks. Finally, each task 
is labeled using human language to keep the framework interpretable. Likewise, focus-
ing on lifelong learning, Wu et al. (2020) introduce the model primitive hierarchical RL 
(MPHRL) framework. In MPHRL, they assume that substandard models of the world exist. 
These substandard world models perform well in a specific area but suboptimal outside. 
Utilizing these world models, they do task decomposition and learn several sub-policies. 
After training, these sub-policies are used by a gating controller as a mixture of experts 
to act. Beyret et al. (2019) propose a new hierarchical RL method, named dot-to-dot, that 
focuses on solving robotic manipulation tasks. In this method, a high-level policy learns 
sub-goals and manages and assigns subtasks to sub-policies based on learned sub-goals. 
The sub-policies try to maximize the return for the sub-goals, while the high-level pol-
icy tries to maximize the overall return. These subtasks are smaller and potentially more 
manageable. Thus, when a stakeholder wants to understand the agent, it can inspect the 
high-level policy without getting bogged down by details in the sub-policies. Likewise, Ye 
and Yang (2021) propose a hierarchical RL approach named hierarchical policy learning 
with intrinsic-extrinsic modeling (HIEM) for object finding tasks. HIEM similarly employs 
high-level and sub-policies to solve tasks. Gangopadhyay et al. (2022) introduce the hier-
archical program-triggered RL (HPRL) framework, which focuses on autonomous driving. 
Similarly to the previous approaches, HPRL utilizes a high-level policy and sub-policies. 
Specific to HPRL, the high-level policy is represented as a structured program that can be 
inspected and overrule sub-policies for safety.

Lyu et al. (2019) present the new framework, symbolic deep RL (SDRL). SDRL con-
sists of a symbolic planner, meta controller, and controller. The symbolic planner does 
long-term planning, the controller learns policies to act, and the meta controller evaluates 
and bridges these components. Hasanbeig et al. (2021) describe DeepSynth that aims to 
solve problems with sparse reward and partial observability. DeepSynth learns a determin-
istic finite automaton (DFA) that keeps track of the tasks’ sequential dependencies. For 
each DFA state, there is a policy specializing in the task. The DFA can be inspected to gain 
insights into the decision-making process.

Breaking down an action into smaller actions will provide a stakeholder with a better 
understanding of how an agent behaves. However, they still miss shedding light on the 
smaller decomposed actions and only answer why questions for the high-level actions. This 
is especially difficult in cases where the smaller actions taken do not match human intui-
tion. Moreover, there is the difficulty of how to decompose an action and how these meth-
ods will scale to more complex environments.
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7.2.3 � Reward function

The reward function category includes various methods that leverage the reward function 
to understand the agent. For example, explicitly representing the reward function in an 
interpretable format. Doing so helps stakeholders understand the agent’s goal by under-
standing the reward assignment. In addition, using the reward function, a stakeholder can 
model and align agent behavior with its preferred behavior.

Tabrez et al. (2019) study human-robot collaboration where an accurate mental model 
of the task is crucial since it leads to safer and smoother teamwork. They describe the 
reward augmentation and repair through explanation (RARE) framework that aims to assist 
a stakeholder. More specifically, it assumes that the stakeholder has an internal reward 
function that the agent can estimate. If the reward function is wrong, the agent explains it 
to the stakeholder to help correct the reward function. Thus, their mental models will align, 
which improves teamwork.

To specify an agent’s behavior, Li et al. (2019b) employ formal methods to define an 
interpretable reward function. Similarly, Bautista-Montesano et al. (2020) describe a new 
approach that uses fuzzy logic to define the reward function in the context of autonomous 
driving. To learn an interpretable reward function represented using a tree-based model, 
Bewley and Lécué (2022) describe an approach using preference-based RL. They create 
and refine tree-based reward functions using human preferences over behaviors. Compared 
to the previous methods, this approach advantageously offers several ways to express the 
reward function. Bica et al. (2021) aims to learn what if explanations of expert behavior 
from batch data in terms of an interpretable reward function. To achieve this, they lever-
age counterfactual reasoning and use batch RL since interactive learning is impossible in 
healthcare. The reward function is expressed as a linear function of the expected outcomes 
conditioned by history. A linear function is inherently interpretable and can be inspected 
to understand how experts from various organizations reason and value different outcomes 
when making decisions.

Reward functions can be difficult to specify (Abbeel & Ng, 2004), but having an inter-
pretable reward function can increase the understanding of agent behavior. However, 
knowing the reward function and understanding how it works does not stop the agent from 
reward hacking and learning unwanted behavior. Hence, although having an interpretable 
reward function helps, it does not fully shed light on the behavior the agent will learn. 
There are exceptions to this where the reward function itself is closely tied to the learning 
process, for instance, Bewley and Lécué (2022). The main use case for methods in this 
category is when stakeholders want to modify the reward function and, in turn, change the 
agent’s behavior.

7.3 � Explanation via inspection: exploratory analysis

The explanation via inspection category presents studies that propose new agent represen-
tations, making it easier to analyze agents. However, a stakeholder needs to inspect, ana-
lyze, and assess the explanations manually to extract insights from the agents. Compared 
to the methods we have already seen, the explanations produced by the methods in this 
category are more open-ended.

Using a modified NN architecture, Annasamy and Sycara (2019) describe a new 
approach using Q-learning and an autoencoder with key-value memory. The key-
value memory can be analyzed using t-distributed stochastic neighbor embedding 
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(t-SNE) (van der Maaten & Hinton, 2008) to produce global explanations. However, t-SNE 
can be challenging to use, although often used in the context of explainability (Wattenberg 
et al., 2016). In addition to these global explanations, the method can produce local expla-
nations using saliency maps.

Focusing on robot collision avoidance, Kuramoto et al. (2020) present a new NN archi-
tecture where the network’s hidden layers are easily visualizable to understand the agent. 
Tylkin et  al. (2022) use neural circuit policies (NCPs) to represent agents in the flight 
domain. NCPs are used since they have few neurons making analyzing the agent easier, 
such as visualizing neuron activations and characterizing them using decision trees.

The open-endedness of these methods requires more human labor and is more suited 
in situations where there is sufficient time to explore the explanations. Nevertheless, they 
are very useful in cases where a more detailed analysis of an agent’s inner workings is 
needed. In conclusion, these methods are suitable for situations where the neural network 
architecture needs to be more interpretable.

8 � Post hoc explainability

Post hoc explainability (PHE) consists of methods applied to uninterpretable agents or 
models (or both). The aim is to extract insight and produce explanations without changing 
the agent, as shown in Fig. 9. A method being post hoc is not the same as being model-
agnostic. For example, some techniques in this category can only be applied to NNs. 
There are various reasons for using an uninterpretable agent. For example, a company has 
invested in an existing agent and is satisfied with its performance. However, they need to 
extract explanations to demonstrate that it is safe. Instead of starting anew, the company 
can use post hoc techniques. Moreover, situations requiring flexible function approximators 
might make it impossible to use interpretable agents. This section overviews the different 
categories of the post hoc explainability approach depicted in Fig. 10.

Table 4 describes which explanation types and RL explainability characteristics the dif-
ferent PHE categories can provide. Like the methods in Sect. 7, the methods in the PHE 
category create a diverse set of explanations. Using this table as a guide, stakeholders can 
select categories to satisfy their explainability needs and narrow them down to specific 
methods.

8.1 � Explanation via generation

Similar to Sect. 7.1, this category describes methods that generate an object as the explana-
tion. The explanation can be visual, textual, or some other format. For instance, the expla-
nation can be “I inspect a part when the stock feed is on and I detect a part”  (Hayes & 
Shah, 2017) in a robotic inspection task. Unlike the methods in Sect. 7.1, we can apply 
methods in this category to pre-trained agents without modifying them.

8.1.1 � Feature importance

The following section introduces post hoc feature importance methods. On the one hand, 
unlike the methods in Sect. 7.1.1, the post hoc ones are not built into the agent architec-
ture, making these techniques more flexible. On the other hand, methods cannot positively 
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affect the training of agents. Moreover, we need to make sure that these methods produce 
faithful explanations as the explanation generation process is separate from the agent’s 
decision-making process. This category of methods provides the same explanation as the 
methods presented in Sect.  7.1.1, namely the why explanation. Additionally, some tech-
niques presented here can also give global explanations, like Shapley additive explanations 
(SHAP) (Lundberg & Lee, 2017). Thus, some methods provide the how explanation.

Zahavy et  al. (2017) contribute with several techniques to better understand an 
agent. Similar to Simonyan and Zisserman (2015), they produce saliency maps using a 

Post Hoc
Explainability (PHE)
(Table 8, 112 studies)

Explanation via
Generation
(Section 8.1, 52 studies)

Feature Importance (FI)
(Section 8.1.1, 25 studies)

Agent Behavior (AB)
(Section 8.1.2, 5 studies)

Textual Justification (TJ)
(Section 8.1.3, 1 studies)

Important States and
Transitions (IST)
(Section 8.1.4, 17 studies)

Expected Outcome (EO)
(Section 8.1.5, 7 studies)

Explanation via
Representation
(Section 8.2, 42 studies)

State Abstraction (SA)
(Section 8.2.1, 8 studies)

Agent Distillation (AD)
(Section 8.2.2, 34 studies)

Explanation via
Inspection
(Section 8.3, 22 studies)

Exploratory Analysis (EA)
(Section 8.3.1, 15 studies)

Visual Analytics (VA)
(Section 8.3.2, 7 studies)

Fig. 10   Post hoc explainability taxonomy. We separate the category based on how the explanation is con-
veyed: (1) via generation, (2) via representation, and (3) via inspection. The categories do not sum up 
because some studies span multiple categories

Fig. 9   The post hoc explainability approach. To comprehend the agent’s decision-making process, we apply 
the explanation method to the agent or the model (or both) after training. In this context, the model refers to 
the transition and reward function
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gradient-based backpropagation approach. However, gradient-based approaches can pro-
duce low-quality saliency maps. Therefore, Greydanus et al. (2018) introduce a perturba-
tion-based approach to produce saliency maps instead. They perturb the input with Gauss-
ian blur and measure the impact on the output to determine the importance of the different 
input parts. Likewise, Iyer et al. (2018) propose a perturbation-based approach but focus on 
object-level importance instead. They do it by perturbing the objects with the background 
color found using the template matching method. Puri et al. (2020) notice that Greydanus 
et al. (2018) and Iyer et al. (2018) aggregate over all actions causing loss of details. They 
introduce the specific and relevant feature attribution (SAFRA) that focuses on satisfying 
the two properties specificity and relevance. Consequently, more concise and task-relevant 
saliency maps are produced that have been shown to help chess players.

The conservation property states that the importance scores at the input sum up to the 
output value (Bach et al., 2015). According to Huber et al. (2019), existing feature impor-
tance methods for RL lack satisfying this property. In response, they extend the layer-
wise relevance propagation (LRP) (Bach et al., 2015) to DQN and propose a new argmax 
rule to produce more concise explanations. Also, they extend the work to dueling Q-net-
work (Wang et al., 2016). In an extended work, Huber et al. (2021) combines this method 
and a global explanation method (see Sect. 8.1.4) to study the effect of combining explana-
tions. Atrey et al. (2020) review saliency methods for RL and demonstrate that they do not 
necessarily explain causal relations. In the same work, they conclude that saliency maps 
should be treated as exploratory information instead of explanatory.

Shi et  al. (2022) highlight that applying Mott et  al. (2019)’s method to pre-trained 
agents is impossible since the architecture cannot be modified. Instead, Shi et al. (2022) 
introduce a self-supervised interpretable network to generate explanations for agents whose 
architecture can no longer be changed. The method focuses on satisfying two properties, 
maximum behavior resemblance and minimum region retaining, to generate saliency maps 
with improved quality. In a later study, Shi et  al. (2021b) propose the temporal-spatial 
causal interpretation model that focuses on understanding long-term behavior and temporal 

Table 4   High-level overview of the categories in the PHE based on their explanation types and RL explain-
ability characteristics

Category Explanation types RL Explainability Charac-
teristics

How What Why Why not What if How to Short-term and 
long-term conse-
quences

Model 
infor-
mation

Feature importance ✓
Agent behavior ✓ ✓ ✓ ✓
Textual justification ✓
Important states and 

transitions
✓ ✓ ✓

Expected outcome ✓ ✓ ✓
State abstraction ✓ ✓ ✓ ✓
Agent distillation ✓ ✓ ✓ ✓ ✓
Exploratory analysis ✓ ✓ ✓
Visual analytics ✓ ✓ ✓ ✓ ✓
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relationships. The model relies on Granger causality, expressing that causes in the past 
affect future outcomes.

Besides saliency methods, several studies use SHAP to explain RL agents. SHAP uses a 
game theoretical approach to explain agents. Rizzo et al. (2019) use SHAP to explain a traf-
fic signal control RL agent. Similarly, Jiang et al. (2022) apply SHAP to understand DRL 
driving agents. Wang et al. (2020) utilize SHAP in an automatic crane control task since 
perturbation-based saliency techniques are unsuitable for tabular data. Zhang et al. (2022) 
apply DeepSHAP to a DRL agent in a power system emergency control task. Liessner et al. 
(2021) introduce a new SHAP value representation for RL called the RL-SHAP diagram. 
They experimentally demonstrate the method on a longitudinal control task. Working on 
a lever manipulation task using a robotic manipulator, Remman and Lekkas (2021) use 
SHAP to explain RL agents. He et al. (2021) merge the class activation map (Zhou et al., 
2016) and SHAP to create a new explanation method applied to a policy controlling an 
aerial vehicle. Besides the visual explanation, they complement it with textual information. 
Apart from these applications of Shapley values to RL, Beechey et al. (2023) present the 
first theoretical analysis of applying Shapley values to explain RL and show that previous 
uses are incorrect or incomplete.

Borrowing ideas from the supervised learning XAI literature, Weitkamp et  al. 
(2018) and Joo and Kim (2019) apply the gradient-weighted class activation map-
ping  (Selvaraju et  al., 2017) to agents assigned to play Atari games. Similarly, Nie 
et al. (2019) use the gradient-weighted class activation mapping and deconvolutional 
network  (Zeiler & Fergus, 2014) to interpret agents in a swarm robotic system indi-
vidually. Also drawing from the supervised learning literature, Lim et al. (2021) apply 
the deep learning important features (Shrikumar et al., 2017) to comprehend an agent 
trained to control blood glucose. Focusing on the financial application, Guan and Liu 
(2021) employ integrated gradients  (Sundararajan et  al., 2017) to explain an agent 
for portfolio management. Also working on portfolio management, Shi et al. (2021a) 
use the class activation map to understand portfolio allocation. Kim and Choi (2021) 
employ several saliency methods, deep Taylor decomposition (Montavon et al., 2017), 
relative attribution propagation (Nam et al., 2020), and guided backpropagation (Sprin-
genberg et al., 2015) to understand a deep visuomotor policy for robotic manipulation. 
To accommodate negative inputs and outputs, they changed the relevance propagation 
approach.

Pan et  al. (2020) present the explainable generative adversarial imitation learning 
(xGAIL) framework that produces both local and global explanations. xGAIL aims to 
explain agents trained using GAIL (Ho & Ermon, 2016). They produce local explana-
tions utilizing a perturbation-based method. At the same time, global explanations are 
produced by finding observations that maximize the probability of interesting actions.

Methods in this category are closely tied to their counterparts in the IE category. 
One crucial difference between these two categories of methods is the fidelity. In the 
IE category, we need to worry less about fidelity since methods are built into the sys-
tem and used during decision-making. For methods in this category, it is important to 
test their fidelity since the methods are independent from the decision-making. Moreo-
ver, a previous study has shown that feature importance methods producing saliency 
maps are not always faithful to the model they explain  (Adebayo et  al., 2018). The 
methods in this category are fitting for situations where stakeholders want answers to 
why questions using saliency maps but do not want to retrain the agent.
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8.1.2 � Agent behavior

This category contains methods to comprehend the agent by characterizing its behav-
ior. For instance, understand what the agent will do in various situations.

Focusing on human-robot collaboration, Hayes and Shah (2017) introduce several 
methods to answer questions from stakeholders like “When do you do _?”, “What 
do you do when _?” and “Why didn’t you do _?” from the stakeholder, as previously 
mentioned.

By distilling interaction data, Acharya et  al. (2020) describe a method to create a 
conceptual model of agent behavior. This conceptual model conveys the agent’s strat-
egy, conditions for their execution, and consequences. Stork et al. (2020) apply various 
distance measures to compare agents’ behaviors. Furthermore, the distance measures 
are used to find important states and characterize the relationship between reward and 
behavior.

Many RL explanation methods do not exploit the full MDP formalism and focus on 
the underlying function approximator. In response, Finkelstein et al. (2021) utilize the 
full MDP formalism to explain the gap between the agent’s behavior and the behavior 
that the stakeholder anticipated. To explain the gap, they apply abstraction and trans-
formation methods that have previously been used to speed up policy learning.

The methods in this category use the agent’s behavior to explain it. The mecha-
nisms to generate these explanations vary greatly between the methods. From Hayes 
and Shah (2017) answering many types of questions about the agent’s behavior to more 
specific answers, like the gap in stakeholders’ mental models (Finkelstein et al., 2021). 
One downside with some methods in this category is their scalability; for example, 
Hayes and Shah (2017) require query templates that need manual intervention. Meth-
ods in this category are suited for cases where stakeholders want to understand the 
agent’s behavior both locally and globally.

8.1.3 � Textual justification

The method in this category aims to extract textual explanations expressed in natural 
language, similar to methods in Sect. 7.1.3. For example, the explanation “Object ghost 
and dot have drawn attention of Pacman. The Pacman moves right to eat the dot in the 
lower right even she is approaching the ghost in the lower right” (Wang et al., 2019b) in 
the Ms. Pac-Man game. Ehsan et al. (2018) present a method to generate more human-
like explanations that translate state-action pairs to natural language expressions. Their 
method first collects a dataset of state-action pairs and natural language explanations. 
Then, it uses supervised learning to learn to translate state-action pairs into explana-
tions. According to the authors, this approach offers several advantages, such as being 
fast to generate explanations and easier to interpret. However, on the downside, the 
method focuses on explaining how a human would explain the situation and may not 
reflect the agent’s internal reasoning process.

Like its counterpart in the IE category, the method here offers explanations that are 
more human-like. Furthermore, it offers the flexibility for explanations to be semanti-
cally rich. On the downside, it can be more laborious to create these explanations that 
are only rationalizations.
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8.1.4 � Important states and transitions

The important states and transitions category contains techniques that explain the agent 
by showcasing important states and transitions. How the term important is defined 
depends on the particular method. The motivation for displaying important states and 
transitions is due to the simplicity of the resulting explanations. Inspecting the agent’s 
behavior in the whole state space is impossible; thus, a trade-off is to review how the 
agent behaves in a few critical situations. These methods aim for the stakeholders to 
develop an accurate mental model of the agent’s behavior by seeing examples of it in 
a few situations. Consequently, stakeholders will be able to anticipate how the agent 
will behave in seen and unseen situations, thus, gaining a global understanding. Besides 
imparting a global understanding, a few methods in this category try to explain critical 
situations in an episode after the fact.

Amir and Amir (2018) present an approach to generate a summary of the agent’s behav-
ior by showing how it acts in important states. They select important states based on an 
importance measure that uses the agent’s Q-function. More specifically, the more signifi-
cant the gap between the best and worst actions’ Q-values, the higher the importance. In 
addition, they describe a method to avoid selecting redundant states. In a later work, they 
provide the entire conceptual framework of explaining agents by using summaries (Amir 
et al., 2019). They detail the different components of the agent summarization approach, 
how to evaluate these methods, and position them within related work. The components 
consist of selecting states, state representation, and the interface to communicate with the 
stakeholders. In a similar line of work, Huang et al. (2018) and Watkins et al. (2021) pre-
sent methods to select important states. They aim to help stakeholders to build an accurate 
mental model of the agent. Thus, being able to determine when it is appropriate to trust the 
agent. Similar to the other work, Karino et al. (2020) use the Q-function and its variance 
to select important states. However, in contrast to the others, they additionally explore how 
these important states can help speed up learning.

Instead of exploiting the agent’s output, Huang et al. (2019) use an algorithmic teach-
ing approach to generate summaries. They assume humans do inverse RL and select the 
states based on their usefulness to learn the reward function. Rather than inverse RL, 
Lage et  al. (2019a, 2019b) propose choosing states that are most helpful to imitating 
the agent through imitation learning. They experimentally explore the imitation learn-
ing and inverse RL approaches. Their results demonstrate the importance of using an 
appropriate method based on the situation, as no method fits all. Like the aforemen-
tioned approaches, the aim is for the stakeholder to develop an accurate mental of the 
agent. Sequeira and Gervasio (2020) describe a method that gathers interaction data and 
distills potentially interesting information from it, which they call interestingness ele-
ments (Sequeira et al., 2019). They use these interestingness elements to choose states 
and create agent summaries. Their results show that, on the one hand, more than one 
summarization approach is needed for a task to convey a complete understanding of 
agent behavior. On the other hand, too complex explanations can affect stakeholders 
negatively.

Huber et al. (2021) propose an explanation method that produces both local and global 
explanations. The method achieves that by integrating a saliency method with the agent 
summarization technique  (Huber et  al., 2019; Amir & Amir, 2018). Their results dem-
onstrate that, although saliency maps provide useful information, in most situations, 
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adding saliency maps as an addition to the agent summary did not significantly improve the 
understanding.

Previously mentioned agent summarization methods are less suited when comparing 
two agents. According to Amitai and Amir (2022), agents with different performances can 
act similarly in important states. To compare two agents, they describe a new agent sum-
marization technique named DISAGREEMENTS. They find states where two agents disa-
gree via simulation. In a later work, Gajcin et al. (2021) argue that the DISAGREEMENTS 
method only conveys the difference between the agents’ performances, but the agents may 
also differ in their preferred strategies. Therefore, they propose a new method that show-
cases the agents’ gaps in performance and strategy preferences.

Frost et al. (2022) and Watkins et al. (2021) argue that seeing an agent’s behavior from 
training time might be less helpful in the case of a distributional shift. They present a 
method to find states that instead convey test time behavior. The method achieves this by 
first defining a prior distribution of test time states. Then it uses an exploration policy to 
find states matching the prior distribution. Afterward, it runs the original policy from these 
states to construct the agent summary. Thus, it avoids initializing at out-of-reach states.

Unlike the other methods, Gottesman et al. (2020) propose a framework for off-policy 
evaluation using an influence function. An influence function is a technique from robust 
statistics and, in this context, used to determine the importance of transitions with respect 
to the policy parameters. The function answers what happens to the policy parameters if 
a transition is upweighted by an infinitesimal amount (Koh & Liang, 2017). The aim is to 
find important transitions in a batch of data using the influence function. Afterward, show 
these important transitions to an expert to validate the evaluation. Although not motivated 
by explainability, the influence function can be integrated into the agent summarization 
framework.

Besides providing a global understanding of the agent, some methods try to explain 
agent behavior in an episode. Sakai et al. (2021) determine the sub-goals in episodes and 
use them to construct the agent summaries that explain the agent’s behavior in episodes. 
Instead of using sub-goals, Guo et al. (2021b) find the important transitions that affect the 
agent’s return in episodes.

Like its counterpart in IE, this category offers global explanations. However, the way 
states and transitions are found is detached from the agent’s learning. Accordingly, meth-
ods here do not affect the agent’s performance. As noted by Lage et al. (2019a, 2019b), 
no single method will fit all situations. Thus, the methods here complement rather than 
outcompete each other. As we have seen throughout this section, the methods themselves 
have different use cases, from understanding a single agent to comparing two agents. The 
downside of these methods is that a simulator or access to a buffer of data points is needed 
to find these states and transitions.

8.1.5 � Expected outcome

In this section, we look at methods that explain the outcome of the agent’s behavior. For 
example, the long-term consequences of what kind of states and rewards the agent will 
observe and receive when taking a specific action.

van der Waa et al. (2018) introduce a method that constructs a policy based on the stake-
holder’s question and the agent’s policy, called the foil policy. The method explains the out-
come of the agent’s actions alone but also in contrast with the foil policy. The explanation 
consists of outcomes in terms of actions that will be taken, states that will be encountered, 
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and rewards that will be received. These are translated into human-understandable con-
cepts, similar to Hayes and Shah (2017). To create explanations that can answer questions 
from the stakeholder through a mutually understandable vocabulary, Sreedharan et  al. 
(2022) describe a method that leverages a locally approximated model. More specifically, 
the method explains by referring to the outcome of a specific action and contrasting it to 
the stakeholder’s suggestion or explaining that the suggested action cannot be executed. 
Differently from the other approaches, Davoodi and Komeili (2021) present a method that 
highlights features impacting the risk, which tells us something about the outcome. They 
define risk in terms of states where an episode ends before the expected time or leads to 
failures.

Cruz et al. (2019) introduce the memory-based explainable RL (MXRL) method. This 
method explains an action by referring to the probability and time needed to reach the goal. 
They use interaction data gathered to compute these values. To improve the efficiency of 
this method, Cruz et al. (2021) propose the learning-based and introspection-based meth-
ods that extend MXRL. These two approaches were later extended by Portugal et al. (2022) 
to accommodate continuous state spaces.

In contrast to similar methods in the IE category, the methods here use transition data 
to explain what they expect an agent to do. This requires that the agent can be simulated in 
the environment or that there is already data which can be used to analyze the agent. The 
methods here are more flexible in comparison to their counterpart in the IE category, as no 
modification to the agent is required. If a stakeholder wants to understand the long-term 
behavior from a state for a pretrained agent, methods from this category can be chosen.

8.2 � Explanation via representation

Like Sects. 6 and 7.2, the methods in this category explain by referring to the represen-
tation rather than generating objects as explanations. The representation ranges from a 
Markov chain expressing the agent’s behavior in the state space to a simplified alterna-
tive representation of the agent. Unlike the other categories, the representation is extracted 
from the agent after training. Thus, the explanation is not necessarily the agent itself.

8.2.1 � State abstraction

State abstraction methods cluster states by employing various similarity measures to 
reduce the state space complexity, which entails trading off between explanation fidelity 
and complexity. The reduction makes it possible to explain the agent’s behavior glob-
ally, providing an understanding of the overall agent-environment interaction dynamic. 
However, making a concise abstraction for large state spaces may be challenging. Nev-
ertheless, getting a local explanation that explains short-term behavior is still more 
insightful than explaining a single state.

One of the first state abstraction methods for XRL was introduced by Zahavy et al. 
(2017). They present the semi aggregated MDP (SAMDP) that abstracts across states 
and actions. The SAMDP is an extension of the semi MDP and aggregated MDP and 
inherits both of their benefits. To overcome the need for human intervention in the 
SAMDP approach, Topin and Veloso (2019) present the abstract policy graph (APG) 
that builds a state space abstraction from interaction data. The APG represents the 
abstracted state space as a graph where the nodes are abstracted states and edges are 
actions denoting transitions between them. The authors present the APG Gen method 
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in the same work to build APGs. McCalmon et al. (2022) point out that the graphs pro-
duced by previous state abstraction methods are not interpretable beyond their struc-
ture. Moreover, for example, with APG, the graph size can be unbearably large in some 
situations, such as with stochastic policies. To overcome these hurdles, they describe 
the comprehensible abstracted policy summaries method. They make abstracted states 
interpretable by labeling them in human-understandable language. Focusing on visual-
izing the state space and value function, Nakamura and Shibuya (2020) introduce RL 
mapper method that extends the mapper (Singh et al., 2007) method. RL mapper visual-
izes the state space and value function by utilizing topological data analysis.

To express a recurrent NN policy in terms of a Moore machine, Koul et al. (2019) 
introduce the quantized bottleneck network (QBN) insertion. A QBN is an autoencoder 
with discretized latent space and can be used to construct discretized input and memory 
of the policy represented as Moore machines. To reduce the size of Moore machines 
produced, they employ standard Moore machine minimization techniques to translate 
them into minimal equivalent Moore machines. However, Danesh et  al. (2021) notice 
that these standard Moore machine minimization techniques cause the resulting Moore 
machines hard to interpret. This is due to the techniques not considering state seman-
tics. To resolve this issue and effectively reduce these Moore machines, Danesh et  al. 
(2021) describe reductions that do not negatively affect interpretability.

While the other methods expect a trained agent, Bewley et  al. (2022) introduce a 
method applicable to agents under training. They construct the state abstraction using 
interaction data and an information-theoretic divergence measure and express the 
abstract state space as a Markov chain. As the agent learns, the Markov chain will 
change; thus, several Markov chains are constructed, each assigned to a time window. 
The method can also be used to compare several policies.

The state abstraction methods offer comprehensive global explanations by showing 
groups of states and transitions between them. The difficulty for these methods is to 
interpret what the abstract states represent. Showing examples of states in an abstract 
state might not convey enough nuanced information. It might not be apparent why it 
is natural for the policy to consider them as similar. Also, McCalmon et  al. (2022)’s 
approach to creating textual summarizations can be labor-intensive. Another issue is 
choosing the right number of abstract states and what kind of heuristic can be used for 
that. Too few abstract states can hide information from stakeholders, while too many 
can overwhelm them.

8.2.2 � Agent distillation

The agent distillation category is a collection of methods trying to explain the agent by 
simplifying its decision-making logic. Specifically, methods in this category do it by treat-
ing the agent as an expert and using imitation learning to learn a distilled agent that is 
easier to interpret. The goal of the distilled agent is to imitate the original agent as well 
as possible, that is, having a high fidelity. However, beyond having high fidelity, it is also 
essential to consider when the distilled agent imitates the expert well, since rarely visited 
states might be less critical.

We often consider decision trees to be interpretable since it is possible to follow the 
entire reasoning process for a decision. Furthermore, if the decision tree is small, it is even 
globally interpretable instead of being locally only. Many methods use decision trees to 
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imitate, frequently with modifications to solve previous limitations and adapt to new use 
cases. We refer to them collectively as tree-based agent distillation methods. Liu et  al. 
(2018) introduce the linear model u-tree (LMUT) that extends the u-tree method with linear 
models in the leaf nodes for increased flexibility. LMUT aims to approximate the Q-func-
tion of the agent. Coppens et  al. (2019) describe the soft decision tree method  (Frosst 
& Hinton, 2017) applied on Mario AI benchmark  (Karakovskiy & Togelius, 2012). The 
expert we try to imitate often supplies both the action and Q-values. Bastani et al. (2018) 
utilize this fact and improve the dataset aggregation (DAgger) algorithm and propose 
Q-DAgger, which results in less complex distilled agents. The Q-DAgger method improves 
DAgger by prioritizing and sampling state-action pairs based on the Q-values. In addition, 
they propose the verifiability via iterative policy extraction (VIPER) method to extract 
tree-based agents leveraging Q-DAgger and show how these tree-based agents extracted 
can be verified. VIPER has been very influential for methods in this category and several 
other methods extend and improve upon it (Schmidt et al., 2021; Jayawardana et al., 2021; 
Zhu et  al., 2021; Jhunjhunwala et  al., 2020). Roth et  al. (2021) propose an agent distil-
lation method that extends VIPER  (Bastani et  al., 2018). They argue that previous tree-
based methods are uninterpretable  (Frosst & Hinton, 2017; Gupta et  al., 2015) and that 
no domain-specific tree modifications have previously been proposed. Specifically, after 
extracting a decision tree policy from a DRL policy, the decision tree policy is improved 
by modifying it, such as adding or changing nodes. These modifications focus on finding 
and fixing unwanted behavior from the policy in navigation tasks, such as oscillating action 
selection. Besides VIPER and methods that extend it, numerous other studies utilize tree-
based imitation agents to enable interpretability (Gjærum et al., 2021, 2021; Ghosh et al., 
2021; Dhebar et al., 2022; Vasic et al., 2022; Dai et al., 2022b; Bewley & Lawry, 2021), 
with some focusing on first transforming the input to their interpretable counterpart (Bew-
ley et al., 2020; Sieusahai & Guzdial, 2021; Liu et al., 2021).

Motivated by the fact that many agents are hard to understand and verify, Verma 
et  al. (2018) propose the programmatically interpretable RL (PIRL) framework. With 
PIRL, learning agents represented as programs become possible, which uses an expert 
agent to guide the learning process. In a later work, Verma et  al. (2019) describe the 
imitation-projected programmatic RL (PROPEL), a new method to learn program-based 
agents. PIRL and PROPEL are later extended by Larsen and Schmidt (2021) to accom-
modate a different program space. Finally, many of these methods are summarized in 
Bastani et al. (2020).

Rules, such as if-then statements, are another function representation used to 
express distilled agents. Nageshrao et  al. (2019), for example, seek to obtain a dis-
tilled rule-based agent leveraging fuzzy logic trained using the evolving Takagi-Sugeno 
method  (Angelov & Filev, 2004). Another approach proposed by Soares et  al. (2021) 
first clusters states before distilling the agent, thus reducing the complexity of the result-
ing distilled agent. Skirzynski et al. (2021) seek to improve human decision-making by 
first distilling an agent into simple rules. These simple rules are converted into flow-
charts that can assist humans in making better decisions. Honda and Hagiwara (2022) 
express states and actions using first-order logic and extract a distilled rule-based agent.

Driven by the human aspect of explainability, Madumal et  al. (2020) describe the 
action influence model that builds on the structural causal model  (Halpern & Pearl, 
2005) by extending it with actions. They learn the actions’ causal effect during learning 
by constructing the graph’s structure beforehand. Using the graph to explain and create 
hypothetical scenarios, they generate why and contrastive explanations. Also focusing 
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on the human aspect of explainability, Mitsopoulos et al. (2021) describe utilizing cog-
nitive models to understand agent behavior.

Focusing on traffic signal control and explainability, Ault et al. (2020) describe the 
regulatable precedence function as a representation for the distilled agent. A regulat-
able precedence function is a function that is monotonic in the state variables. They 
introduce several modifications of the DQN approach to express and learn regulatable 
precedence function agents. Working on the same problem, Wollenstein-Betech et  al. 
(2020) utilize knowledge compilation techniques to comprehend DRL agents. Zhang 
et al. (2020a) present an agent distillation technique built upon the evolutionary feature 
synthesis regression algorithm (Arnaldo et al., 2015).

Hüyük et  al. (2021) focus on understanding expert decision-making behavior rather 
than the behavior of an agent. To that end, they describe the model-based Bayesian 
method for interpretable policy learning (INTERPOLE). INTERPOLE approximates 
decision dynamics and boundaries and aims to satisfy three characteristics: (1) inherently 
interpretable, (2) partial observability accommodation, and (3) completely offline opera-
tion, which are needed in the healthcare setting. Focusing on the same problem, Pace et al. 
(2022) introduce the policy extraction through decision trees (POETREE) framework that 
builds probabilistic tree policies with recurrent structure. POETREE is designed to handle 
partial observability and offline training for the same reason as INTERPOLE.

Xie et al. (2022) use adversarial inverse RL to distill the reward function where the 
discriminator is represented using the logistic regression model. The resulting reward 
function provides a global explanation due to its simple functional form. After training, 
the function can be analyzed to understand how the agent values different situations.

The agent distillation category offers comprehensive global explanations that explain 
the whole decision-making process. However, since they only distill the input–output 
relation of the original agent, they might not explain the true underlying decision-
making process. Instead, they give a plausible explanation that disregards the original 
agent’s internal logic. Another issue is the complexity of the distilled agent. If the dis-
tilled agent is too complex, such as decision trees with large depth, they may not be 
as useful to a stakeholder. Thus, fidelity and accuracy often need to be traded in these 
models.

8.3 � Explanation via inspection

The explanation via inspection category introduces methods applied to RL agents after 
training to extract understanding. For example, a new user interface dashboard that lets 
a stakeholder freely explore different scenarios to understand the agent or analyze the 
agent using various dimension reduction techniques. Like Sect.  7.3, the explanations 
extracted are open-ended and require human analysis to extract insight. However, in 
contrast to Sect. 7.3, the methods do not modify the agent or propose a custom architec-
ture to extract explanations more easily.

8.3.1 � Exploratory analysis

The exploratory analysis category contains various methods to extract knowledge about 
the agent’s behavior. The methods range from dimension reduction techniques to apply-
ing several existing XAI methods to extract insight.
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Sequeira et al. (2019) propose a new approach to understanding the task and agent 
behavior by analyzing the interaction data and deriving various insights. For example, 
how often does the agent encounter different states, or how often does the agent execute 
the same action in a state. The interaction data is gathered from the agent’s past interac-
tion with the environment. The method’s analysis is independent of the environment 
and the underlying RL algorithm. Similarly, Ullauri et  al. (2022) use interaction data 
to understand the agent. Their method is also model agnostic, like the previously men-
tioned one.

Druce et al. (2019) presents two metrics that can be used to understand the agent’s 
generalization ability. Also, they present a method to understand how agents will behave 
in modified states via state intervention conditioned on the current state. The metrics 
and state intervention information are communicated in a new user interface described 
in the same study. Hilton et al. (2020) utilize XAI methods to understand an agent that 
they trained explicitly in the CoinRun  (Cobbe et  al., 2019) environment. These XAI 
methods include applying several feature importance methods and a dimension reduc-
tion technique. Similarly, utilizing dimension reduction, Agrawal and McComb (2022) 
seek to understand the exploration process of agents tasked with designing cyber-phys-
ical systems. They say that the information about the exploration process can be lever-
aged to choose algorithms for designing these systems.

Løver et  al. (2021) apply several XAI methods to understand how a docking agent 
trained using DRL works. Specifically, they use (1) SHAP, (2) local interpretable 
model-agnostic explanations (LIME) (Ribeiro et al., 2016), and (3) LMT. Focusing on 
heating, ventilation, and air conditioning energy controller, Kotevska et al. (2020) intro-
duce a comprehensive framework to understand these agents trained using DRL. The 
framework uses existing XAI methods to extract local (i.e., LIME) and global explana-
tions (i.e., PDP (Friedman, 2001) and ICE (Goldstein et al., 2015)). Moreover, it gathers 
interaction data of the controller. These two sources of information are analyzed and 
visualized to understand the agent. Dai et al. (2022a) aim to comprehend how, in simu-
lated robotics tasks, domain randomization affects DRL agents. To gain insight, they 
also apply XAI methods, test the agent in different environments, and use out-of-dis-
tribution generalization tests. Pankiewicz and Kowalczyk (2022) present to understand 
RL agents using a combination of techniques. These techniques include Integrated Gra-
dients (Sundararajan et al., 2017), analysis of variance, hypothesis tests, and examining 
correlation on state-action data generated by the policy.

Russell and Santos (2019) aim to understand better the reward function an agent tries 
to optimize. They use LIME to create local explanations and decision trees to imitate the 
reward function to get global explanations. Likewise, using local explanations, specifically 
saliency maps, Michaud et al. (2020) use it to understand the reward function and how well 
it aligns with the stakeholder’s preferred behavior. Similarly, utilizing saliency maps, Guo 
et al. (2021a) seeks to understand the relationship between human and machine attention. 
To accomplish that, they ask two questions. First, “how similar are the visual representa-
tions learned by RL agents and humans when performing the same task?”. And second, 
“how do similarities and differences in these learned representations explain RL agents’ 
performance on these tasks?”.

This category is a collection of methods that can be used to explain RL agents. They 
are a mix of methods from the supervised XAI literature and offer a view of how methods 
together can support understanding RL agents. To aggregate insights from several meth-
ods, human intervention is needed. Furthermore, they do not explain short-term and long-
term consequences, as they use methods that are mainly designed for supervised learning.
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8.3.2 � Visual analytics

Visual analytics systems provide interactive visualizations and analysis tools to better under-
stand RL agents. They aim to help stakeholders better understand agents through insights 
into the agent’s behavior and its internal representation, including how they change during 
training. Various sources of information are gathered and processed to create these visu-
alizations. For instance, how the return per episode evolves or which actions are executed 
in a state throughout the training. Several visual analytics systems have been created for 
unsupervised learning (e.g., GANViz  (Wang et  al., 2018)) and supervised learning (e.g., 
CNNVis  (Liu et  al., 2017), RNNVis  (Ming et  al., 2017), and LSTMVis  (Strobelt et  al., 
2018)). This section overviews the visual analytics method designed explicitly for RL.

Wang et al. (2019a) describe DQNViz, the first visual analytics system designed for RL 
specifically. DQNViz aims to help developers understand, debug, and improve DQN mod-
els. Their system is designed and evaluated together with deep learning experts. It provides 
different views into a DQN model, such as how the training evolves (e.g., Q-value change 
throughout training) or how the DQN performs in a single episode (e.g., action distribu-
tion per episode). Likewise, Seng et al. (2021) introduce a visual analytics system made to 
understand DQN models but does differ by providing insights into other aspects not cov-
ered by DQNViz. Jaunet et al. (2020) point out that previously proposed visual analytics 
systems cannot interpret agents with memory that are designed for environments with par-
tial observability. They, therefore, propose DRLViz, a new visual analytics system focusing 
on understanding agents with memory and analyzing the memory in detail, such as under-
standing its role. The system was created with the help of experts and evaluated in the 
ViZDoom environment (Kempka et al., 2016). Another visual analytics system focusing on 
a different aspect of the agent is DynamicsExplorer (He et al., 2020). DynamicsExplorer 
aims to understand how trained agents are affected by the distribution shift of the environ-
ment. They test DynamicsExplorer in the marble maze game, a robotics control task (van 
Baar et al., 2019).

In contrast to the previously mentioned systems, Wang et  al. (2021b) introduce 
DRLIVE, which focuses on being applicable to all RNN-based models. Furthermore, it 
seeks to be applicable to multiple game settings rather than a few selected. Besides these 
aforementioned systems, there are other visual analytics systems that aim to help experts to 
better understand RL agents (Mishra et al., 2022; Cheng et al., 2022).

Visual analytics systems provide comprehensive tools for a stakeholder to analyze an 
agent. However, they are often tailored to specific agents such as the DQN or specific 
environments like Atari games. They are also more suited for users with in-depth domain 
knowledge and RL knowledge as explanations are more open-ended and technical. Thus, 
they need human analysis to draw insights. Nevertheless, visual analytics provide compre-
hensive explanations that clarify all parts of an agent. This is especially useful for debug-
ging and verification before deployment.

9 � Discussion

In this section, we give a high-level analysis of the trends within XRL and recommend 
some methods for practitioners to use to explain RL agents that have stood the test of time. 
We call these methods foundational, as they have inspired many works that come after via 
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Table 5   Overview of the number of studies published each year for each category

1 The number of studies for 2022 does not include the entire year

Category Year

2017 2018 2019 2020 2021 2022
1

Interpretable agent 1 2 1 3 8 3
Intrinsic explainability Feature importance 1 1 3 3 3 5

Intended behavior 2 1 2
Textual justification 1 1 1 1
Important states and transitions 2 1 1
Expected outcome 1 3 1 2 3
Generative modeling 2 1 1
State abstraction 1 2
Task decomposition 1 2 1 2 2
Reward function 2 1 1 1
Exploratory analysis 1 1 1

Post hoc explainability Feature importance 1 3 5 4 9 3
Agent behavior 1 2 2
Textual justification 1
Important states and transitions 2 4 4 5 2
Expected outcome 1 1 3 2
State abstraction 1 2 2 1 2
Agent distillation 3 3 7 15 6
Exploratory analysis 1 3 5 2 4
Visual analytics 1 2 2 2

extensions and as baseline methods in many experiments. Finally, we look at some future 
directions that forthcoming XRL work should focus on.

9.1 � Trends

Lately, XRL has focused on the PHE category, as seen in Table 5. Less work is done within 
the IE category, likely due to being more challenging. For example, adding a built-in 
explainability mechanism is undesirable if it negatively affects the agent’s performance. 
This issue can be avoided by using PHE methods. From the perspective of this literature 
review, the IA category is receiving the least attention. However, this is because only stud-
ies mainly driven by interpretability are included and not by, for instance, generalization 
and sample efficiency.

We observe that feature importance methods from both IE and PHE are most researched 
among XRL methods. Other trending XRL methods are agent distillation methods that aim 
to explain the agent via distilled models such as decision trees. Aside from those three cat-
egories of methods, the categories expected outcome in IE and important states and transi-
tions in PHE are popular in XRL research. State abstraction methods and visual analytics 
systems in PHE are less popular than previously mentioned categories but still important. 
Although exploratory analysis in PHE looks popular, it is much more diverse and is not 
one of the trending categories within XRL. Overall, the works within XRL are diverse; the 
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focus is spread across areas like feature importance, important states and transitions, agent 
distillation, expected outcome, state abstraction, and visual analytics.

9.2 � Recommendations

This section recommends methods that are suited for different stakeholder questions. 
There is no single method suitable for all stakeholders’ needs. Each method has its use 
cases, strengths, and weaknesses. For instance, feature importance methods are limited to 
explaining where an agent looks in the input space, but are easy to convey to stakeholders. 
They supply us with the ability to answer one specific stakeholder question, namely, “why 
did the agent do _?” regarding where the agent is looking. Methods that can answer stake-
holder questions can be found via Tables 2, 3 and 4. Our focus here when recommending 
methods is based on whether a method has stood the test of time. The methods that have 
been extended a few times are more robust and proven to work in accordance with their 
experiments consistently. Also, one could argue they are considered more useful methods 
by researchers since more resources are used to study them. For example, this is apparent 
in Sect. 8.1.5 where most studies extend or take inspiration (or both) from Juozapaitis et al. 
(2019). Newly published studies are more likely to have stronger experimental results but 
have not been independently verified by other researchers.

Methods from important states and transitions, state abstraction, and agent distillation 
categories can be used to answer how questions. For example, HIGHLIGHTS  (Amir & 
Amir, 2018) answers how questions and is a popular method many studies have extended. 
Stakeholders can use Amitai and Amir (2022)’s method if they want to compare two dif-
ferent agents. If stakeholders need more detailed how explanations, VIPER (Bastani et al., 
2018) from the agent distillation category can be used and is used as a baseline for many 
studies. Likewise, there is the interpretable agent category that can provide detailed how 
explanations, such as Silva et  al. (2020), Trivedi et  al. (2021). Visual analytics systems 
like Wang et al. (2019a) offer comprehensive insights into an agent and can be utilized to 
answer how questions and many other questions. However, visual analytics systems should 
be reserved for situations where comprehensive explanations are needed, as they are more 
open-ended. Furthermore, when using visual analytics systems, stakeholders need exper-
tise in RL as many technical terms are used in these explanations.

When it comes to human-robot collaboration that requires an agent to describe what 
it will do in real-time, methods from intended behavior are suitable. For example Fuku-
chi et al. (2017a, 2017b) provide explanations that are easy to digest but lack detail. For 
more comprehensive explanations, state abstraction methods like Topin and Veloso 
(2019), McCalmon et  al. (2022) offer explanations that describe what the agent will do 
via a Markov chain. Another popular method answering what questions is Hayes and Shah 
(2017)’s method which others take inspiration from. Their method is more suitable when 
the stakeholder wants answers to questions such as, “when do you do _?” and “what do you 
do when _?” in natural language.

The why question is answered by many methods with varying details. The methods in 
the feature importance categories from both IE and PHE answer why questions. Methods 
range from those developed with RL in mind to others adapted from the supervised learning 
XAI literature. Puri et al. (2020) is specifically designed for RL and is a result of addressing 
weaknesses of many previous feature importance methods. If a stakeholder wants to under-
stand what and where the agent is looking, Mott et al. (2019)’s method can be used. Juoza-
paitis et al. (2019)’s method can be used if stakeholders want explanations focusing on the 
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reward instead of the input. Like many of the other questions, methods from the interpret-
able agent category can provide detailed why explanations. The same applies to the agent 
distillation category, for example, Verma et al. (2018), Bastani et al. (2018). Methods from 
the interpretable agent, agent distillation, and feature importance categories are unable to 
answer why concerning long-term consequences. Thus, if stakeholders want explanations 
containing sequential information, the reward decomposition method by Juozapaitis et  al. 
(2019) or Yau et al. (2020)’s method that also focuses on the outcome should be utilized.

The why not questions can be answered by the expected outcome category by contrast-
ing the outcome of actions. As an example, Juozapaitis et al. (2019)’s method answers why 
not questions. Other methods like Yau et al. (2020)’s method also answer why not ques-
tions but uses time steps instead of rewards. Depending on the functional form of the dis-
tilled agent, the agent distillation category can answer these questions. For example, using 
VIPER  (Bastani et  al., 2018), a stakeholder can traverse the decision tree to answer the 
why not question. Additionally, methods from interpretable agents can be used.

The what if and how to questions are closely connected. Generative modeling 
approaches like Olson et al. (2021), Rupprecht et al. (2020) are two ways to answer these 
counterfactual questions. Madumal et al. (2020)’s method is another approach to answer-
ing counterfactual questions via causality. There are also tree-based methods like Liu et al. 
(2018), Bastani et al. (2018) answering these questions. These questions can be answered 
by inspecting paths in the decision trees. Similarly, like most questions, methods from the 
interpretable agent category can be utilized.

9.3 � Future directions

We have seen numerous XRL studies throughout this review. However, there are still 
problems that remain open. Here, we highlight essential and fruitful avenues for future 
studies. More specially, we highlight five directions: (1) state the intent, (2) more 
research on interpretable agents in the context of XRL, (3) focus on RL specific aspects, 
(4) satisfying explanation properties, and (5) better evaluation.

Intent
Numerous review studies briefly explain why we need explainability. However, future 

studies should also state what kind of explainability needs their method specifically 
aims to satisfy (e.g., debugging or extracting novel insight from the domain). Moreover, 
they should describe the intended stakeholders and what kind of stakeholder questions 
the method seeks to answer (e.g., “how can I get the agent to do _?”). Finally, many 
studies evaluate the methods in toy environments or games, but the methods might be 
suitable or intended for other tasks. We urge researchers to state the intent to make it 
easier for stakeholders to find suitable methods. Accordingly, we believe XRL studies 
will have a broader adoption by other stakeholders besides researchers.

Interpretable agent
As pointed out in the supervised learning literature (Burkart & Huber, 2021; Rudin, 

2019), are black box agents required, or can we design inherently interpretable agents? 
In  situations for already deployed agents, post hoc explainability is desirable. Never-
theless, interpretable agents are still crucial to XRL since they truly reflect an agent’s 
behavior rather than creating plausible explanations. Moreover, they have several advan-
tages, such as being sample efficient and better at generalizing and are less researched in 
the context of XRL. Therefore, we recommend future research on XRL to focus more on 
interpretable agents. While much research from other related research areas can fit into 
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this category, we believe more XRL specific research with evaluations targeting inter-
pretability explicitly is needed.

RL specific aspects
Many reviewed RL explanation methods borrow ideas from supervised learning (e.g., 

saliency methods) and explain the actions using only the immediate context. However, RL 
differs from supervised learning, and fewer studies try explaining characteristics unique 
to sequential decision-making. Also, RL can be model-free and model-based. If we use 
model-based RL, how can we explain the model? For example, why does the model predict 
s′ as the future state and not some other state ŝ ? How can we create an explanation that 
coherently explains the agent and model simultaneously? Furthermore, in the case of par-
tial observability where a policy depends on the history and not just the current state. How 
can we explain to the stakeholders when the agent is no longer just reactive but also has an 
internal state? Based on these open problems, we recommend future studies to focus on 
developing methods leveraging and explaining these unique characteristics so that we can 
fully grasp the reasoning process of these agents.

Explanation properties
The authors outline several explanation properties in Chapter 33 of Murphy et al. (2023). 

When proposing new XRL methods, more focus should be placed on covering various 
explanation properties because different situations require different properties. For instance, 
few reviewed studies have explicitly focused on explaining time-critical decisions. In time-
critical decision-making, we need explanations that generate quickly, are easily understand-
able, and do not necessarily cover all the reasons for a decision. In contrast, we might want 
complete explanations in situations without time constraints. In short, we should examine 
which explanation properties existing methods fulfill and work towards covering others to 
accommodate different situations and use cases that various stakeholders have.

XRL evaluation
XAI and XRL are large ecosystems with many components. Apart from the explana-

tion method and the agent, there are other elements like the need for explainability, stake-
holders, and explanation properties. A single evaluation without specifying the method’s 
setup is dissatisfactory. Additionally, developing a holistic evaluation to cover all aspects 
is impossible. As pointed out by previous studies (Puiutta & Veith, 2020; Heuillet et al., 
2021) and Section Appendix A, most studies evaluate methods using functionally-grounded 
evaluations. However, functionally-grounded evaluations do not consider the setup. We 
must carry out evaluations with respect to the task and the stakeholder rather than evaluat-
ing without specifications. Although costly, we recommend doing more human-grounded 
evaluations in future studies and, if possible, application-grounded evaluations.

Besides the aforementioned issues on evaluation, an equally important problem is the 
lack of standardized user studies. User studies without some standardization make it chal-
lenging to compare different studies. Thus, when researchers develop new methods, it is 
hard to know how the different methods compare and which to use. Consequently, we pro-
pose future studies to work toward more comparable standardized user studies.

10 � Conclusions

We have systematically searched five electronic databases and reviewed 189 state-of-the-
art XRL studies published within the last five years. Moreover, we have systematically 
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obtained ten existing XRL literature reviews and compared them to this review by show-
ing how it is systematic, more comprehensive, and updated. This review proposed a new 
taxonomy that reflects the XRL studies reviewed and divided methods into three main 
categories: (1) interpretable agent, (2) intrinsic explainability, and (3) post hoc explain-
ability. Also, the taxonomy organizes the studies based on how the explanations are com-
municated to stakeholders: (1) via generation, (2) via representation, or (3) via inspection. 
Each included study in this literature review was outlined, extracted for details, and organ-
ized into the taxonomy. Additionally, we overviewed which stakeholder questions can be 
satisfied by the different taxonomy categories. For example, if a category of methods can 
answer questions like, “how does the agent work?” and “why did the agent do _?”. After-
ward, we outline trends in XRL and make recommendations for XRL methods based on 
stakeholder questions. Finally, this review highlighted five future directions in this fast-
growing field that tackle challenges hindering broader RL adoption. We intend to unify 
the XRL field with this review. Moreover, we hope this review can be a resource that helps 
stakeholders become acquainted with the state-of-the-art XRL and find suitable methods 
to answer their questions. Lastly, we seek to help researchers find research gaps with this 
review.

Appendix A Overview of XRL studies

In this appendix, we provide a concise overview of the reviewed studies. Table 6 pre-
sents the interpretable agent (IA) studies, Table 7 introduces the intrinsic explainabil-
ity (IE) studies, and Table 8 overviews the post hoc explainability (PHE) studies. We 

Table 6   Overview of interpretable agent studies. Figure 6 lists the acronyms for the category column. US 
refers to if a user study has been performed, and C refers to code being open-sourced

References Category Scope Focus Env(s) / Task(s) US C

Hein et al. (2017b) RB ▪ ⇈ ⇊ ∙ Mountain Car
∙ Cart-Pole
∙ Cart-Pole Swing-Up

✗ ✗

Hein et al. (2018a) RB ▪ ⇈ ⇊ ∙ Cart-Pole Swing-Up
∙ Industrial Benchmark (Hein et al., 2017a)

✗ ✗

Huang et al. (2020) RB ▪ ⇈ ∙ Mountain Car
∙ Continuous Gridworld,
∙ Pendulum Position,
∙ Tank Level Contro

✗ ✗

Likmeta et al. (2020) RB ▪ ⇈ ⇊ ∙ Autonomous driving with scenarios: high-
way (lane change) and urban (crossroads 
and roundabout) using the simulation 
of urban mobility (López et al., 2018) 
simulator

✗ ✗

Hein et al. (2018b) ME ▪ ⇈ ⇊ ∙ Mountain Car
∙ Cart-Pole
∙ Industrial Benchmark

✗ ✗

Kubalík et al. (2021) ME ▪ ⇈ ⇉ ∙ Friction Compensation
∙ 1-DOF and 2-DOF Pendulum Swing-Up
∙ Magnetic Manipulation

✗ ✗



408	 Machine Learning (2024) 113:355–441

1 3

characterize each study by its subcategory, scope, focus, environment or task (or both), 
if it has performed a user study, and if it has open source code. We illustrate the mean-
ing of scope in Fig. 11 and focus in Fig. 12.    

Table 6   (continued)

References Category Scope Focus Env(s) / Task(s) US C

Landajuela et al. (2021) ME ▪ ⇈ ∙ Cart-Pole
∙ Mountain Car
∙ Pendulum
∙ Inverted Double Pendulum
∙ Inverted Pendulum Swing-Up
∙ Lunar Lander
∙ Hopper
∙ Bipedal Walker

✗ ✓

Videau et al. (2022) ME ▪ ⇈ ∙ Cart-Pole
∙ Acrobot
∙ Mountain Car
∙ Pendulum
∙ Inverted Double Pendulum
∙ Inverted Pendulum Swing-Up
∙ Hopper
∙ Lunar Lander,
∙ BipedalWalker
∙ BipedalWalkerHardcore

✗ ✓

Jiang and Luo (2019) LB ▪ ⇈ ⇉ ∙ Block Manipulation
∙ Cliff Walking

✗ ✓

Gorji et al. (2021) LB ▪ ⇉ ∙ Four Gridworld configurations ✗ ✓
Zhang et al. (2021b) LB ▪ ⇈ ⇉ ∙ Block Manipulation

∙ Car Avoiding
✗ ✗

Kimura et al. (2021) LB ▪ ⇈ ⇉ ∙ TextWorld ✗ ✗
Silva et al. (2020) TB ▪ ⇈ ∙ Cart-Pole

∙ Lunar Lander
∙ Simulated Wildfire Tracking
∙ StarCraft II Learning Environment

✓ ✗

Topin et al. (2021) TB ▪ ⇈ ∙ Cart-Pole
∙ PrereqWorld
∙ PothleWorld

✗ ✗

Custode and Iacca (2021) TB ▪ ⇈ ⇉ ∙ Mountain Car
∙ Lunar Lander

✗ ✓

Trivedi et al. (2021) PB ▪ ⇈ ⇉ ∙ Karel domain (Gridworld) ✓ ✓
Qiu and Zhu (2022) PB ▪ ⇈ ⇉ ∙ Several MuJoCo environments ✗ ✓
Cao et al. (2022) PB ▪ ⇈ ⇉ ∙ MiniGrid ✗ ✓

https://www.github.com/brendenpetersen/deep-symbolic-optimization
https://gitlab.inria.fr/trust-ai/xrl/gpxrl
https://github.com/ZhengyaoJiang/NLRL
https://github.com/cair/TsetlinMachine
https://gitlab.com/leocus/ge_q_dts_carl
https://github.com/clvrai/leaps
https://github.com/RU-Automated-Reasoning-Group/pi-PRL
https://sites.google.com/view/galois-drl/code


409Machine Learning (2024) 113:355–441	

1 3

Ta
bl

e 
7  

O
ve

rv
ie

w
 o

n 
in

tri
ns

ic
 e

xp
la

in
ab

ili
ty

 st
ud

ie
s

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

K
im

 a
nd

 C
an

ny
 (2

01
7)

FI
☐

⇈
 ⇊

D
riv

in
g 

da
ta

se
t ∙

 C
om

m
a.

ai
 (S

an
ta

na
 &

 H
ot

z,
 2

01
6)

∙  U
da

ci
ty

∙  H
C

E 
at

 B
er

ke
le

y

✗
✗

G
oe

l e
t a

l. 
(2

01
8)

FI
☐

⇈
  ⇉

∙  A
rc

ad
e 

Le
ar

ni
ng

 E
nv

iro
nm

en
t (

A
LE

)
✗

✓
M

ot
t e

t a
l. 

(2
01

9)
FI

☐
⇈

∙  A
LE

✗
✗

N
ik

ul
in

 e
t a

l. 
(2

01
9)

FI
☐

⇈
∙  A

LE
∙  A

ta
ri-

H
EA

D
 d

at
as

et
✗

✓

Za
m

ba
ld

i e
t a

l. 
(2

01
9)

FI
☐

⇈
  ⇉

∙  S
ta

rC
ra

ft 
II

 L
ea

rn
in

g 
En

vi
ro

nm
en

t
∙  N

av
ig

at
io

n 
an

d 
pl

an
ni

ng
 w

ith
 “

B
ox

-W
or

ld
”

✗
✗

C
ul

tre
ra

 e
t a

l. 
(2

02
0)

FI
☐

⇈
 ⇊

∙  A
ut

on
om

ou
s d

riv
in

g 
da

ta
se

ts:
 C

od
ev

ill
a 

et
 a

l. 
(2

01
8)

∙  C
A

R
LA

 S
im

ul
at

or
 (D

os
ov

its
ki

y 
et

 a
l.,

 2
01

7)
✗

✗

Jo
se

f a
nd

 D
eg

an
i (

20
20

)
FI

☐
⇈

 ⇊
∙  G

en
er

at
ed

 te
rr

ai
n

∙  G
az

eb
o 

(K
oe

ni
g 

&
 H

ow
ar

d,
 2

00
4)

✗
✗

Ta
ng

 e
t a

l. 
(2

02
0)

FI
☐

⇈
  ⇉

∙  C
ar

 R
ac

in
g

∙  D
oo

m
 T

ak
eC

ov
er

✗
✓

B
ao

 e
t a

l. 
(2

02
1)

FI
☐

⇈
 ⇊

Tr
affi

c 
ac

ci
de

nt
 d

at
as

et
s 
∙  D

A
D

A
-2

00
0 

(F
an

g 
et

 a
l.,

 
20

19
)

∙  D
A

D
 (C

ha
n 

et
 a

l.,
 2

01
6)

✗
✓

Zh
an

g 
et

 a
l. 

(2
02

1c
)

FI
☐

⇈
  ⇉

∙  P
en

du
lu

m
 w

ith
 a

dd
ed

 n
oi

se
∙  M

uJ
oC

o 
en

vi
ro

nm
en

ts
∙  T

O
RC

S 
(W

ym
an

n 
et

 a
l.,

 2
01

4)

✗
✓

Ita
ya

 e
t a

l. 
(2

02
1)

FI
☐

⇈
∙  A

LE
✗

✗
Fe

it 
et

 a
l. 

(2
02

2)
EO

◪
 ▪

⇈
∙  S

im
ul

at
or

 o
f W

eb
 In

fr
as

tru
ct

ur
e 

an
d 

M
an

ag
em

en
t

✗
✓

Li
u 

et
 a

l. 
(2

02
2)

FI
☐

⇈
 ⇊

∙  A
LE

✗
✗

W
an

g 
et

 a
l. 

(2
02

2)
FI

☐
⇈

  ⇉
∙  A

LE
✗

✗
W

ei
 e

t a
l. 

(2
02

2)
FI

☐
⇈

  ⇉
∙  M

ou
nt

ai
n 

C
ar

∙  P
en

du
lu

m
∙  C

ar
t-P

ol
e

∙  A
cr

ob
ot

✗
✗

https://github.com/vik-goel/MOREL
https://github.com/dniku/free-lunch-saliency
https://github.com/google/brain-tokyo-workshop/tree/master/AttentionAgent
https://github.com/Cogito2012/DRIVE
https://github.com/ucbdrive/spc
https://git.uni-due.de/rl4sas/xrl-dine


410	 Machine Learning (2024) 113:355–441

1 3

Ta
bl

e 
7  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

D
ai

 e
t a

l. 
(2

02
2c

)
FI

☐
⇈

∙  T
oy

 e
nv

iro
nm

en
t

∙  A
LE

✗
✗

K
im

 e
t a

l. 
(2

02
2)

FI
☐

⇈
  ⇉

∙  2
D

 n
av

ig
at

io
n 

w
ith

 m
ov

in
g 

ob
st

ac
le

s
✗

✗
Fu

ku
ch

i e
t a

l. 
(2

01
7a

)
IB

◪
⇈

 ⇊
∙  L

un
ar

 L
an

de
r

✗
✗

Fu
ku

ch
i e

t a
l. 

(2
01

7b
)

IB
◪

⇈
 ⇊

∙  L
un

ar
 L

an
de

r
✓

✗
W

an
g 

et
 a

l. 
(2

02
1a

)
IB

☐
⇊

 ⇈
∙  H

ig
hw

ay
 o

n-
ra

m
p 

dr
iv

in
g 

sc
en

ar
io

s w
ith

 C
A

R
LA

 
Si

m
ul

at
or

✗
✗

C
he

n 
et

 a
l. 

(2
02

2)
IB

☐
⇊

 ⇈
∙  U

rb
an

 d
riv

in
g 

sc
en

ar
io

s s
uc

h 
as

 in
te

rs
ec

tio
ns

 a
nd

 
ro

un
da

bo
ut

s w
ith

 C
A

R
LA

 S
im

ul
at

or
✗

✓

Fu
ku

ch
i e

t a
l. 

(2
02

2)
IB

☐
⇈

∙  L
un

ar
 L

an
de

r
✓

✓
K

im
 e

t a
l. 

(2
01

8)
TJ

☐
⇈

 ⇊
∙  B

er
ke

le
y 

D
ee

pD
riv

e 
eX

pl
an

at
io

n 
D

at
as

et
. A

n 
ex

te
ns

io
n 

of
 th

e 
B

er
ke

le
y 

D
ee

p 
D

riv
e 

(X
u 

et
 a

l.,
 

20
17

) d
at

as
et

 w
ith

 te
xt

ua
l j

us
tifi

ca
tio

ns

✓
✓

W
an

g 
et

 a
l. 

(2
01

9b
)

TJ
☐

⇈
∙  M

s. 
Pa

c-
M

an
✗

✗
C

ru
z 

an
d 

Ig
ar

as
hi

 (2
02

1)
TJ

◪
⇈

 ⇊
∙  M

ar
io

 A
I

✓
✗

B
en

-Y
ou

ne
s e

t a
l. 

(2
02

2)
TJ

☐
⇈

 ⇊
∙  H

on
da

 D
ee

p 
D

riv
e 

(R
am

an
is

hk
a 

et
 a

l.,
 2

01
8)

 
da

ta
se

t: 
vi

de
o 

fr
am

es
 w

ith
 c

au
se

 la
be

ls
∙  B

er
ke

le
y 

de
ep

 d
riv

e 
ex

pl
an

at
io

n 
(K

im
 e

t a
l.,

 
20

18
) d

at
as

et
: e

xp
la

na
tio

ns
 w

ith
 n

at
ur

al
 la

ng
ua

ge
 

ju
sti

fic
at

io
ns

✗
✓

D
ao

 e
t a

l. 
(2

01
8)

IS
T

▪
⇈

∙  V
is

ua
l M

az
e 

(G
rid

w
or

ld
)

∙  A
LE

✗
✗

M
is

hr
a 

et
 a

l. 
(2

01
8)

IS
T

▪
⇈

∙  G
rid

w
or

ld
✗

✗
D

ao
 e

t a
l. 

(2
02

1)
IS

T
▪

⇈
∙  B

re
ak

ou
t

∙  a
rc

ad
e 

le
ar

ni
ng

 e
nv

iro
nm

en
t

✗
✗

Ja
cq

 e
t a

l. 
(2

02
2)

IS
T

▪
⇈

  ⇉
∙  G

rid
w

or
ld

s
∙  A

LE
✗

✗

Er
w

ig
 e

t a
l. 

(2
01

8)
EO

◪
⇈

 ⇊
∙  C

ol
le

ct
in

g 
fr

ui
ts

 in
 G

rid
w

or
ld

✗
✗

https://github.com/cjy1992/interp-e2e-driving
https://github.com/fuku5/multi_lunar_lander
https://github.com/JinkyuKimUCB/explainable-deep-driving
https://github.com/valeoai/BEEF


411Machine Learning (2024) 113:355–441	

1 3

Ta
bl

e 
7  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

Ju
oz

ap
ai

tis
 e

t a
l. 

(2
01

9)
EO

◪
⇈

∙  C
liff

w
or

ld
∙  L

un
ar

 L
an

de
r

✗
✗

A
nd

er
so

n 
et

 a
l. 

(2
01

9)
EO

◪
⇈

∙  S
el

f-
m

ad
e 

ta
nk

 g
am

e,
 in

sp
ire

d 
by

 re
al

-ti
m

e 
str

at
-

eg
y 

ga
m

e,
 fo

r e
xp

er
im

en
ts

✓
✓

Pa
n 

et
 a

l. 
(2

01
9)

EO
◪

⇈
  ⇉

 ⇊
∙  F

la
pp

y 
B

ird
∙  A

ut
on

om
ou

s d
riv

in
g 

en
vi

ro
nm

en
ts

 w
ith

 v
ar

yi
ng

 
ta

sk
 d

iffi
cu

lty
: T

O
RC

S 
(W

ym
an

n 
et

 a
l.,

 2
01

4)
, 

CA
R

LA
 S

im
ul

at
or

 a
nd

 G
ra

nd
 T

he
ft 

A
ut

o 
V

✗
✓

Ya
u 

et
 a

l. 
(2

02
0)

EO
◪

⇈
∙  C

ar
t-P

ol
e

∙  B
la

ck
ja

ck
∙  T

ax
i (

G
rid

w
or

ld
)

✗
✓

Iu
cc

i e
t a

l. 
(2

02
1)

EO
 P

H
E-

A
B

▪
 ◪

 ☐
⇈

∙  A
ut

om
at

ed
 w

ar
eh

ou
se

 sc
en

ar
io

s m
od

el
ed

 in
 

V-
R

EP
 (R

oh
m

er
 e

t a
l.,

 2
01

3)
 si

m
ul

at
or

✗
✓

Li
n 

et
 a

l. 
(2

02
1)

EO
◪

⇈
∙  C

ar
t-p

ol
e

∙  L
un

ar
 L

an
de

r
∙  T

ug
 o

f W
ar

✗
✓

R
ie

tz
 e

t a
l. 

(2
02

2)
EO

 T
D

◪
⇈

∙  2
D

 n
av

ig
at

io
n 

w
ith

 a
 st

at
ic

 o
bs

ta
cl

e
✗

✓
O

ls
on

 e
t a

l. 
(2

01
9)

G
M

☐
⇈

∙  A
LE

✓
✗

Ya
ng

 e
t a

l. 
(2

01
9)

G
M

☐
⇈

∙  d
Sp

rit
es

 (M
at

th
ey

 e
t a

l.,
 2

01
7)

∙  A
LE

∙  M
uJ

oC
o:

 W
al

ke
r2

d,
 H

op
pe

r, 
H

al
f-

C
he

et
ah

 a
nd

 
Sw

im
m

er

✗
✗

Ru
pp

re
ch

t e
t a

l. 
(2

02
0)

G
M

▪
⇈

∙  A
LE

∙  D
riv

in
g 

si
m

ul
at

io
n

✗
✗

O
ls

on
 e

t a
l. 

(2
02

1)
G

M
☐

⇈
∙  A

LE
✓

✓
B

ou
gi

e 
an

d 
Ic

hi
se

 (2
02

0)
SA

▪
⇈

  ⇉
∙  T

ra
di

ng
 ta

sk
 fr

om
 re

al
 st

oc
k 

m
ar

ke
t d

at
a

∙  V
is

ua
l n

av
ig

at
io

n
✗

✗

Zh
an

g 
et

 a
l. 

(2
02

1a
)

SA
▪

⇊
∙  H

yp
ot

en
si

on
 m

an
ag

em
en

t d
at

a 
fro

m
 M

IM
IC

-
II

I (
Jo

hn
so

n 
et

 a
l.,

 2
01

6a
)

✗
✗

https://ir.library.oregonstate.edu/concern/datasets/tt44ps61c
https://github.com/ucbdrive/spc
https://github.com/hmhyau/rl-intention
https://github.com/EricssonResearch/scott-eu/blob/offloading/simulation-ros/src/turtlebot2i/turtlebot2i_safety/src/environment_mlp_rd.py
https://github.com/SuerpX/Embedded-Self-Predictions
https://github.com/frietz58/hdddqn
https://github.com/mattolson93/counterfactual-state-explanations/


412	 Machine Learning (2024) 113:355–441

1 3

Ta
bl

e 
7  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

A
kr

ou
r e

t a
l. 

(2
02

1)
SA

▪
⇈

∙  P
yB

ul
le

t (
C

ou
m

an
s &

 B
ai

, 2
01

6–
20

21
)

∙  M
uJ

oC
o 

(T
od

or
ov

 e
t a

l.,
 2

01
2)

 e
nv

iro
nm

en
ts

✗
✓

Sh
u 

et
 a

l. 
(2

01
8)

TD
◪

⇉
∙  O

bj
ec

t m
an

ip
ul

at
io

n 
ta

sk
s i

n 
M

in
ec

ra
ft 

(J
oh

ns
on

 
et

 a
l.,

 2
01

6b
)

✗
✗

B
ey

re
t e

t a
l. 

(2
01

9)
TD

◪
⇈

∙  F
et

ch
Pu

sh
, F

et
ch

Pi
ck

A
nd

Pl
ac

e 
an

d 
H

an
dM

an
ip

u-
la

te
B

lo
ck

 in
 M

uJ
oC

o
✗

✗

Ly
u 

et
 a

l. 
(2

01
9)

TD
◪

⇉
 ⇈

∙  T
ax

i d
om

ai
n 

(G
rid

w
or

ld
)∙

 M
on

te
zu

m
a’

s R
ev

en
ge

✗
✓

W
u 

et
 a

l. 
(2

02
0)

TD
▪

⇉
∙  A

nt
 n

av
ig

at
in

g 
m

az
es

, S
ta

ck
er

 a
rm

 p
ic

ki
ng

 u
p 

an
d 

pl
ac

in
g 

di
ffe

re
nt

 b
ox

es
 in

 M
uJ

oC
o

✗
✗

H
as

an
be

ig
 e

t a
l. 

(2
02

1)
TD

◪
⇉

∙  M
in

ec
ra

ft
∙  T

w
o 

m
ar

s-
ro

ve
r b

en
ch

m
ar

ks
∙  R

ob
ot

-s
ur

ve
∙  s

lp
-e

as
y

∙  s
lp

-h
ar

d
∙  f

ro
ze

n-
la

ke
∙  M

on
te

zu
m

a’
s R

ev
en

ge

✗
✓

Ye
 a

nd
 Y

an
g 

(2
02

1)
TD

◪
⇉

∙  R
ob

ot
 o

bj
ec

t s
ea

rc
h 

in
 H

ou
se

3D
 si

m
ul

at
io

n 
en

vi
ro

nm
en

t
✗

✓

G
an

go
pa

dh
ya

y 
et

 a
l. 

(2
02

2)
TD

▪
⇊

 ⇈
∙  D

iff
er

en
t d

riv
in

g 
ta

sk
s

∙  P
re

-c
ra

sh
 sc

en
ar

io
s i

n 
CA

R
LA

 S
im

ul
at

or
✗

✓

Ta
br

ez
 e

t a
l. 

(2
01

9)
R

F
◪

⇈
∙  C

ol
or

-b
as

ed
 v

ar
ia

te
 o

f S
ud

ok
u 

w
ith

 a
 R

et
hi

nk
 

Ro
bo

tic
s S

aw
ye

r m
an

uf
ac

tu
rin

g 
ro

bo
t

✓
✗

Li
 e

t a
l. 

(2
01

9b
)

R
F

▪
⇉

 ⇈
∙  T

w
o 

ro
bo

tic
 m

an
ip

ul
at

or
s t

o 
pe

rfo
rm

 a
 h

ot
 d

og
 

co
ok

in
g 

an
d 

se
rv

in
g 

ta
sk

✗
✗

B
au

tis
ta

-M
on

te
sa

no
 e

t a
l. 

(2
02

0)
R

F
▪

⇊
 ⇈

∙  R
ac

in
g 

tra
ck

s b
y 

A
m

az
on

 W
eb

 S
er

vi
ce

s:
 B

aa
da

l 
Tr

ac
k,

 S
O

LA
 S

pe
ed

w
ay

, t
he

 2
02

0 
D

ee
pR

ac
er

 
C

ha
m

pi
on

sh
ip

 T
ra

ck
, t

he
 A

W
S 

Su
m

m
it 

R
ac

ew
ay

✗
✓

B
ic

a 
et

 a
l. 

(2
02

1)
R

F
▪
 ◪

⇊
 ⇈

∙  H
ea

lth
ca

re
: s

im
ul

at
ed

 e
nv

iro
nm

en
t, 

IC
U

 d
at

as
et

 
fro

m
 M

IM
IC

-I
II

✗
✗

https://github.com/akrouriad/tpami_metricrl
https://github.com/daomingAU/MontezumaRevenge_SDRL
https://github.com/grockious/deepsynth
https://github.com/Xin-Ye-1/HIEM
https://github.com/britig/Hierarchical-Program-Triggered-RL
https://github.com/Rolix57/RL-FIS


413Machine Learning (2024) 113:355–441	

1 3

Ta
bl

e 
7  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

B
ew

le
y 

an
d 

Lé
cu

é 
(2

02
2)

R
F

▪
⇉

 ⇈
∙  P

en
du

lu
m

∙  R
ob

oC
ar

∙  L
un

ar
 L

an
de

r
∙  F

oo
d 

La
va

✓
✗

A
nn

as
am

y 
an

d 
Sy

ca
ra

 (2
01

9)
EI

▪
⇈

  ⇉
∙  A

LE
✗

✓
K

ur
am

ot
o 

et
 a

l. 
(2

02
0)

EI
▪

⇈
∙  C

ol
lis

io
n 

av
oi

da
nc

e 
le

ar
ni

ng
 o

f a
 re

al
 ro

bo
t i

n 
va

rio
us

 p
hy

si
ca

l e
nv

iro
nm

en
ts

 in
 re

al
 ti

m
e

✗
✗

Ty
lk

in
 e

t a
l. 

(2
02

2)
EI

▪
⇈

∙  C
an

yo
n 

Ru
n 

si
m

ul
at

io
n:

 a
irc

ra
ft 

co
nt

ro
l s

im
ul

at
ed

∙  D
ro

ne
 D

od
ge

ba
ll:

 q
ua

dc
op

te
r c

on
tro

l, 
fir

st 
si

m
ul

a-
tio

n 
th

an
 la

te
r t

ra
ns

fe
rr

ed
 to

 a
 re

al
 sy

ste
m

✗
✗

Te
rr

a 
et

 a
l. 

(2
02

2)
EO

☐
 ◪

⇈
∙  R

em
ot

e 
el

ec
tri

ca
l a

nt
en

na
 ti

lt 
co

nt
ro

l
✗

✗

Fi
gu

re
 8

 li
sts

 th
e 

ac
ro

ny
m

s f
or

 th
e 

ca
te

go
ry

 c
ol

um
n.

 U
S 

re
fe

rs
 to

 if
 a

 u
se

r s
tu

dy
 h

as
 b

ee
n 

pe
rfo

rm
ed

, a
nd

 C
 re

fe
rs

 to
 c

od
e 

be
in

g 
op

en
-s

ou
rc

ed
.

https://github.com/maraghuram/I-DQN


414	 Machine Learning (2024) 113:355–441

1 3

Ta
bl

e 
8  

O
ve

rv
ie

w
 o

n 
po

st 
ho

c 
ex

pl
ai

na
bi

lit
y 

stu
di

es

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

Za
ha

vy
 e

t a
l. 

(2
01

7)
 (b

as
ed

 o
n 

Za
ha

vy
 e

t a
l. 

(2
01

6)
, B

en
-Z

rih
em

 
et

 a
l. 

(2
01

6)
, B

ar
am

 e
t a

l. 
(2

01
7)

)

FI
 E

A
 S

A
▪
 ◪

 ☐
⇈

A
LE

✗
✓

W
ei

tk
am

p 
et

 a
l. 

(2
01

8)
FI

☐
⇈

A
LE

✗
✗

G
re

yd
an

us
 e

t a
l. 

(2
01

8)
FI

☐
⇈

A
LE

✓
✓

Iy
er

 e
t a

l. 
(2

01
8)

FI
☐

⇈
A

LE
✓

✗
N

ie
 e

t a
l. 

(2
01

9)
FI

☐
⇉

 ⇈
N

av
ig

at
io

n
✗

✗
H

ub
er

 e
t a

l. 
(2

01
9)

FI
☐

⇈
A

LE
✗

✗
Jo

o 
an

d 
K

im
 (2

01
9)

FI
☐

⇈
A

LE
✗

✗
R

iz
zo

 e
t a

l. 
(2

01
9)

FI
☐

⇈
 ⇊

Tr
affi

c 
si

gn
al

 c
on

tro
l

✗
✗

Pa
n 

et
 a

l. 
(2

02
0)

FI
 E

A
▪
 ☐

⇈
Re

al
-w

or
ld

 ta
xi

 d
riv

in
g

✗
✓

Pu
ri 

et
 a

l. 
(2

02
0)

FI
	�


◻

⇈
C

he
ss

G
o

A
LE

✓
✓

W
an

g 
et

 a
l. 

(2
02

0)
FI

▪
 ☐

⇈
C

ra
ne

 c
on

tro
l

✗
✗

H
ub

er
 e

t a
l. 

(2
02

1)
FI

 IS
T

▪
 ☐

⇈
A

LE
✓

✓
Li

es
sn

er
 e

t a
l. 

(2
02

1)
FI

▪
 ☐

⇈
 ⇊

Lo
ng

itu
di

na
l v

eh
ic

le
 c

on
tro

l
✗

✗
Li

m
 e

t a
l. 

(2
02

1)
FI

☐
⇈

 ⇊
B

lo
od

 g
lu

co
se

 c
on

tro
l

✗
✗

H
e 

et
 a

l. 
(2

02
1)

FI
▪
 ☐

⇈
 ⇊

U
nm

an
ne

d 
ae

ria
l v

eh
ic

le
 n

av
ig

at
io

n
✗

✗
Re

m
m

an
 a

nd
 L

ek
ka

s (
20

21
)

FI
▪
 ☐

⇈
  ⇉

Ro
bo

tic
 m

an
ip

ul
at

or
 c

on
tro

l
✗

✗
K

im
 a

nd
 C

ho
i (

20
21

)
FI

☐
⇈

Ro
bo

tic
 m

an
ip

ul
at

or
 c

on
tro

l
✗

✗
Sh

i e
t a

l. 
(2

02
1b

)
FI

☐
⇈

A
LE

D
uc

ki
et

ow
n 

(P
au

ll 
et

 a
l.,

 2
01

7)
✗

✗

G
ua

n 
an

d 
Li

u 
(2

02
1)

FI
☐

⇈
 ⇊

Po
rtf

ol
io

 m
an

ag
em

en
t

✗
✗

Sh
i e

t a
l. 

(2
02

1a
)

FI
☐

⇈
 ⇊

Po
rtf

ol
io

 m
an

ag
em

en
t

✗
✗

Zh
an

g 
et

 a
l. 

(2
02

2)
FI

▪
 ☐

⇈
 ⇊

Po
w

er
 sy

ste
m

 c
on

tro
l

✗
✗

Jia
ng

 e
t a

l. 
(2

02
2)

FI
▪
 ☐

⇈
 ⇊

A
ut

on
om

ou
s d

riv
in

g
✗

✗

https://github.com/TomZahavy/GrayingTheBox
https://github.com/greydanus/visualize_atari
https://github.com/paperpublicsource/xgail
https://github.com/nikaashpuri/sarfa-saliency
https://github.com/HuTobias/HIGHLIGHTS-LRP


415Machine Learning (2024) 113:355–441	

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

Sh
i e

t a
l. 

(2
02

2)
FI

◻
⇈

D
uc

ki
et

ow
n

A
LE

✗
✓

H
ay

es
 a

nd
 S

ha
h 

(2
01

7)
A

B
▪
 ☐

⇈
G

rid
w

or
ld

C
ar

t-P
ol

e
Ro

bo
t i

ns
pe

ct
in

g 
pa

rts
 o

n 
a 

co
nv

ey
or

 
be

lt

✗
✗

St
or

k 
et

 a
l. 

(2
02

0)
A

B
 IS

T
▪

⇈
G

rid
w

or
ld

In
ve

rte
d 

Pe
nd

ul
um

✗
✗

Fi
nk

el
ste

in
 e

t a
l. 

(2
02

1)
A

B
▪

⇈
Ta

xi
A

pp
le

 P
ic

ki
ng

Fr
oz

en
 L

ak
e

✗
✓

Eh
sa

n 
et

 a
l. 

(2
01

8)
TJ

☐
⇈

Fr
og

ge
r

✓
✗

A
m

ir 
an

d 
A

m
ir 

(2
01

8)
IS

T
▪

⇈
M

s. 
Pa

c-
M

an
✓

✗
H

ua
ng

 e
t a

l. 
(2

01
8)

IS
T

▪
⇈

H
ig

hw
ay

 d
riv

in
g

✓
✗

H
ua

ng
 e

t a
l. 

(2
01

9)
IS

T
▪

⇈
H

ig
hw

ay
 d

riv
in

g
✓

✗
A

m
ir 

et
 a

l. 
(2

01
9)

IS
T

▪
⇈

C
on

ce
pt

ua
l f

ra
m

ew
or

k
✗

✗
La

ge
 e

t a
l. 

(2
01

9a
, 2

01
9b

)
IS

T
▪

⇈
G

rid
w

or
ld

M
s. 

Pa
c-

M
an

H
IV

 S
im

ul
at

or

✓
✗

G
ot

te
sm

an
 e

t a
l. 

(2
02

0)
IS

T
▪

⇉
M

ed
ic

al
 c

an
ce

r s
im

ul
at

or
M

IM
IC

-I
II

✗
✓

Se
qu

ei
ra

 a
nd

 G
er

va
si

o 
(2

02
0)

IS
T

▪
⇈

Fr
og

ge
r

✓
✓

K
ar

in
o 

et
 a

l. 
(2

02
0)

IS
T

▪
⇈

  ⇉
C

liff
W

or
ld

B
re

ak
ou

t
W

al
ke

r2
D

✗
✗

Sa
ka

i e
t a

l. 
(2

02
1)

IS
T

▪
 ◪

⇈
M

in
ig

rid
 w

ith
 k

ey
 a

nd
 d

oo
r

✓
✗

https://github.com/shiwj16/SSINet
https://openreview.net/attachment?id=yRMehOHpRCy%20&name=supplementary_material
https://github.com/dtak/interpretable_ope_public
https://github.com/SRI-AIC/InterestingnessXRL


416	 Machine Learning (2024) 113:355–441

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

G
uo

 e
t a

l. 
(2

02
1b

)
IS

T
◪

⇈
Po

ng
Yo

u-
Sh

al
l-N

ot
-P

as
s

K
ic

k-
A

nd
-D

ef
en

d
∙  C

ar
t-P

ol
e

∙  P
en

du
lu

m

✓
✓

W
at

ki
ns

 e
t a

l. 
(2

02
1)

IS
T

▪
⇈

∙  H
ig

hw
ay

 d
riv

in
g

∙  M
in

ig
rid

✓
✗

G
aj

ci
n 

et
 a

l. 
(2

02
1)

IS
T 

EO
▪

⇈
∙  H

ig
hw

ay
 d

riv
in

g
✗

✗
Fr

os
t e

t a
l. 

(2
02

2)
IS

T
▪

⇈
∙  M

in
ig

rid
✓

✓
A

m
ita

i a
nd

 A
m

ir 
(2

02
2)

IS
T

▪
⇈

∙  F
ro

gg
er

✓
✓

va
n 

de
r W

aa
 e

t a
l. 

(2
01

8)
EO

◪
⇈

∙  G
rid

w
or

ld
✓

✗
C

ru
z 

et
 a

l. 
(2

01
9)

EO
◪

⇈
∙  G

rid
w

or
ld

✗
✗

D
av

oo
di

 a
nd

 K
om

ei
li 

(2
02

1)
EO

◪
⇈

∙  B
ip

ed
al

W
al

ke
r

∙  M
in

ig
rid

∙  L
un

ar
 L

an
de

r
∙  M

IM
IC

-I
II

✗
✗

C
ru

z 
et

 a
l. 

(2
02

1)
EO

◪
⇈

∙  N
av

ig
at

io
n 

ta
sk

∙  V
is

ua
l o

bj
ec

t s
or

tin
g 

ta
sk

✗
✗

Po
rtu

ga
l e

t a
l. 

(2
02

2)
EO

◪
⇈

∙  C
ar

 R
ac

in
g

✗
✗

Sr
ee

dh
ar

an
 e

t a
l. 

(2
02

2)
EO

◪
⇈

∙  M
on

te
zu

m
a’

s R
ev

en
ge

∙  S
ok

ob
an

✓
✓

To
pi

n 
an

d 
Ve

lo
so

 (2
01

9)
SA

▪
⇈

∙  P
re

re
qW

or
ld

✗
✗

K
ou

l e
t a

l. 
(2

01
9)

SA
▪

⇈
∙  M

od
e 

C
ou

nt
er

 e
nv

iro
nm

en
ts

∙  T
om

ita
 G

ra
m

m
ar

s b
en

ch
m

ar
k

∙  A
LE

✗
✓

Sr
ee

dh
ar

an
 e

t a
l. 

(2
02

0)
SA

▪
⇈

∙  D
om

ai
ns

 fr
om

 In
te

rn
at

io
na

l P
la

n-
ni

ng
 C

om
pe

tit
io

n 
20

11
✓

✗

https://github.com/Henrygwb/edge
https://github.com/juliusfrost/cfrl-rllib
https://github.com/yotamitai/Agent-Disagreements
https://openreview.net/attachment?id=o-1v9hdSult%20&name=supplementary_material
https://github.com/koulanurag/mmn


417Machine Learning (2024) 113:355–441	

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

N
ak

am
ur

a 
an

d 
Sh

ib
uy

a 
(2

02
0)

SA
▪

⇈
∙  2

D
 p

at
h 

se
ar

ch
∙  T

ax
i (

G
rid

w
or

ld
)

✗
✗

D
an

es
h 

et
 a

l. 
(2

02
1)

SA
▪

⇈
∙  A

LE
∙  A

cr
ob

ot
∙  C

ar
t-P

ol
e

∙  L
un

ar
 L

an
de

r

✗
✓

M
cC

al
m

on
 e

t a
l. 

(2
02

2)
SA

▪
⇈

∙  B
la

ck
ja

ck
∙  C

liff
W

or
ld

∙  C
ar

t-P
ol

e
∙  L

un
ar

 L
an

de
r

∙  M
ou

nt
ai

n 
C

ar

✓
✓

B
ew

le
y 

et
 a

l. 
(2

02
2)

SA
▪

⇈
∙  A

LE
∙  M

az
e

∙  L
un

ar
 L

an
de

r

✗
✗

Li
u 

et
 a

l. 
(2

01
8)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
∙  M

ou
nt

ai
n 

C
ar

∙  C
ar

t-P
ol

e
∙  F

la
pp

y 
B

ird

✗
✓

B
as

ta
ni

 e
t a

l. 
(2

01
8)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇉
∙  P

on
g

∙  C
ar

t-P
ol

e
∙  H

al
f C

he
et

ah

✗
✗

Ve
rm

a 
et

 a
l. 

(2
01

8)
A

D
 (p

ro
gr

am
-b

as
ed

)
▪
 ☐

⇈
  ⇉

∙  T
O

RC
S

∙  C
ar

t-P
ol

e
∙  M

ou
nt

ai
n 

C
ar

∙  A
cr

ob
ot

✗
✗

C
op

pe
ns

 e
t a

l. 
(2

01
9)

A
D

 (t
re

e-
ba

se
d

☐
⇈

∙  M
ar

io
 A

I
✗

✗
N

ag
es

hr
ao

 e
t a

l. 
(2

01
9)

A
D

 (r
ul

e-
ba

se
d)

▪
 ☐

⇈
 ⇊

∙  D
riv

in
g 

w
ith

 c
ar

 fo
llo

w
in

g
✗

✗
Ve

rm
a 

et
 a

l. 
(2

01
9)

A
D

 (p
ro

gr
am

-b
as

ed
)

▪
 ☐

⇈
  ⇉

∙  T
O

RC
S

∙  M
ou

nt
ai

n 
C

ar
∙  P

en
du

lu
m

✗
✓

https://github.com/modanesh/Differential_IG
https://github.com/mccajl/CAPS
https://github.com/Guiliang/uTree_mimic_mountain_car
https://bitbucket.org/averma8053/propel


418	 Machine Learning (2024) 113:355–441

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

Zh
an

g 
et

 a
l. 

(2
02

0a
)

A
D

 (m
at

he
m

at
ic

al
 e

xp
re

ss
io

n)
▪
 ☐

⇈
∙  C

ar
t-P

ol
e

∙  A
cr

ob
ot

∙  M
ou

nt
ai

n 
C

ar
∙  I

nd
us

tri
al

 B
en

ch
m

ar
k

✗
✗

Jh
un

jh
un

w
al

a 
et

 a
l. 

(2
02

0)
A

D
 (t

re
e-

ba
se

d)
▪
 ☐

⇈
∙  C

ar
t-P

ol
e

∙  M
ou

nt
ai

n 
C

ar
∙  L

un
ar

 L
an

de
r

✗
✗

B
ew

le
y 

et
 a

l. 
(2

02
0)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
∙  D

riv
in

g
✗

✗
B

as
ta

ni
 e

t a
l. 

(2
02

0)
A

D
 (p

ro
gr

am
m

at
ic

 p
ol

ic
y)

▪
 ☐

⇈
  ⇉

∙  C
as

e 
stu

dy
 w

ith
 re

su
lts

 fr
om

 th
ei

r 
pr

ev
io

us
 w

or
k

✗
✗

M
ad

um
al

 e
t a

l. 
(2

02
0)

A
D

 (c
au

sa
l g

ra
ph

ic
al

 m
od

el
)

▪
 ◪

 ☐
⇈

∙  M
ou

nt
ai

n 
C

ar
∙  C

ar
t-P

ol
e

∙  T
ax

i
∙  L

un
ar

 L
an

de
r

∙  B
ip

ed
al

W
al

ke
r

∙  S
ta

rc
ra

ft 
II

✓
✗

A
ul

t e
t a

l. 
(2

02
0)

A
D

 (r
eg

ul
at

ab
le

 p
re

ce
de

nc
e 

fu
nc

-
tio

n)
▪
 ☐

⇈
 ⇊

∙  T
ra

ffi
c 

lig
ht

 c
on

tro
l

✗
✓

W
ol

le
ns

te
in

-B
et

ec
h 

et
 a

l. 
(2

02
0)

A
D

 (l
og

ic
-b

as
ed

)
▪
 ☐

⇈
∙  T

ra
ffi

c 
lig

ht
 c

on
tro

l
✗

✗
B

ew
le

y 
an

d 
La

w
ry

 (2
02

1)
A

D
 (t

re
e-

ba
se

d)
▪
 ◪

 ☐
⇈

∙  2
-d

im
en

si
on

al
 ro

ad
 d

riv
in

g
∙  L

un
ar

 L
an

de
r

✗
✓

Sk
irz

yn
sk

i e
t a

l. 
(2

02
1)

A
D

 (r
ul

e-
ba

se
d)

▪
 ☐

⇈
∙  M

ou
se

la
b-

M
D

P
✓

✓
So

ar
es

 e
t a

l. 
(2

02
1)

A
D

 (r
ul

e-
ba

se
d)

▪
 ☐

⇈
 ⇊

∙  D
riv

in
g

✗
✗

H
üy

ük
 e

t a
l. 

(2
02

1)
A

D
 (d

ec
is

io
n 

bo
un

da
rie

s)
▪
 ☐

⇈
 ⇊

∙  H
ea

lth
ca

re
 d

at
as

et
✓

✓
M

its
op

ou
lo

s e
t a

l. 
(2

02
1)

A
D

 (i
ns

ta
nc

e-
ba

se
d 

le
ar

ni
ng

)
☐

⇈
∙  T

w
o-

be
ac

on
 ta

sk
 in

 S
ta

rc
ra

ft 
II

∙  G
rid

w
or

ld
 a

dv
er

sa
ry

 ta
sk

✗
✗

G
jæ

ru
m

 e
t a

l. 
(2

02
1)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
 ⇊

∙  A
ut

on
om

ou
s s

ur
fa

ce
 v

es
se

l d
oc

ki
ng

✗
✗

https://github.com/jault/StateStreetSumo
https://github.com/tombewley/TripleTree
https://github.com/RationalityEnhancement/InterpretableStrategyDiscovery
https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/interpoley


419Machine Learning (2024) 113:355–441	

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

Li
u 

et
 a

l. 
(2

02
1)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
∙  F

la
pp

y 
B

ird
s

∙  A
LE

✓
✓

Si
eu

sa
ha

i a
nd

 G
uz

di
al

 (2
02

1)
A

D
 (t

re
e-

ba
se

d)
▪
 ☐

⇈
∙  A

LE
✗

✗
G

jæ
ru

m
 e

t a
l. 

(2
02

1)
A

D
 (t

re
e-

ba
se

d)
▪
 ☐

⇈
 ⇊

∙  A
ut

on
om

ou
s s

ur
fa

ce
 v

es
se

l d
oc

ki
ng

✗
✗

La
rs

en
 a

nd
 S

ch
m

id
t (

20
21

)
A

D
 (p

ro
gr

am
-b

as
ed

)
▪
 ☐

⇈
  ⇉

∙  P
en

du
lu

m
 S

w
in

g-
U

p
✗

✗
G

ho
sh

 e
t a

l. 
(2

02
1)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
 ⇊

∙  M
ou

nt
ai

n 
C

ar
∙  L

an
e 

ch
an

gi
ng

 in
 h

ig
hw

ay
 d

riv
in

g
✗

✗

Ja
ya

w
ar

da
na

 e
t a

l. 
(2

02
1)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
  ⇉

 ⇊
∙  T

ra
ffi

c 
lig

ht
 c

on
tro

l
✗

✗
Sc

hm
id

t e
t a

l. 
(2

02
1)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
  ⇉

∙  H
ig

hw
ay

 la
ne

 c
ha

ng
in

g
✗

✗
Pa

ce
 e

t a
l. 

(2
02

2)
A

D
 (t

re
e-

ba
se

d)
▪
 ◪

 ☐
⇈

 ⇊
∙  H

ea
lth

ca
re

 d
at

as
et

✓
✗

Va
si

c 
et

 a
l. 

(2
02

2)
A

D
 (t

re
e-

ba
se

d)
▪
 ☐

⇈
  ⇉

∙  C
ar

t-P
ol

e
∙  A

cr
ob

ot
∙  M

ou
nt

ai
n 

C
ar

∙  L
un

ar
 L

an
de

r
∙  P

on
g

∙  P
en

du
lu

m

✗
✓

D
he

ba
r e

t a
l. 

(2
02

2)
A

D
 (t

re
e-

ba
se

d)
▪
 ☐

⇈
∙  C

ar
t-P

ol
e

∙  M
ou

nt
ai

n 
C

ar
∙  L

un
ar

 L
an

de
r

∙  D
riv

in
g,

 c
ar

 fo
llo

w
in

g
∙  A

cr
ob

ot

✗
✓

H
on

da
 a

nd
 H

ag
iw

ar
a 

(2
02

2)
A

D
 (r

ul
e-

ba
se

d)
▪
 ☐

⇈
∙  M

ou
nt

ai
n 

C
ar

∙  C
ar

t-P
ol

e
✗

✗

D
ai

 e
t a

l. 
(2

02
2b

)
A

D
 (t

re
e-

ba
se

d)
▪
 ☐

⇈
 ⇊

∙  P
ow

er
 sy

ste
m

 e
m

er
ge

nc
y 

co
nt

ro
l

✗
✗

Zh
u 

et
 a

l. 
(2

02
1)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
 ⇊

∙  T
ra

ffi
c 

lig
ht

 c
on

tro
l

✗
✗

X
ie

 e
t a

l. 
(2

02
2)

A
D

▪
⇈

∙  S
um

m
ar

iz
at

io
n 

ta
sk

✗
✗

Se
qu

ei
ra

 e
t a

l. 
(2

01
9)

EA
▪
 ◪

⇈
∙  P

ro
po

sa
l o

f a
 n

ew
 X

R
L 

fr
am

ew
or

k
✗

✗
A

ch
ar

ya
 e

t a
l. 

(2
02

0)
A

B
 E

A
▪
 ◪

⇈
∙  G

rid
w

or
ld

✗
✗

https://github.com/Guiliang/RAMi-public
https://github.com/marko-vasic/MoET
https://github.com/yddhebar/NLDT


420	 Machine Learning (2024) 113:355–441

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

K
ot

ev
sk

a 
et

 a
l. 

(2
02

0)
EA

▪
 ☐

⇈
∙  H

ea
tin

g 
ve

nt
ila

tio
n 

an
d 

ai
r-c

on
di

-
tio

ni
ng

 d
ev

ic
e 

co
nt

ro
l

✗
✗

Ru
ss

el
l a

nd
 S

an
to

s (
20

19
)

EA
▪
 ☐

⇈
∙  O

bj
ec

t W
or

ld
✗

✗
M

ic
ha

ud
 e

t a
l. 

(2
02

0)
EA

☐
⇈

  ⇉
∙  G

rid
w

or
ld

∙  A
LE

✗
✓

H
ilt

on
 e

t a
l. 

(2
02

0)
EA

▪
 ☐

⇈
∙  C

oi
nR

un
✗

✓
G

uo
 e

t a
l. 

(2
02

1a
)

EA
☐

⇈
∙  A

ta
ri-

H
EA

D
 (Z

ha
ng

 e
t a

l.,
 2

02
0b

) 
da

ta
se

t
✗

✓

Lø
ve

r e
t a

l. 
(2

02
1)

EA
▪
 ☐

⇈
 ⇊

∙  A
ut

on
om

ou
s s

ur
fa

ce
 v

es
se

l d
oc

ki
ng

✗
✗

D
ai

 e
t a

l. 
(2

02
2a

)
EA

▪
 ☐

⇈
∙  P

er
fo

rm
 ta

rg
et

-r
ea

ch
in

g 
w

ith
 v

is
uo

-
m

ot
or

 c
on

tro
l

✗
✓

A
gr

aw
al

 a
nd

 M
cC

om
b 

(2
02

2)
EA

▪
⇈

 ⇊
∙  A

er
ia

l v
eh

ic
le

∙  R
ac

e 
ca

r d
es

ig
n

✗
✗

U
lla

ur
i e

t a
l. 

(2
02

2)
EA

▪
 ◪

 ☐
⇈

∙  A
ut

on
om

ou
s a

irb
or

ne
 b

as
e 

st
at

io
n 

co
nt

ro
l

✗
✗

D
ru

ce
 e

t a
l. 

(2
01

9)
EA

◪
 ☐

⇈
∙  A

LE
✓

✗
W

an
g 

et
 a

l. 
(2

01
9a

)
VA

▪
 ◪

 ☐
⇈

∙  A
LE

✓
✗

Ja
un

et
 e

t a
l. 

(2
02

0)
VA

▪
 ◪

 ☐
⇈

∙  V
iZ

D
oo

m
✓

✓
H

e 
et

 a
l. 

(2
02

0)
VA

▪
 ◪

 ☐
⇈

∙  B
al

l-i
n-

m
az

e 
ga

m
e

✓
✗

W
an

g 
et

 a
l. 

(2
02

1b
)

VA
▪
 ◪

 ☐
⇈

∙  A
LE

✓
✗

C
he

ng
 e

t a
l. 

(2
02

2)
VA

▪
 ◪

 ☐
⇈

∙  L
un

ar
 L

an
de

r
✓

✗
Se

ng
 e

t a
l. 

(2
02

1)
VA

▪
 ◪

 ☐
⇈

∙  A
LE

✗
✗

M
is

hr
a 

et
 a

l. 
(2

02
2)

VA
▪
 ◪

 ☐
⇈

∙  T
ax

i n
av

ig
at

io
n

∙  R
ob

ot
 st

ac
ki

ng
 b

ox
es

 in
 a

n 
in

du
s-

tri
al

 e
nv

iro
nm

en
t

∙  H
IV

 d
ru

g 
re

co
m

m
en

da
tio

n

✓
✗

https://github.com/HumanCompatibleAI/interpreting-rewards
https://distill.pub/2020/understanding-rl-vision/
https://openreview.net/attachment?id=8fztRILSxL%20&name=code
https://github.com/TianhongDai/domain-rand-interp
https://github.com/sical/drlviz


421Machine Learning (2024) 113:355–441	

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

Re
fe

re
nc

es
C

at
eg

or
y

Sc
op

e
Fo

cu
s

En
v(

s)
 / 

Ta
sk

(s
)

U
S

C

Ro
th

 e
t a

l. 
(2

02
1)

A
D

 (t
re

e-
ba

se
d)

▪
 ☐

⇈
 ⇊

∙  M
ob

ile
 R

ob
ot

 N
av

ig
at

io
n

∙  G
am

e 
C

ha
ra

ct
er

 L
oc

om
ot

io
n 

an
d 

A
ni

m
at

io
n

✗
✗

Pa
nk

ie
w

ic
z 

an
d 

K
ow

al
cz

yk
 (2

02
2)

EA
☐

 ▪
⇈

∙  H
ig

hw
ay

 d
riv

in
g

✗
✗

Fi
gu

re
 1

0 
lis

ts
 th

e 
ac

ro
ny

m
s f

or
 th

e 
ca

te
go

ry
 c

ol
um

n.
 U

S 
re

fe
rs

 to
 if

 a
 u

se
r s

tu
dy

 h
as

 b
ee

n 
pe

rfo
rm

ed
, a

nd
 C

 re
fe

rs
 to

 c
od

e 
be

in
g 

op
en

-s
ou

rc
ed



422	 Machine Learning (2024) 113:355–441

1 3

Acknowledgements  The author would like to thank the anonymous reviewers for giving insightful and val-
uable feedback that has strengthened the literature review. Also, the author is grateful to Helge Langseth and 
Inga Strümke for insightful discussions and helpful feedback. Furthermore, the author would like to thank 
Melissa Yan for proofreading the manuscript.

Funding  Open access funding provided by NTNU Norwegian University of Science and Technology (incl 
St. Olavs Hospital - Trondheim University Hospital). The funding was provided by the Norwegian Univer-
sity of Science and Technology’s Department of Computer Science.

Declarations 

Conflict of interest  The author has no conflict of interest to declare that are relevant to the content of this 
article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbeel, P., & Ng, AY. (2004). Apprenticeship learning via inverse reinforcement learning. In: C. E. 
Brodley (Ed.), Machine learning, Proceedings of the twenty-first international conference (ICML 
2004), ACM International Conference Proceeding Series, vol  69. ACM https://​doi.​org/​10.​1145/​
10153​30.​10154​30,

Fig. 11   The scope denotes the validity of the explanation. A global explanation justifies the agent in any 
state. In comparison, a local explanation explains only the behavior in a limited set of states. In sequential 
decision-making, we differentiate between two types of local explanations, one justifying actions using the 
short-term and long-term consequences and the other using the immediate context

Fig. 12   The focus describes the motivation of the study in question, which can be more than one. We dif-
ferentiate between three different types of motivation a study can have. If a study tries to: (1) solve the XRL 
problem, (2) improve an RL specific problem such as sample efficiency or generalization, and (3) solve 
real-world application problems

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430


423Machine Learning (2024) 113:355–441	

1 3

Acharya, A., Russell, R.L., & Ahmed, N.R. (2020). Explaining conditions for reinforcement learning 
behaviors from real and imagined data. NeurIPS Workshop on Challenges of Real-World RL 
https://​doi.​org/​10.​48550/​ARXIV.​2011.​09004

Achiam, J. (2018). Spinning up in deep reinforcement learning. https://​spinn​ingup.​openai.​com/​en/​latest/​
index.​html

Adebayo, J., Gilmer, J., Muelly, M., et  al. (2018). Sanity checks for saliency maps. In S. Bengio , H. 
M. Wallach, H. Larochelle et  al. (Eds.), Advances in neural information processing systems 31: 
Annual conference on neural information processing systems NeurIPS 2018, Montréal, pp 9525–
9536, https://​proce​edings.​neuri​ps.​cc/​paper/​2018/​hash/​294a8​ed24b​1ad22​ec2e7​efea0​49b87​37-​Abstr​
act.​html

Adebayo, J., Muelly, M., Abelson, H., et  al. (2022). Post hoc explanations may be ineffective for detect-
ing unknown spurious correlation. In The tenth international conference on learning representations, 
ICLR 2022, Virtual Event. OpenReview.net, https://​openr​eview.​net/​forum?​id=​xNOVf​CCvDpM

Agrawal, A., & McComb, C. (2022). Comparing strategies for visualizing the high-dimensional explora-
tion behavior of CPS design agents. In Proceedings of DESTION pp. 64–69, https://​doi.​org/​10.​
1109/​DESTI​ON561​36.​2022.​00017

Akrour, R., Tateo, D., & Peters, J. (2021). Continuous action reinforcement learning from a mixture of 
interpretable experts. In Proceedings of TPAMI, pp. 1. https://​doi.​org/​10.​1109/​TPAMI.​2021.​31031​
32

Alharin, A., Doan, T., & Sartipi, M. (2020). Reinforcement learning interpretation methods: A survey. 
IEEE Access, 8, 171058–171077. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30233​94

Amir, D., & Amir, O. (2018). HIGHLIGHTS: Summarizing agent behavior to people. In E. André, S. 
Koenig, M. Dastani et  al. (Eds.), Proceedings of AAMAS. International Foundation for Autono-
mous Agents and Multiagent Systems Richland, SC, USA/ACM, pp. 1168–1176, http://​dl.​acm.​
org/​citat​ion.​cfm?​id=​32378​69

Amir, O., Doshi-Velez, F., & Sarne, D. (2019). Summarizing agent strategies. Autonomous Agents and 
Multi-Agent Systems, 33(5), 628–644. https://​doi.​org/​10.​1007/​s10458-​019-​09418-w

Amitai, Y., & Amir, O. (2022). “I Don’t Think So”: Summarizing policy disagreements for agent compari-
son. In Proceedings of AAAI, vol. 36(5), pp. 5269–5276. https://​doi.​org/​10.​1609/​aaai.​v36i5.​20463

Anderson, A., Dodge, J., Sadarangani, A., et al. (2019). Explaining reinforcement learning to mere mor-
tals: An empirical study. In S. Kraus (Ed), Proceedings of IJCAI. ijcai.org, pp. 1328–1334, https://​
doi.​org/​10.​24963/​ijcai.​2019/​184

Angelov, P. P., & Filev, D. P. (2004). An approach to online identification of Takagi-Sugeno fuzzy mod-
els. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(1), 484–498. https://​doi.​org/​
10.​1109/​TSMCB.​2003.​817053

Angwin, J., Larson, J., Mattu, S., et al. (2016). Machine bias. https://​www.​propu​blica.​org/​artic​le/​machi​
ne-​bias-​risk-​asses​sments-​in-​crimi​nal-​sente​ncing

Annasamy, R.M., & Sycara, K.P. (2019). Towards better interpretability in deep Q-networks. In Pro-
ceedings of AAAI. AAAI Press, pp. 4561–4569, https://​doi.​org/​10.​1609/​aaai.​v33i01.​33014​561

Arakawa, R., Kobayashi, S., Unno, Y., et al. (2018). DQN-TAMER: Human-in-the-loop reinforcement 
learning with intractable feedback. CoRR abs/1810.11748. arXiv:​1810.​11748

Arnaldo, I., O’Reilly, U., & Veeramachaneni, K. (2015). Building predictive models via feature syn-
thesis. In: S. Silva, A. I. Esparcia-Alcázar (Eds.), Proceedings of GECCO. ACM, pp. 983–990, 
https://​doi.​org/​10.​1145/​27394​80.​27546​93

Arrieta, A. B., Rodríguez, N. D., Ser, J. D., et al. (2020). Explainable Artificial Intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 
82–115. https://​doi.​org/​10.​1016/j.​inffus.​2019.​12.​012

Atrey, A., Clary, K., & Jensen, D. D. (2020). Exploratory not explanatory: Counterfactual analysis of 
saliency maps for deep reinforcement learning. In Proceedings of ICLR. OpenReview.net, https://​
openr​eview.​net/​forum?​id=​rkl3m​1BFDB

Ault, J., Hanna, J.P., Sharon, G. (2020). Learning an interpretable traffic signal control policy. In: A. E. 
F. Seghrouchni ,G. Sukthankar , B. An, et al (Eds.), Proceedings of AAMAS. International Founda-
tion for Autonomous Agents and Multiagent Systems, pp 88–96, https://​doi.​org/​10.​5555/​33987​61.​
33987​77

Bach, S., Binder, A., Montavon, G., et  al. (2015). On pixel-wise explanations for non-linear classifier 
decisions by layer-wise relevance propagation. PLoS One, 10(7), 1–46. https://​doi.​org/​10.​1371/​
journ​al.​pone.​01301​40

Bao, W., Yu, Q., & Kong, Y. (2021). DRIVE: Deep reinforced accident anticipation with visual explanation. 
In Proceedings of ICCV. IEEE, pp. 7599–7608 https://​doi.​org/​10.​1109/​ICCV4​8922.​2021.​00752

https://doi.org/10.48550/ARXIV.2011.09004
https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://openreview.net/forum?id=xNOVfCCvDpM
https://doi.org/10.1109/DESTION56136.2022.00017
https://doi.org/10.1109/DESTION56136.2022.00017
https://doi.org/10.1109/TPAMI.2021.3103132
https://doi.org/10.1109/TPAMI.2021.3103132
https://doi.org/10.1109/ACCESS.2020.3023394
http://dl.acm.org/citation.cfm?id=3237869
http://dl.acm.org/citation.cfm?id=3237869
https://doi.org/10.1007/s10458-019-09418-w
https://doi.org/10.1609/aaai.v36i5.20463
https://doi.org/10.24963/ijcai.2019/184
https://doi.org/10.24963/ijcai.2019/184
https://doi.org/10.1109/TSMCB.2003.817053
https://doi.org/10.1109/TSMCB.2003.817053
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1609/aaai.v33i01.33014561
http://arxiv.org/abs/1810.11748
https://doi.org/10.1145/2739480.2754693
https://doi.org/10.1016/j.inffus.2019.12.012
https://openreview.net/forum?id=rkl3m1BFDB
https://openreview.net/forum?id=rkl3m1BFDB
https://doi.org/10.5555/3398761.3398777
https://doi.org/10.5555/3398761.3398777
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1109/ICCV48922.2021.00752


424	 Machine Learning (2024) 113:355–441

1 3

Baram, N., Zahavy, T., & Mannor, S. (2017). Spatio-temporal abstractions in reinforcement learning 
through neural encoding. https://​openr​eview.​net/​forum?​id=​r1yjk​Atxe

Bastani, O., Inala, J.P., & Solar-Lezama, A. (2020). Interpretable, verifiable, and robust reinforcement 
learning via program synthesis. In A. Holzinger, R. Goebel, R. Fong, et al (Eds.), xxAI—beyond 
explainable AI—International workshop, Held in Conjunction with ICML 2020, Vienna, Lecture 
Notes in Computer Science, vol. 13200. Springer, pp. 207–228, https://​doi.​org/​10.​1007/​978-3-​
031-​04083-2_​11

Bastani, O., Pu, Y., & Solar-Lezama, A. (2018). Verifiable reinforcement learning via policy extraction. 
In S. Bengio, H. M. Wallach, H. Larochelle, et al (Eds.) Proceedings of NeurIPS, pp. 2499–2509, 
https://​proce​edings.​neuri​ps.​cc/​paper/​2018/​hash/​e6d85​45daa​42d5c​ed125​a4bf7​47b36​88-​Abstr​act.​
html

Bautista-Montesano, R., Bustamante-Bello, R., & Ramirez-Mendoza, R. A. (2020). Explainable naviga-
tion system using fuzzy reinforcement learning. International Journal on Interactive Design and 
Manufacturing (IJIDeM), 14(4), 1411–1428. https://​doi.​org/​10.​1007/​s12008-​020-​00717-1

Beechey, D., Smith, T.M.S., & Simsek, Ö. (2023). Explaining reinforcement learning with shapley val-
ues. In A. Krause, E. Brunskill, K. Cho, et al (Eds.), International Conference on Machine Learn-
ing, ICML 2023, Honolulu, Hawaii, Proceedings of Machine Learning Research, vol 202. PMLR, 
pp. 2003–2014, https://​proce​edings.​mlr.​press/​v202/​beech​ey23a.​html

Bellemare, M. G., Naddaf, Y., Veness, J., et al. (2013). The Arcade learning environment: An evaluation 
platform for general agents. Journal of Artificial Intelligence Research, 47, 253–279. https://​doi.​
org/​10.​1613/​jair.​3912

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National Academy of 
Sciences, 38(8), 716–719. https://​doi.​org/​10.​1073/​pnas.​38.8.​716

Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34–37. https://​doi.​org/​10.​1126/​scien​ce.​
153.​3731.​34

Ben-Younes, H., Zablocki, É., Pérez, P., et  al. (2022). Driving behavior explanation with multi-level 
fusion. Pattern Recognition, 123(108), 421. https://​doi.​org/​10.​1016/j.​patcog.​2021.​108421

Ben-Zrihem, N., Zahavy, T., & Mannor, S. (2016). Visualizing dynamics: From t-SNE to SEMI-MDPs. 
ICML Workshop on Human Interpretability in Machine Learning https://​doi.​org/​10.​48550/​
ARXIV.​1606.​07112

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming, Optimization and neural com-
putation series, vol 3. Athena Scientific, https://​www.​world​cat.​org/​oclc/​35983​505

Bewley, T., & Lawry, J. (2021). TripleTree: A versatile interpretable representation of black box agents 
and their environments. In Proceedings AAAI. AAAI Press, pp. 11,415–11,422, https://​ojs.​aaai.​
org/​index.​php/​AAAI/​artic​le/​view/​17360

Bewley, T., & Lécué, F. (2022). Interpretable preference-based reinforcement learning with tree-struc-
tured reward functions. In P. Faliszewski, V. Mascardi, C. Pelachaud, et al (Eds.) Proceedings of 
AAMAS. International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 
pp 118–126, https://​doi.​org/​10.​5555/​35358​50.​35358​65

Bewley, T., Lawry, J., & Richards, A. (2020). Modelling agent policies with interpretable imitation learning. 
In F. Heintz, M. Milano & B. O’Sullivan (Eds.) Proceedings of TAILOR, Lecture Notes in Computer 
Science, vol 12641. (pp. 180–186). Springer https://​doi.​org/​10.​1007/​978-3-​030-​73959-1_​16

Bewley, T., Lawry, J., & Richards, A. (2022). Summarising and comparing agent dynamics with con-
trastive spatiotemporal abstraction. IJCAI Workshop on XAI abs/2201.07749. https://​doi.​org/​10.​
48550/​ARXIV.​2201.​07749

Beyret, B., Shafti, A., & Faisal, A.A. (2019). Dot-to-dot: Explainable hierarchical reinforcement learn-
ing for robotic manipulation. In Proceedings of IROS (pp. 5014–5019). IEEE https://​doi.​org/​10.​
1109/​IROS4​0897.​2019.​89684​88

Bica, I., Jarrett, D., Hüyük, A., et al. (2021). Learning “What-if” explanations for sequential decision-mak-
ing. In Proceedings of ICLR. OpenReview.net, https://​openr​eview.​net/​forum?​id=​h0de3​QWtGG

Böhm, G., & Pfister, H. R. (2015). How people explain their own and others’ behavior: A theory of lay 
causal explanations. Frontiers in Psychology, 6, 55. https://​doi.​org/​10.​3389/​fpsyg.​2015.​00139

Bougie, N., & Ichise, R. (2020). Towards interpretable reinforcement learning with state abstraction 
driven by external knowledge. IEICE Transactions on Information and Systems, 103(10), 2143–
2153. https://​doi.​org/​10.​1587/​trans​inf.​2019E​DP7170

Brown, N., & Sandholm, T. (2017). Libratus: The superhuman AI for no-limit poker. In C. Sierra (Ed) 
Proceedings of IJCAI. ijcai.org, (pp. 5226–5228) https://​doi.​org/​10.​24963/​ijcai.​2017/​772

Buchanan, B. G., & Shortliffe, E. H. (1984). Rule Based Expert Systems: The Mycin Experiments of the 
Stanford Heuristic Programming Project (The Addison-Wesley Series in Artificial Intelligence). 
Addison-Wesley Longman Publishing Co. Inc.

https://openreview.net/forum?id=r1yjkAtxe
https://doi.org/10.1007/978-3-031-04083-2_11
https://doi.org/10.1007/978-3-031-04083-2_11
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6d8545daa42d5ced125a4bf747b3688-Abstract.html
https://doi.org/10.1007/s12008-020-00717-1
https://proceedings.mlr.press/v202/beechey23a.html
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://doi.org/10.1073/pnas.38.8.716
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1016/j.patcog.2021.108421
https://doi.org/10.48550/ARXIV.1606.07112
https://doi.org/10.48550/ARXIV.1606.07112
https://www.worldcat.org/oclc/35983505
https://ojs.aaai.org/index.php/AAAI/article/view/17360
https://ojs.aaai.org/index.php/AAAI/article/view/17360
https://doi.org/10.5555/3535850.3535865
https://doi.org/10.1007/978-3-030-73959-1_16
https://doi.org/10.48550/ARXIV.2201.07749
https://doi.org/10.48550/ARXIV.2201.07749
https://doi.org/10.1109/IROS40897.2019.8968488
https://doi.org/10.1109/IROS40897.2019.8968488
https://openreview.net/forum?id=h0de3QWtGG
https://doi.org/10.3389/fpsyg.2015.00139
https://doi.org/10.1587/transinf.2019EDP7170
https://doi.org/10.24963/ijcai.2017/772


425Machine Learning (2024) 113:355–441	

1 3

Burkart, N., & Huber, M. F. (2021). A survey on the explainability of supervised machine learning. 
Journal of Artificial Intelligence Research, 70, 245–317. https://​doi.​org/​10.​1613/​jair.1.​12228

Cao, Y., Li, Z., Yang, T., et  al. (2022). GALOIS: Boosting deep reinforcement learning via generaliz-
able logic synthesis. In: NeurIPShttp://​papers.​nips.​cc/​paper_​files/​paper/​2022/​hash/​7dd30​9df03​d3764​
3b96f​5048b​44da7​98-​Abstr​act-​Confe​rence.​html

Chan, F., Chen, Y., Xiang, Y., et al. (2016). Anticipating accidents in dashcam videos. In S. Lai, V. Lepetit, 
K. Nishino, et al (Eds.), Proceedings of ACCV, LNCS, vol 10114. (pp. 136–153). Springer https://​doi.​
org/​10.​1007/​978-3-​319-​54190-7_9

Cheng, S., Li, X., Shan, G., et al. (2022). ACMViz: A visual analytics approach to understand DRL-based 
autonomous control model. Journal of Visualization, 25(2), 427–442. https://​doi.​org/​10.​1007/​
s12650-​021-​00793-9

Chen, J., Li, S. E., & Tomizuka, M. (2022). Interpretable end-to-end urban autonomous driving with latent 
deep reinforcement learning. IEEE Transactions on Intelligent Transportation System, 23(6), 5068–
5078. https://​doi.​org/​10.​1109/​TITS.​2020.​30466​46

Clancey, W. J. (1987). Knowledge-based tutoring: The GUIDON program. Cambridge: MIT Press.
Cobbe, K., Klimov, O., Hesse, C., et  al. (2019). Quantifying generalization in reinforcement learning. In 

K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of ICML, Proceedings of machine learning 
research, vol 97 (pp. 1282–1289). PMLR, http://​proce​edings.​mlr.​press/​v97/​cobbe​19a.​html

Codevilla, F., Müller, M., López, A.M., et al. (2018). End-to-end driving via conditional imitation learning. 
In Proceedings of ICRA​ (pp. 1–9). IEEE, https://​doi.​org/​10.​1109/​ICRA.​2018.​84604​87

Coppens, Y., Efthymiadis, K., Lenaerts, T., et al. (2019). Distilling deep reinforcement learning policies in 
soft decision trees. In Proceedings of IJCAI/ECAI workshop on XAI, https://​resea​rchpo​rtal.​vub.​be/​en/​
publi​catio​ns/​disti​lling-​deep-​reinf​orcem​ent-​learn​ing-​polic​ies-​in-​soft-​decis​ion-

Coumans, E., & Bai, Y. (2016–2021). PyBullet, a Python module for physics simulation for games, robotics 
and machine learning. https://​pybul​let.​org/

Cruz, C.A., & Igarashi, T. (2020). A survey on interactive reinforcement learning: Design principles and 
open challenges. In R. Wakkary, K. Andersen, W. Odom, et al (Eds.), DIS ’20: Designing interac-
tive systems conference 2020, Eindhoven, The Netherlands (pp. 1195–1209). ACM, https://​doi.​org/​10.​
1145/​33572​36.​33955​25,

Cruz, C.A., & Igarashi, T. (2021). Interactive explanations: Diagnosis and repair of reinforcement learning 
based agent behaviors. In Proceedings of CoG (pp 1–8). IEEE, https://​doi.​org/​10.​1109/​CoG52​621.​
2021.​96189​99

Cruz, F., Dazeley, R., & Vamplew, P. (2019). Memory-based explainable reinforcement learning. In J. Liu 
& J. Bailey (Eds.), AI 2019: Advances in artificial intelligence—32nd Australasian joint conference, 
Adelaide, Proceedings, Lecture notes in computer science, vol. 11919 (pp 66–77). Springer, https://​
doi.​org/​10.​1007/​978-3-​030-​35288-2_6

Cruz, F., Dazeley, R., Vamplew, P., et al. (2021). Explainable robotic systems: Understanding goal-driven 
actions in a reinforcement learning scenario. Neural Computing and Applications S.I.: LatinX in AI 
Research. https://​doi.​org/​10.​1007/​s00521-​021-​06425-5

Cultrera, L., Seidenari, L., Becattini, F., et  al. (2020). Explaining autonomous driving by learning end-
to-end visual attention. In 2020 IEEE/CVF conference on computer vision and pattern recognition, 
CVPR Workshops 2020. Computer Vision Foundation/IEEE (pp. 1389–1398), https://​doi.​org/​10.​
1109/​CVPRW​50498.​2020.​00178

Custode, L.L., & Iacca, G. (2021). A co-evolutionary approach to interpretable reinforcement learning in 
environments with continuous action spaces. In Proceedings of SSCI (pp 1–8). IEEE, https://​doi.​org/​
10.​1109/​SSCI5​0451.​2021.​96600​48

Dai, T., Arulkumaran, K., Gerbert, T., et al. (2022). Analysing deep reinforcement learning agents trained 
with domain randomisation. Neurocomputing, 493, 143–165. https://​doi.​org/​10.​1016/j.​neucom.​2022.​
04.​005

Dai, Y., Chen, Q., Zhang, J., et  al. (2022). Enhanced oblique decision tree enabled policy extraction for 
deep reinforcement learning in power system emergency control. Electric Power Systems Research, 
209(107), 932. https://​doi.​org/​10.​1016/j.​epsr.​2022.​107932

Dai, Y., Ouyang, H., Zheng, H., et  al. (2022). Interpreting a deep reinforcement learning model with 
conceptual embedding and performance analysis. Applied Intelligence. https://​doi.​org/​10.​1007/​
s10489-​022-​03788-7

Danesh, M. H., Koul, A., Fern, A., et al. (2021). Re-understanding finite-state representations of recurrent 
policy networks. In M. Meila & T. Zhang (Eds.), Proceedings of ICML, Proceedings of machine 
learning research, vol 139 (pp. 2388–2397). PMLR, http://​proce​edings.​mlr.​press/​v139/​danes​h21a.​
html

https://doi.org/10.1613/jair.1.12228
http://papers.nips.cc/paper_files/paper/2022/hash/7dd309df03d37643b96f5048b44da798-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7dd309df03d37643b96f5048b44da798-Abstract-Conference.html
https://doi.org/10.1007/978-3-319-54190-7_9
https://doi.org/10.1007/978-3-319-54190-7_9
https://doi.org/10.1007/s12650-021-00793-9
https://doi.org/10.1007/s12650-021-00793-9
https://doi.org/10.1109/TITS.2020.3046646
http://proceedings.mlr.press/v97/cobbe19a.html
https://doi.org/10.1109/ICRA.2018.8460487
https://researchportal.vub.be/en/publications/distilling-deep-reinforcement-learning-policies-in-soft-decision-
https://researchportal.vub.be/en/publications/distilling-deep-reinforcement-learning-policies-in-soft-decision-
https://pybullet.org/
https://doi.org/10.1145/3357236.3395525
https://doi.org/10.1145/3357236.3395525
https://doi.org/10.1109/CoG52621.2021.9618999
https://doi.org/10.1109/CoG52621.2021.9618999
https://doi.org/10.1007/978-3-030-35288-2_6
https://doi.org/10.1007/978-3-030-35288-2_6
https://doi.org/10.1007/s00521-021-06425-5
https://doi.org/10.1109/CVPRW50498.2020.00178
https://doi.org/10.1109/CVPRW50498.2020.00178
https://doi.org/10.1109/SSCI50451.2021.9660048
https://doi.org/10.1109/SSCI50451.2021.9660048
https://doi.org/10.1016/j.neucom.2022.04.005
https://doi.org/10.1016/j.neucom.2022.04.005
https://doi.org/10.1016/j.epsr.2022.107932
https://doi.org/10.1007/s10489-022-03788-7
https://doi.org/10.1007/s10489-022-03788-7
http://proceedings.mlr.press/v139/danesh21a.html
http://proceedings.mlr.press/v139/danesh21a.html


426	 Machine Learning (2024) 113:355–441

1 3

Dao, G., Huff, W.H., & Lee, M. (2021). Learning sparse evidence-driven interpretation to understand deep 
reinforcement learning agents. In IEEE symposium series on computational intelligence, SSCI 2021, 
Orlando (pp. 1–7). IEEE, https://​doi.​org/​10.​1109/​SSCI5​0451.​2021.​96601​92

Dao, G., Mishra, I., & Lee, M. (2018). Deep reinforcement learning monitor for snapshot recording. In M. 
A. Wani, M. M. Kantardzic, M. S. Mouchaweh, et al (Eds.), 17th IEEE international conference on 
machine learning and applications, ICMLA 2018, Orlando (pp 591–598). IEEE, https://​doi.​org/​10.​
1109/​ICMLA.​2018.​00095

Davoodi, O., & Komeili, M. (2021). Feature-based interpretable reinforcement learning based on state-
transition models. In Proceedings of SMC (pp. 301–308). IEEE, https://​doi.​org/​10.​1109/​SMC52​423.​
2021.​96589​17

Dazeley, R., Vamplew, P., & Cruz, F. (2021a). Explainable reinforcement learning for broad-XAI: A con-
ceptual framework and survey. arXiv:​2108.​09003

Dazeley, R., Vamplew, P., Foale, C., et al. (2021). Levels of explainable artificial intelligence for human-
aligned conversational explanations. Artificial Intelligence, 299(103), 525. https://​doi.​org/​10.​1016/j.​
artint.​2021.​103525

Dhebar, Y., Deb, K., Nageshrao, S., et al. (2022). Toward interpretable-AI policies using evolutionary non-
linear decision trees for discrete-action systems. IEEE Transactions on Cybernetics Early Access. 
https://​doi.​org/​10.​1109/​TCYB.​2022.​31806​64

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. CoRR 
abs/1702.08608. https://​doi.​org/​10.​48550/​ARXIV.​1702.​08608

Doshi-Velez, F., Kortz, M., Budish, R., et al. (2017). Accountability of AI under the law: The role of expla-
nation. CoRR abs/1711.01134. https://​doi.​org/​10.​48550/​ARXIV.​1711.​01134

Dosovitskiy, A., Ros, G., Codevilla, F., et al. (2017). CARLA: An open urban driving simulator. In Proceed-
ings of CoRL, Proceedings of MLR, vol 78 (pp. 1–16). PMLR, http://​proce​edings.​mlr.​press/​v78/​dosov​
itski​y17a.​html

Druce, J., Harradon, M., & Tittle, J. (2019). Explainable artificial intelligence (XAI) for increasing user 
trust in deep reinforcement learning driven autonomous systems. NeurIPS Workshop on Deep RL 
abs/2106.03775. https://​doi.​org/​10.​48550/​ARXIV.​2106.​03775

Du, M., Liu, N., & Hu, X. (2020). Techniques for interpretable machine learning. Communications of the 
ACM, 63(1), 68–77. https://​doi.​org/​10.​1145/​33597​86

Ehsan, U., Harrison, B., Chan, L., et al. (2018). Rationalization: A neural machine translation approach to 
generating natural language explanations. In J. Furman, G. E. Marchant, H. Price, et al (Eds.) Pro-
ceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2018 (pp. 81–87). 
ACM, https://​doi.​org/​10.​1145/​32787​21.​32787​36

Erwig, M., Fern, A., Murali, M., et al. (2018). Explaining deep adaptive programs via reward decomposi-
tion. In IJCAI/ECAI workshop on explainable AI, https://​par.​nsf.​gov/​biblio/​10096​985

Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from noisy data. Journal of Artificial Intel-
ligence Research, 61, 1–64. https://​doi.​org/​10.​1613/​jair.​5714

Everingham, M., Gool, L. V., Williams, C. K. I., et  al. (2010). The pascal visual object classes (VOC) 
challenge. International Journal of Computer Vision, 88(2), 303–338. https://​doi.​org/​10.​1007/​
s11263-​009-​0275-4

Fang, J., Yan, D., Qiao, J., et al. (2019). DADA-2000: Can driving accident be predicted by driver attention f  
analyzed by a benchmark. In Proceedings of ITSC (pp. 4303–4309). IEEE, https://​doi.​org/​10.​1109/​
ITSC.​2019.​89172​18

Feit, F., Metzger, A., & Pohl, K. (2022). Explaining online reinforcement learning decisions of self-adap-
tive systems. In R. Casadei, E. D. Nitto, I. Gerostathopoulos, et al (Eds.), IEEE international confer-
ence on autonomic computing and self-organizing systems, ACSOS 2022, Virtual (pp. 51–60). IEEE, 
https://​doi.​org/​10.​1109/​ACSOS​55765.​2022.​00023,

Finkelstein, M., Schlot, N.L., Liu, L., et  al. (2021). Deep reinforcement learning explanation via model 
transforms. In NeurIPS on Workshop Deep RL 2021, https://​openr​eview.​net/​forum?​id=​yRMeh​
OHpRCy

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statis-
tics, 29(5), 1189–1232. https://​doi.​org/​10.​1214/​aos/​10132​03451

Frosst, N., & Hinton, G. E. (2017). Distilling a neural network into a soft decision tree. In T. R. Besold & 
O. Kutz (Eds.), Proceedings of the first international workshop on comprehensibility and explana-
tion in AI and ML 2017 co-located with 16th International Conference of the Italian Association for 
Artificial Intelligence (AI*IA 2017). CEUR Workshop Proceedings, vol 2071. CEUR-WS.org, http://​
ceur-​ws.​org/​Vol-​2071/​CExAI​IA_​2017_​paper_3.​pdf

https://doi.org/10.1109/SSCI50451.2021.9660192
https://doi.org/10.1109/ICMLA.2018.00095
https://doi.org/10.1109/ICMLA.2018.00095
https://doi.org/10.1109/SMC52423.2021.9658917
https://doi.org/10.1109/SMC52423.2021.9658917
http://arxiv.org/abs/2108.09003
https://doi.org/10.1016/j.artint.2021.103525
https://doi.org/10.1016/j.artint.2021.103525
https://doi.org/10.1109/TCYB.2022.3180664
https://doi.org/10.48550/ARXIV.1702.08608
https://doi.org/10.48550/ARXIV.1711.01134
http://proceedings.mlr.press/v78/dosovitskiy17a.html
http://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.48550/ARXIV.2106.03775
https://doi.org/10.1145/3359786
https://doi.org/10.1145/3278721.3278736
https://par.nsf.gov/biblio/10096985
https://doi.org/10.1613/jair.5714
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/ITSC.2019.8917218
https://doi.org/10.1109/ITSC.2019.8917218
https://doi.org/10.1109/ACSOS55765.2022.00023
https://openreview.net/forum?id=yRMehOHpRCy
https://openreview.net/forum?id=yRMehOHpRCy
https://doi.org/10.1214/aos/1013203451
http://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf
http://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf


427Machine Learning (2024) 113:355–441	

1 3

Frost, J., Watkins, O., Weiner, E., et al. (2022). Explaining reinforcement learning policies through coun-
terfactual trajectories. ICML 2021 Workshop on HILL abs/2201.12462. https://​doi.​org/​10.​48550/​
ARXIV.​2201.​12462

Fukuchi, Y., Osawa, M., Yamakawa, H., et al. (2017a). Application of instruction-based behavior expla-
nation to a reinforcement learning agent with changing policy. In D. Liu, S. Xie, Y. Li, et al (Eds.), 
Neural information processing - 24th international conference, ICONIP 2017, Proceedings, Part 
I, Lecture Notes in Computer Science, vol 10634 (pp 100–108). Springer, https://​doi.​org/​10.​1007/​
978-3-​319-​70087-8_​11

Fukuchi, Y., Osawa, M., Yamakawa, H., et  al. (2017b). Autonomous self-explanation of behavior for 
interactive reinforcement learning agents. In B. Wrede, Y. Nagai, T. Komatsu, et  al (Eds.) Pro-
ceedings of the 5th international conference on human agent interaction, HAI 2017 (pp. 97–101). 
ACM, https://​doi.​org/​10.​1145/​31257​39.​31257​46

Fukuchi, Y., Osawa, M., Yamakawa, H., et  al. (2022). Explaining intelligent agent’s future motion on 
basis of vocabulary learning with human goal inference. IEEE Access, 10, 54336–54347. https://​
doi.​org/​10.​1109/​ACCESS.​2022.​31761​04

Gajcin, J., Nair, R., Pedapati, T., et  al. (2021). Contrastive explanations for comparing preferences of 
reinforcement learning agents. AAAI Workshop on Interactive Machine Learning abs/2112.09462. 
https://​doi.​org/​10.​48550/​ARXIV.​2112.​09462

Gangopadhyay, B., Soora, H., & Dasgupta, P. (2022). Hierarchical program-triggered reinforcement 
learning agents for automated driving. IEEE Transactions on Intelligent Transportation Systems, 
23(8), 10902–10911. https://​doi.​org/​10.​1109/​TITS.​2021.​30969​98

García, J., & Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. Journal of 
Machine Learning Research, 16, 1437–1480. https://​doi.​org/​10.​5555/​27892​72.​28867​95

Ghosh, A., Dhebar, Y.D., Guha, R., et al. (2021). Interpretable AI agent through nonlinear decision trees 
for lane change problem. In IEEE symposium series on computational intelligence, SSCI 2021 (pp. 
1–8). IEEE, https://​doi.​org/​10.​1109/​SSCI5​0451.​2021.​96595​52

Gilpin, L.H., Bau, D., Yuan, B.Z., et al. (2018). Explaining explanations: An overview of interpretability 
of machine learning. In F. Bonchi, F. J. Provost, T. Eliassi-Rad, et al (Eds.), Proceedings of DSAA 
(pp 80–89). IEEE, https://​doi.​org/​10.​1109/​DSAA.​2018.​00018

Gilpin, L. H., Paley, A. R., Alam, M. A., et al. (2022). “Explanation” is not a technical term: The prob-
lem of ambiguity in XAI. CoRR. https://​doi.​org/​10.​48550/​arXiv.​2207.​00007, arXiv:​2207.​00007

Gjærum, V. B., Rørvik, E. H., & Lekkas, A. M. (2021). Approximating a deep reinforcement learning 
docking agent using linear model trees. In 2021 European control conference, ECC 2021, Virtual 
Event / Delft (pp 1465–1471). IEEE, https://​doi.​org/​10.​23919/​ECC54​610.​2021.​96550​07

Gjærum, V. B., Strümke, I., Alsos, O. A., et al. (2021). Explaining a deep reinforcement learning dock-
ing agent using linear model trees with user adapted visualization. Journal of Marine Science and 
Engineering. https://​doi.​org/​10.​3390/​jmse9​111178

Glanois, C., Weng, P., Zimmer, M., et  al. (2022). A survey on interpretable reinforcement learning. 
CoRR abs/2112.13112. https://​doi.​org/​10.​48550/​arXiv.​2112.​13112

Goel, V., Weng, J., & Poupart, P. (2018). Unsupervised video object segmentation for deep reinforce-
ment learning. In S. Bengio, H. M. Wallach, H. Larochelle, et al (Eds.) Advances in neural infor-
mation processing systems 31: annual conference on neural information processing systems 2018, 
NeurIPS 2018 (pp 5688–5699), https://​proce​edings.​neuri​ps.​cc/​paper/​2018/​hash/​96f2b​50b5d​3613a​
df9c2​7049b​2a888​c7-​Abstr​act.​html

Goldstein, A., Kapelner, A., Bleich, J., et al. (2015). Peeking inside the black box: Visualizing statistical 
learning with plots of individual conditional expectation. Journal of Computational and Graphi-
cal Statistics, 24(1), 44–65. https://​doi.​org/​10.​1080/​10618​600.​2014.​907095

Goodman, B., & Flaxman, S. R. (2017). European union regulations on algorithmic decision-making 
and a “right to explanation’’. AI Magazine, 38(3), 50–57. https://​doi.​org/​10.​1609/​aimag.​v38i3.​
2741

Gorji, S. R., Granmo, O., & Wiering, M. A. (2021). Explainable reinforcement learning with the tsetlin 
machine. In H. Fujita, A. Selamat, J. C. Lin, et al (Eds.), Advances and trends in artificial intel-
ligence. Artificial intelligence practices - 34th international conference on industrial, engineering 
and other applications of applied intelligent systems, IEA/AIE 2021, Proceedings, Part I, Lecture 
Notes in Computer Science, vol 12798 (pp. 173–187). Springer, https://​doi.​org/​10.​1007/​978-3-​
030-​79457-6_​15

Gottesman, O., Futoma, J., Liu, Y., et  al. (2020). Interpretable off-policy evaluation in reinforcement 
learning by highlighting influential transitions. In Proceedings of the 37th international confer-
ence on machine learning, ICML 2020, Virtual Event, Proceedings of machine learning research, 
vol 119 (pp. 3658–3667). PMLR, http://​proce​edings.​mlr.​press/​v119/​gotte​sman2​0a.​html

https://doi.org/10.48550/ARXIV.2201.12462
https://doi.org/10.48550/ARXIV.2201.12462
https://doi.org/10.1007/978-3-319-70087-8_11
https://doi.org/10.1007/978-3-319-70087-8_11
https://doi.org/10.1145/3125739.3125746
https://doi.org/10.1109/ACCESS.2022.3176104
https://doi.org/10.1109/ACCESS.2022.3176104
https://doi.org/10.48550/ARXIV.2112.09462
https://doi.org/10.1109/TITS.2021.3096998
https://doi.org/10.5555/2789272.2886795
https://doi.org/10.1109/SSCI50451.2021.9659552
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.48550/arXiv.2207.00007
http://arxiv.org/abs/2207.00007
https://doi.org/10.23919/ECC54610.2021.9655007
https://doi.org/10.3390/jmse9111178
https://doi.org/10.48550/arXiv.2112.13112
https://proceedings.neurips.cc/paper/2018/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1007/978-3-030-79457-6_15
https://doi.org/10.1007/978-3-030-79457-6_15
http://proceedings.mlr.press/v119/gottesman20a.html


428	 Machine Learning (2024) 113:355–441

1 3

Granmo, O. (2018). The Tsetlin machine—A game theoretic bandit driven approach to optimal pattern 
recognition with propositional logic. CoRR abs/1804.01508. https://​doi.​org/​10.​48550/​ARXIV.​
1804.​01508

Greydanus, S., Koul, A., Dodge, J., et  al. (2018). Visualizing and understanding atari agents. In J. G. 
Dy & A. Krause (Eds.), Proceedings of the 35th International Conference on Machine Learning, 
ICML 2018. Proceedings of machine learning research, vol  80 (pp. 1787–1796). PMLR, http://​
proce​edings.​mlr.​press/​v80/​greyd​anus1​8a.​html

Gu, S., Yang, L., Du, Y., et al. (2022). A review of safe reinforcement learning: Methods, theory and appli-
cations. CoRR. https://​doi.​org/​10.​48550/​arXiv.​2205.​10330, arXiv:​2205.​10330

Guan, M., & Liu, X. (2021). Explainable deep reinforcement learning for portfolio management: An empiri-
cal approach. In A. Calinescu & L. Szpruch (Eds.) ICAIF’21: 2nd ACM international conference on 
AI in Finance (pp. 50:1–50:9). ACM, https://​doi.​org/​10.​1145/​34903​54.​34944​15

Guidotti, R., Monreale, A., Ruggieri, S., et al. (2019). A survey of methods for explaining black box models. 
ACM Computing Surveys, 51(5), 93:1-93:42. https://​doi.​org/​10.​1145/​32360​09

Gunning, D., & Aha, D. W. (2019). Darpa’s explainable artificial intelligence (XAI) program. AI Magazine, 
40(2), 44–58. https://​doi.​org/​10.​1609/​aimag.​v40i2.​2850

Guo, W., Wu, X., Khan, U., et al. (2021b). EDGE: Explaining deep reinforcement learning policies. In M. 
Ranzato, A. Beygelzimer, Y. N. Dauphin, et  al. (Eds.), Advances in neural information processing 
systems 34: Annual conference on neural information processing systems 2021, NeurIPS 2021 (pp. 
12222–12236), https://​proce​edings.​neuri​ps.​cc/​paper/​2021/​hash/​65c89​f5a95​01a04​c073b​354f0​3791b​
1f-​Abstr​act.​html

Guo, S., Zhang, R., Liu, B., et al. (2021a). Machine versus human attention in deep reinforcement learn-
ing tasks. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, et al. (Eds.), Advances in neural informa-
tion processing systems 34: Annual conference on neural information processing systems 2021 (pp. 
25370–25385), https://​proce​edings.​neuri​ps.​cc/​paper/​2021/​hash/​d58e2​f0776​70f4d​e9cd7​963c8​57f25​
34-​Abstr​act.​html

Gupta, U.D., Talvitie, E., & Bowling, M. (2015). Policy tree: Adaptive representation for policy gradient. In 
B. Bonet & S. Koenig (Eds.), Proceedings of the twenty-ninth AAAI conference on artificial intelli-
gence (pp. 2547–2553). AAAI Press, http://​www.​aaai.​org/​ocs/​index.​php/​AAAI/​AAAI15/​paper/​view/​
9781

Halpern, J. Y., & Pearl, J. (2005). Causes and explanations: A structural-model approach. Part ii: Explana-
tions. The British Journal for the Philosophy of Science, 56(4), 889–911.

Hans, A., Schneegaß, D., Schäfer, A. M., et al. (2008). Safe exploration for reinforcement learning. In 16th 
European symposium on artificial neural networks, ESANN 2008 (pp. 143–148), https://​www.​esann.​
org/​sites/​defau​lt/​files/​proce​edings/​legacy/​es2008-​36.​pdf

Hasanbeig, M., Jeppu, N.Y., Abate, A., et  al. (2021). DeepSynth: Automata synthesis for automatic task 
segmentation in deep reinforcement learning. In Thirty-Fifth AAAI conference on artificial intelli-
gence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021 (pp. 
7647–7656). AAAI Press, https://​ojs.​aaai.​org/​index.​php/​AAAI/​artic​le/​view/​16935

Hayes, B., & Shah, J.A. (2017). Improving robot controller transparency through autonomous policy expla-
nation. In B. Mutlu, M. Tscheligi, A. Weiss, et al. (Eds.) Proceedings of the 2017 ACM/IEEE inter-
national conference on human-robot interaction, HRI 2017 (pp. 303–312). ACM, https://​doi.​org/​10.​
1145/​29098​24.​30202​33

He, W., Lee, T.Y., van Baar, J., et al. (2020). DynamicsExplorer: Visual analytics for robot control tasks 
involving dynamics and LSTM-based control policies. In PacificVis (pp. 36–45), https://​doi.​org/​10.​
1109/​Pacif​icVis​48177.​2020.​7127

He, L., Aouf, N., & Song, B. (2021). Explainable deep reinforcement learning for UAV autonomous path 
planning. Aerospace Science and Technology, 118(107), 052. https://​doi.​org/​10.​1016/j.​ast.​2021.​
107052

Hein, D., Depeweg, S., Tokic, M., et al. (2017a). A benchmark environment motivated by industrial control 
problems. In SSCI (pp. 1–8). IEEE, https://​doi.​org/​10.​1109/​SSCI.​2017.​82809​35

Hein, D., Udluft, S., & Runkler, T.A. (2018a). Generating interpretable fuzzy controllers using particle 
swarm optimization and genetic programming. In H. E. Aguirre & K. Takadama (Eds.), Proceedings 
of the genetic and evolutionary computation conference companion, GECCO 2018 (pp. 1268–1275). 
ACM, https://​doi.​org/​10.​1145/​32056​51.​32082​77

Hein, D., Hentschel, A., Runkler, T. A., et al. (2017). Particle swarm optimization for generating interpret-
able fuzzy reinforcement learning policies. Engineering Applications of Artificial Intelligence, 65, 
87–98. https://​doi.​org/​10.​1016/j.​engap​pai.​2017.​07.​005

https://doi.org/10.48550/ARXIV.1804.01508
https://doi.org/10.48550/ARXIV.1804.01508
http://proceedings.mlr.press/v80/greydanus18a.html
http://proceedings.mlr.press/v80/greydanus18a.html
https://doi.org/10.48550/arXiv.2205.10330
http://arxiv.org/abs/2205.10330
https://doi.org/10.1145/3490354.3494415
https://doi.org/10.1145/3236009
https://doi.org/10.1609/aimag.v40i2.2850
https://proceedings.neurips.cc/paper/2021/hash/65c89f5a9501a04c073b354f03791b1f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/65c89f5a9501a04c073b354f03791b1f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d58e2f077670f4de9cd7963c857f2534-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d58e2f077670f4de9cd7963c857f2534-Abstract.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9781
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9781
https://www.esann.org/sites/default/files/proceedings/legacy/es2008-36.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2008-36.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/16935
https://doi.org/10.1145/2909824.3020233
https://doi.org/10.1145/2909824.3020233
https://doi.org/10.1109/PacificVis48177.2020.7127
https://doi.org/10.1109/PacificVis48177.2020.7127
https://doi.org/10.1016/j.ast.2021.107052
https://doi.org/10.1016/j.ast.2021.107052
https://doi.org/10.1109/SSCI.2017.8280935
https://doi.org/10.1145/3205651.3208277
https://doi.org/10.1016/j.engappai.2017.07.005


429Machine Learning (2024) 113:355–441	

1 3

Hein, D., Udluft, S., & Runkler, T. A. (2018). Interpretable policies for reinforcement learning by genetic 
programming. Engineering Applications of Artificial Intelligence, 76, 158–169. https://​doi.​org/​10.​
1016/j.​engap​pai.​2018.​09.​007

Hengst, B. (2010). Hierarchical reinforcement learning (pp. 495–502). Boston: Springer.
Heuillet, A., Couthouis, F., & Rodríguez, N. D. (2021). Explainability in deep reinforcement learning. 

Knowledge-Based Systems, 214(106), 685. https://​doi.​org/​10.​1016/j.​knosys.​2020.​106685
Hickling, T., Zenati, A., Aouf, N., et al. (2022). Explainability in deep reinforcement learning, a review into 

current methods and applications. CoRR abs/2207.01911. https://​doi.​org/​10.​48550/​arXiv.​2207.​01911
Hilton, J., Cammarata, N., Carter, S., et  al. (2020). Understanding RL vision. Distill. https://​doi.​org/​10.​

23915/​disti​ll.​00029
Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. In D. D. Lee, M. Sugiyama, U. von 

Luxburg, et al. (Eds.), Advances in neural information processing systems 29: Annual conference on 
neural information processing systems 2016 (pp. 4565–4573), https://​proce​edings.​neuri​ps.​cc/​paper/​
2016/​hash/​cc7e2​b8788​68cba​e992d​1fb74​3995d​8f-​Abstr​act.​html

Hohman, F., Kahng, M., Pienta, R., et al. (2019). Visual analytics in deep learning: An interrogative sur-
vey for the next frontiers. IEEE Transactions on Visualization and Computer Graphics, 25(8), 2674–
2693. https://​doi.​org/​10.​1109/​TVCG.​2018.​28433​69

Honda, H., & Hagiwara, M. (2022). Deep-learning-based fuzzy symbolic processing with agents capable 
of knowledge communication. In A. P. Rocha, L. Steels, H. J. van  den Herik (Eds.), Proceedings 
of the 14th international conference on agents and artificial intelligence, ICAART 2022, Vol. 3 (pp. 
172–179). SCITEPRESS, https://​doi.​org/​10.​5220/​00107​96300​003116

Huang, S.H., Bhatia, K., Abbeel, P., et al. (2018). Establishing appropriate trust via critical states. In 2018 
IEEE/RSJ international conference on intelligent robots and systems, IROS 2018 (pp. 3929–3936). 
IEEE, https://​doi.​org/​10.​1109/​IROS.​2018.​85936​49

Huang, J., Angelov, P. P., & Yin, C. (2020). Interpretable policies for reinforcement learning by empirical 
fuzzy sets. Engineering Applications of Artificial Intelligence, 91(103), 559. https://​doi.​org/​10.​1016/j.​
engap​pai.​2020.​103559

Huang, S. H., Held, D., Abbeel, P., et al. (2019). Enabling robots to communicate their objectives. Autono-
mous Robots, 43(2), 309–326. https://​doi.​org/​10.​1007/​s10514-​018-​9771-0

Huber, T., Schiller, D., & André, E. (2019). Enhancing explainability of deep reinforcement learning 
through selective layer-wise relevance propagation. In C. Benzmüller & H. Stuckenschmidt (Eds.), KI 
2019: Advances in Artificial Intelligence - 42nd German Conference on AI, Kassel, Lecture Notes in 
Computer Science, vol. 11793 (pp. 188–202). Springer, https://​doi.​org/​10.​1007/​978-3-​030-​30179-8_​
16

Huber, T., Weitz, K., André, E., et  al. (2021). Local and global explanations of agent behavior: Integrat-
ing strategy summaries with saliency maps. Artificial Intelligence, 301(103), 571. https://​doi.​org/​10.​
1016/j.​artint.​2021.​103571

Hüyük, A., Jarrett, D., Tekin, C., et al. (2021). Explaining by imitating: Understanding decisions by inter-
pretable policy learning. In 9th international conference on learning representations, ICLR 2021. 
OpenReview.net, https://​openr​eview.​net/​forum?​id=​unI5u​cw_​Jk

III, D. J. H., & Sadigh, D. (2022). Few-shot preference learning for human-in-the-loop RL. In K. Liu, D. 
Kulic, J. Ichnowski (Eds.), Conference on robot learning, CoRL 2022, Proceedings of machine learn-
ing research, vol 205 (pp. 2014–2025). PMLR, https://​proce​edings.​mlr.​press/​v205/​iii23a.​html

Illanes, L., Yan, X., Icarte, R.T., et al. (2020). Symbolic plans as high-level instructions for reinforcement 
learning. In J. C. Beck, O. Buffet, J. Hoffmann, et al. (Eds.), Proceedings of the thirtieth international 
conference on automated planning and scheduling (pp. 540–550). AAAI Press, https://​ojs.​aaai.​org/​
index.​php/​ICAPS/​artic​le/​view/​6750

Itaya, H., Hirakawa, T., Yamashita, T., et  al. (2021). Visual explanation using attention mechanism in 
actor-critic-based deep reinforcement learning. In International joint conference on neural networks, 
IJCNN 2021 (pp. 1–10). IEEE, https://​doi.​org/​10.​1109/​IJCNN​52387.​2021.​95343​63

Iucci, A., Hata, A., Terra, A., et al. (2021). Explainable reinforcement learning for human-robot collabora-
tion. In 20th international conference on advanced robotics, ICAR 2021 (pp. 927–934). IEEE, https://​
doi.​org/​10.​1109/​ICAR5​3236.​2021.​96594​72

Iyer, R., Li, Y., Li, H., et al. (2018). Transparency and explanation in deep reinforcement learning neural 
networks. In J. Furman, G. E. Marchant, H. Price, et al. (Eds.), Proceedings of the 2018 AAAI/ACM 
conference on AI, ethics, and society, AIES 2018 (pp. 144–150). ACM, https://​doi.​org/​10.​1145/​32787​
21.​32787​76

Jacovi, A., & Goldberg, Y. (2020). Towards faithfully interpretable NLP systems: How should we define 
and evaluate faithfulness? In D. Jurafsky, J. Chai, N. Schluter, et al. (Eds.), Proceedings of the 58th 

https://doi.org/10.1016/j.engappai.2018.09.007
https://doi.org/10.1016/j.engappai.2018.09.007
https://doi.org/10.1016/j.knosys.2020.106685
https://doi.org/10.48550/arXiv.2207.01911
https://doi.org/10.23915/distill.00029
https://doi.org/10.23915/distill.00029
https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.5220/0010796300003116
https://doi.org/10.1109/IROS.2018.8593649
https://doi.org/10.1016/j.engappai.2020.103559
https://doi.org/10.1016/j.engappai.2020.103559
https://doi.org/10.1007/s10514-018-9771-0
https://doi.org/10.1007/978-3-030-30179-8_16
https://doi.org/10.1007/978-3-030-30179-8_16
https://doi.org/10.1016/j.artint.2021.103571
https://doi.org/10.1016/j.artint.2021.103571
https://openreview.net/forum?id=unI5ucw_Jk
https://proceedings.mlr.press/v205/iii23a.html
https://ojs.aaai.org/index.php/ICAPS/article/view/6750
https://ojs.aaai.org/index.php/ICAPS/article/view/6750
https://doi.org/10.1109/IJCNN52387.2021.9534363
https://doi.org/10.1109/ICAR53236.2021.9659472
https://doi.org/10.1109/ICAR53236.2021.9659472
https://doi.org/10.1145/3278721.3278776
https://doi.org/10.1145/3278721.3278776


430	 Machine Learning (2024) 113:355–441

1 3

annual meeting of the association for computational linguistics, ACL 2020. Association for Computa-
tional Linguistics (pp. 4198–4205), https://​doi.​org/​10.​18653/​v1/​2020.​acl-​main.​386

Jacq, A., Ferret, J., Pietquin, O., et al. (2022). Lazy-MDPs: Towards Interpretable RL by Learning When to 
Act. In: Faliszewski P, Mascardi V, Pelachaud C, et al (eds) 21st International Conference on Auton-
omous Agents and Multiagent Systems, AAMAS 2022, Auckland, New Zealand, May 9-13, 2022. 
International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), pp 669–677, 
https://​doi.​org/​10.​5555/​35358​50.​35359​26

Jain, S., & Wallace, B.C. (2019). Attention is not explanation. In J. Burstein, C. Doran, T. Solorio (Eds.), 
Proceedings of the 2019 conference of the North American chapter of the association for computa-
tional linguistics: Human language technologies, NAACL-HLT 2019, Vol. 1 (Long and Short Papers). 
Association for Computational Linguistics (pp. 3543–3556), https://​doi.​org/​10.​18653/​v1/​n19-​1357,

Jaunet, T., Vuillemot, R., & Wolf, C. (2020). DRLViz: Understanding decisions and memory in deep rein-
forcement learning. Computer Graphics Forum, 39(3), 49–61. https://​doi.​org/​10.​1111/​cgf.​13962

Jayawardana, V., Landler, A., & Wu, C. (2021). Mixed autonomous supervision in traffic signal control. In 
24th IEEE international intelligent transportation systems conference, ITSC 2021 (pp. 1767–1773). 
IEEE, https://​doi.​org/​10.​1109/​ITSC4​8978.​2021.​95650​53

Jhunjhunwala, A., Lee, J., Sedwards, S., et al. (2020). Improved policy extraction via online Q-value distilla-
tion. In 2020 international joint conference on neural networks, IJCNN 2020 (pp. 1–8). IEEE, https://​
doi.​org/​10.​1109/​IJCNN​48605.​2020.​92076​48

Jiang, Z., & Luo, S. (2019). Neural logic reinforcement learning. In K. Chaudhuri, R. Salakhutdinov (Eds.), 
Proceedings of the 36th international conference on machine learning, ICML 2019, Proceedings of 
machine learning research, vol  97 (pp. 3110–3119). PMLR, http://​proce​edings.​mlr.​press/​v97/​jiang​
19a.​html

Jiang, X., Zhang, J., & Wang, B. (2022). Energy-efficient driving for adaptive traffic signal control environ-
ment via explainable reinforcement learning. Applied Sciences. https://​doi.​org/​10.​3390/​app12​115380

Johnson, M., Hofmann, K., Hutton, T., et al. (2016b). The Malmo platform for artificial intelligence experi-
mentation. In S. Kambhampati (Ed.) Proceedings of IJCAI (pp. 4246–4247). IJCAI/AAAI Press, 
http://​www.​ijcai.​org/​Abstr​act/​16/​643

Johnson, A. E. W., Pollard, T. J., Shen, L., et al. (2016). MIMIC-III, a freely accessible critical care data-
base. Scientific Data, 3(1), 160035. https://​doi.​org/​10.​1038/​sdata.​2016.​35

Joo, H., & Kim, K. (2019). Visualization of deep reinforcement learning using Grad-CAM: How AI plays 
atari games? In IEEE conference on games, CoG 2019 (pp. 1–2). IEEE, https://​doi.​org/​10.​1109/​CIG.​
2019.​88479​50

Josef, S., & Degani, A. (2020). Deep reinforcement learning for safe local planning of a ground vehicle in 
unknown rough terrain. IEEE Robotics and Automation Letters, 5(4), 6748–6755. https://​doi.​org/​10.​
1109/​LRA.​2020.​30119​12

Juozapaitis, Z., Koul, A., Fern, A., et al. (2019). Explainable reinforcement learning via reward decompo-
sition. In IJCAI/ECAI workshop on explainable AI, https://​finale.​seas.​harva​rd.​edu/​publi​catio​ns/​expla​
inable-​reinf​orcem​ent-​learn​ing-​reward-​decom​posit​ion

Karakovskiy, S., & Togelius, J. (2012). The mario AI benchmark and competitions. IEEE Transactions on 
Computational Intelligence and AI in Games, 4(1), 55–67. https://​doi.​org/​10.​1109/​TCIAIG.​2012.​
21885​28

Karino, I., Ohmura, Y., & Kuniyoshi, Y. (2020). Identifying critical states by the action-based variance of 
expected return. In I. Farkas, P. Masulli, S. Wermter (Eds.), Artificial neural networks and machine 
learning - ICANN 2020 - 29th international conference on artificial neural networks, Part I, Lecture 
notes in computer science, vol. 12396 (pp. 366–378), Springer. https://​doi.​org/​10.​1007/​978-3-​030-​
61609-0_​29

Kempka, M., Wydmuch, M., Runc, G., et al. (2016). Vizdoom: A doom-based AI research platform for vis-
ual reinforcement learning. In IEEE conference on computational intelligence and games, CIG 2016 
(pp. 1–8). IEEE, https://​doi.​org/​10.​1109/​CIG.​2016.​78604​33

Kim, J., & Canny, J.F. (2017). Interpretable learning for self-driving cars by visualizing causal attention. In 
IEEE international conference on computer vision, ICCV 2017. IEEE Computer Society (pp. 2961–
2969), https://​doi.​org/​10.​1109/​ICCV.​2017.​320

Kim, S., & Choi, J. (2021). Explaining the decisions of deep policy networks for robotic manipulations. In 
IEEE/RSJ international conference on intelligent robots and systems, IROS 2021 (pp. 2663–2669). 
IEEE, https://​doi.​org/​10.​1109/​IROS5​1168.​2021.​96365​94

Kim, W.K., Lee, Y., & Woo, H. (2022). Mean-variance based risk-sensitive reinforcement learning with 
interpretable attention. In ICMVA 2022: The 5th international conference on machine vision and 
applications (pp. 104–109). ACM, https://​doi.​org/​10.​1145/​35231​11.​35231​27

https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.5555/3535850.3535926
https://doi.org/10.18653/v1/n19-1357
https://doi.org/10.1111/cgf.13962
https://doi.org/10.1109/ITSC48978.2021.9565053
https://doi.org/10.1109/IJCNN48605.2020.9207648
https://doi.org/10.1109/IJCNN48605.2020.9207648
http://proceedings.mlr.press/v97/jiang19a.html
http://proceedings.mlr.press/v97/jiang19a.html
https://doi.org/10.3390/app12115380
http://www.ijcai.org/Abstract/16/643
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1109/CIG.2019.8847950
https://doi.org/10.1109/CIG.2019.8847950
https://doi.org/10.1109/LRA.2020.3011912
https://doi.org/10.1109/LRA.2020.3011912
https://finale.seas.harvard.edu/publications/explainable-reinforcement-learning-reward-decomposition
https://finale.seas.harvard.edu/publications/explainable-reinforcement-learning-reward-decomposition
https://doi.org/10.1109/TCIAIG.2012.2188528
https://doi.org/10.1109/TCIAIG.2012.2188528
https://doi.org/10.1007/978-3-030-61609-0_29
https://doi.org/10.1007/978-3-030-61609-0_29
https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.1109/ICCV.2017.320
https://doi.org/10.1109/IROS51168.2021.9636594
https://doi.org/10.1145/3523111.3523127


431Machine Learning (2024) 113:355–441	

1 3

Kim, J., Rohrbach, A., Darrell, T., et al. (2018). Textual explanations for self-driving vehicles. In V. Ferrari, 
M. Hebert, C. Sminchisescu, et al. (Eds.) Computer vision - ECCV 2018 - 15th European conference, 
Proceedings, Part II, Lecture notes in computer science, vol 11206 (pp. 577–593). Springer, https://​
doi.​org/​10.​1007/​978-3-​030-​01216-8_​35

Kimura, D., Ono, M., Chaudhury, S., et al. (2021). Neuro-symbolic reinforcement learning with first-order 
logic. In M. Moens, X. Huang, L. Specia, et al. (Eds.), Proceedings of the 2021 conference on empiri-
cal methods in natural language processing, EMNLP 2021 . Association for computational linguistics 
(pp. 3505–3511), https://​doi.​org/​10.​18653/​v1/​2021.​emnlp-​main.​283

Kingma, D.P., & Welling, M. (2014). Auto-encoding variational Bayes. In Y. Bengio & Y. LeCun (Eds.), 
2nd international conference on learning representations, ICLR 2014, Conference Track Proceedings, 
arxiv:​1312.​6114

Kirsch, A. (2017). Explain to whom? Putting the user in the center of explainable AI. In T. R. Besold & O. 
Kutz (Eds.) Proceedings of the first international workshop on comprehensibility and explanation in 
AI and ML 2017 co-located with 16th international conference of the italian association for artificial 
intelligence (AI*IA 2017), CEUR Workshop Proceedings, vol 2071. CEUR-WS.org, http://​ceur-​ws.​
org/​Vol-​2071/​CExAI​IA_​2017_​keyno​te_1.​pdf

Kitchenham, B. A., Brereton, P., Budgen, D., et al. (2009). Systematic literature reviews in software engi-
neering—A systematic literature review. Information and Software Technology, 51(1), 7–15. https://​
doi.​org/​10.​1016/j.​infsof.​2008.​09.​009

Kitchenham, B. A., Budgen, D., & Brereton, P. (2020). Evidence-based software engineering and systematic 
reviews. Chapman and Hall/CRC.

Koenig, N.P., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot sim-
ulator. In Proceedings of IROS (pp. 2149–2154). IEEE, https://​doi.​org/​10.​1109/​IROS.​2004.​13897​27

Koh, P.W., & Liang, P. (2017). Understanding black-box predictions via influence functions. In D. Precup & 
Y. W. Teh (Eds.), Proceedings of the 34th international conference on machine learning, ICML 2017, 
Proceedings of machine learning research, vol. 70 (pp. 1885–1894). PMLR, http://​proce​edings.​mlr.​
press/​v70/​koh17a.​html

Kotevska, O., Munk, J., Kurte, K.R., et  al. (2020). Methodology for interpretable reinforcement learning 
model for HVAC energy control. In X. Wu, C. Jermaine, L. Xiong, et al. (Eds.), 2020 IEEE interna-
tional conference on big data (IEEE BigData 2020) (pp. 1555–1564). IEEE, https://​doi.​org/​10.​1109/​
BigDa​ta500​22.​2020.​93777​35

Koul, A., Fern, A., & Greydanus, S. (2019). Learning finite state representations of recurrent policy net-
works. In 7th international conference on learning representations, ICLR 2019, 2019. OpenReview.
net, https://​openr​eview.​net/​forum?​id=​S1gOp​sCctm

Krajna, A., Brcic, M., Lipic, T., et al. (2022). Explainability in reinforcement learning: perspective and posi-
tion. CoRR abs/2203.11547. https://​doi.​org/​10.​48550/​arXiv.​2203.​11547

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neu-
ral networks. In P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, et  al. (Eds.), Advances in neural 
information processing systems 25: 26th annual conference on neural information processing sys-
tems 2012 (pp. 1106–1114), https://​proce​edings.​neuri​ps.​cc/​paper/​2012/​hash/​c3998​62d3b​9d6b7​6c843​
6e924​a68c4​5b-​Abstr​act.​html

Kubalík, J., Derner, E., Zegklitz, J., et al. (2021). Symbolic regression methods for reinforcement learning. 
IEEE Access, 9, 139697–139711. https://​doi.​org/​10.​1109/​ACCESS.​2021.​31190​00

Kuramoto, S., Sawada, H., & Hartono, P. (2020). Visualization of topographical internal representation of 
learning robots. In 2020 international joint conference on neural networks, IJCNN 2020 (pp. 1–7). 
IEEE, https://​doi.​org/​10.​1109/​IJCNN​48605.​2020.​92066​75

Lage, I., Lifschitz, D., Doshi-Velez, F., et al. (2019a). Exploring computational user models for agent policy 
summarization. In S. Kraus (Ed.), Proceedings of the twenty-eighth international joint conference on 
artificial intelligence, IJCAI 2019 ijcai.org (pp. 1401–1407), https://​doi.​org/​10.​24963/​ijcai.​2019/​194

Lage, I., Lifschitz, D., Doshi-Velez, F., et al. (2019b). Toward robust policy summarization. In E. Elkind, 
M. Veloso, N. Agmon, et al. (Eds.), Proceedings of the 18th international conference on autonomous 
agents and multiagent systems, AAMAS ’19. International Foundation for Autonomous Agents and 
Multiagent Systems (pp. 2081–2083), http://​dl.​acm.​org/​citat​ion.​cfm?​id=​33320​17

Landajuela, M., Petersen, B. K., Kim, S., et al. (2021). Discovering symbolic policies with deep reinforce-
ment learning. In M. Meila & T. Zhang (Eds.), Proceedings of the 38th international conference on 
machine learning, ICML 2021, Proceedings of machine learning research, vol 139. (pp. 5979–5989). 
PMLR, http://​proce​edings.​mlr.​press/​v139/​landa​juela​21a.​html

Langer, M., Oster, D., Speith, T., et  al. (2021). What do we want from explainable artificial intelligence 
(XAI)?—A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI 
research. Artificial Intelligence, 296(103), 473. https://​doi.​org/​10.​1016/j.​artint.​2021.​103473

https://doi.org/10.1007/978-3-030-01216-8_35
https://doi.org/10.1007/978-3-030-01216-8_35
https://doi.org/10.18653/v1/2021.emnlp-main.283
http://arxiv.org/abs/1312.6114
http://ceur-ws.org/Vol-2071/CExAIIA_2017_keynote_1.pdf
http://ceur-ws.org/Vol-2071/CExAIIA_2017_keynote_1.pdf
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1109/IROS.2004.1389727
http://proceedings.mlr.press/v70/koh17a.html
http://proceedings.mlr.press/v70/koh17a.html
https://doi.org/10.1109/BigData50022.2020.9377735
https://doi.org/10.1109/BigData50022.2020.9377735
https://openreview.net/forum?id=S1gOpsCctm
https://doi.org/10.48550/arXiv.2203.11547
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/ACCESS.2021.3119000
https://doi.org/10.1109/IJCNN48605.2020.9206675
https://doi.org/10.24963/ijcai.2019/194
http://dl.acm.org/citation.cfm?id=3332017
http://proceedings.mlr.press/v139/landajuela21a.html
https://doi.org/10.1016/j.artint.2021.103473


432	 Machine Learning (2024) 113:355–441

1 3

Lapuschkin, S., Wäldchen, S., Binder, A., et  al. (2019). Unmasking Clever Hans predictors and assess-
ing what machines really learn. Nature Communications, 10(1), 1096. https://​doi.​org/​10.​1038/​
s41467-​019-​08987-4

Larsen, R., & Schmidt, M. N. (2021). Programmatic policy extraction by iterative local search. In N. Kat-
zouris & A. Artikis (Eds.) Inductive logic programming - 30th international conference, ILP 2021, 
Lecture notes in computer science, vol 13191 (pp. 156–166). Springer, https://​doi.​org/​10.​1007/​978-
3-​030-​97454-1_​11

Larson, J., Mattu, S., Kirchner, L., et al. (2016). How we analyzed the COMPAS recidivism algorithm. 
https://​www.​propu​blica.​org/​artic​le/​how-​we-​analy​zed-​the-​compas-​recid​ivism-​algor​ithm

Lee, M. (2017). Sparse Bayesian reinforcement learning. PhD thesis, Colorado State University, https://​
mount​ainsc​holar.​org/​bitst​ream/​handle/​10217/​183935/​Lee_​colos​tate_​0053A_​14302.​pdf

Liessner, R., Dohmen, J., & Wiering, M. A. (2021). Explainable reinforcement learning for longitudi-
nal control. In A. P. Rocha, L. Steels, H. J. van den Herik (Eds.), Proceedings of the 13th inter-
national conference on agents and artificial intelligence, ICAART 2021, Vol. 2. (pp. 874–881). 
SCITEPRESS, https://​doi.​org/​10.​5220/​00102​56208​740881

Li, G., Gomez, R., Nakamura, K., et al. (2019). Human-centered reinforcement learning: A survey. IEEE 
Transactions on Human-Machine Systems, 49(4), 337–349. https://​doi.​org/​10.​1109/​THMS.​2019.​
29124​47

Likmeta, A., Metelli, A. M., Tirinzoni, A., et al. (2020). Combining reinforcement learning with rule-
based controllers for transparent and general decision-making in autonomous driving. Robotics 
and Autonomous Systems, 131(103), 568. https://​doi.​org/​10.​1016/j.​robot.​2020.​103568

Lim, B.Y., Dey, A.K., & Avrahami, D. (2009). Why and why not explanations improve the intelligibility 
of context-aware intelligent systems. In D. R. O. Jr, R. B. Arthur, K. Hinckley, et al. (Eds.) Pro-
ceedings of the 27th international conference on human factors in computing systems, CHI 2009 
(pp. 2119–2128). ACM, https://​doi.​org/​10.​1145/​15187​01.​15190​23

Lim, M. H., Lee, W. H., Jeon, B., et  al. (2021). A blood glucose control framework based on rein-
forcement learning with safety and interpretability: In silico validation. IEEE Access, 9, 105756–
105775. https://​doi.​org/​10.​1109/​ACCESS.​2021.​31000​07

Lin, Z., Lam, K., & Fern, A. (2021). Contrastive explanations for reinforcement learning via embedded 
self predictions. In 9th international conference on learning representations, ICLR 2021. OpenRe-
view.net, https://​openr​eview.​net/​forum?​id=​Ud3DS​z72nYR

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of inter-
pretability is both important and slippery. Queue, 16(3), 31–57. https://​doi.​org/​10.​1145/​32363​86.​
32413​40

Li, X., Serlin, Z., Yang, G., et  al. (2019). A formal methods approach to interpretable reinforcement 
learning for robotic planning. Science Robotics. https://​doi.​org/​10.​1126/​sciro​botics.​aay62​76

Liu, G., Schulte, O., Zhu, W., et al. (2018). Toward interpretable deep reinforcement learning with lin-
ear model U-trees. In M. Berlingerio, F. Bonchi, T. Gärtner, et  al. (Eds). Machine learning and 
knowledge discovery in databases - European conference, ECML PKDD 2018, Proceedings, Part 
II, Lecture notes in computer science, vol 11052 (pp. 414–429). Springer, https://​doi.​org/​10.​1007/​
978-3-​030-​10928-8_​25

Liu, G., Sun, X., Schulte, O., et  al. (2021). Learning tree interpretation from object representation 
for deep reinforcement learning. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, et  al. (Eds.) 
Advances in neural information processing systems 34: Annual conference on neural information 
processing systems 2021 NeurIPS (pp. 19622–19636), https://​proce​edings.​neuri​ps.​cc/​paper/​2021/​
hash/​a35fe​7f7fe​8217b​4369a​0af42​44d1f​ca-​Abstr​act.​html

Liu, Y., Wang, X., Chang, Y., et al. (2022). Towards explainable reinforcement learning using scoring 
mechanism augmented agents. In G. Memmi, B. Yang, L. Kong, et al. (Eds.), Knowledge science, 
engineering and management - 15th international conference, KSEM 2022 Proceedings, Part II, 
Lecture notes in computer science, vol 13369 (pp. 547–558). Springer, https://​doi.​org/​10.​1007/​
978-3-​031-​10986-7_​44

Liu, M., Shi, J., Li, Z., et  al. (2017). Towards better analysis of deep convolutional neural networks. 
IEEE Transactions on Visualization and Computer Graphics, 23(1), 91–100. https://​doi.​org/​10.​
1109/​TVCG.​2016.​25988​31

López, PÁ., Behrisch, M., Bieker-Walz, L., et al. (2018). Microscopic traffic simulation using SUMO. 
In W. Zhang, A. M. Bayen, J. J. S. Medina, et al. (Eds.), Proceedings of ITSC (pp. 2575–2582). 
IEEE, https://​doi.​org/​10.​1109/​ITSC.​2018.​85699​38

Løver, J., Gjærum, V. B., & Lekkas, A. M. (2021). Explainable AI methods on a deep reinforcement 
learning agent for automatic docking. IFAC-PapersOnLine, 54(16), 146–152. https://​doi.​org/​10.​
1016/j.​ifacol.​2021.​10.​086

https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1007/978-3-030-97454-1_11
https://doi.org/10.1007/978-3-030-97454-1_11
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://mountainscholar.org/bitstream/handle/10217/183935/Lee_colostate_0053A_14302.pdf
https://mountainscholar.org/bitstream/handle/10217/183935/Lee_colostate_0053A_14302.pdf
https://doi.org/10.5220/0010256208740881
https://doi.org/10.1109/THMS.2019.2912447
https://doi.org/10.1109/THMS.2019.2912447
https://doi.org/10.1016/j.robot.2020.103568
https://doi.org/10.1145/1518701.1519023
https://doi.org/10.1109/ACCESS.2021.3100007
https://openreview.net/forum?id=Ud3DSz72nYR
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1126/scirobotics.aay6276
https://doi.org/10.1007/978-3-030-10928-8_25
https://doi.org/10.1007/978-3-030-10928-8_25
https://proceedings.neurips.cc/paper/2021/hash/a35fe7f7fe8217b4369a0af4244d1fca-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a35fe7f7fe8217b4369a0af4244d1fca-Abstract.html
https://doi.org/10.1007/978-3-031-10986-7_44
https://doi.org/10.1007/978-3-031-10986-7_44
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1016/j.ifacol.2021.10.086
https://doi.org/10.1016/j.ifacol.2021.10.086


433Machine Learning (2024) 113:355–441	

1 3

Lundberg, S.M., & Lee, S. (2017). A unified approach to interpreting model predictions. In I. Guyon, 
U. von Luxburg, S. Bengio, et al. (Eds.), Advances in neural information processing systems 30: 
Annual conference on neural information processing systems 2017 (pp. 4765–4774), https://​proce​
edings.​neuri​ps.​cc/​paper/​2017/​hash/​8a20a​86219​78632​d76c4​3dfd2​8b677​67-​Abstr​act.​html

Lyu, D., Yang, F., Liu, B., et al. (2019). SDRL: Interpretable and data-efficient deep reinforcement learn-
ing leveraging symbolic planning. In The Thirty-Third AAAI conference on artificial intelligence, 
AAAI 2019, The thirty-first innovative applications of artificial intelligence conference, IAAI 2019, 
The Ninth AAAI symposium on educational advances in artificial intelligence, EAAI 2019 (pp. 
2970–2977). AAAI Press, https://​doi.​org/​10.​1609/​aaai.​v33i01.​33012​970

Madumal, P., Miller, T., Sonenberg, L., et al. (2020). Explainable reinforcement learning through a causal 
lens. In The Thirty-Fourth AAAI conference on artificial intelligence, AAAI 2020, The thirty-second 
innovative applications of artificial intelligence conference, IAAI 2020, The tenth AAAI symposium on 
educational advances in artificial intelligence, EAAI 2020 (pp. 2493–2500). AAAI Press, https://​ojs.​
aaai.​org/​index.​php/​AAAI/​artic​le/​view/​5631

Makhzani, A., Shlens, J., Jaitly, N., et  al. (2015). Adversarial autoencoders. In Proceedings of ICLR 
abs/1511.05644. https://​doi.​org/​10.​48550/​ARXIV.​1511.​05644

Matthey, L., Higgins, I., Hassabis, D., et  al. (2017). dSprites: Disentanglement testing sprites dataset. 
https://​github.​com/​deepm​ind/​dspri​tes-​datas​et/

McCalmon, J., Le, T., Alqahtani, S., et al. (2022). CAPS: Comprehensible abstract policy summaries for 
explaining reinforcement learning agents. In P. Faliszewski, V. Mascardi, C. Pelachaud, et al. (Eds.), 
21st international conference on autonomous agents and multiagent systems, AAMAS 2022. Interna-
tional foundation for autonomous agents and multiagent systems (IFAAMAS) (pp. 889–897), https://​
doi.​org/​10.​5555/​35358​50.​35359​50

Merriam-Webster. (2022). Interpret definition and meaning. https://​www.​merri​am-​webst​er.​com/​dicti​onary/​
inter​pret

Michaud, E. J., Gleave, A., & Russell, S. (2020). Understanding learned reward functions. NeurIPS Work-
shop on Deep RL abs/2012.05862. https://​doi.​org/​10.​48550/​ARXIV.​2012.​05862

Milani, S., Topin, N., Veloso, M., et  al. (2022). A survey of explainable reinforcement learning. CoRR 
abs/2202.08434. https://​doi.​org/​10.​48550/​arXiv.​2202.​08434

Ming, Y., Cao, S., Zhang, R., et al. (2017). Understanding hidden memories of recurrent neural networks. 
In B. D. Fisher, S. Liu, T. Schreck (Eds.), Proceedings of VAST. IEEE Computer Society (pp. 13–24), 
https://​doi.​org/​10.​1109/​VAST.​2017.​85857​21

Minh, D., Wang, H. X., Li, Y. F., et al. (2022). Explainable artificial intelligence: A comprehensive review. 
Artificial Intelligence Review, 55(5), 3503–3568. https://​doi.​org/​10.​1007/​s10462-​021-​10088-y

Mishra, I., Dao, G., & Lee, M. (2018). Visual sparse Bayesian reinforcement learning: A framework for 
interpreting what an agent has learned. In IEEE symposium series on computational intelligence, 
SSCI 2018 (pp. 1427–1434). IEEE, https://​doi.​org/​10.​1109/​SSCI.​2018.​86288​87

Mishra, A., Soni, U., Huang, J., et al. (2022). Why? Why not? When? Visual explanations of agent behav-
iour in reinforcement learning. In 2022 IEEE 15th Pacific Visualization Symposium (PacificVis). 
IEEE Computer Society, pp. 111–120, https://​doi.​org/​10.​1109/​Pacif​icVis​53943.​2022.​00020

Mitsopoulos, K., Somers, S., Schooler, J., et al. (2021). Toward a psychology of deep reinforcement learning 
agents using a cognitive architecture. Topics in Cognitive Science. https://​doi.​org/​10.​1111/​tops.​12573

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2013). Playing atari with deep reinforcement learning. CoRR 
abs/1312.5602. arXiv:​1312.​5602

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep reinforcement learn-
ing. Nature, 518(7540), 529–533. https://​doi.​org/​10.​1038/​natur​e14236

Mohseni, S., Zarei, N., & Ragan, E. D. (2021). A multidisciplinary survey and framework for design and 
evaluation of explainable AI systems. ACM Transactions on Interactive Intelligent Systems (TiiS). 
https://​doi.​org/​10.​1145/​33871​66

Moldovan, T.M., & Abbeel, P. (2012). Safe exploration in markov decision processes. In Proceedings of the 
29th international conference on machine learning, ICML 2012. icml.cc / Omnipress, http://​icml.​cc/​
2012/​papers/​838.​pdf

Montavon, G., Lapuschkin, S., Binder, A., et al. (2017). Explaining nonlinear classification decisions with 
deep taylor decomposition. Pattern Recognition, 65, 211–222. https://​doi.​org/​10.​1016/j.​patcog.​2016.​
11.​008

Mott, A., Zoran, D., Chrzanowski, M., et  al. (2019). Towards interpretable reinforcement learning using 
attention augmented agents. In H. M. Wallach, H. Larochelle, A. Beygelzimer, et al. (Eds.), Advances 
in neural information processing systems 32: Annual conference on neural information processing 
systems 2019, NeurIPS 2019. (pp. 12329–12338), https://​proce​edings.​neuri​ps.​cc/​paper/​2019/​hash/​
e9510​081ac​30ffa​83f10​b68cd​e1cac​07-​Abstr​act.​html

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1609/aaai.v33i01.33012970
https://ojs.aaai.org/index.php/AAAI/article/view/5631
https://ojs.aaai.org/index.php/AAAI/article/view/5631
https://doi.org/10.48550/ARXIV.1511.05644
https://github.com/deepmind/dsprites-dataset/
https://doi.org/10.5555/3535850.3535950
https://doi.org/10.5555/3535850.3535950
https://www.merriam-webster.com/dictionary/interpret
https://www.merriam-webster.com/dictionary/interpret
https://doi.org/10.48550/ARXIV.2012.05862
https://doi.org/10.48550/arXiv.2202.08434
https://doi.org/10.1109/VAST.2017.8585721
https://doi.org/10.1007/s10462-021-10088-y
https://doi.org/10.1109/SSCI.2018.8628887
https://doi.org/10.1109/PacificVis53943.2022.00020
https://doi.org/10.1111/tops.12573
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1145/3387166
http://icml.cc/2012/papers/838.pdf
http://icml.cc/2012/papers/838.pdf
https://doi.org/10.1016/j.patcog.2016.11.008
https://doi.org/10.1016/j.patcog.2016.11.008
https://proceedings.neurips.cc/paper/2019/hash/e9510081ac30ffa83f10b68cde1cac07-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e9510081ac30ffa83f10b68cde1cac07-Abstract.html


434	 Machine Learning (2024) 113:355–441

1 3

Murdoch, W. J., Singh, C., Kumbier, K., et al. (2019). Definitions, methods, and applications in interpret-
able machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071–22080. 
https://​doi.​org/​10.​1073/​pnas.​19006​54116

Murphy, K. P., Kim, B., & Doshi-Velez, F. (2023). Probabilistic machine learning: Advanced topics. MIT 
Press.

Nageshrao, S., Costa, B., & Filev, D. P. (2019). Interpretable approximation of a deep reinforcement 
learning agent as a set of if-then rules. In M. A. Wani, T. M. Khoshgoftaar, D. Wang, et al. (Eds.), 
18th IEEE international conference on machine learning and applications ICMLA 2019 (pp. 216–
221). IEEE, https://​doi.​org/​10.​1109/​ICMLA.​2019.​00041

Nakamura, Y., & Shibuya, T. (2020). Topological visualization method for understanding the landscape 
of value functions and structure of the state space in reinforcement learning. In A. P. Rocha, L. 
Steels, H. J. van  den Herik (Eds.), Proceedings of the 12th international conference on agents 
and artificial intelligence, ICAART 2020, Vol. 2. (pp. 370–377). SCITEPRESS, https://​doi.​org/​10.​
5220/​00089​13303​700377

Nam, W., Gur, S., Choi, J., et  al. (2020). Relative attributing propagation: Interpreting the compara-
tive contributions of individual units in deep neural networks. In Proceedings of AAAI (pp. 2501–
2508). AAAI Press, https://​ojs.​aaai.​org/​index.​php/​AAAI/​artic​le/​view/​5632

Nguyen, A.M., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In Proceedings of CVPR. IEEE Computer Society, 
pp. 427–436, https://​doi.​org/​10.​1109/​CVPR.​2015.​72986​40

Nie, X., Hiraga, M., & Ohkura, K. (2019). Visualizing deep Q-learning to understanding behavior of 
swarm robotic system. In H. Sato, S. Iwanaga & A. Ishii (Eds.) Proceedings of the 23rd Asia 
Pacific symposium on intelligent and evolutionary systems, pp. 118–129. Springer, https://​doi.​org/​
10.​1007/​978-3-​030-​37442-6_​11

Nikou, A., Mujumdar, A., Orlic, M., et al. (2021). Symbolic reinforcement learning for safe RAN con-
trol. In F. Dignum, A. Lomuscio, U. Endriss, et al. (Eds.), AAMAS ’21: 20th international confer-
ence on autonomous agents and multiagent systems (pp. 1782–1784). ACM, https://​doi.​org/​10.​
5555/​34639​52.​34642​36, https://​www.​ifaam​as.​org/​Proce​edings/​aamas​2021/​pdfs/​p1782.​pdf

Nikulin, D., Ianina, A., Aliev, V., et al. (2019). Free-lunch saliency via attention in atari agents. In 2019 
IEEE/CVF international conference on computer vision workshops, ICCV Workshops 2019 (pp. 
4240–4249). IEEE, https://​doi.​org/​10.​1109/​ICCVW.​2019.​00522

Olson, M.L., Neal, L., Li, F., et  al. (2019). Counterfactual states for atari agents via generative deep 
learning. IJCAI 2019 workshop on explainable AI. arxiv:​1909.​12969

Olson, M. L., Khanna, R., Neal, L., et  al. (2021). Counterfactual state explanations for reinforcement 
learning agents via generative deep learning. Artificial Intelligence, 295(103), 455. https://​doi.​org/​
10.​1016/j.​artint.​2021.​103455

Pace, A., Chan, A., & van der Schaar, M. (2022). POETREE: Interpretable policy learning with adaptive 
decision trees. In Proceedings of international conference on learning representations, https://​
openr​eview.​net/​forum?​id=​AJsI-​ymaKn_

Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. (2021). The PRISMA 2020 statement: An updated 
guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://​doi.​org/​10.​1186/​
s13643-​021-​01626-4

Pan, X., Chen, X., Cai, Q., et al. (2019). Semantic predictive control for explainable and efficient policy 
learning. In International conference on robotics and automation, ICRA 2019 (pp. 3203–3209). 
IEEE, https://​doi.​org/​10.​1109/​ICRA.​2019.​87944​37

Pan, M., Huang, W., Li, Y., et al. (2020). xGAIL: Explainable generative adversarial imitation learning 
for explainable human decision analysis. In R. Gupta, Y. Liu, J. Tang, et al. (Eds.), KDD ’20: The 
26th ACM SIGKDD conference on knowledge discovery and data mining (pp. 1334–1343). ACM, 
https://​doi.​org/​10.​1145/​33944​86.​34031​86

Pankiewicz, N., & Kowalczyk, P. (2022). Attributation analysis of reinforcement learning-based high-
way driver. Electronics. https://​doi.​org/​10.​3390/​elect​ronic​s1121​3599

Paull, L., Tani, J., Ahn, H., et al. (2017). Duckietown: An open, inexpensive and flexible platform for 
autonomy education and research. In Proceedings of ICRA​ (pp. 1497–1504). IEEE, https://​doi.​org/​
10.​1109/​ICRA.​2017.​79891​79

Portugal, E., Cruz, F., Ayala, A., et al. (2022). Analysis of explainable goal-driven reinforcement learn-
ing in a continuous simulated environment. Algorithms, 15(3), 91. https://​doi.​org/​10.​3390/​a1503​
0091

Preece, A.D., Harborne, D., Braines, D., et al. (2018). Stakeholders in explainable AI. AAAI FSS-18: Artifi-
cial intelligence in government and public sector. https://​doi.​org/​10.​48550/​ARXIV.​1810.​00184

https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1109/ICMLA.2019.00041
https://doi.org/10.5220/0008913303700377
https://doi.org/10.5220/0008913303700377
https://ojs.aaai.org/index.php/AAAI/article/view/5632
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1007/978-3-030-37442-6_11
https://doi.org/10.1007/978-3-030-37442-6_11
https://doi.org/10.5555/3463952.3464236
https://doi.org/10.5555/3463952.3464236
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1782.pdf
https://doi.org/10.1109/ICCVW.2019.00522
http://arxiv.org/abs/1909.12969
https://doi.org/10.1016/j.artint.2021.103455
https://doi.org/10.1016/j.artint.2021.103455
https://openreview.net/forum?id=AJsI-ymaKn_
https://openreview.net/forum?id=AJsI-ymaKn_
https://doi.org/10.1186/s13643-021-01626-4
https://doi.org/10.1186/s13643-021-01626-4
https://doi.org/10.1109/ICRA.2019.8794437
https://doi.org/10.1145/3394486.3403186
https://doi.org/10.3390/electronics11213599
https://doi.org/10.1109/ICRA.2017.7989179
https://doi.org/10.1109/ICRA.2017.7989179
https://doi.org/10.3390/a15030091
https://doi.org/10.3390/a15030091
https://doi.org/10.48550/ARXIV.1810.00184


435Machine Learning (2024) 113:355–441	

1 3

Puiutta, E., & Veith, E.M.S.P. (2020). Explainable reinforcement learning: A survey. In A. Holzinger, P. 
Kieseberg, A. M. Tjoa, et al. (Eds.), Machine learning and knowledge extraction - 4th IFIP TC 5, 
TC 12, WG 8.4, WG 8.9, WG 12.9 international cross-domain conference, CD-MAKE 2020, Pro-
ceedings, Lecture notes in computer science, vol 12279 (pp. 77–95). Springer, https://​doi.​org/​10.​
1007/​978-3-​030-​57321-8_5

Puri, N., Verma, S., Gupta, P., et al. (2020). Explain your move: Understanding agent actions using spe-
cific and relevant feature attribution. In 8th international conference on learning representations, 
ICLR 2020. OpenReview.net https://​openr​eview.​net/​forum?​id=​SJgzL​kBKPB

Qiu, W., & Zhu, H. (2022). Programmatic reinforcement learning without oracles. In The tenth international 
conference on learning representations, ICLR 2022. OpenReview.net, https://​openr​eview.​net/​forum?​
id=​6Tk2n​oBdvxt

Ramanishka, V., Chen, Y., Misu, T., et al. (2018). Toward driving scene understanding: A dataset for learn-
ing driver behavior and causal reasoning. In Proceedings of CVPR. Computer Vision Foundation/
IEEE Computer Society (pp. 7699–7707), https://​doi.​org/​10.​1109/​CVPR.​2018.​00803

Ras, G., Xie, N., van Gerven, M., et al. (2022). Explainable deep learning: A field guide for the uninitiated. 
Journal of Artificial Intelligence Research, 73, 329–396. https://​doi.​org/​10.​1613/​jair.1.​13200

Remman, S.B., & Lekkas, A.M. (2021). Robotic lever manipulation using hindsight experience replay and 
shapley additive explanations. In 2021 European control conference, ECC 2021 (pp. 586–593). IEEE, 
https://​doi.​org/​10.​23919/​ECC54​610.​2021.​96548​50

Ribeiro, M.T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”: Explaining the predictions of 
any classifier. In B. Krishnapuram, M. Shah, A. J. Smola, et al. (Eds.), Proceedings of the 22nd ACM 
SIGKDD international conference on knowledge discovery and data mining (pp. 1135–1144). ACM, 
https://​doi.​org/​10.​1145/​29396​72.​29397​78,

Ribera, M., & Lapedriza, À. (2019). Can we do better explanations? A proposal of user-centered explainable 
AI. In C. Trattner, D. Parra, N. Riche (Eds.), Proceedings of ACM IUI workshops, CEUR Workshop 
Proceedings, vol 2327. CEUR-WS.org, http://​ceur-​ws.​org/​Vol-​2327/​IUI19​WS-​ExSS2​019-​12.​pdf

Riegel, R., Gray, A. G., Luus, F. P. S., et al. (2020). Logical neural networks. CoRR. arXiv:​2006.​13155
Rietz, F., Magg, S., Heintz, F., et  al. (2022). Hierarchical goals contextualize local reward decomposi-

tion explanations. Neural Computing and Applications Early Access. https://​doi.​org/​10.​1007/​
s00521-​022-​07280-8

Rizzo, S.G., Vantini, G., & Chawla, S. (2019). Reinforcement learning with explainability for traffic sig-
nal control. In 2019 IEEE intelligent transportation systems conference, ITSC 2019 (pp. 3567–3572). 
IEEE, https://​doi.​org/​10.​1109/​ITSC.​2019.​89175​19

Robbins, B. G. (2016). What is trust? A multidisciplinary review, critique, and synthesis. Sociology Com-
pass, 10(10), 972–986. https://​doi.​org/​10.​1111/​soc4.​12391

Robnik-Sikonja, M., & Bohanec, M. (2018). Perturbation-based explanations of prediction models. In J. 
Zhou & F. Chen (Eds.) Human and machine learning—visible, explainable, trustworthy and trans-
parent. Human-Computer Interaction Series (pp. 159–175). Springer, https://​doi.​org/​10.​1007/​
978-3-​319-​90403-0_9

Rohmer, E., Singh, S.P.N., & Freese, M. (2013). V-REP: A versatile and scalable robot simulation frame-
work. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 1321–1326). 
IEEE, https://​doi.​org/​10.​1109/​IROS.​2013.​66965​20

Roth, A.M., Liang, J., & Manocha, D. (2021). XAI-N: Sensor-based robot navigation using expert poli-
cies and decision trees. In IEEE/RSJ international conference on intelligent robots and systems, IROS 
2021 (pp. 2053–2060). IEEE, https://​doi.​org/​10.​1109/​IROS5​1168.​2021.​96367​59

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://​doi.​org/​10.​1038/​
s42256-​019-​0048-x

Rupprecht, C., Ibrahim, C., & Pal, C.J. (2020). Finding and visualizing weaknesses of deep reinforcement 
learning agents. In 8th international conference on learning representations, ICLR 2020. OpenRe-
view.net, https://​openr​eview.​net/​forum?​id=​rylvY​aNYDH

Russell, J., & Santos, E. (2019). Explaining reward functions in markov decision processes. In R. Barták 
& K. W. Brawner (Eds.), Proceedings of the thirty-second international florida artificial intelligence 
research society conference (pp. 56–61). AAAI Press, https://​aaai.​org/​ocs/​index.​php/​FLAIRS/​FLAIR​
S19/​paper/​view/​18275

Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.
Sado, F., Loo, C. K., Liew, W. S., et al. (2023). Explainable goal-driven agents and robots–A comprehensive 

review. ACM Computing Surveys. https://​doi.​org/​10.​1145/​35642​40

https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1007/978-3-030-57321-8_5
https://openreview.net/forum?id=SJgzLkBKPB
https://openreview.net/forum?id=6Tk2noBdvxt
https://openreview.net/forum?id=6Tk2noBdvxt
https://doi.org/10.1109/CVPR.2018.00803
https://doi.org/10.1613/jair.1.13200
https://doi.org/10.23919/ECC54610.2021.9654850
https://doi.org/10.1145/2939672.2939778
http://ceur-ws.org/Vol-2327/IUI19WS-ExSS2019-12.pdf
http://arxiv.org/abs/2006.13155
https://doi.org/10.1007/s00521-022-07280-8
https://doi.org/10.1007/s00521-022-07280-8
https://doi.org/10.1109/ITSC.2019.8917519
https://doi.org/10.1111/soc4.12391
https://doi.org/10.1007/978-3-319-90403-0_9
https://doi.org/10.1007/978-3-319-90403-0_9
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1109/IROS51168.2021.9636759
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://openreview.net/forum?id=rylvYaNYDH
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS19/paper/view/18275
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS19/paper/view/18275
https://doi.org/10.1145/3564240


436	 Machine Learning (2024) 113:355–441

1 3

Sakai, T., Miyazawa, K., Horii, T., et  al. (2021). A framework of explanation generation toward reliable 
autonomous robots. Advanced Robotics, 35(17), 1054–1067. https://​doi.​org/​10.​1080/​01691​864.​2021.​
19464​23

Sakai, T., & Nagai, T. (2022). Explainable autonomous robots: A survey and perspective. Advanced Robot-
ics, 36(5–6), 219–238. https://​doi.​org/​10.​1080/​01691​864.​2022.​20297​20

Santana, E., & Hotz, G. (2016). Learning a driving simulator. CoRR abs/1608.01230. https://​doi.​org/​10.​
48550/​ARXIV.​1608.​01230

Schmidt, L.M., Kontes, G.D., Plinge, A., et al. (2021). Can you trust your autonomous car? Interpretable 
and verifiably safe reinforcement learning. In IEEE intelligent vehicles symposium, IV 2021 (pp. 171–
178). IEEE, https://​doi.​org/​10.​1109/​IV488​63.​2021.​95753​28

Schrittwieser, J., Antonoglou, I., Hubert, T., et al. (2020). Mastering atari, go, chess and shogi by planning 
with a learned model. Nature, 588(7839), 604–609. https://​doi.​org/​10.​1038/​s41586-​020-​03051-4

Sehnke, F., Osendorfer, C., Rückstieß, T., et al. (2008). Policy gradients with parameter-based exploration 
for control. In V. Kurková, R. Neruda, J. Koutník (Eds.) Proceedings of ICANN, LNCS, vol. 5163 (pp. 
387–396). Springer, https://​doi.​org/​10.​1007/​978-3-​540-​87536-9_​40

Selvaraju, R.R., Cogswell, M., Das, A., et al. (2017). Grad-CAM: Visual explanations from deep networks 
via gradient-based localization. In IEEE International conference on computer vision, ICCV 2017 
(pp. 618–626). IEEE Computer Society, https://​doi.​org/​10.​1109/​ICCV.​2017.​74,

Seng, D., Zhang, J., & Shi, X. (2021). Visual analysis of deep Q-network. KSII Transactions on Internet and 
Information Systems. https://​doi.​org/​10.​3837/​tiis.​2021.​03.​003

Sequeira, P., Yeh, E., & Gervasio, M.T. (2019). Interestingness elements for explainable reinforcement 
learning through introspection. In C. Trattner, D. Parra, N. Riche (Eds.), Joint proceedings of the 
ACM IUI 2019 workshops co-located with the 24th ACM conference on intelligent user interfaces 
(ACM IUI 2019), CEUR workshop proceedings, vol 2327. CEUR-WS.org, http://​ceur-​ws.​org/​Vol-​
2327/​IUI19​WS-​ExSS2​019-1.​pdf

Sequeira, P., & Gervasio, M. T. (2020). Interestingness elements for explainable reinforcement learning: 
Understanding agents’ capabilities and limitations. Artificial Intelligence, 288(103), 367. https://​doi.​
org/​10.​1016/j.​artint.​2020.​103367

Shi, S., Li, J., Li, G., et al. (2021a). XPM: An explainable deep reinforcement learning framework for port-
folio management. In G. Demartini, G. Zuccon, J. S. Culpepper, et al. (Eds.), CIKM ’21: The 30th 
ACM international conference on information and knowledge management (pp. 1661–1670). ACM, 
https://​doi.​org/​10.​1145/​34596​37.​34824​94

Shi, W., Huang, G., Song, S., et  al. (2021). Temporal-spatial causal interpretations for vision-based rein-
forcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence Early Access. 
https://​doi.​org/​10.​1109/​TPAMI.​2021.​31337​17

Shi, W., Huang, G., Song, S., et al. (2022). Self-supervised discovering of interpretable features for rein-
forcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(5), 2712–
2724. https://​doi.​org/​10.​1109/​TPAMI.​2020.​30378​98

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating acti-
vation differences. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th international confer-
ence on machine learning, ICML 2017, Proceedings of machine learning research, vol 70 (pp. 3145–
3153). PMLR, http://​proce​edings.​mlr.​press/​v70/​shrik​umar1​7a.​html

Shu, T., Xiong, C., & Socher, R. (2018). Hierarchical and interpretable skill acquisition in multi-task rein-
forcement learning. In 6th international conference on learning representations, ICLR 2018, Confer-
ence track proceedings. OpenReview.net, https://​openr​eview.​net/​forum?​id=​SJJQV​ZW0b

Sieusahai, A., & Guzdial, M. (2021). Explaining deep reinforcement learning agents in the atari domain 
through a surrogate model. In D. Thue & S. G. Ware (Eds.), Proceedings of the seventeenth AAAI 
conference on artificial intelligence and interactive digital entertainment, AIIDE 2021 (pp. 82–90). 
AAAI Press, https://​ojs.​aaai.​org/​index.​php/​AIIDE/​artic​le/​view/​18894

Silva, A., Gombolay, M. C., Killian, T. W., et  al. (2020). Optimization methods for interpretable differ-
entiable decision trees applied to reinforcement learning. In S. Chiappa & R. Calandra (Eds.), The 
23rd international conference on artificial intelligence and statistics, AISTATS 2020, Proceedings of 
machine learning research, vol 108 (pp. 1855–1865). PMLR, http://​proce​edings.​mlr.​press/​v108/​silva​
20a.​html

Silver, D., Huang, A., Maddison, C. J., et al. (2016). Mastering the game of Go with deep neural networks 
and tree search. Nature, 529(7587), 484–489. https://​doi.​org/​10.​1038/​natur​e16961

Silver, D., Schrittwieser, J., Simonyan, K., et al. (2017). Mastering the game of Go without human knowl-
edge. Nature, 550(7676), 354–359. https://​doi.​org/​10.​1038/​natur​e24270

https://doi.org/10.1080/01691864.2021.1946423
https://doi.org/10.1080/01691864.2021.1946423
https://doi.org/10.1080/01691864.2022.2029720
https://doi.org/10.48550/ARXIV.1608.01230
https://doi.org/10.48550/ARXIV.1608.01230
https://doi.org/10.1109/IV48863.2021.9575328
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1007/978-3-540-87536-9_40
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.3837/tiis.2021.03.003
http://ceur-ws.org/Vol-2327/IUI19WS-ExSS2019-1.pdf
http://ceur-ws.org/Vol-2327/IUI19WS-ExSS2019-1.pdf
https://doi.org/10.1016/j.artint.2020.103367
https://doi.org/10.1016/j.artint.2020.103367
https://doi.org/10.1145/3459637.3482494
https://doi.org/10.1109/TPAMI.2021.3133717
https://doi.org/10.1109/TPAMI.2020.3037898
http://proceedings.mlr.press/v70/shrikumar17a.html
https://openreview.net/forum?id=SJJQVZW0b
https://ojs.aaai.org/index.php/AIIDE/article/view/18894
http://proceedings.mlr.press/v108/silva20a.html
http://proceedings.mlr.press/v108/silva20a.html
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270


437Machine Learning (2024) 113:355–441	

1 3

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recogni-
tion. In Y. Bengio & Y. LeCun (Eds.), 3rd international conference on learning representations, 
ICLR 2015, Conference track proceedings, https://​doi.​org/​10.​48550/​ARXIV.​1409.​1556

Simpson, T. W. (2012). What is trust? Pacific Philosophical Quarterly, 93(4), 550–569. https://​doi.​org/​10.​
1111/j.​1468-​0114.​2012.​01438.x

Singh, G., Memoli, F., & Carlsson G. (2007). Topological methods for the analysis of high dimensional 
data sets and 3D object recognition. In M. Botsch, R. Pajarola, B. Chen, et al. (Eds.), Eurographics 
symposium on point-based graphics. The Eurographics Association, https://​doi.​org/​10.​2312/​SPBG/​
SPBG07/​091-​100

Skirzynski, J., Becker, F., & Lieder, F. (2021). Automatic discovery of interpretable planning strategies. 
Machine Learning, 110(9), 2641–2683. https://​doi.​org/​10.​1007/​s10994-​021-​05963-2

Soares, E. A., Angelov, P. P., Costa, B., et  al. (2021). Explaining deep learning models through rule-
based approximation and visualization. IEEE Transactions on Fuzzy Systems, 29(8), 2399–2407. 
https://​doi.​org/​10.​1109/​TFUZZ.​2020.​29997​76

Sovrano, F., Vitali, F., & Palmirani, M. (2020). Making things explainable vs explaining: Requirements 
and challenges under the GDPR. In V. Rodríguez-Doncel, M. Palmirani, M. Araszkiewicz, et  al 
(Eds.), Proceedings of AICOL, AICOL, XAILA, LNCS, vol. 13048 (pp. 169–182). Springer, https://​
doi.​org/​10.​1007/​978-3-​030-​89811-3_​12

Springenberg, J.T., Dosovitskiy, A., Brox, T., et al. (2015). Striving for simplicity: The all convolutional 
net. In Y. Bengio, Y. LeCun (Eds.), 3rd International conference on learning representations, 
ICLR 2015, Workshop track proceedings, arxiv:​1412.​6806

Sreedharan, S., Soni, U., Verma, M., et al. (2022). Bridging the gap: Providing post-hoc symbolic expla-
nations for sequential decision-making problems with inscrutable representations. In The tenth 
international conference on learning representations, ICLR 2022. OpenReview.net, https://​openr​
eview.​net/​forum?​id=o-​1v9hd​Sult

Sreedharan, S., Srivastava, S., & Kambhampati, S. (2020). TLdR: Policy summarization for factored 
SSP problems using temporal abstractions. In J. C. Beck, O. Buffet, J. Hoffmann, et  al. (Eds.) 
Proceedings of the thirtieth international conference on automated planning and scheduling (pp. 
272–280). AAAI Press, https://​ojs.​aaai.​org/​index.​php/​ICAPS/​artic​le/​view/​6671

Stork, J., Zaefferer, M., Bartz-Beielstein, T., et al. (2020). Understanding the behavior of reinforcement 
learning agents. In B. Filipic, E. A. Minisci, M. Vasile (Eds.), Bioinspired optimization methods 
and their applications—9th international conference, BIOMA 2020, Proceedings, lecture notes in 
computer science, vol 12438 (pp. 148–160). Springer, https://​doi.​org/​10.​1007/​978-3-​030-​63710-
1_​12

Strobelt, H., Gehrmann, S., Pfister, H., et al. (2018). Lstmvis: A tool for visual analysis of hidden state 
dynamics in recurrent neural networks. IEEE Transactions on Visualization and Computer Graph-
ics, 24(1), 667–676. https://​doi.​org/​10.​1109/​TVCG.​2017.​27441​58

Suárez, A., & Lutsko, J. F. (1999). Globally optimal fuzzy decision trees for classification and regres-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12), 1297–1311. 
https://​doi.​org/​10.​1109/​34.​817409

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. In D. Precup & 
Y. W. Teh (Eds.), Proceedings of the 34th international conference on machine learning, ICML 
2017, Proceedings of machine learning research, vol  70 (pp. 3319–3328). PMLR, http://​proce​
edings.​mlr.​press/​v70/​sunda​raraj​an17a.​html

Suresh, H., Gomez S. R., Nam, K. K., et al. (2021). Beyond expertise and roles: A framework to char-
acterize the stakeholders of interpretable machine learning and their needs. In: Y. Kitamura, A. 
Quigley, K. Isbister, et al. (Eds.), Proceedings of CHI (pp. 74:1–74:16). ACM, https://​doi.​org/​10.​
1145/​34117​64.​34450​88

Sutton, R.S., & Barto, A.G. (2018). Reinforcement learning an introduction, Second Edition. Adaptive 
Computation and nMachine Learning, MIT Press, https://​mitpr​ess.​mit.​edu/​books/​reinf​orcem​ent-​
learn​ing-​second-​editi​on

Szegedy, C., Zaremba, W., Sutskever, I., et  al. (2014). Intriguing properties of neural networks. In Y. 
Bengio, Y. LeCun (Eds.), Proceedings of ICLR, https://​doi.​org/​10.​48550/​ARXIV.​1312.​6199

Tabrez, A., Agrawal, S., & Hayes, B. (2019). Explanation-based reward coaching to improve human per-
formance via reinforcement learning. In 14th ACM/IEEE international conference on human-robot 
interaction, HRI 2019 (pp. 249–257). IEEE, https://​doi.​org/​10.​1109/​HRI.​2019.​86731​04

Tang, Y., Nguyen, D., & Ha, D. (2020). Neuroevolution of self-interpretable agents. In C. A. C. Coe-
llo (Ed) GECCO ’20: Genetic and evolutionary computation conference, (pp. 414–424). ACM, 
https://​doi.​org/​10.​1145/​33779​30.​33898​47

https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1111/j.1468-0114.2012.01438.x
https://doi.org/10.1111/j.1468-0114.2012.01438.x
https://doi.org/10.2312/SPBG/SPBG07/091-100
https://doi.org/10.2312/SPBG/SPBG07/091-100
https://doi.org/10.1007/s10994-021-05963-2
https://doi.org/10.1109/TFUZZ.2020.2999776
https://doi.org/10.1007/978-3-030-89811-3_12
https://doi.org/10.1007/978-3-030-89811-3_12
http://arxiv.org/abs/1412.6806
https://openreview.net/forum?id=o-1v9hdSult
https://openreview.net/forum?id=o-1v9hdSult
https://ojs.aaai.org/index.php/ICAPS/article/view/6671
https://doi.org/10.1007/978-3-030-63710-1_12
https://doi.org/10.1007/978-3-030-63710-1_12
https://doi.org/10.1109/TVCG.2017.2744158
https://doi.org/10.1109/34.817409
http://proceedings.mlr.press/v70/sundararajan17a.html
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.1145/3411764.3445088
https://doi.org/10.1145/3411764.3445088
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://doi.org/10.48550/ARXIV.1312.6199
https://doi.org/10.1109/HRI.2019.8673104
https://doi.org/10.1145/3377930.3389847


438	 Machine Learning (2024) 113:355–441

1 3

Terra, A., Inam, R., & Fersman, E. (2022). BEERL: Both ends explanations for reinforcement learning. 
Applied Sciences. https://​doi.​org/​10.​3390/​app12​21109​47

Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A physics engine for model-based control. In Pro-
ceedings of IROS (pp. 5026–5033). IEEE, https://​doi.​org/​10.​1109/​IROS.​2012.​63861​09

Tolstikhin, I. O., Bousquet, O., Gelly, S., et  al. (2018). Wasserstein auto-encoders. In Proceedings of 
ICLR. OpenReview.net, https://​openr​eview.​net/​forum?​id=​HkL7n1-​0b

Tomsett, R., Braines, D., Harborne, D., et  al. (2018). Interpretable to whom? A role-based model for 
analyzing interpretable machine learning systems. ICML 2018 workshop on human interpretabil-
ity in machine learning. arXiv:​ 1806.​07552

Topin, N., & Veloso, M. (2019). Generation of policy-level explanations for reinforcement learning. In 
The thirty-third AAAI conference on artificial intelligence, AAAI 2019, the thirty-first innovative 
applications of artificial intelligence conference, IAAI 2019, The ninth AAAI symposium on edu-
cational advances in artificial intelligence, EAAI 2019 (pp. 2514–2521). AAAI Press, https://​doi.​
org/​10.​1609/​aaai.​v33i01.​33012​514

Topin, N., Milani, S., Fang, F., et  al. (2021). Iterative bounding MDPs: Learning interpretable poli-
cies via non-interpretable methods. In Thirty-fifth AAAI conference on artificial intelligence, AAAI 
2021, thirty-third conference on innovative applications of artificial intelligence, IAAI 2021, The 
eleventh symposium on educational advances in artificial intelligence, EAAI 2021 (pp. 9923–
9931). AAAI Press, https://​ojs.​aaai.​org/​index.​php/​AAAI/​artic​le/​view/​17192

Trivedi, D., Zhang, J., Sun, S., et al. (2021). Learning to synthesize programs as interpretable and gener-
alizable policies. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, et al. (Eds.), Advances in neural 
information processing systems 34: Annual conference on neural information processing systems 
2021, NeurIPS 2021 (pp. 25,146–25,163), https://​proce​edings.​neuri​ps.​cc/​paper/​2021/​hash/​d3712​
4c4c7​9f357​cb02c​65567​1a432​fa-​Abstr​act.​html

Tylkin, P., Wang, T., Palko, K., et al. (2022). Interpretable autonomous flight via compact visualizable 
neural circuit policies. IEEE Robotics and Automation Letters, 7(2), 3265–3272. https://​doi.​org/​
10.​1109/​LRA.​2022.​31465​55

Ullauri, J. M. P., García-Domínguez, A., Bencomo, N., et al. (2022). Event-driven temporal models for 
explanations—ETeMoX: Explaining reinforcement learning. Software and Systems Modeling, 
21(3), 1091–1113. https://​doi.​org/​10.​1007/​s10270-​021-​00952-4

van Baar, J., Sullivan, A., Cordorel, R., et al. (2019). Sim-to-real transfer learning using robustified con-
trollers in robotic tasks involving complex dynamics. In Proceedings of of ICRA​. IEEE, pp 6001–
6007, https://​doi.​org/​10.​1109/​ICRA.​2019.​87935​61

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. JMLR, 9(86), 2579–2605.
van der Waa, J., van Diggelen, J., van den Bosch, K., et al. (2018). Contrastive explanations for rein-

forcement learning in terms of expected consequences. IJCAI Workshop on XAI abs/1807.08706. 
https://​doi.​org/​10.​48550/​ARXIV.​1807.​08706

Vasic, M., Petrovic, A., Wang, K., et al. (2022). MoËT: Mixture of Expert Trees and its application to 
verifiable reinforcement learning. Neural Networks, 151, 34–47. https://​doi.​org/​10.​1016/j.​neunet.​
2022.​03.​022

Verma, A., Le, H. M., Yue, Y., et  al. (2019). Imitation-projected programmatic reinforcement learn-
ing. In H. M. Wallach, H. Larochelle, A. Beygelzimer, et al. (Eds.), Advances in neural informa-
tion processing systems 32: Annual conference on neural information processing systems 2019, 
NeurIPS 2019 (pp. 15,726–15,737), https://​proce​edings.​neuri​ps.​cc/​paper/​2019/​hash/​5a44a​53b7d​
26bb1​e54c0​5222f​186dc​fb-​Abstr​act.​html

Verma, A., Murali, V., Singh, R., et al. (2018). Programmatically interpretable reinforcement learning. 
In J. G. Dy & A. Krause (Eds.), Proceedings of the 35th international conference on machine 
learning, ICML 2018, Proceedings of machine learning research, vol  80. (pp. 5052–5061). 
PMLR, http://​proce​edings.​mlr.​press/​v80/​verma​18a.​html

Videau, M., Leite, A., Teytaud, O., et al. (2022). Multi-objective genetic programming for explainable 
reinforcement learning. In E. Medvet, G. L. Pappa, B. Xue (Eds.) Genetic programming—25th 
European conference, EuroGP 2022 Proceedings, Lecture notes in computer science, vol. 13223 
(pp. 278–293). Springer, https://​doi.​org/​10.​1007/​978-3-​031-​02056-8_​18

Vinyals, O., Babuschkin, I., Chung, J., et al. (2019a). AlphaStar: Mastering the real-time strategy game 
StarCraft II. https://​deepm​ind.​com/​blog/​alpha​star-​maste​ring-​real-​time-​strat​egy-​game-​starc​raft-​ii/

Vinyals, O., Babuschkin, I., Czarnecki, W. M., et  al. (2019). Grandmaster level in StarCraft II using 
multi-agent reinforcement learning. Nature, 575(7782), 350–354. https://​doi.​org/​10.​1038/​
s41586-​019-​1724-z

Vouros, G. A. (2022). Explainable deep reinforcement learning: State of the art and challenges. ACM 
Computing Surveys. https://​doi.​org/​10.​1145/​35274​48

https://doi.org/10.3390/app122110947
https://doi.org/10.1109/IROS.2012.6386109
https://openreview.net/forum?id=HkL7n1-0b
http://arxiv.org/abs/1806.07552
https://doi.org/10.1609/aaai.v33i01.33012514
https://doi.org/10.1609/aaai.v33i01.33012514
https://ojs.aaai.org/index.php/AAAI/article/view/17192
https://proceedings.neurips.cc/paper/2021/hash/d37124c4c79f357cb02c655671a432fa-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d37124c4c79f357cb02c655671a432fa-Abstract.html
https://doi.org/10.1109/LRA.2022.3146555
https://doi.org/10.1109/LRA.2022.3146555
https://doi.org/10.1007/s10270-021-00952-4
https://doi.org/10.1109/ICRA.2019.8793561
https://doi.org/10.48550/ARXIV.1807.08706
https://doi.org/10.1016/j.neunet.2022.03.022
https://doi.org/10.1016/j.neunet.2022.03.022
https://proceedings.neurips.cc/paper/2019/hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html
http://proceedings.mlr.press/v80/verma18a.html
https://doi.org/10.1007/978-3-031-02056-8_18
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1145/3527448


439Machine Learning (2024) 113:355–441	

1 3

Wang, X., Liu, Y., Chang, Y., et al. (2022). Incorporating explanations to balance the exploration and 
exploitation of deep reinforcement learning. In G. Memmi, B. Yang, L. Kong, et al. (Eds.), Knowl-
edge science, engineering and management—15th international conference, KSEM 2022, Pro-
ceedings, Part II, Lecture notes in computer science, vol. 13369 (pp. 200–211). Springer, https://​
doi.​org/​10.​1007/​978-3-​031-​10986-7_​16

Wang, Y., Mase, M., Egi, M. (2020). Attribution-based salience method towards interpretable reinforce-
ment learning. In A. Martin, K. Hinkelmann, H. Fill, et al. (Eds.), Proceedings of the AAAI 2020 
spring symposium on combining machine learning and knowledge engineering in practice, AAAI-
MAKE 2020, Volume I, CEUR Workshop Proceedings, vol. 2600. CEUR-WS.org, http://​ceur-​ws.​
org/​Vol-​2600/​short4.​pdf

Wang, Z., Schaul, T., Hessel, M., et al. (2016). Dueling network architectures for deep reinforcement learn-
ing. In M. Balcan, K. Q. Weinberger (Eds.), Proceedings of ICML, JMLR Workshop and Conference 
Proceedings, vol. 48 (pp. 1995–2003). JMLR.org, http://​proce​edings.​mlr.​press/​v48/​wangf​16.​html

Wang, X., Yuan, S., Zhang, H., et al. (2019b). Verbal explanations for deep reinforcement learning neu-
ral networks with attention on extracted features. In 28th IEEE international conference on robot 
and human interactive communication, RO-MAN 2019 (pp. 1–7). IEEE, https://​doi.​org/​10.​1109/​
RO-​MAN46​459.​2019.​89563​01

Wang, H., Gao, H., Yuan, S., et  al. (2021). Interpretable decision-making for autonomous vehicles at 
highway on-ramps with latent space reinforcement learning. IEEE Transactions on Vehicular 
Technology, 70(9), 8707–8719. https://​doi.​org/​10.​1109/​TVT.​2021.​30983​21

Wang, J., Gou, L., Shen, H., et  al. (2019). DQNViz: A visual analytics approach to understand deep 
Q-networks. IEEE Transactions on Visualization and Computer Graphics, 25(1), 288–298. https://​
doi.​org/​10.​1109/​TVCG.​2018.​28645​04

Wang, J., Gou, L., Yang, H., et al. (2018). GANViz: A visual analytics approach to understand the adver-
sarial game. IEEE Transactions on Visualization and Computer Graphics, 24(6), 1905–1917. 
https://​doi.​org/​10.​1109/​TVCG.​2018.​28162​23

Wang, J., Zhang, W., Yang, H., et al. (2021). Visual analytics for RNN-based deep reinforcement learn-
ing. IEEE Transactions on Visualization and Computer Graphics Early Access. https://​doi.​org/​10.​
1109/​TVCG.​2021.​30767​49

Watkins, O., Huang, S., Frost, J., et al. (2021). Explaining robot policies. Applied AI Letters, 2(4), e52. 
https://​doi.​org/​10.​1002/​ail2.​52

Wattenberg, M., Viégas, F., & Johnson, I. (2016). How to Use t-SNE effectively. Distill. https://​doi.​org/​
10.​23915/​disti​ll.​00002

Wei, J., Qiu, Z., Wang, F., et al. (2022). Understanding via exploration: Discovery of interpretable fea-
tures with deep reinforcement learning. IEEE Transactions on Neural Networks and Learning Sys-
tems. https://​doi.​org/​10.​1109/​TNNLS.​2022.​31849​56

Weitkamp, L., van der Pol, E., & Akata, Z. (2018). Visual rationalizations in deep reinforcement learn-
ing for atari games. In M. Atzmueller & W. Duivesteijn (Eds.), Artificial intelligence—30th Ben-
elux conference, BNAIC 2018, Communications in computer and information science, vol. 1021 
(pp. 151–165). Springer, https://​doi.​org/​10.​1007/​978-3-​030-​31978-6_​12

Weller, A. (2017). Challenges for transparency. ICML Workshop on WHI . https://​doi.​org/​10.​48550/​
ARXIV.​1708.​01870, arXiv:​1708.​01870

Wells, L., & Bednarz, T. (2021). Explainable AI and reinforcement learning—A systematic review of 
current approaches and trends. Frontiers in Artificial Intelligence, 4(550), 030. https://​doi.​org/​10.​
3389/​frai.​2021.​550030

Wiegreffe, S., & Pinter, Y. (2019). Attention is not not explanation. In K. Inui, J. Jiang, V. Ng, et  al. 
(Eds.), Proceedings of the 2019 conference on empirical methods in natural language processing 
and the 9th international joint conference on natural language processing, EMNLP-IJCNLP 2019. 
Association for computational linguistics (pp. 11–20), https://​doi.​org/​10.​18653/​v1/​D19-​1002

Wirth, C., Akrour, R., Neumann, G., et al. (2017). A survey of preference-based reinforcement learning 
methods. Journal of Machine Learning Research, 18(136), 1–46.

Wollenstein-Betech, S., Muise, C., Cassandras, C. G., et al. (2020). Explainability of intelligent trans-
portation systems using knowledge compilation: a traffic light controller case. In 23rd IEEE inter-
national conference on intelligent transportation systems, ITSC 2020 (pp. 1–6). IEEE, https://​doi.​
org/​10.​1109/​ITSC4​5102.​2020.​92942​13

Wu, B., Gupta, J. K., & Kochenderfer, M. J. (2020). Model primitives for hierarchical lifelong reinforce-
ment learning. Autonomous Agents and Multi-Agent Systems, 34(1), 28. https://​doi.​org/​10.​1007/​
s10458-​020-​09451-0

Wymann, B., Espié, E., Guionneau, C., et  al. (2014). TORCS, The open racing car simulator. http://​
www.​torcs.​org

https://doi.org/10.1007/978-3-031-10986-7_16
https://doi.org/10.1007/978-3-031-10986-7_16
http://ceur-ws.org/Vol-2600/short4.pdf
http://ceur-ws.org/Vol-2600/short4.pdf
http://proceedings.mlr.press/v48/wangf16.html
https://doi.org/10.1109/RO-MAN46459.2019.8956301
https://doi.org/10.1109/RO-MAN46459.2019.8956301
https://doi.org/10.1109/TVT.2021.3098321
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2816223
https://doi.org/10.1109/TVCG.2021.3076749
https://doi.org/10.1109/TVCG.2021.3076749
https://doi.org/10.1002/ail2.52
https://doi.org/10.23915/distill.00002
https://doi.org/10.23915/distill.00002
https://doi.org/10.1109/TNNLS.2022.3184956
https://doi.org/10.1007/978-3-030-31978-6_12
https://doi.org/10.48550/ARXIV.1708.01870
https://doi.org/10.48550/ARXIV.1708.01870
http://arxiv.org/abs/1708.01870
https://doi.org/10.3389/frai.2021.550030
https://doi.org/10.3389/frai.2021.550030
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.1109/ITSC45102.2020.9294213
https://doi.org/10.1109/ITSC45102.2020.9294213
https://doi.org/10.1007/s10458-020-09451-0
https://doi.org/10.1007/s10458-020-09451-0
http://www.torcs.org
http://www.torcs.org


440	 Machine Learning (2024) 113:355–441

1 3

Xie, Y., Vosoughi, S., & Hassanpour, S. (2022). Towards interpretable deep reinforcement learning 
models via inverse reinforcement learning. In Proceedings of ICPRarXiv:​2203.​16464

Xu, H., Gao, Y., Yu, F., et al. (2017). End-to-End Learning of Driving Models from Large-Scale Video 
Datasets. In: Proc. of CVPR. IEEE Computer Society, pp 3530–3538, https://​doi.​org/​10.​1109/​
CVPR.​2017.​376

Yang, J., Lee, G., Chang, S., et  al. (2019). Towards governing agent’s efficacy: Action-conditional �
-VAE for deep transparent reinforcement learning. In W. S. Lee & T. Suzuki (Eds.), Proceedings 
of the 11th Asian conference on machine learning, ACML 2019, Proceedings of machine learning 
research, vol. 101 (pp. 32–47). PMLR, http://​proce​edings.​mlr.​press/​v101/​yang1​9a.​html

Yau, H., Russell, C., & Hadfield, S. (2020). What did you think would happen? Explaining agent behaviour 
through intended outcomes. In H. Larochelle, M. Ranzato, R. Hadsell, et al. (Eds.), Advances in neu-
ral information processing systems 33: Annual conference on neural information processing systems 
2020, NeurIPS 2020, https://​proce​edings.​neuri​ps.​cc/​paper/​2020/​hash/​d5ab8​dc7ef​67ca9​2e41d​73098​
2c5c6​02-​Abstr​act.​html

Ye, X., & Yang, Y. (2021). Efficient robotic object search via HIEM: Hierarchical policy learning with 
intrinsic-extrinsic modeling. IEEE Robotics and Automation Letters, 6(3), 4425–4432. https://​doi.​org/​
10.​1109/​LRA.​2021.​30689​06

Zahavy, T., Ben-Zrihem, N., & Mannor, S. (2016). Graying the black box: Understanding DQNs. In M. 
Balcan & K. Q. Weinberger (Eds.), Proceedings of the 33nd international conference on machine 
learning, ICML 2016, JMLR workshop and conference proceedings, vol. 48 (pp. 1899–1908). JMLR.
org, http://​proce​edings.​mlr.​press/​v48/​zahav​y16.​html

Zahavy, T., Ben-Zrihem, N., & Mannor, S. (2017). Graying the black box: Understanding DQNs. CoRR, 
arXiv:​1602.​02658.

Zambaldi, V.F., Raposo, D., Santoro, A., et al. (2019). Deep reinforcement learning with relational induc-
tive biases. In 7th international conference on learning representations, ICLR 2019. OpenReview.net, 
https://​openr​eview.​net/​forum?​id=​HkxaF​oC9KQ

Zeiler, M.D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In D. J. Fleet, T. 
Pajdla, B. Schiele, et al. (Eds.) Proceedings of ECCV, Lecture notes in computer science, vol. 8689 
(pp. 818–833). Springer, https://​doi.​org/​10.​1007/​978-3-​319-​10590-1_​53

Zelvelder, A. E., Westberg, M., & Främling, K. (2021). Assessing explainability in reinforcement learning. 
In D. Calvaresi, A. Najjar, M. Winikoff, et al. (Eds.), Explainable and transparent AI and multi-agent 
systems—third international workshop, EXTRAAMAS 2021, Lecture notes in computer science, vol. 
12688 (pp. 223–240). Springer, https://​doi.​org/​10.​1007/​978-3-​030-​82017-6_​14

Zhang, L., Li, X., Wang, M., et al. (2021b). Off-policy differentiable logic reinforcement learning. In N. Oli-
ver, F. Pérez-Cruz, S. Kramer, et al. (Eds.), Machine learning and knowledge discovery in databases. 
Research Track - European Conference, ECML PKDD 2021, Proceedings, Part II, Lecture notes in 
computer science, vol. 12976 (pp. 617–632). Springer, https://​doi.​org/​10.​1007/​978-3-​030-​86520-7_​
38

Zhang, R., Walshe, C., Liu, Z., et al. (2020b). Atari-HEAD: Atari human eye-tracking and demonstration 
dataset. In The thirty-fourth AAAI conference on artificial intelligence, AAAI 2020, the thirty-second 
innovative applications of artificial intelligence conference, IAAI 2020, The tenth AAAI symposium on 
educational advances in artificial intelligence, EAAI 2020 (pp. 6811–6820). AAAI Press, https://​ojs.​
aaai.​org/​index.​php/​AAAI/​artic​le/​view/​6161

Zhang, K., Wang, Y., Du, J., et al. (2021a). Identifying decision points for safe and interpretable reinforce-
ment learning in hypotension treatment. NeurIPS Workshop on Machine Learning for Health. arXiv:​
2101.​03309

Zhang, Q., Ma, X., Yang, Y., et al. (2021). Learning to discover task-relevant features for interpretable rein-
forcement learning. IEEE Robotics and Automation Letters, 6(4), 6601–6607. https://​doi.​org/​10.​1109/​
LRA.​2021.​30918​85

Zhang, K., Zhang, J. J., Xu, P., et  al. (2022). Explainable AI in deep reinforcement learning models for 
power system emergency control. IEEE Transactions on Computational Social Systems, 9(2), 419–
427. https://​doi.​org/​10.​1109/​TCSS.​2021.​30968​24

Zhang, H., Zhou, A., & Lin, X. (2020). Interpretable policy derivation for reinforcement learning based 
on evolutionary feature synthesis. Complex & Intelligent Systems, 6(3), 741–753. https://​doi.​org/​10.​
1007/​s40747-​020-​00175-y

Zhou, B., Khosla, A., Lapedriza, À., et al. (2016). Learning deep features for discriminative localization. 
In 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016. IEEE Computer 
Society (pp. 2921–2929), https://​doi.​org/​10.​1109/​CVPR.​2016.​319,

http://arxiv.org/abs/2203.16464
https://doi.org/10.1109/CVPR.2017.376
https://doi.org/10.1109/CVPR.2017.376
http://proceedings.mlr.press/v101/yang19a.html
https://proceedings.neurips.cc/paper/2020/hash/d5ab8dc7ef67ca92e41d730982c5c602-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d5ab8dc7ef67ca92e41d730982c5c602-Abstract.html
https://doi.org/10.1109/LRA.2021.3068906
https://doi.org/10.1109/LRA.2021.3068906
http://proceedings.mlr.press/v48/zahavy16.html
http://arxiv.org/abs/1602.02658
https://openreview.net/forum?id=HkxaFoC9KQ
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-030-82017-6_14
https://doi.org/10.1007/978-3-030-86520-7_38
https://doi.org/10.1007/978-3-030-86520-7_38
https://ojs.aaai.org/index.php/AAAI/article/view/6161
https://ojs.aaai.org/index.php/AAAI/article/view/6161
http://arxiv.org/abs/2101.03309
http://arxiv.org/abs/2101.03309
https://doi.org/10.1109/LRA.2021.3091885
https://doi.org/10.1109/LRA.2021.3091885
https://doi.org/10.1109/TCSS.2021.3096824
https://doi.org/10.1007/s40747-020-00175-y
https://doi.org/10.1007/s40747-020-00175-y
https://doi.org/10.1109/CVPR.2016.319


441Machine Learning (2024) 113:355–441	

1 3

Zhu, Y., Yin, X., Li, R., et al. (2021). Extracting decision tree from trained deep reinforcement learning in 
traffic signal control. In 2021 international conference on cyber-physical social intelligence (ICCSI) 
(pp. 1–7), https://​doi.​org/​10.​1109/​ICCSI​53130.​2021.​97362​63

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1109/ICCSI53130.2021.9736263

	Explainable reinforcement learning (XRL): a systematic literature review and taxonomy
	Abstract
	1 Introduction
	2 Research method
	2.1 Research questions
	2.2 Study selection process

	3 Background
	3.1 Reinforcement learning
	3.1.1 Markov decision process
	3.1.2 Problem

	3.2 Explainable artificial intelligence
	3.2.1 Terminologies
	3.2.2 Explainability needs
	3.2.3 Stakeholders
	3.2.4 Explanation properties
	3.2.5 Explanation evaluation

	3.3 Related research fields

	4 Related work
	5 Explainable reinforcement learning
	5.1 Taxonomy
	5.2 Stakeholder questions: explanation types and RL explainability characteristics

	6 Interpretable agent
	6.1 Rule-based
	6.2 Mathematical expression
	6.3 Logic-based
	6.4 Tree-based
	6.5 Program-based

	7 Intrinsic explainability
	7.1 Explanation via generation
	7.1.1 Feature importance
	7.1.2 Intended behavior
	7.1.3 Textual justification
	7.1.4 Important states and transitions
	7.1.5 Expected outcome
	7.1.6 Generative modeling

	7.2 Explanation via representation
	7.2.1 State abstraction
	7.2.2 Task decomposition
	7.2.3 Reward function

	7.3 Explanation via inspection: exploratory analysis

	8 Post hoc explainability
	8.1 Explanation via generation
	8.1.1 Feature importance
	8.1.2 Agent behavior
	8.1.3 Textual justification
	8.1.4 Important states and transitions
	8.1.5 Expected outcome

	8.2 Explanation via representation
	8.2.1 State abstraction
	8.2.2 Agent distillation

	8.3 Explanation via inspection
	8.3.1 Exploratory analysis
	8.3.2 Visual analytics


	9 Discussion
	9.1 Trends
	9.2 Recommendations
	9.3 Future directions

	10 Conclusions
	Appendix A Overview of XRL studies
	Acknowledgements 
	References




