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Abstract
Many Internet applications adopt real-time bidding mechanisms to ensure different ser-
vices (types of content) are shown to the users through fair competitions. The service 
offering the highest bid price gets the content slot to present a list of items in its candi-
date pool. Through user interactions with the recommended items, the service obtains the 
desired engagement activities. We propose a contextual-bandit framework to jointly opti-
mize  the price to bid for the slot and the order to rank its candidates for a given service 
in this type of recommendation systems. Our method can take as input any feature that 
describes the user and the candidates, including the outputs of other machine learning 
models. We train   reinforcement learning policies using deep neural networks, and com-
pute top-K Gaussian propensity scores to exclude the variance in the gradients caused by 
randomness unrelated to the reward. This setup further facilitates us to automatically find 
accurate reward functions that trade off between budget spending and user engagements. 
In online A/B experiments on two major services of Facebook Home Feed, Groups You 
Should Join and Friend Requests, our method statistically significantly boosted the number 
of groups joined by 14.7%, the number of friend requests accepted by 7.0%, and the num-
ber of daily active Facebook users by about 1 million, against strong hand-tuned baselines 
that have been iterated in production over years.
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1 Introduction

Modern recommendation systems provide users with a personalized selection of diverse 
content  (Pinterest, 2019; Facebook, 2022), such as followers’ activities, suggested 
friends, and nearby businesses. Studies have shown that maintaining content diversity is 
able to enrich users’ experience and avoid their overall fatigue (Clarke et al., 2008; Wil-
helm et  al., 2018). One important optimization problem in such recommendation sys-
tems is to identify the best service to present in each auction session, where we define 
each service as a type of content, such as the suggestions of friends. A common solution 
is called Real-Time Bidding (RTB), in which all services each makes its own bid for the 
opportunity, using a pre-allocated dollar-valued budget (Jansen & Mullen, 2008; Yuan 
et al., 2013). The free-market auction mechanism of RTB ensures a fair competition for 
different content providers.

Extensive studies on RTB have been done in the advertising and sponsored search 
domains (Jansen & Mullen, 2008; Yuan et al., 2013; Zhang et al., 2014; Cai et al., 2017; 
Ren et al., 2017), which mainly focus on the scenario where each service bids to present 
the single best candidate of the service in a RTB session. In this paper, we aim for a more 
general setup, where the service bids for presenting a list of multiple pieces of content in 
a slot, as illustrated in Fig 1. This requires a policy that simultaneously determines the bid 
price for the whole slot, and the rank order of the available content items.

A common strategy widely adopted in production environments is through the human-
designed value formula with a set of adjustable coefficients. For example, a value formula 
could perform a linear combination of the user’s predicted engagement signals for each 
piece of content. The output of the value formula is used to rank the candidate items and 
to decide the bid price. Tuning the parameters in the value formula back and forth in the 
online settings can take a large amount of time and human efforts. Additionally, the com-
plexity of value formulas are heavily limited by the number of parameters that hand tuning 

Fig. 1  The service that wins the 
content slot gets the chance to 
display multiple items to the user 
to interact with, like the three 
items shown at the bottom of the 
phone screen. These slots locate 
between regular feed contents, 
and recommend items such as 
groups or friends
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can afford, and the simple weighting rules that human can think of, which draws questions 
to its capability of representing complex environments.

This paper proposes a novel framework to learn the optimal policy for solving Bidding 
And Ranking Together (BART), from the perspective of an individual service participating 
the auction. We resort to contextual bandit algorithms (Li et al., 2010; Dudik et al., 2011; 
Agarwal et al., 2012; Bottou et al., 2013; Agarwal et al., 2014; Swaminathan & Joachims 
2015, 2015), which are known for its capability to derive an optimal policy from imper-
fect and sub-optimal past experience. Leveraging data collected through a random logging 
policy, we design a training algorithm that is able to learn more complicated policies than 
the rule-based model in production. The novel learning framework also greatly reduces 
the human efforts required to maintain the policy. Our contributions can be summarized in 
three folds:

• We formulate the problem of jointly deciding the bid price and rank order of candidates 
for a given service as a contextual bandit, which has not been explored in previous 
work to the authors’ best knowledge.

• We propose an effective batch learning algorithm to train sophisticated policies from 
sub-optimal demonstrations. Our innovative design of top-K Gaussian propensity 
scores stabilizes training by removing unwanted variance in the policy gradients. We 
also propose a reward-shaping algorithm to automatically determine the best form of 
the reward function.

• We tested our algorithm on two major services in the Home Feed of Facebook. In 
online A/B experiments, our approach outperforms strong hand-tuned baselines used in 
production that have been iterated over years. Our work has been launched into the pro-
duction of these services, and is helping billions of users to find communities and make 
friends online in a better way.

2  Related work

Real-Time Bidding (RTB) has been a crucial mechanism in many domains of web appli-
cations, such as advertisements (Yuan et al., 2013) and sponsored search (Jansen & Mul-
len, 2008). Most existing research in RTB revolves around the scenario where each bidder 
can win a display slot for at most one item, so there is no ranking of multiple candidates 
involved in the bidding process. RTB can typically be broken down into three stages: (1) 
utility prediction, such as click-through rate prediction based on advanced supervised 
learning models (McMahan et  al., 2013; Cheng et  al., 2016; Guo et  al., 2017; Naumov 
et al., 2019); (2) bid price optimization, which utilizes information from the user, candi-
dates, utility predictions, and other competitors (Li & Guan, 2014; (3) budget allocation 
(Lee et al., 2013; Xu et al., 2015), which ensures bidding costs satisfy desired constraints 
and smooths budget spending across time. People have proposed algorithms to tackle each 
stage separately or optimize multiple stages jointly (Zhang et al., 2014; Ren et al., 2017; 
Cai et al., 2017). In this paper, we focus on the second stage (i.e. bid price optimization) to 
determine the best bid price over multiple candidates of a given service, with the additional 
requirement to rank them, which is little researched to the best of our knowledge.

Our goal of learning the optimal personalized policy for bidding and ranking together 
can be abstracted into a process of learning from imperfect demonstration. In our case, the 
imperfect demonstration comes from adding noise to the current hand-tuned policy. This is 
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a suitable use case for reinforcement learning (RL) (Sutton & Barto, 2018). RL has shown 
its strong capability to improve the policy intelligently not only in simulation environments 
like board games (Silver et al., 2017) and video games (Mnih et al., 2013), but also in real-
world applications (Gauci et al., 2018), such as device placement (Mirhoseini et al., 2017), 
ride sharing (Xu et al., 2018), notifications (Liu et al., 2021), and video recommendation 
(Chen et al., 2019).

In this paper, we assume that the outcome for one user session has no consequence in 
the future. Therefore, we focus on contextual bandit algorithms, a special domain of RL 
which only focuses on optimizing decisions for one time step. Contextual bandit applica-
tions can be categorized into two paradigms: online learning, where the policy can con-
stantly interact with the environment and make responsive update to real-time feedback 
(Li et al., 2010; Dudik et al., 2011; Agarwal et al., 2012, 2014); and offline learning, where 
the policy is learned from the data collected in one-time fashion (Strehl et al., 2010; Bot-
tou et al., 2013; Swaminathan & Joachims, 2015, 2015). The focal point of the former is 
usually in how to conduct efficient exploration about the environment, while the latter is 
mainly in counterfactual estimation of a policy’s performance. Our work belongs to the 
offline learning paradigm as it is more amenable to existing offline training infrastructure 
already adopted by many companies in the industry. The core algorithm we used in our 
work is offline policy optimization (Strehl et al., 2010; Bottou et al., 2013), also known as 
Counterfactual Risk Minimization (Swaminathan & Joachims, 2015), which has been suc-
cessfully applied to offline learning a video retrieval policy in a large-scale video recom-
mendation system (Chen et al., 2019), a spelling correction algorithm in a search engine 
(Li et al., 2015), etc.

Our work learns a scoring function that outputs a scalar value for each candidate, which 
decides the order of the items when displayed in the content slot. This idea has also been 
widely used in learning to rank  (Taylor et al., 2008; Liu, 2009; Agarwal et al., 2019) in 
the information retrieval literature. But one key difference is that instead of optimizing the 
ranking metrics which only depend on the relative magnitudes of the scores, our approach 
also uses the scoring function to control the bid price, so the absolute magnitudes of the 
scores matter as well.

Another topic relevant to our paper is called whole-page presentation optimization 
(Wang et al., 2016; Hill et al., 2017; Jiang et al., 2018; Bello et al., 2018; Ding et al., 2019). 
The task is to optimize the arrangement of different services in a personalized page as a 
whole. It is different from our settings because in these scenarios, the different sources of 
items all get presented together, instead of relying on the auction mechanism and only dis-
playing candidates from the winning service.

3  Model formulation

3.1  Background and notations

To better explain our model, we first summarize how we assume the recommendation sys-
tem works and introduce the related notations:
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• Every time when a user opens the recommendation system app, an auction session is 
initiated to display a content slot to the user at a given position, which allows different 
services to bid against each other to compete for the opportunity to present.

• The service we work on retrieves I items from its pool of candidates. Features of each 
candidate are collected, including utility predictions from trained supervised learn-
ing models, such as click-through rates. The feature for each candidate i ∈ {1,⋯ , I} 
is denoted as a vector c

i
 . We use c ≜ [c

1
,⋯ , c

I
] as the feature representation for all the 

candidates retrieved by the service in this auction session.
• We want to learn a policy to decide the score value xi for each candidate i, a scalar 

that indicates how much the user is interested in this item. Let x ≜ [x1,⋯ , xI] , and 
x̃ ≜ [x̃1,⋯ , x̃I] sorts x in descending order.

• Our service’s bid price b(x) is a function of the scores. In the rest of the paper, we 
assume b(x) ≜ ∑J

j=1
wjx̃j , where J ≤ I is the number of items that can be displayed in 

the content slot. The weights w are fixed to be proportional to the empirical conversion 
rate of each position, which usually decreases rapidly because users do not tend to slide 
the horizontal scroll till the end when browsing the app. Note that the method we are 
going to introduce does not rely on the linear format of b(x) described here.

• If our bid price b(x) is higher than all other competing services, the top J items of our 
service, whose scores are x̃1∶J , will be shown sequentially to the user in the content 
slot (see Fig 1 as an example where J  ≥ 3). Meanwhile, b(x) will be deducted from the 
budget of our service.1

3.2  Contextual bandit setup

We formulate the problem of optimizing Bidding And Ranking Together (BART) as a con-
textual bandit (CB). CB takes actions based on the state input, and gets different reward 
values as the outcome. Below we define the state, action and reward of BART in details.

3.2.1  State: information about the user and candidates

A state s ≜ {u, c} represents the context of our service in an auction session. It includes 
the features for each candidate c described in Sect. 3.1, and a user-only feature vector u 
containing information shared by all candidates, such as user age, time of the day, and the 
probability of being an active user.

3.2.2  Action: candidate scores

Because both the bid price and the rank order are determined by the candidate scores, the 
action of our problem reduces to a ≜ x = {x1,⋯ , xI} . We treat the score of each candidate 
i given the state as a Gaussian random variable:

(1)xi ∣ s ∼ Gaussian
(
��(u, ci), �

2
)
,

1 This is known as the first-price auction. Our proposed method also works well in the second-price auction 
scenarios, as explained in Sect. 3.2
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in which the mean value ��(u, ci) is a function parameterized by � , and the standard devia-
tion � is a hyper-parameter. The algorithm to learn the parameter � will be introduced in 
Sect. 4.

3.2.3  Reward: a mix of costs and benefits

Equation (2) summarizes our reward function using the indicator function 1{⋅} , which takes 
value 1 when the condition is met and 0 otherwise:

If our service loses the bid, we set the reward to rlose_bid . Otherwise, we first give it a nega-
tive reward −b(x) , which is our bid price, to indicate the cost we need to pay. This setup 
is straightforward to understand for first-price auction, in which the winner pays the price 
they bid. But note that  it also works for second-price auction where the winner pays the 
second-highest bid price, because if we still subtract −b(x) when we win, Equation  (2) 
becomes a lower bound of the (negative) cost to pay. Maximizing this lower bound leads 
to reasonable bidding and ranking strategies, as we will show in the experiments in Sect. 5.

Finally, we add rengage ⋅ Δmetric to the reward, to include the metric gain resulted from the 
user’s interactions with the displayed items. For example, if the metric goal of our service is to 
maximize the total number of user activities in this service, then Δmetric could be the number 
of activities the user takes after clicking the suggested items in this content slot.

4  Policy optimization

In this section, we introduce our policy (Sect.  4.1), describe how to optimize it via offline 
training (Sect. 4.2), and build a reward shaping algorithm (Sect. 4.3) to automatically choose 
the hyper-parameters rlose_bid and rengage in the reward function defined in Eq. (2).

4.1  Top‑K Gaussian policy

A policy �(a ∣ s) defines the conditional probability distribution of taking an action given the 
state. According to the definition in Sect. 3.2, our action a is the scores of all the I candidates, 
each of which is a scalar Gaussian variable (Eq. (1)). Therefore, a natural choice for � would 
be a multivariate Gaussian. However, this is not ideal as it will introduce randomness irrel-
evant to the reward. This is because that only the top J candidates actually contribute to the bid 
price b(x) , and that only they get the chance to be shown to the users and to affect the Δmetric 
term in the reward. To exclude the extra randomness caused by the values of other scores 
x̃K+1∶I , we propose a top-K Gaussian policy, with probability density function:

In Eq. (3), fi(⋅; s) and Fi(⋅; s) denote the Gaussian probability density function and cumula-
tive distribution function of the i-th largest score x̃i . The last factor of Eq. (3) ensures that 
scores x̃K+1∶I are all smaller than x̃K . The normalization constant

(2)rlose_bid ⋅ 1{lose_bid} +
(
rengage ⋅ Δmetric − b(x)

)
⋅

(
1 − 1{lose_bid}

)
.

(3)𝜋�(a ∣ s) =
1

Z
⋅

K∏

k=1

fk

(
x̃k;s

)
⋅

I∏

i=K+1

Fi

(
x̃K ;s

)
.
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can be computed using Monte Carlo approximations via the reparameterization trick 
(Kingma & Welling, 2014; Rezende et al., 2014).

Note that instead of forcing it to be equal to the number of display positions J, we make 
K a hyper-parameter and only require K ≤ J . This treatment is to take into account the fact 
that users tend to only view the first few candidates placed at the beginning of the content 
slot, instead of taking the time to browse through all the J suggested items.

Also note that our top-K Gaussian policy is fundamentally different from the top-K off-
policy correction in Chen et al. (2019), which independently computes the probability of 
choosing each item via a softmax policy, and uses sampling with replacement plus a de-
duplicate process to construct a set of (at most) K items. Their computations are based on 
the assumptions that a user will interact with at most one item from the returned set, and 
that the expected return of an item is independent of other items in the set. In contrast, our 
top-K Gaussian policy is subject to neither of these constraints.

It is also worth mentioning that our top-K Gaussian policy setup is better than just add-
ing a Gaussian noise to the final bid price b(x) , as the later formulation does not rand-
omize the rank order of the candidate items, and thus provides less explorations to cover 
the action space of BART during data collection and policy training.

4.2  Batch learning objective

The trainable parameters in our policy ��(a ∣ s) are � , which decides the mean of the scores 
x defined in Eq. (1). To get the best value of � , we optimize the policy by maximizing the 
expected reward

in which p(s) denotes the state distribution. Following the setup of offline policy optimiza-
tion (Strehl et al., 2010; Bottou et al., 2013) and counterfactual risk minimization (Swami-
nathan & Joachims, 2015), R(�) in Eq. (4) is rewritten into an expectation with respect to 
the behavior/logging policy �b via importance sampling. By deploying �b to the environ-
ment and collecting the feedback rewards, we build the empirical training objective R̂(�) 
based on the logged data triples {s(n), a(n), r(n)

(
s
(n), a(n)

)
}:

in which s(n) ∼ p(s), a(n) ∼ �b(a ∣ s(n)) . However, one big issue of the estimator in Eq. (5) is 
that it has unbounded variance when �b

(
a
(n) ∣ s(n)

)
 gets close to zero, making R̂(�) arbitrar-

ily far away from R(�) . This problem becomes especially severe when �b depends on too 
many random variables, making the density function of their joint distribution very small 
on some data points. Our top-K Gaussian policy introduced in Sect.  4.1 partially solves 
this problem by numerically integrating out the unwanted random noise (Casella & Robert, 
1996; Ji et  al., 2021) caused by the non-top-K candidate scores. To further stabilize the 

Z = ∫
∞

−∞

⋯∫
∞

−∞

K∏

k=1

fk

(
x̃k;s

)
⋅

I∏

i=K+1

Fi

(
min{x̃1,⋯ , x̃K};s

)
dx̃1 ⋯ dx̃K

(4)R(�) ≜ �p(s)��(s∣a)
[r(s, a)] = �p(s)�b(s∣a)

[
��(a ∣ s)

�b(a ∣ s)
⋅ r(s, a)

]

,

(5)R̂(�) ≜ 1

N

N∑

n=1

𝜋�
(
a
(n) ∣ s(n)

)

𝜋b
(
a(n) ∣ s(n)

) ⋅ r(n)
(
s
(n), a(n)

)
,
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training, we clip the importance sampling weight, as done in many previous work (Strehl 
et al., 2010; Bottou et al., 2013; Swaminathan & Joachims, 2015; Chen et al., 2019):

Equation (6) is the final objective we use for training. We optimize it via gradient-based 
algorithms such as Adam  (Kingma & Ba, 2015) available in the PyTorch deep learning 
framework (Paszke et al., 2019). In this batch learning setup (Swaminathan & Joachims, 
2015), the offline training data only needs to be collected once, which saves us the heavy 
infra burden of repeatedly publishing �� online to collect new batches of data for re-esti-
mating the gradients, and thus accelerates the overall training process.

4.3  Reward shaping

To ensure the trained policies can really improve the product metrics, the reward values 
assigned to the training data should accurately measure the gains and losses of each possi-
ble outcome. This is known as reward shaping in reinforcement learning (Ng et al., 1999). 
In our problem, it means how to best weigh rlose_bid and rengage against the dollar-valued bid 
price b(x) in Eq. (2). We need a proper way to measure how good or bad it is to lose a bid 
and to get a user engagement that affects the metrics.

We propose a novel approach by reversely inferring rlose_bid and rengage from a simpler 
policy �� defined in the same action space as �� but with less parameters. In particular, we 
require the dimension of � to be equal to the number of hyper-parameters in the reward 
function, which is two in our case. Then we tune � in online experiments so that the user 
engagement metric is optimized.2 At the best value �∗ , we compute the gradient of the 
expected reward R(�) with respect to �:

Because ��∗ optimizes the online product metric within this constrained family of policies, 
�∗ must be an (at least local) optimum of R(�) , meaning that Eq. (7) should be equal to a 
vector of zeros, ∇�R(�)

||�=�∗ = 0 . We want to make use of these two equations to infer the 
values of rlose_bid and rengage . Because numerically computing the expectations is intracta-
ble, we collect data samples and build a Monte Carlo estimate of ∇�R(�)

||�=�∗ to get

(6)R̂M(�) ≜ 1

N

N∑

n=1

min

{
𝜋�

(
a
(n) ∣ s(n)

)

𝜋b
(
a(n) ∣ s(n)

) ,M

}

⋅ r(n)
(
s
(n), a(n)

)
.

(7)

∇�R(�)||�=�∗ = ∇��p(s)��(a∣s)
[

r(s, a)
]

|

|�=�∗

= �p(s)

[

∫ r(s, a)∇���(a ∣ s)da
]

|

|

|

|�=�∗

= �p(s)

[

∫ r(s, a)∇� log��(a ∣ s)��(a ∣ s)da
]

|

|

|

|�=�∗

= �p(s)��(a∣s)
[

r(s, a)∇� log��(a ∣ s)
]|

|

|

|�=�∗
.

2 We assume that manually tuning such a simple policy is easy to do, or one may even already have such a 
hand-tuned policy to start with, as we will see in Sect. 5.1.
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using data samples s(n) ∼ p(s), a(n) ∼ ��∗ (a ∣ s(n)) . Given the reward definition in Eq.  (2), 
Equation  (8) is actually a system of linear equations with respect to rlose_bid and rengage , 
which is easy to solve with the help of automatic differentiation tools (Paszke et al., 2017; 
Baydin et al., 2018) to compute the gradient terms ∇� log��

(
a
(n) ∣ s(n)

)||�=�∗ . Compared to 
traditional inverse RL algorithms (Abbeel & Ng, 2004; Ziebart et al., 2008; Ho & Ermon, 
2016), the reward shaping approach proposed here is much simpler to compute, without the 
slow back-and-forth iterations between policy optimization and reward function parameter 
update. As we will see in Sect. 5, this approach provides accurate reward settings to reflect 
the product environment, and helps to decide the strength of explorations in the logged 
training data.

5  Experiments

We test the performance of our method on two major services in the Home Feed of Face-
book, Groups You Should Join (GYSJ) and Friend Requests (FR). Both services, among 
many others, bid for the same content slot, which shows the top J = 20 items of the win-
ning service to the user in a horizontal scroll. To avoid affecting each other, we select dif-
ferent time periods to run the A/B experiment for each service. For both GYSJ and FR, we 
use K = 3 in the top-K Gaussian policies and M = 100 for the clipping threshold.

5.1  Service 1: groups you should join

The main goal of the GYSJ product is to encourage users to join more groups and interact 
with the contents in them, such as clicking the like button, commenting and sharing. The 
current value formula in GYSJ production is a linear function that combines the user’s 
expected Click-Through Rate (eCTR, probability of the user joining a group after seeing the 
recommendation) and expected Post-Click Conversion Rate (eCVR, probability of the user 
interacting with the contents in the group after joining it) for each candidate, both of which 
are predicted by pre-trained deep supervised learning models. The linear combination is 
then multiplied by a predetermined function of p(active user) , the probability of the user 
being an active group user in the current week. This probability comes from the prediction 
of another supervised learning model, and can be viewed as a user-only feature because it 
does not depend on any candidate information. The linear combination weights for eCTR 
and eCVR have been extensively tuned by hand to reach the highest user engagement 
metric in online A/B experiments. The dashed curves in Fig 2 visualize the product rule.

5.1.1  Behavior policy and reward shaping

We leverage the current value formula to construct a top-K Gaussian policy, and use it 
for both the behavior policy �b in Sect. 4.2 and the reward-shaping policy �� in Sect. 4.3. 
Because both policies need to be stochastic, we use the value formula as the mean of each 
candidate score, and select the best standard deviation �′ through the reward shaping 
algorithm.

(8)1

N

N∑

n=1

r(n)
(
s
(n), a(n)

)
⋅ ∇� log��

(
a
(n) ∣ s(n)

)||�=�∗ ≜ 0
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Concretely, we try several values of �′ to construct �� of Sect. 4.3, where � corresponds 
to the two linear combination weights for eCTR and eCVR. We collect some data for each 
value of �′ , and find that the results of the reward-shaping algorithm are very similar to 
each other when the values of �′ are relatively small. Concretely, rengage tends to be a large 
positive value, and rlose_bid a small value around zero. This makes intuitive sense because 
user engagement should definitely be encouraged. Losing bids does not boost user engage-
ment, but is not too destructive either, because it also saves the budget, especially when the 
candidates available are not attracting enough to the users.

We also find that when �′ passes a threshold, the scores becomes too noisy for the reward 
shaping algorithm to return a positive value for rengage . Therefore, our final choice for �′ is 
the biggest value before we first see a negative rengage in the reward-shaping algorithm. We 
further use this policy as the behavior policy �b in Sect. 4.2, as it strikes a good balance 
between exploration and exploitation. We set the standard deviation in Eq. (1) � to 1

2
�′ , so 

that less uncertainty is included in the policy to learn than the behavior policy.

5.1.2  Model performance

To justify our method is able to learn a better policy than the value formula under the same 
family of linear scoring functions, we force the model architecture for ��(u, ci) in Eq. (1) to 
be similar to the hand-designed production rule. Concretely, we make it a fully connected 
neural network with two hidden layers and ReLU activation functions. It takes in the user-
only feature u , which is p(active user) , as input and outputs a 2D vector as the linear com-
bination weights for c

i
 , which is [eCTR, eCVR] . For each data point, there are I = 75 can-

didates, provided by the upstream ranking and retrieval stages of the GYSJ product.
The daily results of a 22-day-long online A/B experiment are summarized in Fig  3. 

On top of the current hand-tuned value formula, our trained policy increased the top-line 
engagement metric by 0.44% , based on the average of the last seven days. More specifi-
cally, the number of impressions (groups shown to the users) increased by 9.8% , indicat-
ing that our bidding strategy has been improved. The number of group joins increased by 
14.7% , even larger than the impression gains, meaning that our ranking strategy has also 
been improved. We confirmed that the same budgets were used for both the test and control 
versions on each day to ensure fair comparisons.

The solid lines in Fig  2 visualize the policy trained using our BART algorithm. It 
resembles the value formula, in the sense that they both put more weights to eCTR (red) 
than eCVR (blue), and that the more active the users, the lower their weights. However, 
our BART policy outputs higher weights, leading to more aggressive bid prices. Moreover, 

Fig. 2  The policies for the GYSJ 
service can be visualized by 
showing the linear combination 
weights for eCTR and eCVR 
as a function of the user-only 
feature, which is the probability 
prediction of the user being 
active in the current week
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most of the model capacity of BART is used to learn the weights for the inactive users, 
instead of mimicking the value formula’s hard clips of the weights for the most active users.

5.2  Service 2: friend requests

5.2.1  Training details

The main goal of the FR product is to encourage users to accept pending friend requests. 
The current value formula in FR is the probability of accepting the request, p(accept) , 
which is obtained by training a binary classification model. Because there is no existing 
hand-tuned policy to construct �� , we directly set rengage = 100 , rlose bid = 0.01 , and the 
standard deviations of the candidate scores in �� and  �b to 0.1 and 0.2, respectively.

To make the problem more interesting, in addition to p(accept) , we also select nine 
features used when training the supervised baseline model into our state representations. 
These features include user-only ones, such as the number of friends the user has and the 
time of the day the user opens Facebook. They also include user-candidate features, such as 
how long the request has been pending, and predictions from other machine learning mod-
els, like the cosine distance between the embedding vectors of the user and the candidate. 
Similar to the settings in GYSJ, we train a neural network with two hidden layers for �� . 
But instead of outputting the linear combination weights, the FR BART model takes all the 
ten features as the input, and directly outputs the score for each candidate.

Another difference is that unlike GYSJ where we can always retrieve a fixed number 
of groups, the number of available candidates (pending friend requests) varies a lot across 
users. A nice property of the top-K Gaussian propensity scores in Eq.  (3) is that it can 
handle different values of I for different data points, even when I ≤ K . But to avoid cases 
where I is extremely large, we truncate its maximum value to Imax = 30.

5.2.2  Model performance

Daily results of a 30-day-long A/B experiment of our trained policy against the produc-
tion baseline is shown in Fig 4. The learned policy increases the number of accepted friend 
requests by 7.0% in the Home Feed traffic of Facebook (blue curve), while the logging policy 
that adds noise to the production baseline gets a −11.3% drop. Both the number of sessions 
(yellow curve) and the number of friend requests viewed (red curve) are increased by 6.6% , 

Fig. 3  Online performance of our method against the hand-tuned value formula on the GYSJ service. 
Both the test version and the baseline version contain 22.8 million users. Shaded areas indicate the 95% 
confidence intervals
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meaning that the increase in the impressions mostly comes from the improved bidding strat-
egy. We confirmed the same budgets were used for both the test and control versions on each 
day to ensure fair comparisons. Compared to GYSJ, we observe less improvement of clicks 
(blue curves) relative to the increase in the impressions (red curves). We think this is because 
the limited supply of the total number of pending friend requests for each person, compared to 
the many good candidates that can be shown to the users in group recommendations.

To better understand the improvement contributed by bidding and ranking separately, we 
also deploy our trained model to the Friends Tab of Facebook, which always shows the pend-
ing friend requests at the top of the page, based on the order of the scores given by our BART 
model versus the baseline p(accept) model. In this pure ranking problem, our BART model 
reached an improvement of 2.4% in terms of the number of accepted friend requests (green 
curve in Fig 4), less than the improvement in Home Feed (blue curve), which involves both 
bidding and ranking. We think the performance gain in terms of ranking comes from three 
aspects. First, the stochastic behavior policy �b enables explorations of different rank orders. 
Second, BART can properly use data points that lost the bid, while the supervised baseline can 
only train on data with accept or not accept labels. Finally, our method naturally handles the 
position of each candidate based on the relative magnitude of the scores, while the baseline 
p(accept) model does not consider the position information at all because how to fix the posi-
tion bias remains an open problem (Craswell et al., 2008; Wang et al., 2018).

For both GYSJ and FR, we have launched the BART models we trained into the Face-
book production. The backtest results matched what we observed in pretests, and showed that 
BART statistically significantly improved the number of daily active users by 928 K, as well 
as monthly active users by 1.64 M.

6  Conclusion

We have formulated the bidding and ranking problem of a single service with multiple 
candidates to display in a free-market recommendation system into a contextual bandit 
framework. Our top-K Gaussian policies are able to remove the noise independent of the 
reward in offline stochastic gradients. By leveraging existing policies tuned by hand, our 
lightweight reward-shaping algorithm accurately captures the reward and cost for each 
possible outcome. Online A/B experiments on two major services in Facebook have shown 
the advantage of our work in increasing the top-line user engagement metrics. In the future, 

Fig. 4  Online performance of our method against the baseline production model for Friend Requests. 
Both the test version and the baseline version contain 126.3 million users. Shaded areas indicate the 95% 
confidence intervals. The BART model is trained using Home Feed data, but to get a better understanding 
of the improvement made for bidding and ranking separately, we also deploy the model to Friends Tab 
(green) to just control the ranking
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we plan to better learn and leverage the uncertainty of the policies, and work on solutions 
that can optimize the performance of multiple services jointly.
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