
Vol.:(0123456789)

Machine Learning (2024) 113:443–488
https://doi.org/10.1007/s10994-023-06458-y

1 3

Balancing policy constraint and ensemble size
in uncertainty‑based offline reinforcement learning

Alex Beeson1,3 · Giovanni Montana2,3,4 

Received: 21 March 2023 / Revised: 1 August 2023 / Accepted: 17 October 2023 /
Published online: 6 November 2023
© The Author(s) 2023

Abstract
Offline reinforcement learning agents seek optimal policies from fixed data sets. With envi-
ronmental interaction prohibited, agents face significant challenges in preventing errors in
value estimates from compounding and subsequently causing the learning process to col-
lapse. Uncertainty estimation using ensembles compensates for this by penalising high-var-
iance value estimates, allowing agents to learn robust policies based on data-driven actions.
However, the requirement for large ensembles to facilitate sufficient penalisation results in
significant computational overhead. In this work, we examine the role of policy constraints
as a mechanism for regulating uncertainty, and the corresponding balance between level of
constraint and ensemble size. By incorporating behavioural cloning into policy updates, we
show empirically that sufficient penalisation can be achieved with a much smaller ensem-
ble size, substantially reducing computational demand while retaining state-of-the-art per-
formance on benchmarking tasks. Furthermore, we show how such an approach can facili-
tate stable online fine tuning, allowing for continued policy improvement while avoiding
severe performance drops.

Keywords  Offline reinforcement learning · Ensemble based uncertainty estimation ·
Behavioural cloning · Online fine-tuning · Pessimism

Editor: Tong Zhang.

 *	 Giovanni Montana
	 g.montana@warwick.ac.uk

	 Alex Beeson
	 alex.beeson@warwick.ac.uk

1	 Warwick Medical School, University of Warwick, Coventry, UK
2	 Department of Statistics, University of Warwick, Coventry, UK
3	 WMG, University of Warwick, Coventry, UK
4	 Alan Turing Institute, London, UK

http://orcid.org/0000-0003-3942-3900
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06458-y&domain=pdf

444	 Machine Learning (2024) 113:443–488

1 3

1  Introduction

Reinforcement learning (RL) is concerned with optimising sequential decision-making in
dynamic environments (Tesauro, 1995; Sutton & Barto, 2018). Typically, RL is used to
train autonomous agents to perform complex tasks that rely on long-term decision mak-
ing, where the decisions themselves impact future decisions as well as the environment
the agent learns in. The agent identifies the optimal sequence of decisions, or actions,
through trial-and-error learning, constantly interacting with the environment and adjust-
ing its behaviour based on the rewards received. The end goal is to discover a policy that
maximizes environmental rewards. By combining RL with the powerful predictive capa-
bilities of neural networks, deep reinforcement learning has produced notable success in
areas such as gaming (Mnih et al., 2013; Hessel et al., 2018), robotics (Kalashnikov et al.,
2018; Mahmood et al., 2018) and autonomous driving (Kiran et al., 2022), advancing each
year as it garners increasing interest and attention.

Despite the remarkable achievements of RL, its reliance on continuous interaction
with the environment restricts its application in areas where data collection is expensive,
time-consuming, or hazardous. While simulators can partially alleviate this issue in fields
such as robotics and autonomous driving (Todorov et al., 2012), there are numerous situ-
ations where these are unavailable, and the trial-and-error nature of RL is clearly unsuit-
able or even unethical (e.g. in healthcare). Furthermore, these settings often already pos-
sess a wealth of data amassed through routine data collection or experimentation, offering
a rich information source before an agent even engages in any environmental interaction
(Komorowski et al., 2018; Liu et al., 2020; Yu et al., 2021).

The ambition to extend RL into such domains has given rise to offline reinforcement
learning (offline-RL) (Lange et al., 2012), a paradigm where agents are restricted from
interacting with the environment and must learn exclusively from pre-existing interactions.
Conventional RL algorithms typically falter in this offline setting, as the primary method
for rectifying errors in action value estimates (i.e. online interaction) is no longer available.
This often leads to a complete collapse of the learning process as these errors propagate
and compound during training (Fujimoto et al., 2019). Essentially, it is difficult for an agent
to accurately assess the value of actions never encountered before, undermining the process
of learning a policy based on value estimation.

The most common approach for overcoming this problem is to perform some kind of
regularisation during training, encouraging updates during policy evaluation and/or policy
improvement to stay close to actions in the underlying data (Levine et al., 2020). To date,
numerous approaches have been proposed, ranging from methods that directly target the
policy and/or value estimates (Kumar et al., 2019; Wu et al., 2019; Kumar et al., 2020; Nair
et al., 2020; Kostrikov et al., 2021; Brandfonbrener et al., 2021) through to those which
incorporate models of the environment (Kidambi et al., 2020; Yu et al., 2021; Argenson &
Dulac-Arnold, 2020; Janner et al., 2022), each with their own strengths and weaknesses in
terms of performance, computational efficiency, reproducibility, hyperparameter optimisa-
tion and ease of implementation.

One such approach centres around uncertainty quantification with respect to the
estimated value of actions (Abdar et al., 2021). For actions absent in data, commonly
referred to as out-of-distrubtion (OOD) actions, values estimates are subject to higher
uncertainty than those present in data. In online settings, this is often used to improve
exploration by being optimistic in the face of uncertainty (Ciosek et al., 2019; Chen
et al., 2017). Offline, this is used to stay closer to actions in the data by, conversely,

445Machine Learning (2024) 113:443–488	

1 3

being pessimistic in the face of uncertainty (Buckman et al., 2020). Specifically, action-
value estimates are penalised based on their level of uncertainty, in effect guiding the
agent towards actions that are high-value/low-variance.

Although there are several techniques available for uncertainty quantification, ensem-
ble-based methods in particular have found favour in offline-RL. SAC-N (An et al.,
2021), for example, utilises an ensemble of value functions to approximate a value dis-
tribution, using the minimum value across the ensemble to penalise estimates pessi-
mistically, attaining strong performance on offline benchmarks. However, the ensemble
size needed to realise this minimum can be excessively large, resulting in substantial
computational overhead and scalability issues. While alternative approaches attempt to
alleviate this by promoting greater diversification across the ensemble (An et al., 2021)
or incorporating elements of conservative value estimation (Ghasemipour et al., 2022),
they still remain relatively computationally demanding.

Recognising the potential of ensemble-based approaches to offline-RL, in this work
we aim to address this practical obstacle through the use of policy constraints. In
offline-RL, policy constraints have been extensively employed as a method for ensuring
OOD policy actions stay closer to data actions. Here, we investigate its role as a simple
method for controlling the effective sample size of OOD actions, thus directly regulat-
ing the degree of epistemic uncertainty of value functions assessed for these actions.

Our findings indicate that when using unconstrained policies, the level of uncer-
tainty in value estimates for OOD actions is relatively low, necessitating the use of large
ensemble sizes to accurately estimate the tails of value distributions, and thus achieve
the minimal values required for sufficient penalisation. Using a constrained policy on
the other hand, results in increased epistemic uncertainty, proportional to the strength
of constraint and distance from data actions. Due to the heightened uncertainty, the tails
of the value distribution become elongated, allowing for the acquisition of similar mini-
mal values with a considerably reduced ensemble size. We find this to be the case when
using two alternative methods for training the ensemble of value functions, namely
shared and independent target values.

We leverage these findings as part of two distinct implementations based on exist-
ing offline-RL algorithms: TD3-BC-N (an extension of the TD3-BC (Fujimoto & Gu,
2021)) and SAC-BC-N (an extension of SAC-N). In both cases, the policy constraint
takes the form of behavioural cloning (BC), avoiding the need to explicitly model the
behaviour of data actions, with inherent benefits in terms of simplicity and efficiency.
Moreover, we use BC to extend these approaches to online fine-tuning, gradually dimin-
ishing its influence as the agent interacts with the environment.

Through an extensive empirical evaluation using the D4RL benchmarking suite (Fu
et al., 2020), we show both implementations are able to produce state-of-the-art policies
in a computationally efficient manner, which can then be fine-tuned during deployment
while largely mitigating severe performance drops during the offline-to-online transi-
tion. In addition, we find this can be achieved without having to adjust hyperparameters
based on data quality, an arguably necessary feature for real-world application where
the performance properties of the data may be undetermined. We hope our work high-
lights the potential of such an approach and provides a useful benchmark for future

446	 Machine Learning (2024) 113:443–488

1 3

advancements to be evaluated against. For the purpose of transparency and reproduc-
ibility, the code base for this work is made freely available.1

The remainder of this manuscript is structured as follows. In Sect. 2 we outline related
work on behavioural cloning, uncertainty quantification and online fine-tuning before pro-
viding background material in Sect. 3. We present our offline learning and online fine-
tuning procedures in Sect. 4 and evaluate them in Sect. 5. We end with a discussion and
concluding comments in Sect. 6.

2 � Related work

In this Section, we provide an overview of related literature on offline-RL and online fine-
tuning. With respect to offline-RL, we focus on methods that utilise behavioural cloning
and uncertainty estimation as strategies to counteract overestimation bias for out-of-distri-
bution actions. For online fine-tuning, we review methodologies that prioritize both stabil-
ity and performance.

2.1 � Methods based on behavioural cloning

In its most vanilla form, behavioural cloning (BC) is a form of imitation learning designed
to mimic the actions of a demonstrator, most commonly an expert (Bain & Sammut, 1995).
Its use in offline-RL is primarily to act as a policy constraint, preventing agents from
choosing actions that stray too far from the source data.

One way of incorporating BC into offline-RL is through modelling the distribution of
actions in the data, commonly referred to as the behaviour policy. In BCQ (Fujimoto et al.,
2019), this is achieved using a Variational AutoEncoder (VAE) (Sohn et al., 2015), whose
generated actions form the basis of a policy which is then optimally perturbed by a sepa-
rate network in the DDPG (Lillicrap et al., 2015) framework. This approach is modified
by PLAS (Zhou et al., 2020) to train policies within the latent space of VAE, naturally
constraining policies as they are decoded from latent to action space. VAEs are also uti-
lised by BRAC (Wu et al., 2019) and BEAR (Kumar et al., 2019), which instead seek to
minimise divergence metrics (Kullback–Leibler, Wasserstein, Maximum Mean Discrep-
ancy) between the behaviour and the learned policy. To account for multimodality, Fisher-
BRC (Kostrikov et al., 2021) clones a behaviour policy using Gaussian mixtures and uses
this for critic regularisation via the Fisher divergence metric. Implicit Q-learning (IQL)
(Kostrikov et al., 2021) combines expectile regression and advantaged weighted BC to
train agents without having to evaluate actions outside the data. TD3-BC (Fujimoto & Gu,
2021) favours a minimalist approach, directly incorporating BC into policy updates via a
mean squared error between data and policy actions.

Despite their diversity, each of these methodologies effectively addresses overestima-
tion bias, facilitating the learning of a policy that either matches or surpasses the original
behaviour. Additionally, they achieve this in a computationally efficient manner, requir-
ing only a limited number of networks and relatively few gradient updates. However,
these approaches tend to be overly restrictive, hindering agents’ abilities to discern opti-
mal behaviour from suboptimal data. Consequently, their performance is often inferior to

1  https://​github.​com/​AlexB​eeson​Warwi​ck/​Offli​neRLC​onstr​ained​Ensem​ble.

https://github.com/AlexBeesonWarwick/OfflineRLConstrainedEnsemble

447Machine Learning (2024) 113:443–488	

1 3

alternative methods (An et al., 2021; Ghasemipour et al., 2022). Nonetheless, as we sug-
gest, these techniques can still be employed in a complementary capacity alongside ensem-
ble-based approaches, improving computational efficiency via fostering uncertainty for
OOD value estimates.

2.2 � Methods based on uncertainty quantification

As is customary in machine learning, we distinguish between two distinct sources of uncer-
tainty: aleatoric and epistemic (Hullermeier & Waegeman, 2021). The former stems from
inherent stochasticity while the later arises due to incomplete information. In deep learn-
ing, various techniques for quantifying both sources of uncertainty have been proposed
[for extensive reviews see e.g. (Abdar et al., 2021; Zhou et al., 2022)] and several studies
have endeavoured to provide insights in the context of RL [for instance (Eriksson et al.,
2022; Charpentier et al., 2022; Lee et al., 2021)]. These preliminary attempts have sought
to address various challenges, including mitigating Q-learning instability, achieving equi-
librium between exploration and exploitation, and facilitating risk-sensitive sequential
decision-making.

In model-free RL, ensemble methods have garnered considerable interest for estimating
epistemic uncertainty for action-value estimates. In online-RL, ensembles are frequently
employed to enhance exploration by encouraging agents to seek out actions whose esti-
mated values vary the most. This is achieved by constructing a distribution of action-value
estimates using the ensemble and acting optimistically with respect to the upper bound, as
demonstrated by Chen et al. (2017). In offline-RL these distributions direct agents towards
actions within the dataset by, conversely, acting pessimistically with respect to the lower
bound, prioritizing actions characterized by high value and low variance.

SAC-N (An et al., 2021), for example, adapts SAC (Haarnoja et al., 2018a, b) to
the offline setting by increasing the number of critics from 2 to N, choosing the minimum
across the ensemble to penalise action-value estimates that vary the most. While very
effective in term of performance, in some cases the size of the ensemble needed to estimate
this minimum is excessively large (up to 500) as is the number of gradient steps required to
reach peak performance (up to 3 M). Even with parallelisation, this results in considerable
computational overhead, both in terms of training time and memory requirements, affect-
ing the capacity to scale up to more complex, real-world problems.

EDAC (An et al., 2021) attempts to reduce ensemble size by increasing uncertainty
through diversification. The authors note that, without intervention, the gradients of the
critic ensemble tend to align, requiring larger and larger ensembles to achieve sufficient
penalisation. To counteract this, EDAC diversifies these gradients by minimising the pair-
wise cosine similarity within the ensemble, reducing its size by as much as a factor of
ten without compromising performance. However, this diversity regulariser can still be
relatively expensive for medium-sized ensembles and the large number of gradient updates
remain. Our proposed solution is instead based on increasing uncertainty through the use
of policy constraints.

The approach most similar to our own is MSG (Ghasemipour et al., 2022), which also
uses an ensemble of critics for uncertainty estimation, but uses conservative Q-learning
(CQL) (Kumar et al., 2020) to steer agents towards actions in the data instead of BC. In
effect, CQL “pushes down” on value estimates for out-of-distribution actions and “pushes
up” for actions in the data. MSG replaces the shared target of SAC-N/EDAC with inde-
pendent targets to enforce pessimism, and when combined with CQL performs well on

448	 Machine Learning (2024) 113:443–488

1 3

challenging benchmarks. However, this performance is still dependent on relatively large
ensembles and many gradient steps, with attempts to mitigate this using more efficient
means such as multi-head (Lee et al., 2015) and multi-input/multi-outputs (Havasi et al.,
2020) leading to detrimental impacts on performance. In contrast, our proposed solution
emphasises mitigation through the application of BC.

In order to specifically characterise the uncertainty in value estimates for OOD-actions,
PBRL (Bai et al., 2022) makes use of bootstrapping, sampling actions from the learned
policy and penalising value estimates based on their deviation from the mean. Critic
updates with respect to these estimates augment those based on non-bootstrapped uncer-
tainty for in distribution actions. This idea is extended by RORL (Yang et al., 2022), which
separately characterises uncertainty for three sets of state-action pairs (those in the data,
perturbed states with data actions and perturbed states with policy actions at those states)
in order to smooth Q-value estimates in regions outside the data, with the goal of learning
policies that are robust to adversarial attacks. While these approaches are able to capture
uncertainty effectively using a much reduced ensemble size (equal to our own), the tech-
niques used to achieve this, most notably bootstrapping, are far less computationally effi-
cient than the BC approach we propose, and less straightforward to implement.

In an attempt to remove the requirement for ensembles entirely, SAC-RND (Nikulin
et al., 2023) estimates uncertainty using random network distillation (RND). The authors
demonstrate that with an appropriate choice of prior and predictor, RND is able to dis-
criminate between in-distribution and out-of-distribution actions sufficiently well enough
so that anti-exploration bonuses can be used to regulate Q-values estimates, and thus
agents are able to learn competitive policies. However, despite the fact this approaches
uses only N = 2 critic networks, it is still less computationally efficient than our proposed
approached, primarily stemming from the training associated with the RND component
and comparatively large number of gradient updates.

2.3 � Methods for online fine‑tuning

Depending on the quality of the dataset, offline trained agents may exhibit limited per-
formance upon deployment, necessitating further online fine-tuning through interaction
with the environment. It can be argued that the domains which necessitate offline learn-
ing to begin with also necessitate a smooth transition from offline to online learning, that
improvements in performance should not be preceded by periods of policy degradation.
In practice, this presents a formidable challenge due to the sudden distribution shift from
offline to online data, which can introduce bootstrapping errors that distort the pre-trained
policy (Lee et al., 2020). While continued regularisation can potentially mitigate this
issue, it can also hinder the agent’s ability to learn from newly acquired samples. As such,
approaches that promote stability as well as performance are desirable.

An initial theoretical study of policy fine-tuning in episodic Markov Decision Processes
in Xie et al. (2021), examines the potential benefits of granting online agents access to a ref-
erence policy that is, in a certain sense, already close to an optimal one. The policy expan-
sion scheme proposed in Zhang et al. (2023) attempts to achieve stable learning by using
offline-trained policies as potential candidates within a policy set, while REDQ + Adap-
tiveBC (Zhao et al., 2021) seeks stability through adaptively adjusting the BC compo-
nent of TD3-BC based on online returns. We make use of a similar approach proposed by
Beeson & Montana (2022), which adjust the influence of BC based on exponential decay,
avoiding the need for prior domain knowledge as required by REDQ + AdaptiveBC.

449Machine Learning (2024) 113:443–488	

1 3

Other related studies have investigated different setups or aspects, such as action-free
offline datasets (i.e., datasets without logged actions) (Zhu et al., 2023) or “learning on the
job” (Nair et al., 2022) to improve policy generalisation. The feasibility of employing exist-
ing off-policy methods to capitalize on offline data through minimal algorithmic adjust-
ments has be examined in Ball et al. (2023). Their findings underscore the significance of
sampling mechanisms for offline data, the crucial role of normalizing the critic update, and
the advantages of large ensembles for improving sample efficiency.

3 � Preliminaries

In this section, we present the common RL setup and outline the challenges encountered
when adapting algorithms to the offline setting. We then provide details of ensemble-based
uncertainty methods we adopt as part of our approach.

3.1 � Offline reinforcement learning

We follow standard convention and define a Markov decision process (MDP) with state
space S, action space A, transition dynamics T(s� ∣ s, a) , reward function R(s, a) and dis-
count factor 0 < 𝛾 ≤ 1 (Sutton & Barto, 2018). An agent interacts with this MDP by fol-
lowing a policy �(a ∣ s) , which can be deterministic or stochastic. The goal of reinforce-
ment learning is to discover an optimal policy �∗(a ∣ s) that maximises the expected
discounted sum of rewards,

also know as the return. In actor-critic methods, this is achieved by alternating between
policy evaluation and policy improvement using Q-functions Q�(s, a) , which estimate the
value of taking action a in state s following policy � thereafter. Policy evaluation consists
of updating the Q-function (the critic) based on the Bellman expectation equation

where s′ and a′ are used to denote the next state and next action, respectively. Policy
improvement comes in the form of updating the policy (the actor) so as to maximise
Q(s, a).

In terms of objective functions, policy evaluation and policy improvement are defined
as, respectively,

and

where r(s, a) + �Q�(s�, �(s�)) is commonly referred to as the target value.

� �

∞∑

t=0

� tr(st, at),

Q�(s, a) = r(s, a) + � � s�∼T ,a�∼�(Q
�(s�, a�)),

(1)Q� = argmin
Q

� (s,a,s�)∼D

(
Q(s, a) − r(s, a) − �Q�(s�,�(s�))

)2

,

(2)� = argmax
�

� s∼D

[
Q(s,�(s))

]
,

450	 Machine Learning (2024) 113:443–488

1 3

In practice, both actor and critic are parameterised functions, employing non-lin-
ear approximation methods such as neural networks. Parameters are updated accord-
ing to sample based estimates, with the samples themselves coming from the agent’s
own interactions with the environment. To improve data efficiency, these interactions
are stored in a replay buffer D which is constantly added to and sampled from during
training. To encourage sufficient exploration of the environment, a level of randomness
is induced into online action selection, such as by adding noise if policies are determin-
istic or sampling if policies are stochastic.

In offline reinforcement learning, also known as batch reinforcement learning (Lange
et al., 2012), the agent no longer has access to the environment and instead must learn
solely from pre-existing interactions D = (si, ai, ri, s

�
i
) . While it is possible to adapt exist-

ing algorithms to this setting by simply removing online interaction, in practice this
often leads to highly sub-optimal policies or a complete collapse of the learning pro-
cess. The primary cause of this is the propagation and compounding of overestimation
bias for state-action pairs absent in D (Levine et al., 2020). Such overestimation bias
results from the bootstrapped nature of Q-network updates and the maximisation carried
out as part of policy improvement.

This can be seen more clearly by examining the general objectives of policy eval-
uation and improvement. In policy evaluation (1), Q-value estimates for Q(s, a) and
Q(s�, a�) use actions sampled from different policies, namely the behaviour policy ��(s)
(i.e. the policy/policies that collected previous interactions), and the learned policy �(s) .
Errors that appear during policy evaluation propagate to policy improvement (2), bias-
ing actions that maximise spurious Q-values estimates. This then feeds back into policy
evaluation, compounding existing errors which then propagate to policy improvement,
and so on. In the online setting such bias can be mitigated by trialing policy actions in
the environment, observing rewards and correcting Q-value estimates accordingly. In
the offline setting this is no longer permitted and hence additional measures must be
implemented in order to stabilise training.

3.2 � Regularisation through uncertainty estimation

A sensible approach to combating overestimation bias is to target its root cause, namely
the Q-values estimates themselves. One tool for achieving this is uncertainty estima-
tion, using the premise that Q-value estimates for out-of-distribution (OOD) actions are
inherently more uncertain than for actions in the data. This uncertainty can be used in
training to favour Q-values with low-variance in policy evaluation and high-value/low-
variance in policy improvement, in effect guiding the agent towards actions in the vicin-
ity of the data.

This idea forms the basis of approaches such as SAC-N and EDAC. Both use an
ensemble of N Q-functions to approximate Q-value distributions, updating network
parameters using the minimum across the ensemble for policy actions �(s) . In terms
of the general objectives for policy evaluation and improvement, these become,
respectively:

(3)Q�

i
= argmin

Q

� (s,a,s�)∼D

(
Qi(s, a) − r(s, a) − � min

i=1,…,N
Q�

i
(s�,�(s�))

)2

,

451Machine Learning (2024) 113:443–488	

1 3

and

Alternatively, as is done in MSG, each Q-function can be updated towards its own (rather
than a shared) target value, giving a modified policy evaluation objective of:

Using uncertainty estimation in this way constitutes a pessimistic approach to offline-RL.
By using the minimum across the ensemble, Q-value estimates for OOD actions are penal-
ised according to their level of uncertainty. By increasing the size of the ensemble, the
minimum is realised more accurately, and hence with large enough N the level of penali-
sation is sufficient to prevent overestimation bias. In practice, such approaches attain
strong performance, but the size of the ensemble required to accurately estimate this mini-
mum is often very large, necessitating the use of considerable computational resource to
implement.

4 � Policy constrained critic ensembles

The key issue we seek to address in this work is the high computational cost of ensem-
ble-based approaches to offline reinforcement learning, approaches that are otherwise very
effective due to their strong performance and straightforward implementation. These costs
primarily stem from the need to use large ensembles to obtain accurate estimates of lower
bounds, which form the basis of penalties applied to Q-value estimates for OOD actions.

As demonstrated by An et al. (2021), the strength of these penalties depend on both the
size of the ensemble and the magnitude of the standard deviation. Using the same example
for illustrative purposes [itself based on Royston (1982)], if Q(s, a) follows a Gaussian dis-
tribution with mean �(s, a) and standard deviation �(s, a) , the approximate expected mini-
mum of a set of N realisations is given by:

where Φ is the cumulative distribution function of the standard Gaussian.
In general the distribution of Q(s, a) is unknown, but the same basic principles apply. In

SAC-N, the size of the ensemble needed to sufficiently penalise Q-value estimates is high,
as the standard deviation across the ensemble (i.e. level of uncertainty) is relatively small.
In order to achieve similar levels of penalisation with a reduced ensemble size, the level of
uncertainty across the ensemble must be increased. In EDAC this is achieved by diversify-
ing the ensemble and in MSG by using conservative Q-learning.

Our proposed method for increasing this uncertainty is based on policy constraints. We
note that, although policy constraints are primarily used to steer agents towards actions in
the data, this also has an effect on the level of uncertainty of Q-values estimates of OOD
actions. By constraining the policy, the Q-ensemble is trained on actions closer to the
data, in effect reducing the effective sample size of OOD actions, which in turn increases
epistemic uncertainty with respect to their Q-value estimates. The higher the level of

� = argmax
�

� s∼D

[
min

i=1,…,N
Qi(s,�(s))

]
.

(4)Q�

i
= argmin

Q

� (s,a,s�)∼D

(
Qi(s, a) − r(s, a) − �Q�

i
(s�,�(s�))

)2
.

(5)�

[
min

j=1,…,N
Qj(s, a)

]
≈ �(s, a) − Φ−1

(
N −

�

8

N −
�

4
+ 1

)
�(s, a),

452	 Machine Learning (2024) 113:443–488

1 3

constraint, the greater the level of uncertainty as the tails of the value distribution expand.
Thus, policy constraints provide an additional mechanism for controlling uncertainty in
Q-value estimates, which can be used to achieve sufficient levels of penalisation with a
much reduced ensemble size.

With this in mind, we modify existing ensemble-based approaches to directly incorpo-
rate behavioural cloning into policy updates, in a similar vein to TD3-BC (Fujimoto & Gu,
2021). While many other approaches for constraining policies exist (see Sect. 2), we favour
this one in particular as it requires no explicit modelling of the behaviour policy �� and
is straightforward to implement, computationally cheap, flexible enough to accommodate
deterministic and stochastic policies and requires no changes to policy evaluation using
either shared (3) or independent (4) targets.

Let �(a) be a function representing a divergence metric between policy and data actions
a. The general policy improvement objective becomes:

The hyperparameter � controls the balance between RL and BC, and by extension the
level of uncertainty in Q-value estimate for OOD actions. Lower values favour RL but
also lead to lower levels of uncertainty. Higher values increase uncertainty, but tip the bal-
ance towards BC, making it more difficult for the agent to discover high-value actions that
lie beyond the data. Thus, the aim is to find a value of � that induces enough uncertainty
without being too restrictive, allowing sufficient penalisation of Q-value estimates using a
smaller ensemble.

Regardless of the form of �(a) , the balance in (6) is highly sensitive to Q-value esti-
mates, which scale with rewards and vary across tasks. Therefore, to keep this balance in
check, following the example of TD3-BC we normalise estimates by dividing by the mean
of the absolute values, such that:

So far we have presented our approach within the general actor-critic framework, outlin-
ing the changes to policy evaluation and policy improvement from incorporating ensem-
ble methods and behavioural cloning. In Sects. 4.1 and 4.2 we present two specific ver-
sions based on TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018b), respectively,
which are then evaluated in Sect. 5 alongside our fine-tuning approach detailed in Sect. 4.3.

4.1 � TD3‑BC‑N

Twin Delayed Deep Deterministic Policy Gradient (TD3) is an approach to reinforcement
learning that proposes a number of techniques for addressing function approximation error
in actor-critic methods, most notably DDPG. Based on a deterministic policy, TD3 makes
use of a dual critic network for policy evaluation and updates Q-functions and policies at
a ratio of 2:1. As is common with Q-learning approaches, target networks are used to sta-
bilise training during policy evaluation. Exploration comes in the form of noise sampled
from a Gaussian distribution.

We modify the baseline TD3 algorithm by increasing the number of critics from 2 to
N and adding a BC term to policy updates in the form of a mean squared error (similar to

(6)� = argmax
�

� (s,a)∼D

[
min

i=1,…,N
Qi(s,�(s)) − ��(a)

]
.

Qnorm(s,�(s)) =
Q(s,�(s))

� s∼D ∣ Q(s,�(s)) ∣
.

453Machine Learning (2024) 113:443–488	

1 3

TD3-BC). Corresponding parameter updates and notation are as follows. Let �i and �′

i
 rep-

resent the parameters of the ith Q-network and target Q-network, respectively, and � and �′
represent the parameters for a policy network and target policy network, respectively. Let �
represent the BC coefficient, N the ensemble size, � the target network update rate, � policy
noise and B a sample of transitions from dataset D.

Each Q-network update is performed through gradient descent. For shared target values,
we use:

and for individual target values:

In either case a� = (��� (s�) + noise) with noise sampled from an N(0, �) distribution. The
policy network update is performed through gradient ascent using:

Target networks are updated using Polyak averaging:

The final procedure is presented in Algorithm 2.

4.2 � SAC‑BC‑N

Soft Actor-Critic (SAC) is a maximum entropy approach to reinforcement learning. Based on
a stochastic policy, SAC augments the standard policy evaluation and improvement objectives
of actor-critic methods with an entropy regulariser, in effect encouraging agents to maximise

(7)∇�i

1

|B|
∑

(s,a,r,s�)∼B

(
Q�i

(s, a) − r − � min
i=1,…,N

Q
�
�

i

(s�, a�)

)2

,

(8)∇�i

1

|B|
∑

(s,a,r,s�)∼B

(
Q�i

(s, a) − r − �Q
�
�

i

(s�, a�)
)2

.

(9)∇�

1

|B|
∑

(s,a)∼B

min
i=1,…,N

Q�i

(
s,��(s)

)
− �

(
��(s) − a

)2
.

(10)
�

�

i
←��i + (1 − �)�

�

i

�
�

←�� + (1 − �)�
�

.

454	 Machine Learning (2024) 113:443–488

1 3

returns while acting as randomly as possible. This helps boost exploration, which comes in the
form of sampling actions from the policy. Like TD3, SAC uses a dual critic with target net-
works to promote stability but uses a critic to actor update ratio of 1:1.

We modify the baseline SAC algorithm by increasing the number of critics from 2 to
N and by adding a BC term to policy updates. Since the policy is stochastic, this BC term
can take the form of either a mean-squared error or log-likelihood. Corresponding param-
eter updates and notation are as follows. Let �i and �′

i
 represent the parameters of the ith

Q-network and target Q-network, respectively, and � represent the parameters for a policy
network. Let � represent the entropy coefficient, H the minimum entropy, � the BC coef-
ficient, N the ensemble size, � the target network update rate and B a sample of transitions
from dataset D.

Each Q-network update is performed through gradient descent. For shared target values
we use:

and for individual target values:

The policy network update is performed through gradient ascent. For mean-squared error
we use:

and for log-likelihood:

The entropy coefficient update is performed through gradient ascent using:

Target networks are updated using Polyak averaging:

The final procedure is presented in Algorithm 4.

(11)

∇�i

1

|B|
∑

(s, a, r, s�) ∼ B

a� ∼ ��(s
�)

(
Q�i

(s, a) − r − � min
i=1,…,N

Q
�
�

i

(s�, a�) + �� log��(a
� ∣ s�)

)2

,

(12)
∇�i

1

|B|
∑

(s, a, r, s�) ∼ B

a� ∼ ��(s
�)

(
Q�i

(s, a) − r − �Q
�
�

i

(s�, a�) + �� log��(a
� ∣ s�)

)2

.

(13)
∇�

1

|B|
∑

(s, a) ∼ B

ap ∼ ��(s)

min
i=1,…,N

Q�i

(
s, ap

)
− � log��(ap ∣ s) − �

(
��(s) − a

)2
.

(14)
∇�

1

|B|
∑

(s, a) ∼ B

ap ∼ ��(s)

min
i=1,…,N

Q�i

(
s, ap

)
− � log��(ap ∣ s) + � log��(a ∣ s).

(15)
∇�

1

|B|
∑

s ∼ B

ap ∼ ��(s)

�
(
log��(ap ∣ s) +H

)
.

(16)�
�

i
← ��i + (1 − �)�

�

i
.

455Machine Learning (2024) 113:443–488	

1 3

4.3 � Stable online fine‑tuning

The main goal in offline-RL is to discover optimal behavioural from existing data sets,
allowing agents to learn effective policies before being deployment in the environment. Fol-
lowing deployment however, agents can collect more information about the environment,
presenting opportunities for continued improvement via online fine-tuning. As agents can
now correct for value estimates through online interaction, it may seem natural to remove
constraints imposed during offline learning, but in practice this can often result in an initial
phase of policy degradation due to the abrupt transition from constrained to unconstrained
learning (see Sect. 2). In many situations, such degradation is deemed undesirable, empha-
sising the need for approaches that prioritize stability alongside performance.

During the transition from offline to online learning, an agent’s policy should exhibit
consistent improvement, surpassing its offline performance without experiencing periods
of substantial deterioration. Our approach is well-suited to accomplishing these objectives.
First, by making minimal modifications to existing algorithms, we largely preserve the core
characteristics that contribute to their success online. Second, our utilisation of BC offers a
convenient mechanism for stabilizing the transition by gradually reducing its influence over
time. Numerous methods can achieve this, but for simplicitly we adopt an approach based
on exponential decay as in (Beeson & Montana, 2022). Let �start and �end be the initial and
final values of the BC component � , respectively, and S the number of decay steps. The
exponential decay rate �� is given by:

Determining the appropriate use of existing data is also an important aspect of online
fine-tuning. One option is to supplement the existing data with new transitions, enabling
a seamless transition as the agent gradually acquires new information online. However, if
the original data is sub-optimal, the online fine-tuning process may be slow, as the agent’s
offline-trained policy is not fully utilised. Alternatively, discarding the data allows the

(17)�� = exp

[
1

S
log

(
�end

�start

)]
.

456	 Machine Learning (2024) 113:443–488

1 3

agent to improve its policy without being hampered by data it has already improved upon.
However, this could compromise stability in the initial stages due to limited experience and
a paucity of data. We propose an approach that strikes a balance, adding new transitions to
a portion of the original data before training. We outline this fine-tuning procedure using
TD3-BC-N in Algorithm 3. The corresponding procedure for SAC-BC-N is provided in the
Appendix.

5 � Experimental results

In this section, we present a comprehensive evaluation of our offline learning and online
fine-tuning procedures using the open-source D4RL benchmarking suite. Section 5.1 pro-
vides an overview of this benchmark and the domains we consider, with Sect. 5.2 outlin-
ing implementation details. In Sect. 5.3 we investigate our claims regarding the impact of
policy constraints on uncertainty estimation, and examine the trade-off between ensemble
size and level of constraint. This is followed by a comparison of performance and com-
putational efficiency in Sect. 5.4, as well as a number of supplementary experiments to
highlight the importance of individual components and implementation choices. We end in
Sect. 5.5 with an assessment of our fine-tuning strategy.

457Machine Learning (2024) 113:443–488	

1 3

5.1 � Benchmark datasets

D4RL is a popular resource for benchmarking offline reinforcement learning algorithms.
The suite contains a wide range of tasks and data sets designed to test an agent’s ability to
learn effective policies in various settings. We outline the domains considered in this work,
and refer the reader to the original paper for further details (Fu et al., 2020).

•	 MuJoCo. This setting makes use of the hopper, halfcheetah and walker2d environments
of the MuJoCo physics simulator (Todorov et al., 2012), assessing how well agents
learn from sub-optimal and/or narrow data distributions. Each environment has four
associated data sets: “expert” which contains transitions collected from an agent trained
to expert level using SAC; “medium” which contains transitions collected from an
agent trained to 1/3 expert level using SAC; “medium-replay” which contains the tran-
sitions used to train the medium-level agent; “medium-expert” which contains the com-
bined transitions from “medium” and “expert”. In general this setting is considered one
of the easier among the benchmark, with environments having well defined rewards
structures and data sets comprising a decent proportion of near-optimal trajectories.

•	 Maze2D. This settings involves moving a force actuated ball to a fixed target location.
Data is collected via a controller which starts and ends at random goal locations. The
purpose of this setting is to test an agent’s ability to stitch together previous trajecto-
ries to reach the evaluation goal. There are three increasingly difficult mazes: “umaze”,
“medium” and “large”. We focus on the more challenging sparse reward setting, in
which the agent receives a reward of 1 when within a 0.5 unit radius of the target goal
and 0 otherwise.

•	 AntMaze. This setting replaces the ball from Maze2d with an more complex Ant robot,
with episodes terminating once the Ant reaches the goal location. Data is collected via
a controller using two different methods: “play” in which the controller moves from
hand-picked starting locations to hand-picked goals; “diverse’ in which the controller
moves from random starting locations to random goals. This setting is considered one
of the more challenging as agents must learn to both control the Ant and stitch trajecto-
ries together using only sparse rewards.

•	 Adroit. This setting makes use of the Adroit environment, controlling a high-dimen-
sional robotic hand to perform specifics tasks. The aim is to assess whether agents can
learn from narrow data distributions (“cloned”) and human demonstrations (“human”)
with sparse rewards. We focus on the “pen” task as, similar to other approaches, this is
the only task in which notable performance is achieved (see Appendix).

5.2 � Implementation details

Following the protocol of D4RL, we train agents using offline data sets and evaluate their
performance in the simulated environment. Performance is measured in terms of normal-
ised score, with 0 and 100 representing random and expert policies, respectively. Each
experiment is repeated across five random seeds with reported results the mean normal-
ised score ± one standard error across 50 evaluations for MuJoCo and 500 evaluations for
Maze2d/AntMaze/Adroit (10 and 100 evaluations per seed, respectively).

For both TD3-BC-N and SAC-BC-N each Q-network comprises a 3-layer MLP with
ReLU activation functions and 256 nodes, taking as input a state-action pair and outputting

458	 Machine Learning (2024) 113:443–488

1 3

a Q-value. For TD3-BC-N the policy network comprises a 3-layer MLP with ReLU acti-
vation functions and 256 nodes, taking as input a state and outputting an action bound to
[ −1, 1 ] via tanh transformation. For SAC-BC-N the policy network comprises the same
architecture but instead outputs the mean and standard deviation of a Gaussian distribution
which is also bound to [ −1, 1 ] via tanh transformation. Each approach retains the hyperpa-
rameters values of their online counterpart (full details are provided in the Appendix).

Across all data sets, we train agents for 1 M gradient steps using an ensemble size of
N = 10 . To help stabilise training for narrow data distributions, we inflate the value of the
BC coefficient � by a factor of 10 for the first 50 k gradient steps (alternatively the policy
can be updated using only BC). We use shared targets for MuJoCo and Maze2d tasks and
independent targets for AntMaze and Adroit. We investigate the impact of each of these
designs decisions as part of our ablations studies.

For the BC component, we find the characteristics of each environment necessitate var-
ying intensities, and for SAC-BC-N dictate its form (mean-squared error or log-likelihood).
We therefore adjust its intensity and/or form based on task type, but to better reflect real-
world scenarios where the quality of the data is often unknown, we prohibit adjustments
within the same task. Values for each task and data set are provided in the Appendix.

5.3 � The impact of policy constraints on uncertainty

Before we consider the full range of tasks and data sets, we first investigate the claims
made in previous sections relating to the impact of policy constraints on uncertainty lev-
els in Q-value estimates for OOD actions. To do this, we train a number of agents using

Fig. 1   Performance as a function of N and � . Lower values of � require larger values of N and smaller val-
ues of N require higher values of � . If both N and � are large, the uncertainty in Q-value estimates for OOD
actions is too high, and thus the penalty applied too severe, leading the agent to prefer actions similar to
those of the data

459Machine Learning (2024) 113:443–488	

1 3

TD3-BC-N with dependent target values across a range of N and � on the “hopper-
medium-expert” dataset, and examine the performance of resulting policies and uncer-
tainty of Q-values estimates from resulting ensembles.

Beginning with performance, we summarise this via a heatmap in Fig. 1, using shade to
represent mean normalised score. For the lowest values of � we see that larger ensembles

Fig. 2   Uncertainty as a function of distance, N and � . Top row standard deviation, bottom row clip penalty.
As the distance between random and data actions increases so too does the level of uncertainty, becoming
more pronounced as � and N get larger. White space is used to represent erroneous values due to unreliable
Q-values estimates resulting from divergent critic loss during training

Fig. 3   Qmin as a function of distance, N and � . As the distance between random and data actions increases,
Qmin decreases, with this decrease more pronounced as � and N get larger. White space is used to represent
erroneous values due to unreliable Q-values estimates resulting from divergent critic loss during training

460	 Machine Learning (2024) 113:443–488

1 3

are required to prevent overestimation bias through sufficient penalisation of OOD actions.
As the value of � increases, the size of the ensemble required to achieve this level of pen-
alty decreases, allowing the same level of performance to be attained as for larger ensem-
bles. We also see that the larger the value of N, the smaller the value of � before perfor-
mance starts to degrade. In these cases, the level of uncertainty resulting from both a large
ensemble and high level of policy constraint leads to over-penalisation of Q-values esti-
mates, in effect driving the agent towards actions in the data at an increased rate.

In terms of uncertainty of Q-value estimates, we consider both the standard deviation
across the ensemble and the clip penalty Qclip(s, a) , which measures the size of the differ-
ence between the mean and minimum:

In particular, we examine how each of these measures of uncertainty varies according to
how far actions are from the data and the values of N and �.

To this effect, we sample 50,000 states from the data and 50,000 actions from a ran-
dom policy and calculate (a) the Euclidean distance between random and data actions
and (b) the standard deviation/clip penalty. We then group distances into equally sized
bins and within each bin calculate the average standard deviation/clip penalty. We sum-
marise results for N = 10 and N = 50 in Fig. 2 via heatmaps, using shade to represent
the size of the corresponding uncertainty metric. Similar plots for N = [2, 5, 20] can
be found in the Appendix. In general, we see that as the distance between random and
data actions increases, so too does the level of uncertainty (standard deviation and pen-
alty gap), and this becomes more pronounced as the value of � increases. This supports
our hypothesis that policy constraints can be used to control uncertainty in Q-value
estimates. We also see that the highest levels of uncertainty occur when both N and �
are large, supporting our explanation of declining performance as observed in Fig. 1.

Finally, we also examine the distribution of the minimum across the ensemble, Qmin ,
as this value is the one used in updates during policy evaluation and policy improve-
ment. Using the same format as for uncertainty, we summarise results for N = 10 and
N = 50 in Fig. 3, using shade to represent the value of Qmin . In general, we see that Qmin
decreases as the distance between random and data actions increases, being more pro-
nounced as either N or � increase. This culminates in the lowest Qmin values when the
size of the ensemble and level of constraint are at their highest, mirroring the findings
based on uncertainty measures.

For completeness, we reproduce these plots for agents trained using independent
target values in the Appendix, finding in general the same features. We also provide
additional plots examining (a) the distribution of Qmin for policy actions and (b) the
shape of the distribution of Q-value estimates for individual actions, providing more
insights into the impact of � on uncertainty.

5.4 � Performance and efficiency comparisons

As one of our objectives is to attain the same-level of performance as ensemble-based
methods, we compare to published results from SAC-N, EDAC and MSG. As the leading
BC based approaches we also compare to published results from IQL and TD3-BC. Finally,
since MSG makes use of CQL we also compare to updated CQL results as published in the

Qclip(s, a) =
1

N

N∑

j=1

Q(s, a) − min
j=1,…,N

Q(s, a).

461Machine Learning (2024) 113:443–488	

1 3

Table 1   Performance comparison across D4RL benchmark

Figures are normalised scores, with 0 and 100 representing random and expert policies, respectively. For
TD3-BC-N and SAC-BC-N we report the mean normalised score ± one standard error across 50 evalua-
tions for MuJoCo tasks (10 evaluations over 5 seeds) and 500 evaluations for Maze2d, AntMaze and Adroit
tasks (100 evaluations over 5 seeds). Both TD3-BC-N and SAC-BC-N are able to match the state-of-the-art
performance across all domains. This is the case even with the restriction preventing BC adjustments within
the same task

Task/data set CQL IQL TD3-BC EDAC SAC-N MSG TD3-BC-N SAC-BC-N

halfcheetah-v2
-medium 44.0 47.4 48.3 65.9 67.5 – 63.3 ± 0.1 65.6 ± 0.2

-medium-replay 45.5 44.2 44.6 61.3 63.9 – 55.3 ± 0.1 61.5 ± 0.1

-medium-expert 91.6 86.7 90.7 106.3 107.1 – 101.7 ± 0.3 102.6 ± 0.5

-expert – – 96.7 106.8 105.2 – 103.8 ± 0.5 105.3 ± 0.1

hopper-v2
-medium 58.5 66.3 59.3 101.6 100.3 – 101.5 ± 0.3 101.2 ± 0.1

-medium-replay 95.0 94.7 60.9 101.0 101.8 – 99.1 ± 0.1 100.8 ± 0.2

-medium-expert 105.4 91.5 98.0 110.7 110.1 – 112.3 ± 0.0 111.3 ± 0.1

-expert – – 107.8 110.1 110.3 – 112.7 ± 0.1 111.5 ± 0.1

walker2d-v2
-medium 72.5 78.3 83.7 92.5 87.9 – 90.9 ± 0.2 85.3 ± 0.1

-medium-replay 77.2 73.9 81.8 87.1 78.7 – 91.4 ± 0.4 90.8 ± 0.2

-medium-expert 108.8 109.6 110.1 114.7 116.7 – 113.5 ± 0.1 110.9 ± 0.0

-expert – – 110.2 115.1 107.4 – 113.2 ± 0.0 110.4 ± 0.0

mujoco average – – 82.3 97.8 96.4 – 96.6 96.4
(exc. expert) 77.6 77.0 75.3 93.5 92.7 – 92.2 92.2
maze2d-v1
-umaze – – – – – 101.1 155.9 ± 1.4 155.8 ± 2.9

-medium – – – – – 57.0 159.9 ± 2.1 163.1 ± 1.3

-large – – – – – 159.3 219.4 ± 2.0 210.8 ± 2.0

maze2d average – – – – – 105.8 178.4 176.6
antmaze-v0
-umaze 74.0 87.5 78.6 – – 97.8 98.3 ± 0.7 98.6 ± 0.5

-umaze-diverse 84.0 62.2 71.4 – – 81.8 90.6 ± 1.3 91.2 ± 1.3

-medium-play 61.2 71.2 10.6 – – 89.6 87.0 ± 1.5 85.8 ± 1.6

-mediumdiverse 53.7 70.0 3.0 – – 88.6 86.2 ± 1.5 73.8 ± 2.0

-large-play 15.8 39.6 0.2 – – 72.6 76.2 ± 1.9 65.8 ± 2.1

-large-diverse 14.9 47.5 0 – – 71.4 74.2 ± 2.0 75.8 ± 1.9

antmaze average 50.6 63 27.3 – – 83.6 85.5 81.8
adroit-v1
-pen-cloned 39.2 37.3 – 68.2 64.1 – 67.2 ± 2.9 58.0 ± 2.8

-pen-human 37.5 71.5 – 52.1 9.5 – 72.8 ± 2.7 70.3 ± 2.9

adroit average 38.4 54.4 – 60.2 36.8 – 70.0 64.2

462	 Machine Learning (2024) 113:443–488

1 3

IQL paper.2 For completeness, we provide additional comparisons to approaches outlined
in Sect. 2 in the Appendix.

We present results for all tasks and data sets in Table 1. Where figures are not published
for a given task we denote the entry as “–”.3 To help better visualise performance levels, we
compare our results to the best performing method in Fig. 4, which with a few exceptions
is SAC-N/EDAC for MuJoCo and Adroit, and MSG for maze tasks. For the MuJoCo and
Adroit environments, we see that in general both TD3-BC-N and SAC-BC-N can match
the performance of SAC-N and EDAC, and for Maze2d and AntMaze they can match the
performance of MSG. Note that this is achieved without adjusting hyperparameters within
the same task, in contrast to SAC-N, EDAC and MSG. In the Appendix we investigate the
effect of removing this restriction using the MuJoCo environments, finding performance
can be slightly enhanced.

Fig. 4   Comparing the performance of TD3-BC-N (green) and SAC-BC-N (red) against the best method
from Table 1 (blue). Performance is competitive across all tasks (Color figure online)

3  While MSG does consider the MuJoCo environments, results are only presented visually and are in gen-
eral on-par or below those of SAC-N/EDAC.

2  These results are based on updated D4RL data sets following minor bug fixes.

Fig. 5   Evaluating robustness of learn policies for MuJoCo tasks. Each plot shows the percentage difference
between the mean and worst performing episode across 50 evaluations (10 evaluations per 5 seeds). With
the exception of one data set, both TD3-BC-N and SAC-BC-N are able to produce robust policies regard-
less of data quality

463Machine Learning (2024) 113:443–488	

1 3

For the MuJoCo domain in particular we note there is very little variation in perfor-
mance across seeds/evaluations, demonstrating our approach is able to learn robust as well
as performant policies. This is further evidenced in Fig. 5 where we plot the percentage dif-
ference between the mean and worst score across the 50 evaluations, which in most cases
is negligible. Since real-world application will typically only involve single policy deploy-
ment, such a property is highly desirable.

After demonstrating our approach can match state-of-the-art alternatives in terms of per-
formance, we turn our attention to computational efficiency. To ensure a fair comparison,

Fig. 6   Computational efficiency. A smaller ensemble size coupled with fewer gradient updates allows TD3-
BC-N and SAC-BC-N to significantly reduce computation time to levels similar to that of more minimalist
approaches such as TD3-BC

Fig. 7   Performance and efficiency. Average training time and normalised score across MuJoCo and Ant-
Maze tasks. TD3-BC-N and SAC-BC-N can match the performance of ensemble-based approaches while
retaining the computational efficiency of those based on behavioural cloning

464	 Machine Learning (2024) 113:443–488

1 3

we implement our own versions of baselines based on author published source code and
the CORL repository (Tarasov et al., 2022), and run them on the same hardware/soft-
ware configuration. We use exactly the same network architecture across ensemble-based
approaches, training each member of the ensemble in parallel. For CQL, IQL and TD3-BC
we use the network architecture as described in their respective papers. Full details are pro-
vided in the Appendix.

In Fig. 6 we plot the training time in hours of each approach, considering several var-
iations of SAC-N, EDAC and MSG based on ensemble size, which varies according to
task type. We see that TD3-BC-N and SAC-BC-N are easily the most efficient among the
ensemble-based approaches, a direct consequence of a smaller ensemble size and need for
fewer gradient updates to reach peak performance. In particular, the computation time for
TD3-BC-N is comparable to the minimalist approach of TD3-BC.

To get a clearer sense of how performance and efficiency compare across algorithms, in
Fig. 7 we plot the average training time and normalised score for MuJoCo4 and AntMaze
tasks. We see that ensemble-based approaches (SAC-N, EDAC, MSG) are the most per-
formant, but also the most computationally expensive. Conversely, BC based approaches

4  We exclude the “expert” data sets since these are not reported for CQL or IQL.

Fig. 8   Ablations studies. Each plot shows the percentage difference in mean normalised score between each
ablation and the main results from Table 1. Ablations 1 and 2 show that both behavioural cloning and an
ensemble of critics are necessary to achieve strong performance. Ablations 3 and 4 show the importance of
our implementation choices, namely the use of an initial period of inflated BC and independent targets for
AntMaze/Adroit environments

465Machine Learning (2024) 113:443–488	

1 3

(TD3-BC, IQL) are the most computationally efficient, but least performant. TD3-BC-N
and SAC-BC-N on other hand are able to retain the advantages of both approaches while
diminishing their individual deficiencies.

5.4.1 � Ablation studies

In addition to our main results, we also conduct a number of ablations studies to ver-
ify the importance of individual components of our approach, as well implementation
decisions. In Ablations 1–3, we use the MuJoCo environments to assess the impact of
removing the BC component, ensemble of critics and inflated period of BC, respec-
tively. In Ablation 4, we use the AntMaze and Adroit environments to show the impact

Fig. 9   Online fine-tuning for D4RL tasks. The solid line represents the mean non-normalised score across
each of the five agents, shaded area the standard error and dashed line performance prior to fine-tuning.
In general, agents are able to improve their policies in a stable manner, with only a few tasks/data sources
causing stability issues. Note that learning curves for SAC-BC-N and -Adapt are identical for “halfcheetah”
tasks as � = 0 , hence we omit -Adapt versions for clarity

466	 Machine Learning (2024) 113:443–488

1 3

of using dependent targets instead of independent targets during policy evaluation. We
conduct these ablations using TD3-BC-N, making no other changes than those outlined
above.

We summarise results in Fig. 8, plotting the percentage difference between each ablation
score and the main results of Table 1. For Ablations 1–2 we see that removing either BC
or the ensemble has a detrimental impact on performance overall. While the performance
for some tasks is unaffected by removing the BC component, there are others that suffer
catastrophic failure and hence its inclusion is essential. For Ablation 3 we see removing the
inflated period of BC has minimal impact on most data sources, but the severe impact on
“walker2d-expert” warrants its inclusion. Finally, in Ablation 4 we see the use of independ-
ent targets is crucial for the more challenging “medium” and “large” AntMaze environ-
ments and is beneficial for Adroit environments.

5.5 � Online fine‑tuning

Starting with our offline trained agents, we perform online fine-tuning according to the
procedures outlined in Algorithms 3 and 4. We populate the replay buffer R with the last
2500 transitions from D and train agents for an additional 250 k environment interactions,
with gradient updates commencing after the first 2500 interactions (i.e. K = 2500 ). The
offline value of � is used for �start and the number of decay steps S is set as 50 k. The value
of �end is set according to environment and procedure, but as with our offline experiments,
its value doesn’t change according to initial data quality. Values for each data set and pro-
cedure are provided in the Appendix. All other parameters remain the same.

For comparison purposes, we also fine-tune agents using a similar procedure to
REQD+AdaptiveBC, in which the BC component is adjusted based on online returns. Spe-
cifically � is adjusted as:

where, as per the original paper, KP = 3e−5 , KD = 1e−4 , Rtarget = 1.05 , Rcurrent is the lat-
est normalised return and Raverage a running average of normalised returns. Note, in order
to calculate normalised scores prior knowledge of random and expert performance is
required. Apart from how � is adjusted during online training, all other conditions remain
the same. We denote these curves as TD3-BC-N-Adapt and SAC-BC-N-Adapt.

For each task, we plot the corresponding learning curves in Fig. 9, evaluating poli-
cies every 5000 environment interactions (10 evaluations for MuJoCo, 100 evaluations
for Adroit/AntMaze/Maze2d). The solid line represents the mean (non-normalised) score
across each of the five seeds, shaded area the standard error and dashed line performance
prior to fine-tuning. For the MuJoCo environments, in the majority of cases agents are
able to improve their policies while avoiding severe performance drops during the offline
to online transition. For TD3-BC-N, the performance for “hopper/halfcheetah-expert”
declines slightly over the course of training and for SAC-BC-N there is sharp decline for
“walker2d-expert” within the � decay period. For Adroit, TD3-BC-N manages a reasonable
transition and subsequent improvement, but SAC-BC-N is less successful. With the excep-
tion of “antmaze-umaze”, in AntMaze both TD3-BC-N and SAC-BC-N obtain improved
policies in a reasonable stable manner. Finally, for Maze2d we see continued improvement
for both methods, with some minor initial deterioration in TD3-BC-N for “maze2d-umaze”
and fairly large initial slump in SAC-BC-N for “maze2d-umaze”.

Δ� = KP(Ravg − Rtarget) + KD max(0,Ravg − Rcurrent),

467Machine Learning (2024) 113:443–488	

1 3

Comparing to the -Adapt versions, in general we see both performance and stability
are as good or better, despite the fact our approach requires no prior domain knowledge.
We note severe stability issues for SAC-BC-N-Adapt for “hopper-medium”, “hopper-
medium-replay” and “walker2d-medium-replay”. This may be a result of the values of
Kp and Kd , which were originally set based on mean-squared error, not transferring to
log-likelihood.

6 � Discussion and conclusion

In this work we have investigated the role of policy constraints as a mechanism for improv-
ing the computational efficiency of ensemble-based approaches to offline reinforcement
learning. Through empirical evaluation, we have shown how constraints in the form of
behavioural cloning can be used to control the level of uncertainty in the estimated value of
out-of-distribution actions, allowing these estimates to be sufficiently penalised to prevent
overestimation bias. Through this feature, we have been able to match state-of-the-art per-
formance across a number of challenging benchmarks while significantly reducing compu-
tational burden, cutting the size of the ensemble to a fraction of that needed when policies
are unconstrained. We have also shown how behavioural cloning can be repurposed to pro-
mote stable and performant online fine-tuning, by gradually reducing its influence during
the offline-to-online transition. These achievements have required only minimal changes to
existing approaches, allowing for easy implementation and interpretation.

Our work highlights a number of interesting avenues for future research. Primary among
these is the development of methods for selecting the size of the ensemble N and level
of behavioural cloning � offline. While we have demonstrated our approach can achieve
strong performance using consistent hyperparameters, we have also shown how perfor-
mance can be further improved by allowing them to vary. Related to this is the develop-
ment of approaches for automatically tuning � during training, possibly making use of
uncertainty metrics described in Sect. 5.3. A theoretical analysis of the impact of � on
uncertainty could also prove beneficial in this regard.

While in this work we have used ensembles for uncertainty estimation, other techniques
such a multi-head, multi-input/outputs and Monte Carlo dropout can just as easily be used
and integrated with BC. Similarly, other forms of policy constraints and/or other diver-
gence metrics can be incorporated into ensemble-based approaches in a relatively straight-
forward manner. As such, there a number of permutations which could lead to improved
performance and/or computational efficiency.

Finally, our fine-tuning procedure may benefit from incorporating elements from meth-
ods outlined in Sect. 2, allowing for greater stability during the entire duration of online
learning. In addition, our approach may also prove useful in promoting greater data effi-
ciency in online-RL.

468	 Machine Learning (2024) 113:443–488

1 3

Appendix

SAC‑BC‑N online fine‑tuning procedure

Following on from Sect. 4.3, we outline the online fine-tuning procedure using SAC-BC-N
in Algorithm 4.

Table 2   TD3-BC-N shared
hyperparameters and network
architecture

Hyperparameter Value

TD3-BC-N
Optimiser Adam
Actor learning rate 3e − 4

Critic learning rate 3e − 4

Batch size 256
Discount factor � 0.99
Target network update rate � 0.005
Policy noise � 0.2
Policy noise clipping (− 0.5, 0.5)
Critic-to-Actor update ratio 2:1
TD3-BC-N online
Exploration noise � 0.1
BC decay stay steps S 50,000
Architecture
Critic hidden nodes 256
Critic hidden layers 3
Critic hidden activation ReLU
Critic input State + Action

Critic output Q-value
Ensemble size N 10
Actor hidden nodes 256
Actor hidden layers 3
Actor hidden activation ReLU
Actor input State
Actor outputs Action (tanh transformed)

469Machine Learning (2024) 113:443–488	

1 3

Table 3   TD3-BC-N task specific
BC hyperparameters

Note the BC parameters are fixed within each task, i.e. do not vary
based on dataset

Task Dataset � �end

halfcheetah medium 0.04 1e−12

medium-replay 0.04 1e−12

medium-expert 0.04 1e−12

expert 0.04 1e−12

hopper medium 0.03 0.02
medium-replay 0.03 0.02
medium-expert 0.03 0.02
expert 0.03 0.02

walker2d medium 0.03 1e−10

medium-replay 0.03 1e−10

medium-expert 0.03 1e−10

expert 0.03 1e−10

maze2d-umaze 0.01 1e−12

maze2d-medium 0.01 1e−12

maze2d-large 0.01 1e−12

antmaze-umaze – 0.1 0.1
-diverse 0.1 0.1

antmaze-medium -play 0.02 0.01
-diverse 0.02 0.01

antmaze-large -play 0.02 0.005
-diverse 0.02 0.005

pen -cloned 10 2
-human 10 2

470	 Machine Learning (2024) 113:443–488

1 3

Table 4   SAC-BC-N shared
hyperparameters and network
architecture

Hyperparameter Value

SAC-BC-N
Optimiser Adam
Actor learning rate 3e − 4

Critic learning rate 3e − 4

Batch size 256
Discount factor � 0.99
Target network update rate � 0.005
Minimum entropy H −1 * action dimension
SAC-BC-N online
BC decay stay steps S 50,000
Architecture
Critic hidden nodes 256
Critic hidden layers 3
Critic hidden activation ReLU
Critic input State + Action

Critic output Q-value
Ensemble size N 10
Actor hidden nodes 256
Actor hidden layers 3
Actor hidden activation ReLU
Actor input State
Actor outputs Mean/standard devia-

tion of Gaussian

471Machine Learning (2024) 113:443–488	

1 3

Table 5   SAC-BC-N task specific
BC hyperparameters

Note the BC parameters are fixed within each task, i.e. do not vary
based on dataset

Task Dataset BC form � �end

halfcheetah medium Log-likelihood 0 0
medium-replay Log-likelihood 0 0
medium-expert Log-likelihood 0 0
expert Log-likelihood 0 0

hopper medium Log-likelihood 0.0025 0.001
medium-replay Log-likelihood 0.0025 0.001
medium-expert Log-likelihood 0.0025 0.001
expert Log-likelihood 0.0025 0.001

walker2d medium Log-likelihood 0.0025 1e−10

medium-replay Log-likelihood 0.0025 1e−10

medium-expert Log-likelihood 0.0025 1e−10

expert Log-likelihood 0.0025 1e−10

maze2d-umaze MSE 0.005 1e−12

maze2d-medium MSE 0.02 1e−12

maze2d-large MSE 0.02 1e−12

antmaze-umaze – MSE 0.1 0.05
-diverse MSE 0.1 0.05

antmaze-medium -play MSE 0.02 0.02
-diverse MSE 0.02 0.02

antmaze-large -play MSE 0.01 0.005
-diverse MSE 0.01 0.005

pen -cloned MSE 10 2
-human MSE 10 2

Table 6   Performance comparison
across Adroit benchmark

Figures are normalised scores, with 0 and 100 representing random
and expert policies, respectively. As with other methods, our approach
only achieves notable performance in the “pen” task

Task/data set CQL IQL EDAC SAC-N TD3-BC-N

pen-cloned 39.2 37.3 68.2 64.1 67.2
hammer-cloned 2.1 2.1 0.3 0.2 1.5
door-cloned 0.4 1.6 9.6 − 0.3 0.0
relocate-cloned − 0.1 − 0.2 0 0 0.0
pen-human 37.5 71.5 52.1 9.5 72.8
hammer-human 4.4 1.4 0.8 0.3 0.8
door-human 9.9 4.3 10.7 − 0.3 0
relocate-human 0.2 0.1 0.1 − 0.1 − 0.1
average 11.7 14.8 17.7 9.2 17.8

472	 Machine Learning (2024) 113:443–488

1 3

Ta
bl

e 
7  

P
er

fo
rm

an
ce

 c
om

pa
ris

on
 a

cr
os

s M
uJ

oC
o

be
nc

hm
ar

k,
 a

llo
w

in
g
�

 to
 v

ar
y

w
ith

in
 e

ac
h

ta
sk

Fi
gu

re
s a

re
 n

or
m

al
is

ed
 sc

or
es

, w
ith

 0
 a

nd
 1

00
 re

pr
es

en
tin

g
ra

nd
om

 a
nd

 e
xp

er
t p

ol
ic

ie
s,

re
sp

ec
tiv

el
y.

 A
llo

w
in

g
�

 to
 v

ar
y

m
ar

gi
na

lly
 e

nh
an

ce
s p

er
fo

rm
an

ce

Ta
sk

/d
at

a
se

t
ED

A
C

SA
C

-N
TD

3-
B

C
-N

 (fi
xe

d)
TD

3-
B

C
-N

 (v
ar

ia
bl

e)
TD

3-
B

C
-N

 �
SA

C
-B

C
-N

 (fi
xe

d)
SA

C
-B

C
-N

 (v
ar

ia
bl

e)
SA

C
-B

C
-N

 �

ha
lfc

he
et

ah
-m

ed
iu

m
65

.9
67

.5
6
3
.3
±
0
.1

6
6
.9
±
0
.2

0
6
5
.6
±
0
.2

6
5
.6
±
0
.2

0
-m

ed
iu

m
-r

ep
la

y
61

.3
63

.9
5
5
.3
±
0
.1

6
2
.0
±
0
.2

0
6
1
.5
±
0
.1

6
1
.5
±
0
.1

0
-m

ed
iu

m
-e

xp
er

t
10

6.
3

10
7.

1
1
0
1
.7
±
0
.3

1
0
1
.7
±
0
.3

0.
04

1
0
2
.6
±
0
.5

1
0
2
.6
±
0
.5

0
-e

xp
er

t
10

6.
8

10
5.

2
1
0
3
.8
±
0
.5

1
0
3
.8
±
0
.5

0.
04

1
0
5
.3
±
0
.1

1
0
5
.3
±
0
.1

0
-r

an
do

m
28

.4
28

.0
2
2
.4
±
0
.1

3
3
.5
±
0
.3

0
2
7
.9
±
0
.2

2
7
.9
±
0
.2

0
ho

pp
er

-m
ed

iu
m

10
1.

6
10

0.
3

1
0
1
.5
±
0
.3

1
0
3
.2
±
0
.0

0.
01

1
0
1
.2
±
0
.1

1
0
1
.2
±
0
.1

0.
00

25
-m

ed
iu

m
-r

ep
la

y
10

1.
0

10
1.

8
9
9
.1
±
0
.1

1
0
0
.0
±
0
.1

0.
01

1
0
0
.8
±
0
.2

1
0
3
.5
±
0
.4

0
-m

ed
iu

m
-e

xp
er

t
11

0.
7

11
0.

1
1
1
2
.3
±
0
.0

1
1
2
.3
±
0
.0

0.
03

1
1
1
.3
±
0
.1

1
1
1
.3
±
0
.1

0.
00

25
-e

xp
er

t
11

0.
1

11
0.

3
1
1
2
.7
±
0
.1

1
1
2
.7
±
0
.1

0.
03

1
1
1
.5
±
0
.1

1
1
1
.5
±
0
.1

0.
00

25
-r

an
do

m
25

.3
31

.3
8
.0
±
0
.1

1
2
.9
±
1
.3

0
1
7
.2
±
1
.6

2
2
.3
±
1
.6

0
wa

lk
er

2d
-m

ed
iu

m
92

.5
87

.9
9
0
.9
±
0
.2

9
6
.6
±
0
.3

0.
01

8
5
.3
±
0
.1

9
2
.1
±
1
.9

0.
00

1
-m

ed
iu

m
-r

ep
la

y
87

.1
78

.7
9
1
.4
±
0
.4

9
1
.4
±
0
.4

0.
03

9
0
.8
±
0
.2

9
6
.6
±
0
.3

0
-m

ed
iu

m
-e

xp
er

t
11

4.
7

11
6.

7
1
1
3
.5
±
0
.1

1
1
5
.7
±
0
.3

0
1
1
0
.9
±
0
.0

1
1
7
.5
±
0
.4

0.
00

1
-e

xp
er

t
11

5.
1

10
7.

4
1
1
3
.2
±
0
.0

1
1
3
.2
±
0
.0

0.
03

1
1
0
.4
±
0
.0

1
1
0
.4
±
0
.0

0.
00

25
-r

an
do

m
16

.6
21

.7
0
.8
±
0
.3

1
4
.8
±
1
.2

1
−

 0
.2
±
0
.0

7
.0
±
2
.2

0.
1

m
uj

oc
o

av
er

ag
e

82
.9

82
.5

79
.3

82
.7

80
.1

82
.4

473Machine Learning (2024) 113:443–488	

1 3

Table 8   Additional performance comparison across D4RL benchmark

Figures are normalised scores, with 0 and 100 representing random and expert policies, respectively. For
TD3-BC-N and SAC-BC-N we report the mean normalised score ± one standard error across 50 evalua-
tions for MuJoCo tasks (10 evaluations over 5 seeds) and 500 evaluations for Maze2d, AntMaze and Adroit
tasks (100 evaluations over 5 seeds)

Task/data set PBRL RORL SAC-RND TD3-BC-N SAC-BC-N

halfcheetah-v2
-medium 57.9 66.8 66.6 63.3 ± 0.1 65.6 ± 0.2

-medium-replay 45.1 61.9 54.9 55.3 ± 0.1 61.5 ± 0.1

-medium-expert 92.3 107.8 107.6 101.7 ± 0.3 102.6 ± 0.5

-expert 92.4 105.2 105.8 103.8 ± 0.5 105.3 ± 0.1

hopper-v2
-medium 75.3 104.8 97.8 101.5 ± 0.3 101.2 ± 0.1

-medium-replay 100.6 102.8 100.5 99.1 ± 0.1 100.8 ± 0.2

-medium-expert 110.8 112.7 109.8 112.3 ± 0.0 111.3 ± 0.1

-expert 110.5 112.8 109.7 112.7 ± 0.1 11.5 ± 0.1

walker2d-v2
-medium 89.6 102.4 91.6 90.9 ± 0.2 85.3 ± 0.1

-medium-replay 77.7 90.4 88.7 91.4 ± 0.4 90.8 ± 0.2

-medium-expert 110.1 121.2 105.0 113.5 ± 0.1 110.9 ± 0.0

-expert 108.3 115.4 114.3 113.2 ± 0.0 110.4 ± 0.0

mujoco average 89.2 100.4 96.0 96.6 96.4
(exc. expert) 84.4 96.8 91.4 92.2 92.2
maze2d-v1
-umaze – – – 155.9 ± 1.4 155.8 ± 2.9

-medium – – – 159.9 ± 2.1 163.1 ± 1.3

-large – – – 219.4 ± 2.0 210.8 ± 2.0

maze2d-average – – – 178.4 176.6
antmaze-v0
-umaze – 96.7 97.2 98.3 ± 0.7 98.6 ± 0.5

-umaze-diverse – 90.7 83.5 90.6 ± 1.3 91.2 ± 1.3

-medium-play – 76.3 65.5 87.0 ± 1.5 85.8 ± 1.6

-medium-diverse – 69.3 88.5 86.2 ± 1.5 73.8 ± 2.0

-large-play – 16.3 67.2 76.2 ± 1.9 65.8 ± 2.1

-large-diverse – 41.0 57.6 74.2 ± 2.0 75.8 ± 1.9

antmaze average – 65.1 76.6 85.5 81.8
adroit-v1
-pen-cloned 74.9 35.7 – 67.2 ± 2.9 58.0 ± 2.8

-pen-human 35.4 33.7 – 72.8 ± 2.7 70.3 ± 2.9

adroit average 55.2 34.7 – 70.0 64.2

474	 Machine Learning (2024) 113:443–488

1 3

Table 9   Computation time
calculation details

*1 epoch=10,000 gradient steps.

Algorithm Runt-
ime (s/
epoch*)

Total gradi-
ent steps
(M)

Total runtime (h) GPU
memory
(GB)

SAC-10 60 3 5.0 1.2
SAC-20 61 3 5.1 1.3
SAC-100 142 3 11.8 1.6
SAC-200 251 3 20.9 2.0
SAC-500 588 3 49.0 3.5
EDAC-10 76 3 6.3 1.2
EDAC-20 86 3 7.2 1.3
EDAC-50 136 3 11.3 1.5
MSG-4 65 2 3.6 1.2
MSG-64 131 2 7.3 1.5
CQL 123 1 3.4 1.3
IQL 54 1 1.5 1.2
TD3-BC 26 1 0.7 1.2
SAC-BC-10 62 1 1.7 1.2
TD3-BC-10 31 1 0.9 1.2

475Machine Learning (2024) 113:443–488	

1 3

Fig. 10   Performance as a function of N and � . Lower values of � require larger values of N and smaller
values of N require higher values of � . Shared targets (left)—If both N and � are large, the uncertainty in
Q-value estimates for OOD actions is too high, and thus the penalty applied too severe, leading the agent to
prefer actions similar to those of the data. Independent targets (right)—the decline in performance for large
N and � is not observed but this may be a result of both values needing to be higher in general, and hence
for even larger N and � this outcomes may also be observed

Further implementation details

As per previous works, we perform the following data transformations:

•	 Normalise states as per TD3-BC
•	 Transform AntMaze rewards according to 4(r − 0.5) as per MSG/CQL
•	 Normalise Adroit rewards as per SAC-N/EDAC

TD3‑BC‑N hyperparameters and network architecture

Following on from Sect. 5, we provide details of shared hyperparameters and network
architecture in Table 2, and details of task specific hyperparameters for BC in Table 3.

SAC‑BC‑N hyperparameters and network architecture

Following on from Sect. 5, we provide details of shared hyperparameters and network
architecture in Table 4, and details of task specific hyperparameters for BC in Table 5.

Hardware

The large scale experiment featured in Sect. 5.2 was conducted on a machine with Intel
Xeon E5-2698 v4 CPU, 512 GB RAM and 8x Tesla V100-SXM2 32 GB GPUs

Experiments featured in Sects. 5.4 and 5.5 were conducted on a machine with Intel Core
i9 9900 K CPU, 64 GB RAM and 2 × NVIDIA GeForce RTX 2080Ti 11 GB TURBO
GPUs.

476	 Machine Learning (2024) 113:443–488

1 3

Additional experimental results

Following on from Sect. 5.1, in Table 6 we provide results for the full set of tasks from the
Adroit domain using TD3-BC-N ( N = 10, � = 10 ). As with other approaches, we are only
able to attain notable performance on the “pen” task.

Following on from Sect. 5.4, in Table 7 we provide results for MuJoCo tasks allowing
the value of � to vary within each task, observing a slight increase in performance. For

Fig. 11   Standard deviation as a function of distance, N and � (shared target values). As the distance
between random and data actions increases so too does the level of uncertainty, becoming more pronounced
as � and N get larger. White space is used to represent erroneous values due to unreliable Q-values esti-
mates resulting from divergent critic loss during training

477Machine Learning (2024) 113:443–488	

1 3

completeness, we also include results for “random” datasets, which we omit form our main
results due to not being as applicable to real-world scenarios.

Following on from Sect. 5.4, in Table 8 we provide results for additional baselines men-
tioned in Sect. 2. Due to discrepancies between -v0 and -v2 MuJoCo datasets, we only
report those using the latest versions, namely PBRL, RORL and SAC-RND. In general,
we see TD3-BC-N and SAC-BC-N are competitive across all tasks and data sets, without
the requirement for hyperparameter tuning within each task. We note that RORL performs

Fig. 12   Clip penalty as a function of distance, N and � (shared target values). As the distance between ran-
dom and data actions increases so too does the level of uncertainty, becoming more pronounced as � and N
get larger. White space is used to represent erroneous values due to unreliable Q-values estimates resulting
from divergent critic loss during training

478	 Machine Learning (2024) 113:443–488

1 3

particularly well on MuJoCo benchmarks, however we also note these results follow exten-
sive hyperparameter tuning within each task.

In terms of computation time, based on author provided details PBRL and RORL take
roughly 1.7× and 0.9× the computation time of CQL per iteration, respectively. PBRL
requires 1 M gradient updates and RORL 3 M gradient updates. SAC-RND takes roughly
the same amount of computation time as SAC-10 per iteration, requiring 3 M gradient
updates in total. Thus, PBRL, RORL and SAC-RND are all notably less computationally
efficient than TD3-BC-N and SAC-BC-N.

Fig. 13   Qmin as a function of distance, N and � (shared target values). As the distance between random and
data actions increases, Qmin decreases, with this decrease more pronounced as � and N get larger. White
space is used to represent erroneous values due to unreliable Q-values estimates resulting from divergent
critic loss during training

479Machine Learning (2024) 113:443–488	

1 3

Further details regarding computational efficiency experiments

To ensure a fair comparison of computational efficiency, we implement our own versions
of baselines (available in our code repository) based on author published source code and
the CORL repository (Tarasov et al., 2022), and run them on the same hardware/software
configuration. In terms of hardware we use a machine with a Intel Core i9 9900 K CPU,

Fig. 14   Standard deviation as a function of distance, N and � (independent target values). As the distance
between random and data actions increases so too does the level of uncertainty, becoming more pronounced
as � and N get larger. White space is used to represent erroneous values due to unreliable Q-values esti-
mates resulting from divergent critic loss during training

480	 Machine Learning (2024) 113:443–488

1 3

64 GB RAM and 2× NVIDIA GeForce RTX 2080Ti 11 GB TURBO GPUs. In terms of
software we use PyTorch (version 1.9.1+cu102).

The ensemble architecture for TD3-BC-N, SAC-BC-N, SAC-N, EDAC and MSG is
exactly the same. Each Q-network comprises a 3-layer MLP with ReLU activation func-
tions and 256 nodes, taking as input a state-action pair and outputting a Q-value. For TD3-
BC-N the policy network comprises a 3-layer MLP with ReLU activation functions and

Fig. 15   Clip penalty as a function of distance, N and � (shared independent values). As the distance
between random and data actions increases so too does the level of uncertainty, becoming more pronounced
as � and N get larger. White space is used to represent erroneous values due to unreliable Q-values esti-
mates resulting from divergent critic loss during training

481Machine Learning (2024) 113:443–488	

1 3

256 nodes, taking as input a state and outputting an action bound to [ −1, 1 ] via tanh trans-
formation. For SAC-BC-N, SAC-N, EDAC and MSG the policy network comprises the
same architecture but instead outputs the mean and standard deviation of a Gaussian distri-
bution which is also bound to [ −1, 1 ] via tanh transformation.

For CQL, we use a dual critic, with each Q-network comprising a 3-layer MLP with
ReLU activation functions and 256 nodes, taking as input a state-action pair and outputting
a Q-value. The policy network comprises a 3-layer MLP with ReLU activation functions

Fig. 16   Qmin as a function of distance, N and � (independent target values). As the distance between random
and data actions increases, Qmin decreases, with this decrease more pronounced as � and N get larger. White
space is used to represent erroneous values due to unreliable Q-values estimates resulting from divergent
critic loss during training

482	 Machine Learning (2024) 113:443–488

1 3

and 256 nodes outputting the mean and standard deviation of a Gaussian distribution which
is bound to [ −1, 1 ] via tanh transformation.

For IQL, we use a dual critic, with each Q-network comprising a 2-layer MLP with
ReLU activation functions and 256 nodes, taking as input a state-action pair and output-
ting a Q-value. We use a single state-value network comprising a 2-layer MLP with ReLU
activation functions and 256 nodes, taking as input a state and outputting a state-value. The
policy network comprises a 2-layer MLP with ReLU activation functions and 256 nodes
outputting a tanh transformed mean and standard deviation of a Gaussian distribution.

Fig. 17   Distribution of Qmin for policy actions (shared target values). In general, the higher the value of �
the lower the values of Qmin , as Q-value estimates are penalised more heavily. This is particularly noticeable
when N and � are large, contributing to declining performance as observed in Fig. 10

483Machine Learning (2024) 113:443–488	

1 3

For TD3-BC, we use a dual critic, with each Q-network comprising a 2-layer MLP with
ReLU activation functions and 256 nodes, taking as input a state-action pair and outputting
a Q-value. The policy network comprises a 2-layer MLP with ReLU activation functions
and 256 nodes, taking as input a state and outputting an action bound to [ −1, 1 ] via tanh
transformation

For all algorithms we use the Adam optimiser (Kingma & Ba, 2014) and a batch size of
256.

Fig. 18   Distribution of Qmin for policy actions (independent target values). In general, the higher the value
of � the lower the values of Qmin , as Q-value estimates are penalised more heavily. For this range of N and �
the distributions do not exhibit extreme estimates as in Fig. 17, consistent with performance as observed in
Fig. 10. However, this may be the case for higher N and �

484	 Machine Learning (2024) 113:443–488

1 3

For each algorithm, we record the training time for 10,000 gradient steps and scale by
the total number of gradient steps to arrive at the total computation time. We detail these
calculations in Table 9.

Additional plots

Following on from Sect. 5.3, we provide the complete set of plots from our case study
using the “hopper-medium-expert” dataset. Figure 10 summarises performance for shared
and independent target values, with Figs. 11, 12, 13, 14, 15 and 16 showing Qstd , Qclip and
Qmin for shared and independent target values, respectively.

We also provide plots examining the distribution of Qmin for policy actions in Figs. 17
and 18, and examples density estimates of Q-value distributions for individual state-action
pairs in Figs. 19 and 20. To allow for better estimates of density, we use ensembles of size
N = 50 , and to allow easier comparisons of uncertainty we normalise Q-values by dividing
by the mean of the absolute value across the ensemble (similar to Sect. 4).

Fig. 19   Examples density estimates of Q-functions (shared target values, N = 50 ). Q-values are normalised
to allow easier comparison of uncertainty. As � increases so too does the variance in Q-value estimates

485Machine Learning (2024) 113:443–488	

1 3

Acknowledgements  AB acknowledges support from University of Warwick and University of Birming-
ham NHS Foundation Trust. GM acknowledges support from a UKRI AI Turing Acceleration Fellowship
(EPSRC EP/V024868/1). The authors acknowledge Weights & Biases (https://​www.​wandb.​com/) as the
online platform used for experiment tracking and visualizations to develop insights for this paper.

Author Contributions  Authors’ contributions follow the authors’ order convention.

Funding  AB acknowledges support from University of Warwick and University of Birmingham NHS Foun-
dation Trust. GM acknowledges support from a UKRI AI Turing Acceleration Fellowship (EPSRC EP/
V024868/1).

Availability of data and materials  Benchmark data sets are open source.

Declarations 

Conflict of interest  No competing or financial interests to disclose.

Consent to participate  The authors give their consent to participate.

Consent for publication  The authors give their consent for publication.

Fig. 20   Examples density estimates of Q-functions (independent target values, N = 50 ). Q-values are nor-
malised to allow easier comparison of uncertainty. As � increases so too does the variance in Q-value esti-
mates

https://www.wandb.com/

486	 Machine Learning (2024) 113:443–488

1 3

Code availability  Code base for implementation is made freely available at https://​github.​com/​AlexB​eeson​
Warwi​ck/​Offli​neRLC​onstr​ained​Ensem​ble.

Ethical approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X.,
Khosravi, A., Acharya, U. R., et al. (2021). A review of uncertainty quantification in deep learning:
Techniques, applications and challenges. Information Fusion, 76, 243–297.

An, G., Moon, S., Kim, J.-H., & Song, H. O. (2021). Uncertainty-based offline reinforcement learning with
diversified q-ensemble. Advances in Neural Information Processing Systems, 34, 7436–7447.

Argenson, A., & Dulac-Arnold, G. (2020) Model-based offline planning. arXiv preprint arXiv:​2008.​05556
Bai, C., Wang, L., Yang, Z., Deng, Z.-H., Garg, A., Liu, P., & Wang, Z. (2022). Pessimistic bootstrap-

ping for uncertainty-driven offline reinforcement learning. In International conference on learning
representations.

Bain, M., & Sammut, C. (1995). A framework for behavioural cloning. Machine Intelligence, 15, 103–129.
Ball, P. J., Smith, L., Kostrikov, I., & Levine, S. (2023). Efficient online reinforcement learning with offline

data. arXiv preprint arXiv:​2302.​02948
Beeson, A., & Montana, G. (2022). Improving TD3-BC: Relaxed policy constraint for offline learning and

stable online fine-tuning. arXiv preprint arXiv:​2211.​11802
Brandfonbrener, D., Whitney, W., Ranganath, R., & Bruna, J. (2021). Offline RL without off-policy evalua-

tion. Advances in Neural Information Processing Systems, 34, 4933–4946.
Buckman, J., Gelada, C., & Bellemare, M. G. (2020). The importance of pessimism in fixed-dataset policy

optimization. arXiv preprint arXiv:​2009.​06799
Charpentier, B., Senanayake, R., Kochenderfer, M., Günnemann, S. (2022). Disentangling epistemic and

aleatoric uncertainty in reinforcement learning. arXiv preprint arXiv:​2206.​01558
Chen, R. Y., Sidor, S., Abbeel, P., & Schulman, J. (2017). UCB exploration via q-ensembles. arXiv preprint

arXiv:​1706.​01502
Ciosek, K., Vuong, Q., Loftin, R., & Hofmann, K. (2019). Better exploration with optimistic actor critic.

Advances in Neural Information Processing Systems 32
Eriksson, H., Basu, D., Alibeigi, M., Dimitrakakis, C. (2022). Sentinel: Taming uncertainty with ensem-

ble based distributional reinforcement learning. In Uncertainty in artificial intelligence, PMLR, pp.
631– 640.

Fu, J., Kumar, A., Nachum, O., Tucker, G., & Levine, S. (2020). D4RL: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:​2004.​07219

Fujimoto, S., & Gu, S. S. (2021). A minimalist approach to offline reinforcement learning. arXiv pre-
print arXiv:​2106.​06860

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function approximation error in actor-critic
methods. In International conference on machine learning, PMLR, pp. 1587– 1596.

Fujimoto, S., Meger, D., Precup, D. (2019). Off-policy deep reinforcement learning without exploration. In
International conference on machine learning, PMLR pp. 2052– 2062.

Ghasemipour, S. K. S., Gu, S. S., & Nachum, O. (2022). Why so pessimistic? estimating uncertainties for
offline RL through ensembles, and why their independence matters. arXiv preprint arXiv:​2205.​13703

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine learning,
PMLR, pp. 1861– 1870.

https://github.com/AlexBeesonWarwick/OfflineRLConstrainedEnsemble
https://github.com/AlexBeesonWarwick/OfflineRLConstrainedEnsemble
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2008.05556
http://arxiv.org/abs/2302.02948
http://arxiv.org/abs/2211.11802
http://arxiv.org/abs/2009.06799
http://arxiv.org/abs/2206.01558
http://arxiv.org/abs/1706.01502
http://arxiv.org/abs/2004.07219
http://arxiv.org/abs/2106.06860
http://arxiv.org/abs/2205.13703

487Machine Learning (2024) 113:443–488	

1 3

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., &
Abbeel, P., et al. (2018). Soft actor-critic algorithms and applications. arXiv preprint arXiv:​1812.​
05905

Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J., Lakshminarayanan, B., Dai, A. M., & Tran, D.
(2020). Training independent subnetworks for robust prediction. arXiv preprint arXiv:​2010.​06610

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M., & Silver, D. (2018) Rainbow: Combining improvements in deep reinforcement learning.
In Thirty-second AAAI conference on artificial intelligence.

Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine Learning, 110, 457–506.

Janner, M., Du, Y., Tenenbaum, J. B., & Levine, S. (2022). Planning with diffusion for flexible behavior
synthesis. arXiv preprint arXiv:​2205.​09991

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan,
M., & Vanhoucke, V., et al. (2018) Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation. arXiv preprint arXiv:​1806.​10293

Kidambi, R., Rajeswaran, A., Netrapalli, P., & Joachims, T. (2020). Morel: Model-based offline reinforce-
ment learning. arXiv preprint arXiv:​2005.​05951

Kingma, D. P., & Ba, J. (2014). ADAM: A method for stochastic optimization. arXiv preprint arXiv:​1412.​
6980

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., Yogamani, S., & Pérez, P. (2022). Deep
reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent Transpor-
tation Systems, 23(6), 4909–4926.

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The artificial intelligence
clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24(11),
1716–1720.

Kostrikov, I., Fergus, R., Tompson, J., & Nachum, O. (2021). Offline reinforcement learning with fisher
divergence critic regularization. In International Conference on Machine Learning, PMLR, pp.
5774– 5783.

Kostrikov, I., Nair, A., & Levine, S. (2021). Offline reinforcement learning with implicit q-learning. arXiv
preprint arXiv:​2110.​06169

Kumar, A., Fu, J., Tucker, G., & Levine, S. (2019). Stabilizing off-policy q-learning via bootstrapping error
reduction. arXiv preprint arXiv:​1906.​00949

Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020). Conservative q-learning for offline reinforcement
learning. arXiv preprint arXiv:​2006.​04779

Lange, S., Gabel, T., & Riedmiller, M. (2012). Batch reinforcement learning (pp. 45–73). Berlin: Springer.
Lee, K., Laskin, M., Srinivas, A., Abbeel, P. (2021). Sunrise: A simple unified framework for ensemble

learning in deep reinforcement learning. In International conference on machine learning, PMLR, pp.
6131– 6141.

Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., & Batra, D. (2015). Why m heads are better than
one: Training a diverse ensemble of deep networks. arXiv preprint arXiv:​1511.​06314

Lee, S., Seo, Y., Lee, K., Abbeel, P., & Shin, J. (2020). Addressing distribution shift in online reinforce-
ment learning with offline datasets

Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:​2005.​01643

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:​1509.​02971

Liu, S., See, K. C., Ngiam, K. Y., Celi, L. A., Sun, X., & Feng, M. (2020). Reinforcement learning
for clinical decision support in critical care: Comprehensive review. Journal of Medical Internet
Research, 22(7), 18477.

Mahmood, A. R., Korenkevych, D., Vasan, G., Ma, W., & Bergstra, J. (2018). Benchmarking reinforcement
learning algorithms on real-world robots. In Conference on robot learning, PMLR, pp. 561– 591.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.(2013) Play-
ing atari with deep reinforcement learning. arXiv preprint arXiv:​1312.​5602

Nair, A., Gupta, A., Dalal, M., & Levine, S. (2020). AWAC: Accelerating online reinforcement learning with
offline datasets. arXiv preprint arXiv:​2006.​09359

Nair, A., Zhu, B., Narayanan, G., Solowjow, E., & Levine, S. (2022). Learning on the job: Self-rewarding
offline-to-online finetuning for industrial insertion of novel connectors from vision. arXiv preprint arXiv:​
2210.​15206

Nikulin, A., Kurenkov, V., Tarasov, D., & Kolesnikov, S. (2023). Anti-exploration by random network distilla-
tion. arXiv preprint arXiv:​2301.​13616

http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/2010.06610
http://arxiv.org/abs/2205.09991
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/2005.05951
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2110.06169
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/2006.04779
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/2006.09359
http://arxiv.org/abs/2210.15206
http://arxiv.org/abs/2210.15206
http://arxiv.org/abs/2301.13616

488	 Machine Learning (2024) 113:443–488

1 3

Royston, J., et al. (1982). Expected normal order statistics (exact and approximate). Journal of the Royal Statis-
tical Society Series C (Applied Statistics), 31(2), 161–165.

Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional genera-
tive models. Advances in Neural Information Processing Systems, 28, 3483–3491.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge: MIT press.
Tarasov, D., Nikulin, A., Akimov, D., Kurenkov, V., & Kolesnikov, S. (2022). CORL: Research-oriented deep

offline reinforcement learning library. arXiv preprint arXiv:​2210.​07105
Tesauro, G., et al. (1995). Temporal difference learning and td-gammon. Communications of the ACM, 38(3),

58–68.
Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In 2012 IEEE/

RSJ International conference on intelligent robots and systems, pp. 5026– 5033.
Wu, Y., Tucker, G., & Nachum, O. (2019). Behavior regularized offline reinforcement learning. arXiv preprint

arXiv:​1911.​11361
Xie, T., Jiang, N., Wang, H., Xiong, C., & Bai, Y. (2021). Policy finetuning: Bridging sample-efficient offline

and online reinforcement learning. Advances in Neural Information Processing Systems, 34, 27395–27407.
Yang, R., Bai, C., Ma, X., Wang, Z., Zhang, C., & Han, L. (2022). Rorl: Robust offline reinforcement learning

via conservative smoothing. In Advances in neural information processing systems.
Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S., & Finn, C. (2021). Combo: Conservative offline

model-based policy optimization. arXiv preprint arXiv:​2102.​08363
Yu, C., Liu, J., Nemati, S., & Yin, G. (2021). Reinforcement learning in healthcare: A survey. ACM Computing

Surveys (CSUR), 55(1), 1–36.
Zhang, H., Xu, W., & Yu, H. (2023). Policy expansion for bridging offline-to-online reinforcement learning.

arXiv preprint arXiv:​2302.​00935
Zhao, Y., Boney, R., Ilin, A., Kannala, J., & Pajarinen, J. (2021). Adaptive behavior cloning regularization for

stable offline-to-online reinforcement learning
Zhou, W., Bajracharya, S., & Held, D.(2020). PLAS: Latent action space for offline reinforcement learning.

arXiv preprint arXiv:​2011.​07213
Zhou, X., Liu, H., Pourpanah, F., Zeng, T., & Wang, X. (2022). A survey on epistemic (model) uncertainty in

supervised learning: Recent advances and applications. Neurocomputing, 489, 449–465.
Zhu, D., Wang, Y., Schmidhuber, J., & Elhoseiny, M. (2023). Guiding online reinforcement learning with

action-free offline pretraining. arXiv preprint arXiv:​2301.​12876

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2210.07105
http://arxiv.org/abs/1911.11361
http://arxiv.org/abs/2102.08363
http://arxiv.org/abs/2302.00935
http://arxiv.org/abs/2011.07213
http://arxiv.org/abs/2301.12876

	Balancing policy constraint and ensemble size in uncertainty-based offline reinforcement learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Methods based on behavioural cloning
	2.2 Methods based on uncertainty quantification
	2.3 Methods for online fine-tuning

	3 Preliminaries
	3.1 Offline reinforcement learning
	3.2 Regularisation through uncertainty estimation

	4 Policy constrained critic ensembles
	4.1 TD3-BC-N
	4.2 SAC-BC-N
	4.3 Stable online fine-tuning

	5 Experimental results
	5.1 Benchmark datasets
	5.2 Implementation details
	5.3 The impact of policy constraints on uncertainty
	5.4 Performance and efficiency comparisons
	5.4.1 Ablation studies

	5.5 Online fine-tuning

	6 Discussion and conclusion
	Appendix
	SAC-BC-N online fine-tuning procedure
	Further implementation details
	TD3-BC-N hyperparameters and network architecture
	SAC-BC-N hyperparameters and network architecture
	Hardware

	Additional experimental results
	Further details regarding computational efficiency experiments
	Additional plots

	Acknowledgements
	References

