
Vol.:(0123456789)

Machine Learning (2024) 113:1445–1481
https://doi.org/10.1007/s10994-023-06447-1

1 3

Online semi‑supervised learning of composite event rules
by combining structure and mass‑based predicate similarity

Evangelos Michelioudakis1,2 · Alexander Artikis1,3 · Georgios Paliouras1

Received: 14 June 2022 / Revised: 24 July 2023 / Accepted: 7 October 2023 /
Published online: 15 December 2023
© The Author(s) 2023

Abstract
Symbolic event recognition systems detect event occurrences using first-order logic rules.
Although existing online structure learning approaches ease the discovery of such rules
in noisy data streams, they assume the existence of fully labelled training data. Splice is a
recent online graph-based approach that estimates the labels of unlabelled data and makes
it possible to learn such rules from semi-supervised training sequences of logical inter-
pretations. However, Splice labelling depends significantly on the metric used to compute
the distances of unlabelled examples to their labelled counterparts. Moreover, there is no
guarantee about the quality of the labelling found in the local graphs that are built as the
data stream in. In this paper, we propose a new online learning method, which includes an
enhanced hybrid measure that combines an optimised structural distance, and a data-driven
one. The former is guided by feature selection targeted to kNN classification, while the
latter is a mass-based dissimilarity. Additionally, the enhanced Splice method, improves
the graph construction process, by storing a synopsis of the past, in order to achieve more
informed labelling on the local graphs. We evaluate our approach by learning Event Cal-
culus theories for the tasks of human activity recognition, maritime monitoring, and fleet
management. The evaluation suggests that our approach outperforms its predecessor, in
terms of inferring the missing labels and improving the predictive accuracy of the underly-
ing structure learning system.

Keywords First-order logic · Metric learning · Mass dissimilarity · Event calculus · Event
recognition

1 Introduction

Symbolic composite event recognition (CER) systems (Cugola & Margara, 2012) con-
sume input sequences of simple, derived events (SDEs), matching them against a knowl-
edge base of first-order rules (Artikis et al., 2012), and recognising composite events (CEs)

Editors: Alireza Tamaddoni-Nezhad, Alan Bundy, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumančić, Cèsar Ferri, Pascal Hitzler, Nikos Katzouris, Denis Mareschal, Stephen Muggleton, Ute
Schmid

Extended author information available on the last page of the article

http://orcid.org/0000-0002-8133-7347
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06447-1&domain=pdf

1446 Machine Learning (2024) 113:1445–1481

1 3

of interest. CEs are usually defined as multi-relational structures over actors and objects
involved in an event, and thus, manual derivation of such rules can be cumbersome and
error-prone. In addition, CER applications typically operate in data streams of significant
volume and velocity (Giatrakos et al., 2020), which further renders the composition of such
relational dependencies unrealistic. To that end, methods for learning CE rules in a sin-
gle pass over a data stream are essential (Srinivasan & Bain, 2017; Dries & Raedt, 2009;
Gama, 2010).

Online logic-based learners have been proposed for the discovery of CE structures under
uncertainty (Katzouris et al., 2016, 2018; Michelioudakis et al., 2016). They assume that a
fully-labelled training sequence arrives for processing, which is an unrealistic assumption
in real-life applications.

Splice (Michelioudakis et al., 2019) is a recent method that makes semi-supervised
learning of logic-based CE rules possible by inferring the missing labels using a graph-
based label propagation technique (Zhu et al., 2003). Splice represents training instances
as sets of logical atoms and employs a structural distance, adapted from Nienhuys-Cheng
(1997), to compute the distance of unlabelled data to their labelled counterparts. The label-
ling is achieved online (single-pass), by storing previously seen labels for future usage,
since it is assumed that the labelled data are infrequent. Although Splice facilitates the
learning of CE rules in the presence of missing labels, its distance measure may be com-
promised by irrelevant features or imbalanced supervision. Moreover, its approach to
online label propagation does not provide any guarantee about the labelling inferred from
the local graphs, which are built as the data stream in. In other words, Splice ignores previ-
ously seen unlabelled examples and their respective distances to the rest of the graph.

In this paper, we propose an improved hybrid distance measure that combines the struc-
tural measure of Splice with a mass-based dissimilarity (Ting et al., 2019), employing
mass estimation theory (Ting et al., 2013) to quantify the distance between examples of
logical atoms. We further enhance the structural distance by optimising feature selection
for k-nearest neighbour (kNN) classification. To that end, we adapt the Large-Margin Near-
est Neighbour (Weinberger & Saul, 2009), a well-known approach to metric learning, for
the selection of logical predicates. Finally, in order to provide guarantees about the online
labelling, we utilize a technique proposed by (Wagner et al., 2018) that retains a synopsis of
the graph in order to achieve more informed labelling across the incoming micro-batches.

The completed training data can be subsequently used by any online supervised struc-
ture learner. To demonstrate Splice + , our proposed approach for semi-supervised learn-
ing of event rules, we use the OleD online learner (Katzouris et al., 2016), which con-
structs Event Calculus (EC) theories (Kowalski & Sergot, 1986; Mueller, 2008) for CER
applications.

The proposed method (Splice +) is compared to its predecessor (Splice) and another
baseline method adapted from Soonthornphisaj and Kijsirikul (2004) to learn EC theo-
ries on the tasks of activity recognition from surveillance video footage, maritime moni-
toring, and fleet management. In the first task, the goal is to recognise activities taking
place between persons, e.g., people meeting or moving together, by exploiting information
about observed activities of individuals. In maritime monitoring, the goal is to recognise
vessel activities, by exploiting information such as vessel speed, location and communi-
cation gaps. Finally, in fleet management, the objective is to recognise vehicle activities,
by combining positional and operational information such as vehicle speed, location and
fuel level. Our empirical analysis suggests that our improved method outperforms both its
predecessor and the baseline. In particular, it infers more accurately the missing labels and

1447Machine Learning (2024) 113:1445–1481

1 3

improves the predictive accuracy of the underlying structure learner, at the price of a toler-
able increase in processing time.

In summary, the main contributions of this paper are:

1. An adapted metric learning technique for feature subset selection over logical atoms.
The adapted technique is used as an informed structural distance which accounts for
irrelevant and noisy predicates (features) that may compromise accuracy.

2. A hybrid distance measure which combines the above-mentioned informed structural
distance to a mass-based dissimilarity. The hybrid measure exploits both the labelled
and unlabelled data to quantify the distance between examples of logical atoms. The
resulted measure can be considered as a semi-supervised metric learning method.

3. An online semi-supervised logic-based learner that retains a graph synopsis of tem-
porally adjacent examples, in order to operate on large training sequences, and learns
interpretable CE rules in the Event Calculus.

4. The evaluation of Splice + against Splice on three real (non-synthetic) datasets. A human
activity recognition dataset labelled by human experts; a maritime monitoring data-
set comprising vessel position signals; and a fleet management dataset consisting of
positional and operational data from commercial vehicles. Moreover, to aid research
reproducibility, we have made the datasets and the code publicly available.

The remainder of the paper is organised as follows. Section 2 provides the necessary back-
ground used in Sect. 3 to describe the proposed hybrid predicate similarity and our online
semi-supervised learning system for learning composite event rules. Section 4 reports
experimental results on the tasks of human activity recognition, maritime monitoring and
vehicle fleet management. Section 5 discusses related work for semi-supervised learning
on data streams, feature selection and metric learning techniques, while Sect. 6 concludes
and proposes directions for future research.

2 Background

2.1 Online semi‑supervised learning for composite event recognition

Splice (Michelioudakis et al., 2019) enables online structure learning for composite event
recognition in the presence of incomplete supervision. Towards this end, it employs a
graph-based technique proposed by Zhu et al. (2003), to derive labels for the unlabelled
data, based on their distance to their labelled counterparts. Since the CEs are usually
defined over multi-relational data (Cugola & Margara, 2012), instead of numerical data
points, Splice employs a distance function for sets of logical atoms, which represent the
training examples. The labelling process is achieved in a single-pass over the training data
by storing a compressed version of previously seen labelled examples.

Splice assumes that a training sequence arrives for processing in micro-batches. Each
micro-batch contains a sequence of ground evidence atoms, i.e., first-order logic ground
atoms, expressed in the Event Calculus (Kowalski & Sergot, 1986). Each micro-batch
can be fully labelled, partially labelled or may contain no labels at all. Each micro-batch
is grouped into examples of ground atoms, as depicted in Fig. 1. The ��������� and
������� atoms denote simple derived event (SDE) and CE occurrences respectively, while

1448 Machine Learning (2024) 113:1445–1481

1 3

the remaining atoms express contextual information. The micro-batch size is user-defined
and it is measured in time-points. In general the size can be arbitrarily large, however,
in practice, small micro-batches improve runtime performance. Splice assumes that CEs
appear chronologically immediately following the pattern of SDEs causing them. Grouped
examples contain exactly one ground query atom and a subset of the evidence atoms in the
micro-batch. The selected evidence atoms are linked to the query atom through their shared
constants, i.e., they should be relevant to the CE of interest. The top example in Fig. 1 is
labelled, stating that two persons are moving together, while the bottom one is unlabelled.
Unlabelled atoms are prefixed by the symbol ‘?’.

In order to address the online processing requirement, under the assumption that labels
are infrequent, Splice caches previously seen labelled examples for future usage. The cach-
ing mechanism only stores unique examples, along with their frequency (the number of
times they have appeared in the stream), in order to reduce the memory requirements. To
that end, Splice employs logical unification in order to check for uniqueness. The stored
labelled examples, together with the unlabelled examples of the micro-batch, compose the
vertices of the graph used in the subsequent steps.

Once the vertices have been collected, they are connected by edges representing the
structural similarity of their underlying evidence atoms. The structural similarity is adapted
from Nienhuys-Cheng (1997), by replacing the Haussdorf metric by the Kuhn–Munkres
algorithm Kuhn (1955). Let a pair of vertices vi = {ei1 … , eiM} and vj = {ej1,… , ejK} con-
sisting of M and K evidence atoms respectively (let M > K). Splice first computes the struc-
tural distance (Nienhuys-Cheng (1997), Definition 4) between each pair of evidence atoms
d(eim, ejk) , where m ∈ {1,… ,M} and k ∈ {1,… ,K} resulting in a M × K distance matrix
D . For instance, given the top and bottom examples of Fig. 1, the distance between evidence

Fig. 1 Examples contain a ground query atom, labelled or unlabelled, and a set of ground evidence atoms
that are linked to the query atom through their constants

1449Machine Learning (2024) 113:1445–1481

1 3

atoms etop = ���������(�������(���), 5) and ebottom = ���������(�������(���), 50)
is computed as follow:

where p is the term position. The matrix D is then given as an input cost matrix to the Kuhn-
Munkres algorithm, in order to find the optimal mapping of evidence atoms. The optimal
mapping is denoted here by the function g ∶ V × V ↦ {(m, k) ∶ m, k ∈ {1, … , K}} and is
the one that minimises the total cost, i.e., the sum of the distances of the mappings. Finally,
Splice computes the total distance between the vertices vi, vj as the sum of the distances
yielded by the optimal mapping, normalised by the greater dimension (M in this case) of
the matrix:

where M − K penalises all unmatched evidence atoms by the greatest possible distance,
which is 1. Thus, M − K can be seen as a regularisation term. The distance is turned into
a similarity s(vi, vj) = 1 − ds(vi, vj) , yielding a similarity matrix W . Then, a kNN filter is
applied on W in order to retain only edges between very similar vertices. The resulting
graph is used to derive labels for all unlabelled examples in the micro-batch, by obtaining
the harmonic solution to the optimisation problem defined by Zhu et al. (2003).

Each labelled micro-batch is forwarded to a logic-based structure learner, such as OleD
(Katzouris et al., 2016, 2018), in order to induce new or enhance existing CE rules. The
process is repeated for each micro-batch as it arrives.

Although Splice facilitates the automated discovery of CE rules in the presence of
incomplete supervision, its online procedure and distance function have limitations. The
performance of Splice is compromised by the presence of irrelevant features, because the
distance function is agnostic to the feature semantics. Moreover, it does not provide any
guarantee about the labelling computed per micro-batch, compared to the one that would
have been obtained if all examples were available as a large graph. In fact, as the micro-
batch size gets smaller, the harmonic solution produces labels that tend to be less depend-
ent on the unlabelled examples. It is worth noting that, in the case of true streaming (one
example per micro-batch), the optimisation reduces to kNN classification (Chapelle et al.,
2006).

2.2 Large‑margin nearest neighbour metric learning

Graph-based methods to semi-supervised learning rely on the cluster assumption, that is,
similar examples should yield the same labelling. Thus, the distance function constitutes a
key component of these methods and in fact controls the quality of the labelling. A com-
mon issue of most distance measures is that they are agnostic to the semantics of input
features. As a result, their measurements may suffer in the presence of irrelevant or noisy
features.

d(etop, ebottom) =
1

2p

p∑

i=1

d(etop,p, ebottom,p)

=
1

2 ⋅ 2

(
d
(
�������(���), �������(���)

)
+ d(5, 50)

)

=
1

4

(
1

2 ⋅ 1
d
(
���, ���

)
+ 1

)
=

1

4
(
1

2
⋅ 1 + 1) = 0.375

(1)ds(vi, vj) =
1

M

[
(M − K) +

∑

(m,k) ∈ g(vi ,vj)

Dmk

]

1450 Machine Learning (2024) 113:1445–1481

1 3

Large-margin nearest neighbour (LMNN) Weinberger and Saul (2009) is a metric learn-
ing technique that learns a distance pseudo-metric targeted to kNN classification. Intui-
tively, LMNN attempts to increase the number of examples in a neighbourhood that share
the same label, by learning a transformation of the input feature space using the Mahalano-
bis distance:

where the Euclidean distance can be recovered by setting M = I.
To that end, LMNN minimises a loss function consisting of two terms, one which pulls

target neighbours closer together, and another which pushes differently labelled examples
apart. The first term penalises large distances between instances that share the same label
and should be nearest neighbours. In terms of the transformation in the input space, the
sum of these squared distances is given by

where Nk
i
 denotes a set of target k-nearest neighbours for the instance xi . The target neigh-

bours of xi are those instances that we desire to be the closest to xi . In the simplest case, the
target neighbours may be all example instances having the same label to xi.

The second term penalises small distances between differently labelled examples, called
impostors. For an example xi with label yi and target neighbour xj , an impostor is any
example xl with label yl ≠ yi such that:

In other words, an impostor xl is any differently labelled example that invades the perimeter
plus unit margin defined by any target neighbour xj of xi . Hence, the second term penalises
violations of the above inequality as follows:

where the indicator variable yil = 1 if and only if yi = yl , and yil = 0 otherwise. Moreo-
ver, [z]+ = max(z, 0) denotes the standard hinge loss, which monitors inequality (4). If the
inequality does not hold (i.e., the input xl lies a safe distance away from xi), then its hinge
loss has a negative argument and doesn’t contribute to the overall loss. The combined loss
derived from Eq. (3) and Eq. (5) is as follows:

where the weighting parameter � ∈ [0, 1] balances the two goals. Figure 2 illustrates the
idea behind LMNN optimisation. Before learning, an input xi may have both target neigh-
bours xj and impostors xl in its local neighbourhood. After optimisation, the impostors are
pushed outside the perimeter established by the target neighbours and a finite margin exists
between the perimeter and the impostors.

A derivation of the LMNN technique, proposed in Chen et al. (2009), aims to learn
a vector m of feature weights, instead of a distance, by assuming that M is a diagonal
matrix with Mpp = mp ≥ 0 , and mp is the weight of the pth feature. Thus, the loss function
depicted in Eq. (6) becomes:

(2)dM(xi, xj) = (xi − xj)
⊤M(xi − xj)

(3)�pull(M) =
∑

i,j∈Nk
i

dM(xi, xj)

(4)dM(xi, xl) ≤ dM(xi, xj) + 1

(5)�push(M) =
∑

i,j∈Nk
i

∑

l

(1 − yil)
[
1 + dM(xi, xj) − dM(xi, xl)

]
+
,

(6)�(M) = (1 − �) �pull(M) + � �push(M),

1451Machine Learning (2024) 113:1445–1481

1 3

The minimisation of the simplified objective function presented above can be represented
as a linear optimisation problem with linear constraints as follows:

The non-negative slack variables �ijl mimic the effect of the hinge loss. In particular, each
slack variable �ijl ≥ 0 is used to measure the amount by which the margin inequality in
Eq. (4) is violated. The resulting weights m capture the importance of each input feature
and is adapted in our proposed method to perform feature subset selection in order to
exclude irrelevant or noisy logic atoms from the similarity measurements of Splice +.

2.3 Mass‑based dissimilarity

Supervised approaches to feature selection, such as LMNN, require explicit or implicit
computation of each feature importance, using the labels available in the training exam-
ples. However, in a semi-supervised learning task, that information may be inaccurate
due to the limited labels. Therefore, such criteria are not always reliable and their opti-
mality guarantees suffer from the fact that very few training examples are typically used

(7)�(m) = (1 − �)
∑

i,j∈Nk
i

dm(xi, xj) + �
∑

i,j∈Nk
i

∑

l

(1 − yil)
[
1 + dm(xi, xj) − dm(xi, xl)

]
+
,

(8)

minimise (1 − �)
∑

i,j∈Nk
i

||m(xi − xj)||2 + �
∑

i,j∈Nk
i

∑

l

(1 − yil)�ijl

subject to (1) ||m(xi − xl)||2 − ||m(xi − xj)||2 ≥ 1 − �ijl

(2) �ijl ≥ 0

(3) m ≥ 0

Fig. 2 The neighbourhood of x
i
 before and after optimisation. A distance metric is learned so that: (i) tar-

get neighbours (yellow circles) lie in a small radius from x
i
 ; (ii) impostors (blue diamond, red square) lie

outside this smaller radius by a finite margin. Arrows indicate pull and push operations respectively (after
Weinberger and Saul (2009)) (Color figure online)

1452 Machine Learning (2024) 113:1445–1481

1 3

during the optimisation. In order to improve feature selection, we attempt to combine
LMNN to a form of unsupervised metric learning.

A mass-based dissimilarity, proposed by Ting et al. (2019), employs estimates of the
probability mass to quantify the dissimilarity of two points. Mass dissimilarity measure-
ments mainly depend on the distribution of the data. The intuition is that the dissimilar-
ity of two points depends on the amount of probability mass in the region covering the
two points. Thus, two points in a dense region are less similar to each other than two
points of the same interpoint distance in a sparse region.

Let Hp denote a hierarchical partitioning of a space ℝn into a set of non-overlapping
(bottom-level) regions that collectively span ℝn . Moreover, each region in the hierar-
chy corresponds to the union of its child regions. Let H(D) denote the set of all such
hierarchical partitioning Hp that are admissible under a data set D, such that each non-
overlapping region contains at least one point from D. Then the smallest region cover-
ing a pair of points x, y ∈ ℝ

n with respect to a hierarchical partitioning model Hp of ℝn
is defined as:

where depth(r;Hp) is the depth of region r in the hierarchical model Hp.
Suppose that a dataset D is sampled from an unknown probability density function F.

Then, the mass-based dissimilarity of x and y w.r.t. D is defined as the expectation of the
probability that a randomly chosen point would lie in the smallest region R(x, y ∣ Hp):

where the expectation is computed over all possible partitionings H(D) of the data. In prac-
tice, however, mass-based dissimilarity can be estimated from a finite number of partition-
ings Hp ∈ H(D), p = 1,… , T as follows:

where P̃(R) = 1

∣D∣

∑
z∈D �(z ∈ R) estimates the probability of the smallest region R by

counting the data points in that region; and �(⋅) denotes an indicator function. Thus, the
probability of the data falling into the smallest region containing both x and y , is analogous
to the shortest distance between them measured in the geometric model.

In order to generate partitionings Hp , a recursive partitioning scheme is employed based
on the concept of the Isolation Forest (Liu et al., 2008). Isolation Forest is essentially an
ensemble of random trees, called Isolation Trees. Each Isolation Tree is built independently
using a subset of the data. At each internal node of the tree, a random split partitions the
data at that node into two non-empty subsets. The process is repeated recursively until
either every data point is isolated, that is all regions contain a single point, or a given maxi-
mum tree depth is reached.

Subsequently the resulting Isolation Forest can be used to compute the mass-based dis-
similarity of Eq. (9). Since each Isolation Tree essentially represents a partitioning Hp , the
mass-based dissimilarity can be defined as:

R(x, y ∣ Hp) = argmax
r∈Hp s.t.{x, y}∈ r

depth(r;Hp),

m(x, y ∣ D) = EH(D)

[
PF(R(x, y ∣ Hp;D))

]
,

(9)m̃(x, y ∣ D) =
1

T

T∑

p=1

P̃(R(x, y ∣ Hp;D)),

1453Machine Learning (2024) 113:1445–1481

1 3

where ∣R(x,y∣Hp)∣

∣D∣
 estimates the probability of region R, as denoted by P̃(R) in Eq. (9). To

compute Eq. (10), x and y are passed through each tree to find the mass of the deepest
node, containing both x and y i.e.,

∑
p ∣ R(x, y ∣ Hp) ∣ . Finally, m̃ is the mean of these

masses over the T trees.

2.4 Temporal label propagation

Traditionally, graph-based methods to semi-supervised learning (Zhu et al., 2009) assume
that all labelled and unlabelled data are stored in memory and thus are available during
the optimisation (label propagation) that yields the harmonic solution. However, that
is an unrealistic assumption in online processing of data streams. Splice as presented in
Sect. 2.1, relaxes this assumption by storing previously seen labelled examples and reusing
them in subsequent micro-bathes. Nevertheless, it still ignores previously seen unlabelled
examples and by extension their respective distances to the rest of the graph. Therefore,
Splice cannot guarantee that the global harmonic solution obtained by label propagation on
the entire graph is preserved on the local graph of the micro-batch.

Temporal Label Propagation (TLP) (Wagner et al., 2018) is a recent approach to label
propagation for fast-moving data streams. TLP stores a synopsis of the full history of the
stream, in order to retain information about the labelled and the unlabelled examples seen
so far and incorporate it into the subsequent optimisations. To that end, TLP allows for a
weighted graph G to be encoded into a smaller (re-weighted) graph, using only a subset V�
of the actual vertices V, called terminals. The reduced graph G⟨V�⟩ is called short-circuit
graph and it is known to retain the global properties of G ; most importantly, it preserves the
effective weights between every pair of terminal vertices. Wagner et al. (2018) proved that
this property allows for the harmonic solution to be preserved in the synopsis graph.

The Laplacian matrix of G⟨V�⟩ , required to obtain the harmonic solution, is given by the
Schur Complement Dörfler and Bullo (2013). Since computing the Shur Complement is as
expensive as computing the harmonic solution on the entire graph G , it provides no sub-
stantial speed-up for offline label propagation. However, TLP operates in a online fashion
and computes G⟨V�⟩ as a sequence of local operations, called star-mesh transformations.
This is a direct consequence of the sequential property of the Schur complement (Zhang
(2005), Theorem 4.10; Dörfler and Bullo (2013), Lemma III.1).

Definition 1 A star-mesh transformation on a vertex vo of a weighted graph G = (V ,E,W)
is defined as follows:

1. Star: Remove vo from G together with its set Eo of incident edges (vo, v) ∈ Eo.
2. Mesh: For every pair of vertices v, v� ∈ V such that (vo, v) ∈ Eo and (vo, v�) ∈ Eo , add

the edge (v, v�) to E with weight wv,v� =
wv,vo

wvo ,v
�

degree(vo)
 . If (v, v�) is already in E, then add the

new weight wv,v′ to its current weight.

The intuition of TLP is to apply star-mesh transforms as the data arrive for process-
ing, in order to continuously update the in-memory graph synopsis and deliver labels for
the incoming unlabelled examples, by computing the harmonic solution on the compressed

(10)m̃(x, y) =
1

T

T∑

p=1

∣ R(x, y ∣ Hp) ∣

∣ D ∣
,

1454 Machine Learning (2024) 113:1445–1481

1 3

graph. The star-mesh transforms remove edges by meshing their weights with the remain-
ing graph, so that the information provided by the removed vertex vo remains encoded.
Thus, the synopsis retains the ability to compute the labelling, for the rest of the vertices,
as if vo was still in the graph (Wagner et al. (2018), Theorem 4.1).

More formally, consider a (possibly infinite) data stream {vt}∞t=1 of incoming example
vertices that can be either labelled or unlabelled. TLP maintains a graph G⟨V�⟩ storing the
� more recent unlabelled examples, in addition to a pair of labelled node clusters, each
holding all the positive and negative examples seen so far. When a new unlabelled example
arrives, TLP appends it to G⟨V�⟩ and if the memory � has been exceeded, it removes the
oldest unlabelled example by applying the star-mesh transform of Definition 1. In the sim-
plest case, where a labelled example arrives, TLP just appends it to the appropriate cluster
node, thus always maintaining � + 2 nodes. The harmonic solution for each new unlabelled
example is then computed on G⟨V�⟩ and it is provably equal to the one computed on the
entire stream seen so far.

3 Online semi‑supervised learning combining structure
and mass‑based predicate similarity

Splice, as presented in Sect. 2.1, aims to effectively learn the structure of composite event
rules in the presence of incomplete supervision. However, we have identified a number
of issues in its graph construction process, that may compromise the online labelling of
the unlabelled data. First, the underlying structural distance is sensitive to the presence
of irrelevant or noisy features. Second, the distance measurements between labelled and
unlabelled data, inevitably, are as informative as the provided labels. If the given labels are
not representative of the underlying class distribution, so are the measurements. Third, the
online labelling inferred from the local graphs per micro-batch, provides no guarantee with
respect to the global solution obtained if all data where to be accessed at once.

The new method presented here, called Splice + , improves the quality of the graph con-
struction component, leading to more robust and accurate labelling of the incoming unla-
belled data. An overview of the components of Splice + is shown in Fig. 3. We present a
hybrid distance measure composed of two elementary distances, that overcomes the draw-
backs of the structural distance of Splice. The first of the two distance components is an
enhanced version of Eq. (1) that accounts for irrelevant or noisy features by selecting only
a subset of them, that is, the ones optimising kNN classification on labelled data. Since
such a feature selection is achieved using only the labelled data, the selected features may
not always be representative of the underlying classes. Therefore, we combine the opti-
mised structural distance with a data-driven mass-based dissimilarity, adapted to logical
atoms. This dissimilarity samples the space of logical structures, and employs mass estima-
tion theory to compute the relative distance between examples, measured as the probability
density of their least general generalisation (Plotkin, 1971).

In order to render Splice aware of the temporal nature of the data in CER, we further alter
its strategy for interconnecting graph vertices. We connect each unlabelled vertex to its k-near-
est labelled neighbours, as well as, to the temporally preceding unlabelled vertex. This way we
promote interactions between temporally adjacent unlabelled vertices during label propaga-
tion. Finally, we store a synopsis of the full history of the stream, by means of a short-circuit
operator, which preserves the effective distances of labelled and unlabelled example vertices
to be used in subsequent optimisations. The proposed improvements introduced in Splice +

1455Machine Learning (2024) 113:1445–1481

1 3

are detailed in the following subsections. To aid the presentation, we employ examples from
human activity recognition in video recordings.

3.1 Large‑margin feature selection for logical structures

In order to render the structural distance of Eq. (1) aware of irrelevant or noisy features, we
introduce a mechanism for feature selection based on the approach of LMNN metric learn-
ing. We adapt the idea of feature weighting, as presented in Sect. 2.2, to learn a binary vector,
instead of real-value one, representing the set of selected logical atoms that should be used
for computing distances. Towards that goal, we use a similar approach to propositionalization
(Zucker & Ganascia, 1996; Alphonse & Matwin, 2002). Let A be a set of first-order atoms
that can be constructed from a Herbrand base B and a set of mode declarations M , by replac-
ing constants with variables in B . Assuming a strict ordering of atoms in A , let b be a vec-
tor of binary variables, one for each first-order atom ai ∈ A . Thus, each indicator variable
bi = 1 if the ith atom is selected, and bi = 0 otherwise. Since each labelled training example is
essentially a clause c, it can also be represented by a binary vector xc = [x1,… , x∣A∣]

⊤ , where
each variable xi refers to the presence of the corresponding atom ai from A in clause c. For
instance, assuming that B contains the ground atoms appearing in Fig. 1, we can create an
ordered set of atoms as follows:

A =
{
���������(�������(�), t),

���������(�������(�), t), ���������(����(�), t),

��������������(�, �, t), �����(�, �, 34, t)
}

Fig. 3 The Splice + procedure

1456 Machine Learning (2024) 113:1445–1481

1 3

The top example from Fig. 1 is represented as xtop = [1, 1, 0, 1, 1] , the middle one as
xmid = [0, 1, 1, 0, 0] and the bottom one as xbot = [1, 1, 0, 1, 1] . The dissimilarity of two
such examples can be measured by a simple Hamming distance, which is equivalent to the
general Minkowski distance for p = 1 . Since the Minkowski distance is a generalisation of
the Euclidean distance, we reformulate the loss function of Eq. (7) as follows:

where x is the clausal form of an example, represented as a binary vector according to a
predetermined strict ordering over A , and b is the vector of indicator variables denoting
which features in x are selected. Moreover, we drop the first term of the loss function (cor-
responding to �pull), since it has been shown by Song et al. (2017) that the simpler problem
often results in better solutions. Moreover, the simpler loss function no longer depends on
the parameter � . The resulting minimisation problem is an integer programming problem
and can be solved using variants of the branch-and-bound or branch-and-cut methods (Wil-
liams, 2009), albeit less efficiently, since it is NP-hard, than the real-valued problem1:

The intuition of our proposed for feature subset selection, called Large-Margin Feature
Selection (LMFS), is to keep the minimal set of logical atoms (features) that are necessary
to discriminate a given set of labelled examples. Note that the slack variables that moni-
tor the hinge loss are integers, instead of real values since a hamming distance yields only
integer differences. Moreover, we have added an extra constraint that forces all examples
to have at least one selected logical atom. This constraint is necessary to avoid degenerate
solutions that remove all atoms yielding empty examples.

Given the optimal vector b , we can generalise all future exam-
ples by removing features for which bi = 0 . For instance, if the opti-
mal vector is b⋆ = [1, 1, 1, 0, 0] , then the top example would become
vb
top

= b⋆xtop = [0, 0, 0, 1, 0] = {���������(�������(�), t), ���������(�������(�), t)} ,
while the middle example would become
vb
mid

= b⋆xmid = [0, 0, 1, 0, 0] = {���������(����(�), t)} . Then, the structural distance
can be computed as usual, by applying Eq. (1) on the generalised examples:

�(b) = (1 − �)
∑

i,j∈Nk
i

b ∣ xi − xj ∣ +�
∑

i,j∈Nk
i

∑

l

(1 − yil)
[
1 + b ∣ xi − xj ∣ −b ∣ xi − xl ∣

]
+
,

(11)

minimise
∑

i,j∈Nk
i

∑

l

(1 − yil)�ijl

subject to (1) b ∣ xi − xl ∣ −b ∣ xi − xj ∣≥ 1 − �ijl

(2) bxi ≥ 1

(3) �ijl ∈ ℕ
≥

(4) b ∈ {0, 1}∣A∣

(12)db
s
(vi, vj) = ds(v

b
i
, vb

j
),

1 Note that in a semi-supervised problem the labelled examples are very few and sparse, leading to a very
small number of constraints and thus Eq. (11) can be solved fast enough.

1457Machine Learning (2024) 113:1445–1481

1 3

where vi, vj are examples and vb
i
, vb

j
 their generalised counterparts, where some first-order

atoms have been removed. The distance measures notation is summarised in Table 1. One
issue that may arise from selecting features using only the labelled examples is that some
atoms may appear only in unlabelled examples, and thus, not considered during the optimi-
sation. Regarding those atoms, that appear only in the unlabelled examples, we assume that
they are always selected (b = 1) and use them in distance measurements.

LMNN requires training examples to be accompanied by labels, which in our case leads
to the selection of features that discriminate between positive and negative labelled exam-
ples. However, in a Hamming space distances change quite abruptly because a single mis-
match between two binary vectors always yields a penalty of 1 between the vectors. There-
fore, while in a Euclidean space two points can be close or far in a specific dimension,
according to their real-valued difference, in a Hamming space they are either the same or
different in that dimension. Thus, clauses formed from training examples may appear very
different inside the boundaries of a specific class, leading to very sparse solutions since the
optimisation would try to force them to become similar by removing atoms that cause mis-
matches. To avoid such situations, similar to Deng and Luo (2015), we perform clustering
of the examples of each class and use the clusters as distinct classes to solve the optimisa-
tion problem.

Since we are interested in clustering the examples of each class into cohesive clusters,
we cannot use a distance-based clustering, as it will suffer from the same noisy and irrel-
evant features that we aim to get rid of in the first place. To avoid that pitfall, we employ
a clustering approach based on �-subsumption. Examples in a cluster that are connected
through a �-subsumption relation and have the same label, define a taxonomic hierarchy
containing all examples that are members of a specific concept. For instance, if two exam-
ples of the same class and length only differ in one atom, they cannot be on the same
cluster under �-subsumption. Consider the top and middle examples of Fig. 1. They should
form a pair of unit clusters, since they belong to opposite classes. If the bottom example
was also positive, then it should belong to the same cluster as the top example since it �
-subsumes the top example. Thus, the resulting set of clusters represents a strict partition-
ing of the example space into distinct sub-concepts. The examples inside a specific cluster
express more general versions of the same concept (under �-subsumption), while examples
between clusters of the same class express alternative definitions of the concept. Thus the
push constraint of Eq. (11) enforces alternative definitions to differ in at least one atom.
Given such a clustering, the optimisation of Eq. (11) should select features that respect that
partitioning, identifying which features are necessary for discriminating each sub-concept
(Deng & Luo, 2015).

Algorithm 1 presents the pseudo-code for selecting the first-order atoms that best dis-
criminate the known labelled examples into sub-concepts. The algorithm requires as input
a set of labelled examples, a set of mode declarations, and produces a vector of selected

Table 1 Distance measures
notation

Symbol Description

d
s

Structural distance (Splice)
d
b

s
Optimised (LMFS) structural distance

m̃ Mass-based dissimilarity
d
b

h
Optimised (LMFS) hybrid distance (Splice +)

d
h

Non-optimised hybrid distance

1458 Machine Learning (2024) 113:1445–1481

1 3

features. It starts by partitioning the given examples into positive and negative (line 1).
Then for each of the two sets it finds the example having the most evidence atoms (ties are
broken randomly) and creates unit clusters with these examples (lines 2–3). For each of the
remaining examples it either appends to an existing cluster, if another example exists that
is �-subsumed by the candidate, or it creates a new unit cluster (lines 4–7). Finally, it solves
the optimisation of Eq. (11) using the clusters as classes and returns the vector of selected
features (lines 8–9).

3.2 Mass dissimilarity for logical structures

Supervised learning approaches to feature selection require explicit or implicit computa-
tion of the information/importance of each feature using the labels available in the training
examples. However, in a semi-supervised learning task, the few labels that are often avail-
able are not sufficient for acquiring trustworthy estimation of the feature importance. Thus,
common feature selection criteria are not reliable and their optimality guarantees suffer
from the fact that only a few training examples are available.

In order to address the issue, we combine the optimised distance, as presented in
Sect. 3.1, with a data-driven dissimilarity that uses mass estimation to measure the distance
between data points. The intuition of the measure is that two points are considered to be
more similar if they coexist in a sparse space rather than in a dense one. Unlike the distance
estimation presented in the previous section, the proposed approach exploits both labelled
and unlabelled data to quantify the distances between examples of interest.

To that end, we adapt the approach presented in Sect. 2.3 to handle logical structures
by means of the Herbrand base B and a set of mode declarations M , the combination of
which generates a set of logical atoms A (see Sect. 3.1). Since the space of logical atoms is
a hypercube {0, 1}∣A∣ , we can define a hierarchical partitioning H of the hypercube by ran-
domly constructing a Half-Space Tree (Ting et al., 2013). In contrast to Ting et al. (2019),
which assumes real-valued features, we can construct the trees beforehand because each
internal node of the tree can only have one possible split, since atoms are binary. Algo-
rithm 2 presents the pseudo-code for creating a forest of binary random trees.

Algorithm 1 LMFS V
L
, M

1459Machine Learning (2024) 113:1445–1481

1 3

The algorithm requires as input a set of first-order atoms, a number of trees, and a maxi-
mum height for each tree. We start from an empty set and iteratively generate random trees
(see lines 1–4). Each node in the tree consists of a split atom, a left and right subtree, as
well as, a size variable that stores the number of examples that have matched the path to
this node. Each tree is built recursively by picking an atom at random from the given set
of available atoms and creating two random subtrees on the remaining atoms (lines 9–11).
The process terminates if no atoms are left in the set A or the maximum height is reached.

Note that during tree creation, each internal node of each tree has zero size. Tree crea-
tion happens before any data are processed. The size of the nodes is updated as more data
stream in. Algorithm 3 describes this update process. The algorithm requires as input a for-
est of binary random trees and a set of examples. For each example it updates the counts of
the internal nodes of each tree (lines 1–2). The update procedure is a recursive process that
increments the size of the current node and then proceeds to the update of the child node
that matches the split criterion of the current node (lines 5–7). Since each example is a set
of atoms the split criterion match is checked by the membership of the split atom. Thus,
the path from the root to the leaf that contains the matched atoms of the given example
increments the counts of its nodes. Updating the size of single tree, given a single example,
is equivalent to traversing a single path from the root to a leaf in a binary tree. Thus, the
runtime complexity of updating the entire forest is O(|F||V| log(h)) , where h is the height
of the tree and trees are height-balanced.

The intuition behind this relational version of Half-Space Trees is that we estimate the
mass of specific areas of the subsumption lattice generated from a given Herbrand base
B and constrained by the mode declarations M . Figure 4 depicts a part of the subsump-
tion lattice constructed from the atoms appearing in the training sequence of Fig. 3. The
top of the lattice represents the empty clause, a rule having no literals, while the bottom

Algorithm 2 createFOreSt A, T , h

1460 Machine Learning (2024) 113:1445–1481

1 3

represents the bottom clause, a rule containing all possible literals. Note that the bottom
clause is a theoretical concept and it is never actually constructed. The highlighted part of
the lattice presents a possible Half-Space Tree constructed by selecting one split atom per
level, while the numbers represent the size of each node. In this case the sizes correspond
to the three examples of Fig. 1. Therefore, each tree essentially represents only a part of the
lattice and estimates the mass of each node from data. Given two examples, their overlap
(set of common atoms) is quantified as the size of the deepest node in the tree that contains
all common atoms along its path from the root. If the size is small, then these two examples
are located in a sparse part of the space and thus they are considered more similar. Con-
sider for instance the top and middle examples of Fig. 1. Their set of common atoms is just
the atom ���������(�������(�), t) , which, in the tree appearing in Fig. 4, is located in
the first level of the tree and has size 3. Therefore, these examples co-exist in a dense part
of the tree and they may be considered less similar. Note that the dissimilarity estimates the
mass of the least general generalisation (lgg) of the examples, as defined by Plotkin (1971),
which represents the least general rule that covers both examples. If the mass of their lgg
is high then the rule is very common and covers a lot of examples which indicates that the
rule is not very interesting.

The resulting Half-Space Forest can be used to compute the dissimilarity of Eq. (10) for
a pair of examples as follows:

where vi, vj are two examples, Hp is a binary Half-Space Tree (out of T), D is the set of all
examples used to update the trees and R, similar to Sect. 2.3, is the deepest region covering
both examples. Thus, given the tree presented in Fig. 4, the top and middle examples of
Fig. 1 would have dissimilarity m̃(vtop, vmiddle) = 1 , since |R(vtop, vmiddle ∣ H1)| = 3 , |D| = 3
and T = 1.

3.3 Robust graph construction and labelling

Given a set of examples our goal is to connect them by edges representing the similarity
of the underlying evidence atom sets. The resulting graph is used to derive labels for all

m̃(vi, vj) =
1

T

T∑

p=1

∣ R(vi, vj ∣ Hp) ∣

∣ D ∣

Algorithm 3 UpDateFOreSt F, V

1461Machine Learning (2024) 113:1445–1481

1 3

unlabelled example vertices in the current data micro-batch. In order to construct the simi-
larity graph for label propagation we combine the mass-based dissimilarity, as presented in
Sect. 3.2, with the optimised structural distance of Eq. (12) as follows:

where � controls the relative importance of each of the two distances (see Table 1 for the
notation of the distance measures). Similar to Splice, the hybrid distance is turned into a
similarity as 1 − db

h
(vi, vj).

Fully connecting the vertices generates a N × N symmetrical adjacency matrix W , com-
prising the weights of all graph edges. In order to make the graph sparser, we aim to select
the stronger edges on each neighbourhood. To that end, Splice + uses a temporal variant
of kNN that connects each unlabelled vertex to its k-nearest (most similar) labelled neigh-
bours, as well as to its temporally adjacent ones. For instance, the bottom example in Fig. 1
would connect to the examples at time-points 49 and 51, since they are temporally adjacent
to time-point 50, and would also connect to its k closest labelled examples. If k = 1 then it
would connect only to the top example since they are almost identical. The intuition behind
this extension of kNN is that temporally adjacent vertices should affect the labelling of
each other. In terms of label propagation, temporally adjacent neighbours should exchange
information about their labelling, albeit weighted by their similarity.

Moreover, in order to obtain guarantees for the online labelling achieved by label propa-
gation on the local graphs built from the micro-batches, Splice + stores a synopsis of the
graph, as presented in Sect. 2.4. Given a memory size parameter � , the synopsis removes

db
h
(vi, vj) = 𝛼 db

s
(vi, vj) + (1 − 𝛼) m̃(vi, vj),

Fig. 4 Path selected by a random tree from the subsumption lattice

1462 Machine Learning (2024) 113:1445–1481

1 3

older vertices from the graph (when memory size is exceeded), in order to make room for
newer ones, by meshing their edges to the rest of the graph using star-mesh transforms.
The harmonic solution computed on the compressed graph is guaranteed to be equal to the
one computed on the entire stream seen so far (Wagner et al., 2018). Therefore, the synop-
sis renders the labelling invariant to different batch sizes. Algorithm 4 presents the graph
construction pseudo-code.

The algorithm requires as input a pre-built Half-Space Forest, and a set of examples.
The examples are partitioned into labelled and unlabelled at line 1. Then only the examples
received in the current micro-batch t (labelled Vt

L
 and unlabelled Vt

U
) are used for updat-

ing the forest counts at line 2. Subsequently, if the micro-batch t contains only unlabelled
examples and labels have been added in VL since the last time LMFS was run, the optimal
set of features is re-computed (lines 3–4). In lines 5–9 the graph connection process takes
place. Each stored example is connected to the unlabelled examples received at micro-
batch t. The set V� of stored examples is composed of all the labelled examples VL and
the � stored unlabelled ones, VU ⧵ Vt

U
 , where � is the synopsis size. Then, the temporal-

kNN connection heuristic is applied at line 10 to make the graph sparser. As a final step,
while the number of stored unlabelled examples is greater than the given memory size � ,
the algorithm removes the oldest example together with its edges and applies a star-mesh
transform to its neighbours (lines 11–15).

Algorithm 4 GraphcOnStrUctiOn F, V, �

1463Machine Learning (2024) 113:1445–1481

1 3

4 Empirical evaluation

Our experimental hypothesis is that Splice + should outperform Splice. To that end, we
compare Splice + to its predecessor (Splice) on the task of composite event recognition
(CER), using OleD, an open-source software2 for online structure learning. We also
perform experiments using an Iterative Cross-Training (ICT) technique, proposed by
Soonthornphisaj and Kijsirikul (2004). In order to be able to learn EC theories, we replace
the prOGOl system (Muggleton, 1995) with ILASP (Law et al., 2016, 2018), a state-of-the-
art structure learner. Since ICT combines ILASP with a Naive Bayes classifier, we refer
to the combined system as ILASP-NB. For the experiments, we use the publicly avail-
able benchmark activity recognition dataset of the CAVIAR project,3 the publicly available
maritime monitoring dataset, concerning the activity of vessels in the Atlantic Ocean, near
the port of Brest, France,4 and a fleet management dataset, recording the activity of vehi-
cles around Greece and some neighbouring countries.5 The experiments were performed
on a computer with an Intel i7 4790@3.6GHz CPU (4 cores, 8 threads) and 16GiB of
RAM. All presented experiments can be reproduced, following the provided instructions.6

4.1 Description of datasets

The activity recognition dataset comprises 28 surveillance videos, where each video frame
is annotated by human experts on two levels. The first level contains SDEs (simple, derived
events) that concern instantaneous activities of individual persons, detected on video
frames, such as when a person is walking or staying inactive. In addition, the coordinates
of tracked persons are used to capture spatial relations, e.g. two persons being relatively
close to each other. The second level contains CEs, describing activities between multiple
persons and/or objects, i.e., people meeting or moving together.

Similar to our earlier work (Michelioudakis et al., 2019), we focus on the ���� and
���� CEs, and from the 28 videos, we extract 19 sequences that contain annotations for
these CEs. The rest of the sequences in the dataset are ignored, as they do not contain posi-
tive examples of these two target CEs. Out of the 19 sequences, 8 are annotated with both
���� and ���� activities, 9 are annotated only with ���� and 2 only with ���� . The total
length of the extracted sequences is 12, 869 video frames. Each frame is annotated with
the (non-)occurrence of a CE and is considered an example instance. The dataset contains
a total of 63, 147 SDEs and 12, 869 annotated CE instances. Out of those, there are 6, 272
example instances of ���� and 3, 722 instances of ���� . Thus, for both CEs the number of
negatives is significantly larger than the number of positives.

The maritime dataset consists of vessel position signals (AIS messages) sailing the
Atlantic Ocean, around Brest, France. The SDEs take the form of compressed trajecto-
ries, comprising “critical points”, such as communication gap (a vessel stops transmit-
ting position signals), vessel speed change, and turn. It has been shown that compressing

2 https:// github. com/ nkatzz/ OLED.
3 http:// homep ages. inf. ed. ac. uk/ rbf/ CAVIA RDATA1.
4 https:// zenodo. org/ record/ 11675 95.
5 https:// www. vodaf onein novus. com.
6 Instructions for reproducing all experiments may be found in:
 https:// users. iit. demok ritos. gr/ ~vagmcs/ pub/ splice_ plus.

https://github.com/nkatzz/OLED
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
https://zenodo.org/record/1167595
https://www.vodafoneinnovus.com
https://users.iit.demokritos.gr/%7evagmcs/pub/splice_plus

1464 Machine Learning (2024) 113:1445–1481

1 3

vessel trajectories allows for accurate trajectory reconstruction, while at the same time
improving stream reasoning times significantly (Patroumpas et al., 2017). We focus on
the ���������� and �������� CEs. The former expresses a potentially illegal activity
where two vessels are moving slowly in the open sea and are close to each other, possibly
exchanging commodities, while the latter describes the activity of piloting a vessel. Since
the dataset is unlabelled, we produced synthetic annotation by performing CER using the
RTEC engine (Artikis et al., 2015) and hand-crafted rules of ���������� and ��������
CEs (Pitsikalis et al., 2019). The CE annotation is publicly available.7 We have extracted
6 sequences for each CE from the dataset. Regarding ���������� , the total length of
the sequences is 11, 930 timestamps, while for �������� , sequences comprise 6, 678
timestamps. There are 1, 425 instances in which ���������� occurs and 769 in which
�������� occurs.

The fleet management dataset consists of vehicles moving around Greece and neigh-
bouring countries. The SDEs include positional information, such as vehicle speed
changes, proximity to points of interest and operational status, such as fuel level. We focus
on ������������������ and ���������������� CEs, since they are the more complex
ones. The former expresses a driving activity where the driver is over-speeding despite hav-
ing limited fuel, while the latter describes various dangerous driving behaviours, including
over-speeding on ice, abrupt accelerating or braking and cornering other vehicles. Since
the dataset is unlabelled, we produced synthetic annotation similar to the maritime dataset,
using the RTEC engine and hand-crafted rules. We have extracted 10 and 12 sequences for
������������������ and ���������������� respectively. The ������������������
CE, comprises 13, 255 timestamps, while ���������������� comprises 13, 387 times-
tamps. There are 1, 589 example instances that ������������������ occurs and 639 for
����������������.

4.2 Experimental setup

Two learning scenarios have been evaluated, with corresponding experiments. In the first
scenario, a number of micro-batches were selected uniformly at random and their labels
were hidden from the learner. We experimented retaining 5% , 10% , 20% , 40% and 80% of
the micro-batches labelled. The micro-batches were selected using stratified sampling in
order to retain the original class proportions on each supervision percentage. We repeated
the random selection 20 times, leading to 20 runs per supervision level, in order to obtain a
good estimate of the performance.

This random selection scenario was the one used in Splice, making the results directly
comparable to our earlier work (Michelioudakis et al., 2019). However, in a typical stream
learning situation, usually, the assumption of labels arriving randomly on-stream is unre-
alistic. A more appropriate assumption is that a training set appears at the beginning of the
stream, or stored in a database as historical data, while the rest of the data stream-in com-
pletely unsupervised. Moreover, in contrast to the random selection, labels sampled only
from a specific time frame are less representative of the actual distribution of the underly-
ing classes, which makes the problem more challenging.

Our second evaluation scenario simulates this more realistic setting, using 1, 2 and 4
labelled training sequences (out of 6) for the maritime dataset, and 1, 2, 4 and 8 (out of

7 https:// zenodo. org/ record/ 25572 90.

https://zenodo.org/record/2557290

1465Machine Learning (2024) 113:1445–1481

1 3

19) for the CAVIAR and the fleet management dataset. We considered only sequences
that contain both positive and negative examples and generated 5 test sets. For each test
set we used the remaining sequences for creating the train sets. More precisely, each of
the remaining sequences is used to generate multiple train sets containing a number of
labelled sequences appearing in the beginning of the train set, while the rest of the train
set remains completely unlabelled. For instance a 1 labelled sequence set contains one
sequence that is fully labelled and appears first in the train set, while every other sequence
in the set remains completely unlabelled. In order to avoid the selection bias, we exhaus-
tively generated all possible 1 labelled sequence sets for each test set, while for 2, 4 and 8
we randomly selected some candidate sets. This process led to 40 runs for the ���� and
������������������ CEs, 72 for the ���� CE, 60 for the ���������������� CE, and
30 for the �������� and ���������� CEs. Since each sequence contained different pro-
portions of positive and negative examples, the runs were not stratified.

We present accuracy results for both supervision completion and structure learning
using the F1-score. All reported statistics are micro-averaged over the recognised instances
of CEs. The F1-score of supervision completion is measured over both train and test sets.
For structure learning, the reported statistics on the CAVIAR dataset, were collected using
10-fold cross validation over the 19 video sequences, while complete videos were left out
for testing. The same number of folds were also used for the fleet management dataset. In
the maritime dataset, the statistics were collected using 6-fold cross validation over the
selected sequences, leaving again complete sequences out for testing.

We follow Ting et al. (2019) and use T = 100 random trees for computing the mass-
based dissimilarity, and � = 0.5 in order to equally weight the two distance measures. We
only present results for the best performing k values for both Splice and Splice + in order to
avoid clutter. We have experimented using k ∈ [1, 5] , but for larger k values, performance
was notably decreasing for both algorithms. It is worth noting that for any combination of
k, Splice + always outperforms Splice. However, the connection strategy used by Splice +
is not directly comparable to that of Splice. A more detailed hyper-parameter selection for
Splice can be found in Michelioudakis et al. (2019). ILASP was trained using the default
parameters.

4.3 Experimental results

4.3.1 Activity recognition

First, we compare the performance of Splice + against Splice on the activity recognition
dataset for both ���� and ���� CEs. Figure 5 shows the F 1-score achieved by the supervi-
sion completion on both scenarios, without any structure learning. The results suggest that
Splice + effectively infers the missing labels and its performance increases as more supervi-
sion is given. More importantly, it significantly outperforms both Splice and ILASP-NB in
most cases even at high supervision levels (80% uniform supervision or 8 sequences). As
expected, the difference is greater in the more realistic scenario, where labelled data are
provided only at the beginning of the training sequence. ILASP-NB achieves comparable
accuracy to Splice + on the random supervision scenario for low supervision levels. How-
ever, it is worth noting that ILASP-NB is a batch learning system that requires all data to
be available at once and may require multiple iterations to converge. As a result, it was 12
times slower than Splice + in the CAVIAR dataset.

1466 Machine Learning (2024) 113:1445–1481

1 3

Improved performance in Splice + comes at the cost of a decrease in runtime, i.e., the
time to process both the train and test set, as shown in Fig. 6. Note that Splice + is always
slower than Splice, since it has to update the trees and select appropriate features for every
micro-batch. However the penalty is tolerable in absolute times, as it does not exceed 15
seconds. Note that runtime tends to increase between 5% and 20% of random supervision,
and then falls again, as more supervision is given. This is due to fact that Splice + , for effi-
ciency reasons, performs feature selection only when a labelled micro-batch is followed
by an unlabelled one (see Algorithm 4). In the absence of unlabelled micro-batches, we
simply store the incoming labels and perform the costly optimisation task only when nec-
essary, i.e., in the presence of unlabelled data. In the cases of 20% or 40% supervision, this
situation occurs much more frequently than when 5% or 80% supervision is provided. A
similar pattern is observed in the early supervision setting, where feature selection only
runs once, since all labels arrive in the beginning of training.

Table 2 compares the F 1-score of Splice + using the default, optimized hybrid distance
(db

h
), as presented in Fig. 5, against the simpler structural distance (ds). We only present

the F 1-score for low supervision levels because they are the more interesting in a semi-
supervised setting. The results suggest that the informed hybrid distance always performs
better than the simpler structural distance. In particular, the proposed distance led to 5%
and 8% improvement in F 1-score on average for the random and early supervision scenarios
respectively.

Fig. 5 F1-score of supervision completion on ���� (left) and ���� (right) as supervision increases. In the
first scenario, supervision arrives uniformly at random (top), while in the second one is provided only at
the beginning of the sequence (bottom). The notation d

s
 and db

h
 refer to the structural and hybrid distances

respectively

1467Machine Learning (2024) 113:1445–1481

1 3

Figure 7 presents the structure learning results using the OLED system for con-
structing CE rules. We compare OleD using Splice for supervision completion against
OleD using Splice + , and OleD alone without any supervision completion. OleD
alone only uses the supervised portion of each dataset for training, while everything else
is ignored. As expected, Splice-OleD and Splice +-OleD always outperform OleD,
confirming that our supervision completion approach is indeed very helpful for learn-
ing good CE rules in the presence of missing labels. Comparing Splice +-OleD to its
predecessor Splice-OleD the only noticeable difference is in the ���� CE, when little
supervision is available. In that case, the Splice + labels lead to better structure learning,
in both supervision settings. The same does not seem to hold for the ���� CE. This is
mainly due to the fact that the ���� activity can be captured by a single rule and thus it
is easier to learn from a small portion of data, while ���� requires several distinct rules.

4.3.2 Maritime monitoring

For the maritime monitoring dataset, we performed the same evaluation, as for human
activity recognition, for both �������� and ���������� CEs. The F 1-score of supervision

Fig. 6 Runtime performance of supervision completion on ���� (left) and ���� (right) as supervision
increases. The runtime is macro-averaged over all samples. In the first scenario, supervision arrives uni-
formly at random (top), while in the second one is provided only at the beginning of training (bottom). We
do not present the runtime of ILASP-NB here, since it is much higher than Splice + (≈ 400 seconds) and the
scaling does not help the discussion of the results

1468 Machine Learning (2024) 113:1445–1481

1 3

completion on both scenarios, using the same notation, is presented in Fig. 8. The results
suggest that Splice + effectively infers the missing labels, significantly outperforms Splice
in all cases, even for high supervision levels (80% uniform supervision or 8 sequences).
The difference is again larger in the early supervision scenario, where supervision appears
only in the beginning of training. The results of ILASP-NB are not shown here, due to very
high training times of the algorithm. In particular, a single run of ILASP-NB requires more
than 3 hours to complete, while Splice + achieves better results in 30 seconds.

An interesting observation is that in the early supervision scenario the F 1-score of
�������� CE is very high even for 1 labelled sequence and does not change much as the
supervision increases, which indicates that one sequence has enough labels to efficiently
infer all the missing ones. Note that this performance is not matched by the random super-
vision scenario, even at 80% . However, in the random supervision scenario, in contrast to

Table 2 Comparison of Splice
+ using the structural distance
(d

s
) against the optimized hybrid

distance (db
h
) on ���� and ����

Bold font highlights the best performing distance measure

CE Distance Random supervision Early supervision

5% 10% 1 2

���� d
s

0.62 0.70 0.56 0.69
d
b

h
0.67 0.77 0.70 0.76

���� d
s

0.57 0.64 0.67 0.71
d
b

h
0.58 0.69 0.73 0.75

Fig. 7 Structure learning using OleD on ���� (left) and ���� (right) as supervision increases. In the first
scenario, supervision arrives uniformly at random (top), while in the second one is provided at the begin-
ning of the training sequence (bottom)

1469Machine Learning (2024) 113:1445–1481

1 3

the early supervision one, some unlabelled data arrive before all the labelled data have
been collected, which leads to mistakes.

As expected, the improved labelling accuracy of Splice + comes with a cost in runt-
ime performance over Splice. Recall that Splice + is slower than Splice because it needs to
update the trees and select features for each micro-batch. However, the computational pen-
alty is still tolerable since it is typically below 25 seconds. Full runtime results are included
in the online Appendix.8

Similar to the task of human activity recognition, in Table 3, we present the F 1-score of
Splice + using the default, optimized hybrid distance (db

h
), as presented in Fig. 8, against

the simpler structural distance (ds). The results confirm the improved performance of the
informed hybrid distance. In particular, the proposed distance led to 6% and 5% improve-
ment in F 1-score on average for the random and early supervision scenarios respectively.

In Table 4, we present the change in F 1-score as the batch size increases. Splice + is
more robust than Splice, and this is more apparent in the maritime dataset, as opposed to
the activity recognition one, the results for which are presented in the online Appendix.
On �������� , when 1 supervised sequence is provided, the F 1-score of Splice varies from
0.02 to 0.1, while that of Splice + varies only 0.01. For 2 supervised sequences the varia-
tion is even greater, since the F 1-score of Splice varies from 0.03–0.18, in contrast to that

Fig. 8 F1-score of supervision completion on �������� (left) and ���������� (right) as supervision
increases. In the first scenario, supervision arrives uniformly at random (top), while in the second one,
supervision is provided only at the beginning of the training sequence (bottom)

8 https:// users. iit. demok ritos. gr/ ~vagmcs/ pub/ splice_ plus/ appen dix. pdf.

https://users.iit.demokritos.gr/%7evagmcs/pub/splice_plus/appendix.pdf

1470 Machine Learning (2024) 113:1445–1481

1 3

of Splice + where the variation remains 0.01. The same holds for the ���������� CE,
where for 1 supervised sequence, Splice varies from 0.08–0.15, while Splice + varies only
0.01.

In Fig. 9, we present the structure learning results of Splice-OleD against Splice +-
OleD, and OleD alone using the incomplete dataset (OleD alone uses only the labelled
examples). Splice +-OleD clearly outperforms both Splice-OleD and OleD alone by a
large margin, which indicates the usefulness of the proposed approach.

4.3.3 Fleet management

For the fleet management dataset, the F 1-score of supervision completion on both sce-
narios for the ������������������ and ���������������� CEs is depicted in Fig. 10.
The results appear to be consistent with the previous tasks, since Splice + yields the best
overall performance. However, in this dataset the difference with Splice is smaller, due
to the fact that fleet management does not have irrelevant or noisy features. Thus, the dif-
ference in performance is only due to the graph synopsis, that yields improved solutions,
instead of the hybrid distance that accounts for feature significance. ILASP-NB, on the
other hand, achieves comparable performance only in the random supervision scenario for
������������������.

The absolute difference in runtime cost between Splice + and Splice is similar to that
observed in the activity recognition dataset (see online Appendix for a full comparison).
Briefly, the computational penalty is typically below 20 seconds, due to the updates of the

Table 3 Comparison of Splice +
on �������� and ����������
using the simple structural
distance (d

s
) and the hybrid

distance (db
h
)

Bold font highlights the best performing distance measure

CE Distance Random supervi-
sion

Early supervi-
sion

5% 10% 1 2

���������� d
s

0.59 0.70 0.69 0.79
d
b

h
0.62 0.75 0.74 0.81

�������� d
s

0.47 0.63 0.78 0.90
d
b

h
0.56 0.69 0.95 0.96

Table 4 F1-score of �������� ,
���������� for varying batch
sizes: Splice/Splice +

CE Batch size Number of supervised sequences

1 2 4

�������� 10 0.63/0.96 0.88/0.97 0.92/0.97
25 0.69/0.96 0.85/0.96 0.91/0.97
50 0.71/0.96 0.88/0.96 0.91/0.97

100 0.61/0.95 0.70/0.96 0.75/0.97
���������� 10 0.63/0.74 0.77/0.86 0.87/0.93

25 0.58/0.74 0.72//0.86 0.84/0.90
50 0.56/0.74 0.75/0.86 0.83/0.90

100 0.48/0.75 0.61/0.81 0.83/0.92

1471Machine Learning (2024) 113:1445–1481

1 3

trees and feature selection. ILASP-NB, on the other hand, is 3 times slower than Splice + ,
since it requires all the data to be available at once.

Finally, in Fig. 11, we present the structure learning results of Splice-OleD against
Splice +-OleD, and OleD alone using the incomplete dataset (OleD alone uses only the
labelled examples). Splice +-OleD outperforms Splice-OleD in only one of the four sub-
figures, namely ������������������ under random supervision. This is in agreement
with the supervision completion results, shown in Fig. 10.

4.4 Discussion

The experimental results on the three real-life datasets demonstrated that our proposed
method can effectively learn Event Calculus theories even in the presence of irrelevant
or noisy features. In such cases, it outperforms its predecessor (Splice), while in the sim-
pler cases, such as in the fleet management dataset, it yields at least as good performance.
Moreover, the findings suggest that the graph synopsis and the temporal connection of the
unlabelled examples enable Splice + to achieve robust labelling regardless of the batch size.

In the presence of noisy or irrelevant features, each component of the proposed hybrid
distance function contributes to an improved overall performance. The feature selec-
tion component works well when the labels are sufficient to select a good subset of logi-
cal atoms. However, in a semi-supervised learning task, this is not always the case, as in

Fig. 9 Structure learning on �������� (left) and ���������� (right) as supervision increases. In the first
scenario, supervision arrives uniformly at random (top), while in the second one is provided at the begin-
ning of the training sequence (bottom)

1472 Machine Learning (2024) 113:1445–1481

1 3

the case of the maritime monitoring dataset, where no gain is observed. In contrast, we
observe on average 2% and 4% improvement for random and early supervision respectively
in the activity recognition dataset. On the other hand, the mass-based dissimilarity seems
to improve F 1-score by 4% and 5% on average in activity recognition and by 5% and 8%
on maritime monitoring (see online Appendix). By combining both supervised and unsu-
pervised metric learning, Splice + manages to refine the distance measurements when the
provided CE examples are noisy, similar to negative examples, or have multiple, alterna-
tive definitions (Tables 2 and 3). Splice fails to infer the labels correctly in these cases,
because it relies solely on the structural distance of Eq. (1) without considering the relative
importance of different features (logical atoms). Hence, Splice performs well only on fleet
management and ���� CE (see Fig. 5 right and 10), since the examples are more distinct
compared to their negative counterparts and have a single definition. It is worth noting that
ILASP-NB also performs better on ���� (random supervision) and ������������������
CEs because they can be learned using fewer examples.

In early supervision scenarios, where labels are provided in a contiguous sequence of
events, the disparity in performance between Splice and Splice + becomes more notice-
able (Fig. 8 bottom). This observation reinforces the belief that Splice underperform when
labeled examples differ significantly from their unlabelled counterparts due to the pres-
ence of irrelevant features in other parts of the sequence. As expected, this issue is less

Fig. 10 F1-score of supervision completion on ������������������ (left) and ����������������
(right) as supervision increases. In the first scenario, supervision arrives uniformly at random (top), while in
the second one is provided only at the beginning of the training sequence (bottom)

1473Machine Learning (2024) 113:1445–1481

1 3

prominent when labels are uniformly sampled from the entire training sequence (Fig. 8
top).

The experimental results over different batch sizes confirm that temporal label prop-
agation (see Sect. 3.3) render the predictive accuracy of Splice + invariant to batch size
(see Table 4). The effect is stronger when the labelled examples are fewer (1 supervised
sequence over 4 supervised sequences), which indicates the importance of connecting the
unlabelled examples between micro-batches. Therefore, the accuracy of Splice + does not
fall as the dataset size increases. However, larger micro-batch size hurts runtime perfor-
mance, since the number of unlabelled examples per micro-batch is higher, increasing the
runtime complexity of label propagation (Michelioudakis et al., 2019). Note that size does
not affect the time for updating the Half-Space trees, since the update algorithm is linear
to the number of examples (see Algorithm 3). The LMFS optimization also remains unaf-
fected (assuming labelled examples are sparse), since it only considers labelled examples.

In contrast to typical supervised learning, semi-supervised performance does not always
improve when the dataset size increases, since the provided labelled examples may not
be representative of the entire data distribution. In fact, it has been shown that under cer-
tain conditions, increasing the number of unlabelled examples does increase predictive
accuracy (Singh et al., 2008). When it comes to runtime performance, simply increasing
the dataset size (assuming a small batch size) should not negatively impact performance,

Fig. 11 Structure learning on ������������������ (left) and ���������������� (right) as supervi-
sion increases. In the first scenario, supervision arrives uniformly at random (top), while in the second one,
supervision is provided only at the beginning of the training sequence (bottom)

1474 Machine Learning (2024) 113:1445–1481

1 3

unless there is a significant increase in the number of labeled examples, which has an expo-
nential effect on the runtime of Algorithm 1.

Beyond accuracy, the rules discovered using Splice + are interesting and intuitive. In the
activity recognition dataset, using random supervision (5%), Splice +-OleD often man-
ages to learns rules such as the following:

The first rule requires both persons to be inactive and close enough (less than 24 pixels),
while having similar orientation. The second, more general, rule states that if some person
starts walking, then the meeting is over. In the early supervision scenario (1 supervised
sequence), the rules may be more error prone, but still very intuitive, such as the following:

In the first rule, Splice +-OleD did not manage to learn a spatial constraint, thus it may
assume a meeting is initiated regardless of the distance between the two persons. On the
other hand, Splice-OLED learns similar rules in some of the runs (about 30% of them), but
in most cases it either learns more general initiation rules leading to many false positives or
very specific termination rules yielding false negatives. There are also runs where Splice-
OLED either only learns initiation or termination rules, which indicates that the inferred
labels are contradicting. Such cases occur also in Splice + , but they are fewer and usually
suggest that the labelled examples in the underlying training sample are outliers.

In the maritime dataset, using either random or early supervision, Splice +-OleD usu-
ally manages to learn proper initiation rules for the ���������� CE, such as the following:

Similarly good rules are discovered in the fleet management dataset. Interestingly, Splice-
OLED usually fails to learn the second initiation rule, which is explained by the fact that
there are more examples in the dataset in which vessels are moving at low speed rela-
tively close to each other, than examples where vessels stop moving. Therefore, given
very few labelled examples, Splice fails to capture the important features that highlight

�����������(����(�, �), �) ⇐

���������(��������(�), �) ∧ ���������(��������(�), �) ∧

�������������(�, �, �) ∧ �
��(�, �, 	�, �)

������������(����(�, �), �) ⇐ ���������(��
����(�), �)

�����������(����(�, �), �) ⇐

���������(������(�), �) ∧ ���������(������(�), �) ∧

�������������(�, �, �)

������������(����(�, �), �) ⇐

���������(
�	����(�), �) ∧ ���������(
�	����(�), �) ∧

�	��(�, �, ��, �)

�����������(����������(�, �), �) ⇐

���������(�������(�), �) ∧ ���������(�������(�), �) ∧

����	���(�, �, �)

�����������(����������(�, �), �) ⇐

���������(�������(�, ������	
����), �)∧

���������(�������(�, ������	
����), �) ∧

����	���(�, �, �)

1475Machine Learning (2024) 113:1445–1481

1 3

the ���������� behaviour, leading to contradicting labelling and noisy rules that OLED
rejects during structure learning. Note that the interpretability of these rules makes it easy
for the end-users to modify and adapt to their needs, e.g., add a missing spatial constraint,
in contrast to more complex models that may require expert knowledge in order to tune and
reuse the learned model.

In summary, Splice + facilitates learning better rules due to its improved distance meas-
ures, that identify useful features among noisy examples, yielding better labelling. Moreo-
ver, its labelling is not affected by the batch size, in contrast to Splice which offers no
guarantees. Splice + can be particularly efficient in the more realistic and challenging early
supervision setting, in the presence of noisy labels and irrelevant features. Although Splice
+ is used to learn CE definitions in the Event Calculus, it can be applied to learn any tem-
poral domain formalised in first-order logic, as long as, the examples do not include many
long range dependencies (densely connected group of facts) or temporal intervals (CEs
defined over interval relationships). Long range dependencies would significantly increase
the complexity both of the structural distance and the depth of Half-Space trees. Addition-
ally, temporal intervals necessitate numerical handling to effectively incorporate them.

Additionally, although Splice + is efficient in general, its computational performance
can be compromised by a large increase in the number of labelled examples, since the opti-
mization presented in Algorithm 1 is NP-complete. The runtime complexity of the mass-
based dissimilarity also increases with the number of atoms in the Hebrand base, since
trees have higher depth. Hence, in scenarios where there are limited positive examples or
noisy and irrelevant features (logical atoms), Splice + proves to performs best. Conversely,
when reliable labelled examples are provided and irrelevant features are minimal, Splice
may be preferred due to its runtime efficiency. However, it is important to carefully select
the batch size as it can impact the predictive performance of Splice.

5 Related work

Learning composite event rules from sensory input is a challenging task that is receiv-
ing increasing attention in the literature, since it constitutes a limiting factor to most CER
applications. Recent approaches attempt to learn propositional CE rules in the form of a
domain-specific language from historical data (Margara et al., 2014; George et al., 2016;
Mousheimish et al., 2017; Bruns et al., 2019). On the other hand, online structure learners,
employ logic formalisms, such as the Event Calculus, to capture the relational dependen-
cies of complex events (Michelioudakis et al., 2016; Katzouris et al., 2016, 2018). How-
ever, these methods, either propositional or relational, assume that a fully-labelled training
dataset is available.

Despite the plethora of semi-supervised learning (SSL) methods that have been devel-
oped for tackling the problem of missing supervision (Chapelle et al., 2006; Zhu et al.,
2009), to our knowledge, only variations of co-training have been adapted to Inductive
Logic Programming (Li & Guo, 2012; Soonthornphisaj & Kijsirikul, 2004). However, co-
training is not suitable for online learning since it assumes that the training data can be sep-
arated into distinct views (Nigam & Ghani, 2000), namely disjoint feature sets that provide
complementary information about each instance, while each view is sufficient to accurately
predict each class. Another approach to rule learning is to learn fuzzy if-then classifica-
tion rules from partially labelled data (Klose & Kruse, 2005). Nevertheless, these meth-
ods cannot be directly used to learn first-order Event Calculus rules. Even though SSL has
been extensively studied in static environments (Dyer & Polikar, 2012), online SSL that

1476 Machine Learning (2024) 113:1445–1481

1 3

operates on data streams remains an open challenge. SPLICE (Michelioudakis et al., 2019),
as presented in Sect. 2.1, is a recent online approach to semi-supervised structure learning
for CER applications. Splice employs graph-based methods (Blum & Chawla, 2001; Zhu
et al., 2003; Zhou et al., 2003; Joachims, 2003; Wang et al., 2008, 2013) to infer the miss-
ing labels of the training examples.

Only very few online graph-based SSL methods have been proposed to date. (Delal-
leau et al., 2005) proposed an inductive algorithm that learns a labelling function using the
graph similarity matrix constructed given a training set containing labelled and unlabelled
data. Subsequent incoming unlabelled examples are labelled using the previously learned
inductive function. However, new examples (labelled and unlabelled) are not incorporated
into the learned model, and thus, the model can become outdated. (Huang et al., 2015) also
follow an inductive approach to graph-based SSL, by updating incrementally the inverse
of the graph Laplacian matrix, required for computing the labelling. The update is done
using a technique that transforms the matrix inverse computation to matrix multiplications
in order to save time. Nonetheless, this method requires all incoming data to be stored,
leading to continuously increasing memory requirements. (Valko et al., 2010) designed a
transductive technique that quantises the stream into a small number of clusters using an
online k-center algorithm. Then, the harmonic solution is computed on the cluster centers.
SPLICE follows a similar approach for caching the labelled examples, but instead of clus-
tering, it performs logical unification to group the incoming examples into concepts (bot-
tom clauses). Finally, the Temporal Label Propagation method proposed by Wagner et al.
(2018), as presented in Sect. 2.4, stores a constant size graph synopsis of the stream and
performs label propagation on the compressed graph.

Naturally, graph construction is an important issue of graph-based SSL methods,
and thus, the labelling solution is sensitive to the distance measure used to interconnect
examples. Since we are interesting in learning CE rules from interpretations (Blockeel
et al., 1999), a distance measure for comparing first-order atoms is desirable. Although
various measures exist for first-order logic, either structural (Bisson, 1992b, a; Emde &
Wettschereck, 1996; Nienhuys-Cheng, 1997; Bohnebeck et al., 1998; Ramon & Bruy-
nooghe, 1998; Mavroeidis & Flach, 2003) or semantic (Sebag & Schoenauer, 1993; Sebag,
1997), none of these handle irrelevant or noisy features and thus their credibility may be
compromised.

At the same time, numerous methods have been proposed to cope with such noisy and
irrelevant features, stemming from feature selection (Guyon et al., 2006; Chandrashekar
& Sahin, 2014) or metric learning (Kulis, 2013; Wang & Sun, 2015) techniques. Filter
methods to feature selection are a popular candidate since they are fast to compute. Exist-
ing approaches are based on mutual information (Vergara & Estévez, 2014; Brown, 2009),
consistency measures (Arauzo-Azofra et al., 2008), constraint scores (Zhang et al., 2008;
Benabdeslem & Hindawi, 2014), and rough sets (Pawlak et al., 1995; Modrzejewski, 1993).
These methods usually provide a ranking of the features according to a specific criterion.
Thus, the user needs to select a subset from the ranked list, e.g. the top k features.

Metric learning, on the other hand, aims to learn a distance measure on the feature
space, so that some given pairs of data points are pulled as close as possible, while others
are pushed far apart. There are supervised learning approaches, based on Mahalanobis dis-
tance learning (Goldberger et al., 2004), and unsupervised ones, depending on linear recon-
struction (Roweis & Saul, 2000; Tenenbaum et al., 2000). Mass-based dissimilarity (Aryal
et al., 2014) is also a form of unsupervised metric learning. In contrast to supervised meth-
ods (Ting et al. (2019), Section 8), the mass-based approach derives dissimilarity directly
from data by estimating the probability mass of the region covering the given data points,

1477Machine Learning (2024) 113:1445–1481

1 3

without any class information. Only a few attempts exist to combine metric learning and
graph-based SSL (Wang & Zhang, 2008; Okada & Nishida, 2010; Pourdamghani et al.,
2012), and none of these approaches combines supervised metric learning with mass-based
dissimilarity, as in Splice + , in order to exploit both labelled and unlabelled data. Moreover,
to our knowledge, no such methods have been applied to logical interpretations.

6 Conclusions and future work

We presented Splice + , a novel approach to online structure learning of CE rules from
partially-supervised training sequences. Similar to its predecessor (Splice), the new
method infers the missing labels continuously as the data arrive, and passes them on to an
online supervised structure learner that constructs CE rules. In contrast to Splice, Splice
+ employs a hybrid distance measure combining a structural distance optimised for kNN
classification through feature selection, and a data-driven measure based on mass estima-
tion. The combined measure exploits the labelled data for supervised metric learning and
the unlabelled data for estimating the distribution of examples. Finally, Splice + constructs
a temporal graph and maintains a synopsis from the data stream to achieve robust labelling.

Experimental results using benchmark real-life data from human activity recognition,
maritime monitoring, and fleet management, showed that Splice + outperforms its prede-
cessor (Splice) in terms of completing the missing labels and improving the predictive
accuracy of the underlying structure learner. Moreover, it seems particularly effective when
supervision is provided only at the beginning of the stream. Finally, the comparison to a
batch learning system combining ILASP and Naive Bayes, to perform a form of co-train-
ing, resulted in inferior results and much higher computational requirements.

Further extensions of the proposed method are being investigated, including an active
learning component that will enable Splice + to enhance its predictions in the presence of
noisy labels or concept drift. Additionally, we are considering a distributed implementation
that will enhance the scalability of the method.

Author Contributions EM conceived of the presented idea, developed the theory, and performed all the
computations required for the experimental analysis. AA and GP supervised the overall research direction
and planning, verified the presented methods, and contributed to the interpretation of the results. All authors
discussed the results and contributed to the final manuscript.

Funding Open access funding provided by HEAL-Link Greece. This work was funded by the EU H2020
programme, under Grant Agreement No. 825070 (Project INFORE).

Data availability Two out of the three datasets underlying this article are available in the article. The third
dataset was provided by Vodafone Innovus under license.

Code Availability Code for experimental analysis is provided as part of the replication package. The link to
this package is available in the article.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

1478 Machine Learning (2024) 113:1445–1481

1 3

material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alphonse, É., & Matwin, S. (2002). Feature subset selection and inductive logic programming. In Proceed-
ings of the 9th international conference on machine learning (pp. 11–18). Morgan Kaufmann.

Arauzo-Azofra, A., Benítez, J. M., & Castro, J. L. (2008). Consistency measures for feature selection. Jour-
nal of Intelligent Information Systems, 30(3), 273–292.

Artikis, A., Sergot, M. J., & Paliouras, G. (2015). An event calculus for event recognition. IEEE Transac-
tions on Knowledge and Data Engineering, 27(4), 895–908.

Artikis, A., Skarlatidis, A., Portet, F., et al. (2012). Logic-based event recognition. Knowledge Engineering
Review, 27(4), 469–506.

Aryal, S., Ting, K. M., Haffari, G., et al. (2014). Mp-dissimilarity: A data dependent dissimilarity measure.
In Proceedings of the IEEE international conference on data mining (ICDM) (pp. 707–712).

Benabdeslem, K., & Hindawi, M. (2014). Efficient semi-supervised feature selection: Constraint, relevance,
and redundancy. IEEE Transactions on Knowledge and Data Engineering, 26(5), 1131–1143.

Bisson, G. (1992a). Conceptual clustering in a first order logic representation. In Proceedings of the 10th
European conference on artificial intelligence (pp. 458–462). Wiley.

Bisson, G. (1992b). Learning in FOL with a similarity measure. In Proceedings of the 10th national confer-
ence on artificial intelligence (pp. 82–87). AAAI Press/MIT Press.

Blockeel, H., Raedt, L. D., Jacobs, N., et al. (1999). Scaling up inductive logic programming by learning
from interpretations. Data Mining and Knowledge Discovery, 3(1), 59–93.

Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. In Proceed-
ings of the eighteenth international conference on machine learning (pp. 19–26). Morgan Kaufmann.

Bohnebeck, U., Horváth, T., & Wrobel, S. (1998). Term comparisons in first-order similarity measures. In
Proceedings of the 8th international workshop on inductive logic programming (pp. 65–79). Springer.

Brown, G. (2009). A new perspective for information theoretic feature selection. In Proceedings of the 12th
international conference on artificial intelligence and statistics (AISTATS) (pp. 49–56).

Bruns, R., Dunkel, J., & Offel, N. (2019). Learning of complex event processing rules with genetic pro-
gramming. Expert Systems with Applications, 129, 186–199.

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical
Engineering, 40(1), 16–28.

Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-supervised learning. MIT Press.
Chen, B., Liu, H., Chai, J., et al. (2009). Large margin feature weighting method via linear programming.

IEEE Transactions on Knowledge and Data Engineering, 21(10), 1475–1488.
Cugola, G., & Margara, A. (2012). Processing flows of information: From data stream to complex event

processing. ACM Computing Survey, 44(3), 1–62.
Delalleau, O., Bengio, Y., & Roux, N. L. (2005). Efficient non-parametric function induction in semi-super-

vised learning. In Proceedings of the 10th international workshop on artificial intelligence and statis-
tics (AISTATS) (pp. 96–103).

Deng, Z., & Luo, K. (2015). Cle_lmnn: A novel framework of LMNN based on clustering labeled examples.
Expert Systems with Applications, 42(14), 5988–5993.

Dörfler, F., & Bullo, F. (2013). Kron reduction of graphs with applications to electrical networks. IEEE
Transactions on Circuits and Systems, 60–I(1), 150–163.

Dries, A., & Raedt, L. D. (2009). Towards clausal discovery for stream mining. In Proceedings of the 19th
international conference on inductive logic programming (ILP) (pp. 9–16).

Dyer, K. B., & Polikar, R. (2012). Semi-supervised learning in initially labeled non-stationary environments
with gradual drift. In The 2012 international joint conference on neural networks (IJCNN) (pp. 1–9).

Emde, W., & Wettschereck, D. (1996). Relational instance-based learning. In Proceedings of the 13th inter-
national conference on machine learning (pp. 122–130). Morgan Kaufmann.

Gama, J. (2010). Knowledge discovery from data streams. Chapman and Hall/CRC Data Mining and Knowl-
edge Discovery Series, CRC Press.

George, L., Cadonna, B., & Weidlich, M. (2016). Il-miner: Instance-level discovery of complex event pat-
terns. Proceedings of the VLDB Endowment, 10(1), 25–36.

Giatrakos, N., Alevizos, E., Artikis, A., et al. (2020). Complex event recognition in the big data era: A sur-
vey. VLDB Journal, 29(1), 313–352.

http://creativecommons.org/licenses/by/4.0/

1479Machine Learning (2024) 113:1445–1481

1 3

Goldberger, J., Roweis, S. T., Hinton, G. E., et al. (2004). Neighbourhood components analysis. Advances in
Neural Information Processing Systems, 17, 513–520.

Guyon, I., Nikravesh, M., Gunn, S. R., et al. (eds). (2006). Feature extraction—Foundations and applica-
tions, studies in fuzziness and soft computing (vol. 207). Springer.

Huang, L., Liu, X., Ma, B., et al. (2015). Online semi-supervised annotation via proxy-based local consist-
ency propagation. Neurocomputing, 149, 1573–1586.

Joachims, T. (2003). Transductive learning via spectral graph partitioning. In Proceedings of the 20th inter-
national conference on machine learning (ICML) (pp. 290–297).

Katzouris, N., Artikis, A., & Paliouras, G. (2016). Online learning of event definitions. Theory and Practice
of Logic Programming, 16(5–6), 817–833.

Katzouris, N., Michelioudakis, E., Artikis, A., et al. (2018). Online learning of weighted relational rules for
complex event recognition. In Proceedings of European conference on machine learning and knowledge
discovery in databases (pp. 396–413).

Klose, A., & Kruse, R. (2005). Semi-supervised learning in knowledge discovery. Fuzzy Sets and Systems,
149(1), 209–233.

Kowalski, R. A., & Sergot, M. J. (1986). A logic-based calculus of events. New Generation Computing, 4(1),
67–95.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly,
2, 83–97.

Kulis, B. (2013). Metric learning: A survey. Foundations and Trends in Machine Learning, 5(4), 287–364.
Law, M., Russo, A., & Broda, K. (2016). Iterative learning of answer set programs from context dependent

examples. Theory and Practice of Logic Programming, 16(5–6), 834–848.
Law, M., Russo, A., & Broda, K. (2018). Inductive learning of answer set programs from noisy examples.

Advances in Cognitive Systems, 7, 57–76.
Li, Y., & Guo, M. (2012). A new relational tri-training system with adaptive data editing for inductive logic

programming. Knowledge-Based Systems, 35, 173–185.
Liu, F. T., Ting, K. M., & Zhou, Z. (2008). Isolation forest. In Proceedings of the 8th IEEE international confer-

ence on data mining (ICDM) (pp. 413–422).
Margara, A., Cugola, G., & Tamburrelli, G. (2014). Learning from the past: Automated rule generation for

complex event processing. In Proceedings of the 8th ACM international conference on distributed event-
based systems (DEBS) (pp. 47–58).

Mavroeidis, D., & Flach, P. A. (2003). Improved distances for structured data. In Proceedings of the 13th inter-
national workshop on inductive logic programming (ILP) (pp. 251–268).

Michelioudakis, E., Artikis, A., & Paliouras, G. (2019). Semi-supervised online structure learning for compos-
ite event recognition. Machine Learning, 108(7), 1085–1110.

Michelioudakis, E., Skarlatidis, A., Paliouras, G., et al. (2016). Online structure learning using background
knowledge axiomatization. In Proceedings of European conference on machine learning and knowledge
discovery in databases (pp. 242–237).

Modrzejewski, M. (1993). Feature selection using rough sets theory. In Proceedings of the European conference
on machine learning (pp. 213–226).

Mousheimish, R., Taher, Y., & Zeitouni, K. (2017). Automatic learning of predictive CEP rules: Bridging the
gap between data mining and complex event processing. In Proceedings of the 11th ACM international
conference on distributed and event-based systems (DEBS) (pp. 158–169).

Mueller, E. T. (2008). Event calculus. In Handbook of knowledge representation, foundations of artificial intel-
ligence (Vol. 3, pp. 671–708). Elsevier.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13, 245–286.
Nienhuys-Cheng, S. H. (1997). Distance between Herbrand interpretations: A measure for approximations to

a target concept. In Proceedings of the 7th international workshop on inductive logic programming (pp.
213–226). Springer.

Nigam, K., Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training. In Proceedings of
the 2000 ACM CIKM international conference on information and knowledge management (pp. 86–93).
ACM.

Okada, S., Nishida, T. (2010). Multi class semi-supervised classification with graph construction based on
adaptive metric learning. In Proceedings of the 20th international conference on artificial neural networks
(ICNN) (pp. 468–478).

Patroumpas, K., Alevizos, E., Artikis, A., et al. (2017). Online event recognition from moving vessel trajecto-
ries. GeoInformatica, 21(2), 389–427.

Pawlak, Z., Grzymala-Busse, J. W., Slowinski, R., et al. (1995). Rough sets. Communications of the ACM,
38(11), 88–95.

1480 Machine Learning (2024) 113:1445–1481

1 3

Pitsikalis, M., Artikis, A., Dreo, R., et al. (2019). Composite event recognition for maritime monitoring. In Pro-
ceedings of the 13th ACM international conference on distributed and event-based systems (pp. 163–174).
ACM

Plotkin, G. D. (1971). Automatic methods of inductive inference. PhD thesis, Edinburgh University
Pourdamghani, N., Rabiee, H. R., & Zolfaghari, M. (2012). Metric learning for graph based semi-supervised

human pose estimation. In Proceedings of the 21st international conference on pattern recognition (ICPR)
(pp. 3386–3389).

Ramon, J., & Bruynooghe, M. (1998). A framework for defining distances between first-order logic objects. In:
Proceedings of the 8th international workshop on inductive logic programming (pp. 271–280). Springer.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science,
290(5500), 2323–2326.

Sebag, M. (1997). Distance induction in first order logic. In Proceedings of the 7th international workshop on
inductive logic programming (pp. 264–272).

Sebag, M., & Schoenauer, M. (1993). A rule-based similarity measure. In 1st European workshop on topics in
case-based reasoning (pp. 119–131).

Singh, A., Nowak, R. D., & Zhu, X. (2008). Unlabeled data: Now it helps, now it doesn’t. In Advances in neu-
ral information processing systems 21, proceedings of the twenty-second annual conference on neural
information processing systems, Vancouver, British Columbia, Canada, December 8–11, 2008 (pp. 1513–
1520). Curran Associates, Inc.

Song, K., Nie, F., Han, J., et al. (2017). Parameter free large margin nearest neighbor for distance metric learn-
ing. In Proceedings of the 31st AAAI conference on artificial intelligence (pp. 2555–2561). AAAI Press.

Soonthornphisaj, N., & Kijsirikul, B. (2004). Combining ILP with semi-supervised learning for web page cat-
egorization. In Proceedings of the international conference on computational intelligence (pp. 322–325).

Srinivasan, A., & Bain, M. (2017). An empirical study of on-line models for relational data streams. Machine
Learning, 106(2), 243–276.

Tenenbaum, J. B., Silva, Vd., & Langford, J. C. (2000). A global geometric framework for nonlinear dimension-
ality reduction. Science, 290(5500), 2319–2323.

Ting, K. M., Zhou, G., Liu, F. T., et al. (2013). Mass estimation. Machine Learning, 90(1), 127–160.
Ting, K. M., Zhu, Y., Carman, M. J., et al. (2019). Lowest probability mass neighbour algorithms: relaxing the

metric constraint in distance-based neighbourhood algorithms. Machine Learning, 108(2), 331–376.
Valko, M., Kveton, B., Huang, L., et al. (2010). Online semi-supervised learning on quantized graphs. In Pro-

ceedings of the 26th conference on uncertainty in artificial intelligence (pp. 606–614).
Vergara, J. R., & Estévez, P. A. (2014). A review of feature selection methods based on mutual information.

Neural Computing and Applications, 24(1), 175–186.
Wagner, T., Guha, S., Kasiviswanathan, S. P., et al. (2018). Semi-supervised learning on data streams via tem-

poral label propagation. In Proceedings of the 35th international conference on machine learning (ICML)
(pp. 5082–5091).

Wang, F., & Sun, J. (2015). Survey on distance metric learning and dimensionality reduction in data mining.
Data Mining and Knowledge Discovery, 29(2), 534–564.

Wang, F., & Zhang, C. (2008). Label propagation through linear neighborhoods. IEEE Transactions on Knowl-
edge and Data Engineering, 20(1), 55–67.

Wang, J., Jebara, T., Chang, S. (2008). Graph transduction via alternating minimization. In Proceedings of the
25th international conference on machine learning (ICML) (pp. 1144–1151)

Wang, J., Jebara, T., & Chang, S. (2013). Semi-supervised learning using greedy max-cut. Journal of Machine
Learning Research, 14(1), 771–800.

Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classifica-
tion. Journal of Machine Learning Research, 10, 207–244.

Williams, H. P. (2009). Logic and integer programming, logic and integer programming (Vol. 130). Springer.
Zhang, D., Chen, S., & Zhou, Z. (2008). Constraint score: A new filter method for feature selection with pair-

wise constraints. Pattern Recognition, 41(5), 1440–1451.
Zhang, F. (2005). The Schur complement and its applications. Springer.
Zhou, D., Bousquet, O., Lal, T. N., et al. (2003). Learning with local and global consistency. In Proceedings of

advances in neural information processing systems (NIPS) (Vol. 16, pp. 321–328).
Zhu, X., Ghahramani, Z., Lafferty, J. D. (2003). Semi-supervised learning using Gaussian fields and harmonic

functions. In Proceedings of the 20th international conference on machine learning (pp. 912–919). AAAI
Press.

Zhu, X., Goldberg, A. B., Brachman, R., et al. (2009). Introduction to semi-supervised learning. Morgan and
Claypool Publishers.

Zucker, J., & Ganascia, J. (1996). Representation changes for efficient learning in structural domains. In Pro-
ceedings of the 13th international conference on machine learning (pp. 543–551). Morgan Kaufmann.

1481Machine Learning (2024) 113:1445–1481

1 3

Authors and Affiliations

Evangelos Michelioudakis1,2 · Alexander Artikis1,3 · Georgios Paliouras1

 * Georgios Paliouras
 paliourg@iit.demokritos.gr

 Evangelos Michelioudakis
 vagmcs@iit.demokritos.gr

 Alexander Artikis
 a.artikis@unipi.gr

1 Institute of Informatics and Telecommunications, National Centre for Scientific Research
“Demokritos”, Athens, Greece

2 Department of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, Greece

3 Department of Maritime Studies, University of Piraeus, Athens, Greece

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://orcid.org/0000-0002-8133-7347

	Online semi-supervised learning of composite event rules by combining structure and mass-based predicate similarity
	Abstract
	1 Introduction
	2 Background
	2.1 Online semi-supervised learning for composite event recognition
	2.2 Large-margin nearest neighbour metric learning
	2.3 Mass-based dissimilarity
	2.4 Temporal label propagation

	3 Online semi-supervised learning combining structure and mass-based predicate similarity
	3.1 Large-margin feature selection for logical structures
	3.2 Mass dissimilarity for logical structures
	3.3 Robust graph construction and labelling

	4 Empirical evaluation
	4.1 Description of datasets
	4.2 Experimental setup
	4.3 Experimental results
	4.3.1 Activity recognition
	4.3.2 Maritime monitoring
	4.3.3 Fleet management

	4.4 Discussion

	5 Related work
	6 Conclusions and future work
	References

