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Abstract
The recent years have been marked by extended research on adversarial attacks, especially 
on deep neural networks. With this work we intend on posing and investigating the ques-
tion of whether the phenomenon might be more general in nature, that is, adversarial-style 
attacks outside classical classification tasks. Specifically, we investigate optimization prob-
lems as they constitute a fundamental part of modern AI research. To this end, we con-
sider the base class of optimizers namely Linear Programs (LPs). On our initial attempt 
of a naïve mapping between the formalism of adversarial examples and LPs, we quickly 
identify the key ingredients missing for making sense of a reasonable notion of adversar-
ial examples for LPs. Intriguingly, the formalism of Pearl’s notion to causality allows for 
the right description of adversarial like examples for LPs. Characteristically, we show the 
direct influence of the Structural Causal Model (SCM) onto the subsequent LP optimiza-
tion, which ultimately exposes a notion of confounding in LPs (inherited by said SCM) that 
allows for adversarial-style attacks. We provide both the general proof formally alongside 
existential proofs of such intriguing LP-parameterizations based on SCM for three combi-
natorial problems, namely Linear Assignment, Shortest Path and a real world problem of 
energy systems.
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1 Introduction

Adversarial attacks have gained a lot of traction in recent years (Brendel et al., 2018; Guo 
et al., 2019) as there has been a lot of focus on safety and robustness of machine learning 
(ML) systems. An interesting observation, though, is that deep neural networks or rather 
over-parameterized models are the center of attention for most of such adversarial attacks 
(Zügner et al., 2018; Chen et al., 2018). We argue that this view is incomplete or even too 
narrow in the sense that the phenomenon around adversarials is more general in nature 
and actually depends on the problem setup. We conjecture that any differentiable perturbed 
optimizer (DPO) is prone to this new notion of attack similar to classical adversarials that 
we discuss in this paper. DPOs are a well studied, pragmatic approach to differentiability 
of general mathematical program (MP) solver by means of perturbation, consider (Papan-
dreou & Yuille, 2011; Berthet et al., 2020; Gumbel, 1954; Bach, 2013) for reference. If our 
conjecture were to be true, then our new view on adversarial attacks would stand as a very 
general problem beyond learning to classify. While this might turn out to be more of a sci-
entifically/mathematically valuable insight rather than practical implication, as we prove in 
this paper, there are examples that we can construct which are clearly of high relevance. As 
we will see, ‘classical’ classification adversarial examples might still pose a higher signifi-
cance in terms of research in deep learning as they pose a threat to trust and explainabil-
ity, however, attacks on LPs certainly hold major significance as well if we consider that 
many real world applications of high relevance, such as energy systems or online naviga-
tion services, depend on them. There has been previous works where MPs such as LPs but 
also Mixed Integer Programs (MIP) (Wu et al., 2020; Tjeng et al., 2019) have been used 
to compute adversarial attacks but not where such optimization modules (LP, MIP) them-
selves have been confronted with the attacks. In fact, and also due to the recent interest in 
tightly integrating MPs and deep learning (Amos & Kolter, 2017; Paulus et al., 2021), this 
extension of adversarial attacks beyond deep networks already significantly advances our 
understanding of adversarial attacks i.e., it is not just expressiveness that leads to unin-
terpretable solutions with counter-intuitive properties. These two key arguments serve 
as motivation to why studying adversarials in LPs (and more broadly MPs) is important 
beyond pure scientific inquiry.

Interestingly, it turns out that the new type of attack we formalize develops naturally 
from the Pearlian notion of Causality (Pearl, 2009) when starting from the formalism of 
classical adversarial attacks. Put differently, the mathematical theory of causality as given 
by Pearl provides the right formal tools to establish a reasonable interpretation of adver-
sarial examples in LPs. Speaking of causality, the subject refers to a very general idea, in 
that understanding causal interactions is even central to human cognition and thereby of 
high value to science, engineering, business, and law (Penn & Povinelli, 2007). In the last 
decade, causality has been thoroughly formalized in various instances (Pearl, 2009; Peters 
et al., 2017; Hernán & Robins, 2020). At its core lies a Structural Causal Model (SCM) 
which is considered to be the model of reality responsible for data-generation. An SCM is 
a powerful model in that it is capable of many things. The SCM implies a graph structure 
over its modelled variables, and furthermore when specified in its entirety it can reason 
about (hidden) confounders, and of course handle both interventions and counterfactuals. 
The richness of the SCM has been crucial for its successful application for ML in mar-
keting (Hair Jr & Sarstedt, 2021), healthcare (Bica et al., 2020) and education (Hoiles & 
Schaar, 2016). While we conjecture the applicability of our paper’s results to the general 
class of DPO (which is an effective sub-class of MPs), the focus of this work will be to 
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motivate, illustrate and finally prove formally that we can exploit an SCM’s hidden con-
founders to construct a new type of attack based on the classical adversarial attacks in order 
to attack LPs—which is the very first, basic sub-class of MPs. We coin this new attack 
Hidden Confounder Attacks, since exploiting knowledge of hidden confounders is both a 
necessary and sufficient condition for the construction of these adversarial-style examples.

Overall, we make a number of key contributions: (1) We derive for the first time a novel, 
theoretical connection between causality’s SCMs and LPs, by which we then (2) use the 
hidden confounders of the SCM to devise an adversarial-style attack—which we call Hid-
den Confounder Attack (HCA)—onto the LP showing that non-classification problems can 
be prone to adversarial-style attacks; (3) We study and discuss two classical LP families 
and one real world applied optimization problem to further motivate research on HCA and 
their potentially worrisome consequences if being ignored. For reproduction, we make our 
code repository publicly available.1

2  Background and related work

In the following, we will briefly review the background on adversarial attacks as defined 
in their original setting of classification, then the formalism of LPs alongside two famous 
problem instances (linear assignment and shortest path, both of which we will use later 
on), and finally SCMs with their causal mechanism and hidden confounders. We use math-
ematical notation for (i) to precisely specify and capture important ideas and (ii) to eventu-
ally prove our theoretical insights, however, the reader is invited to skip formal details as 
they are not central for grasping the new ideas proposed in our paper, yet, a consideration 
will provide technical understanding about assumptions, limitations and reach of what is 
being proposed.

2.1  ‘Classical’ adversarial attacks (classification)

We are in the setting of classification, specifically, image classification where the task of 
the model is to give the ‘right’ label to a given image fed as model input. By using a simple 
optimization procedure, Szegedy et al. (2014) were able to find what they called ‘adver-
sarial examples’, which they defined to be imperceptibly perturbed input images such that 
these new images were no longer classified correctly by the predictive neural model. Note 
how we specifically talk about neural models here as in the regular deep learning context. 
Goodfellow et al. (2015) then proposed the Fast Gradient Sign Method (FGSM) that con-
siders the gradient of the error of the classifier w.r.t to the input image. Mathematically, 
they investigated perturbations of the form

where x ∈ ℝ
w×h×c is the input image, y ∈ ℕ a class label, ��� are the neural func-

tion approximator parameter, J ∶ ℝ
w×h×c × ℕ → ℝ a scalar-valued objective function, 

sign ∶ℝ → [−1, 1] an element-wise sign function and � ∈ ℝ a free-parameter. A perturba-
tion ��� would then account for mis-classification of the given predictive model f (x;���) i.e.,

(1)���∶=� sign (∇
x
J(x, y;���)) ∈ ℝ

w×h×c

1 https:// anony mous. 4open. scien ce/r/ Hidden- Conf- Attac ks/.

https://anonymous.4open.science/r/Hidden-Conf-Attacks/
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The inequality in Eq.  2 represents a possibly strongly significant divergence from the 
expected semantic meaning (i.e., from a human inspector’s perspective) of the class to be 
predicted. For example, imagine a photograph of a dog that is being classified by f as a dog 
(that is f predicts the label ‘dog’). However, the perturbed image x + ��� is not classified by 
f as ‘dog’ but rather as, say, ‘washing machine.’ What came to a surprise for many is two-
fold, (1) the new classification could be something drastically different e.g. not another 
animal like a cat but for instance a washing machine (2) from a human perspective the 
perturbed image would still lead to the same classification i.e., still a dog (put differently, 
the human inspector cannot tell a difference between the original and perturbed images). 
Naturally, said susceptibility (1-2) led to a significant increase in research interest regard-
ing robustness (to adversarial examples) in neural function approximators evoking the nar-
rative of “attacks” and subsequent “defences” on the inspected classification modules, as 
commonly found in alternate literature such as cyber-security (Handa et al., 2019).

2.2  Mathematical programming/optimization

Selecting the best candidate from some given set with regard to some criterion (or objec-
tive) is a general description of MPs (or just ‘optimization’), which arguably lies at the 
core of machine learning and many applications in science and engineering since we are 
in search of models and solution that are somehow the ‘best.’ Classification, e.g, can be 
considered as a special instance of mathematical programming, where the optimum is 
reached when the model is able to provide the correct label each time it is being queried. 
An important (if not, the most important and fundamental) optimization family are LPs 
that are concerned with the optimization of an objective function and constraints that are 
linear in the respective optimization variables. LPs are being applied widely in the real 
world, e.g., energy systems (Schaber et al., 2012). More formally, the optimal solution of 
an LP is given by

where ⟨a, b⟩∶=a� b =
∑

i aibi ∈ ℝ is the inner product (dot product), w ∈ ℝ
n is called the 

weight/cost vector, A ∈ ℝ
m×n, b ∈ ℝ

m are the constraint matrix and vector respectively, and 
finally P

A,b is the solution polytope (or feasible region) i.e., the convex subset of state space 
X such that each x satisfies the constraints. Formally, P

A,b∶={x|Ax ≤ b and x ≥ 0} ⊂ ℝ
n 

(if clear from context, we abbreviate to P ). Table 1 presents two classical problems that 
can be expressed as linear programs: the Linear Assignment Problem (LA) and the Short-
est Path Problem (SP). Both problems formulate the optimization variable x ∈ ℝ

n with 
either n = |A × B| or n = |E| to be a selector/indicator variable. That is, for LA we have the 
respective dimensions to mean matches between different worker and tasks, whereas for 
SP they denote the edges that are part of the fianl, selected path that should end up being 
the shortest path in the network. Although the original formulation of the LA and SP prob-
lems are actually integer LP formulations, which are generally known to be NP-complete 
opposed to the less restrictive regular LPs since they require the solutions to be integers 
and not some arbitrary real number, both problems can still be solved in polynomial time. 

(2)f (x;���) = y ≠ f (x + ���;���).

(3)x
∗ = argmax

x
LP(x;w,A,b)

(4)= argmax
x∈PA,b

⟨w, x⟩,
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However, extensions of regular SP like the Travelling Salesman or the Canadian Traveller 
problems are known to be NP- and PSPACE-complete respectively without any such ben-
efits as LA/SP beg to offer.

2.3  Causality

The question of causality is a highly philosophical, timeless question and subject of study 
by the likes of Plato and his fellows, but only recently has the AI/ML community started 
investing more into causality as a means for the next generation of intelligent systems using 
new formalizations that capture certain key ideas rigorously. Following the Pearlian notion 
of Causality (Pearl, 2009), an SCM is defined as a 4-tuple M∶=⟨U,V,F,P(U)⟩ where the 
so-called structural equations

assign values (denoted by lowercase letters) to the respective endogenous/system variables 
Vi ∈ V based on the values of their parents Pa i ⊆ V ⧵ Vi and the values of their respec-
tive exogenous/noise/nature variables Ui ⊆ U , and P(U) denotes the probability function 
defined over U . In other words, f is the causal (possibly physical) mechanism that converts 
values of the parent variables to the values of the variable interest, or how Pearl says “ Vi 
listens to pa i .” We usually say that pa i are the direct causes of Vi . Note that, opposed to the 
Markovian SCM discussed in for instance (Peters et al., 2017), the definition of M is semi-
Markovian thus allowing for shared U between the different Vi . Such a U is also called hid-
den confounder since it is a common cause of at least two Vi,Vj(i ≠ j) . Opposed to a hidden 
confounder, a “common” confounder would be a common cause from within V (that is, we 
would have a specific name for that given confounder, it would not be in U ). An important 
concept that the formalization later on will require is the concept of causal sufficiency. Fol-
lowing Spirtes (2010): “The set of endogenous variables on which SCM M enacts is called 
causally sufficient if there exist no hidden confounders.” Put differently, if our modelled 
system has no unobserved confounders (or we simply assume it to be that way), then we 
can call our system causally sufficient. While SCM provide a formalization (a language) 
for reasoning over (possibly hidden) confounders, the practical consideration of con-
founders is difficult and requires positing of (often times overly strong) assumptions. Both 
adjustment for confounders and the identification of confounding structures in the graph is 
a challenging task, which increases in difficulty when the confounder are unmeasured. For 

(5)vi = fi( pa i, ui) ∈ F

Table 1  Classical problems 
formulable as LPs

Linear assignment (left; abbrev. LA) and Shortest Path (right; SP). 
In LA one matches “workers” to “tasks” according to their “skills”. 
In SP one finds the “quickest”, valid path (collection of edges) from 
some node i to node j within the given graph/network. The constraints 
on the left specify rules such as each worker can only have one task 
and any task can only have one worker, whereas the constraints on the 
right define a ‘valid’ path, that is, if one enters a certain node, then 
one needs to also exit out of said node to continue with a valid path.

∀i ∈ A ∶
∑

j∈B

xij = 1

∀j ∈ B ∶
∑

i∈A

xij = 1

�

(i,j)∈E

xij −
�

(i,j)∈E

xji =

⎧
⎪
⎨
⎪⎩

1 if i = s

−1 if i = t

0 else

xij ∈ [0, 1] xij ∈ [0, 1]
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completion’s sake, we mention more interesting properties of any SCM. The SCM induces 
(i) a causal graph G, (ii) an observational/associational distribution denoted pM , and (ii) 
they can generate infinitely many interventional and counterfactual distributions using the 
do-operator.2

3  Step‑by‑step derivation of adversarial examples for linear programs

This section covers our key contribution and develops it step-by-step from ground up. This 
main section is structured in the following manner: we first discuss MPs/DPOs and how 
our results are expected to transfer to those to motivate the overall research direction and 
justify the investigation of LPs as initial case. Then, secondly, we present how a naïve map-
ping of the classical adversarial attack framework fails for LPs in the sense that we could 
not claim it to be an adversarial example (or even something similar). Then, thirdly, we 
present how the tools from causality can provide additional semantics to formulate our 
new adversarial-style attack, which we refer to as Hidden Confounder Attacks (HCA). In 
the fourth subsection, we conclude with what we consider to be important mathematical 
insights for HCA.

3.1  Overarching hypothesis and the importance of differentiability

In the past, different classes of MPs (LPs, MIPs) have been used defensively for verifying 
the robustness of neural learners to adversarial examples (Tjeng et  al., 2019) and offen-
sively for generating actual adversarial examples (Zhou et  al., 2020). Here, we are con-
cerned with a fundamentally different research question: “How do adversarial attacks 
affect MPs themselves?”. That is, we turn the table and instead of considering MPs as a 
service to the system to be attacked, we consider the programs themselves to be the system 
under attack. Our overarching hypothesis for this and possible future work is the following:

Hypothesis: Adversarial examples or attacks refer to a concept more general than 
that of classification in that it also affects MPs. Thereby, adversarial examples are a 
property of the problem specification and not per se a property of the expressiveness 
of deep models or of the classification task.

To the best of our knowledge, we are the first researchers to ask and investigate this question 
thoroughly. Therefore, in order to establish an initial connection between adversarial attacks 
and MPs we will start off with the most basic class of MPs: Linear Programs. Since an adver-
sarial attack typically depends on gradient/first-order information to determine where the per-
turbation (or attack) is most effective, we also require such first-order information from our 
LPs. One way to achieve this is to consider the class of ML models which inject some noise, 
which is distributed w.r.t. some differentiable probability distribution, into the LP optimizer. 
These so-called perturbed models have differentiability properties because of that. Therefore, 
these perturbed models have also been considered for inference tasks within energy models 
(Papandreou & Yuille, 2011) and regularization in online settings (Abernethy et al., 2014) as 
immediate consequence of said differentiability. Initial works in this research direction date 
back to the Gumbel-max (Gumbel, 1954) and were recently generalized to Differentiable 

2 Loosely speaking, the do-operation “overwrites” structural equations.
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Perturbed Optimizers (DPO) featuring end-to-end learnability (Berthet et al., 2020). As stated 
in the initial section of this paper, we conjecture (that is believe to be true) that DPO are sus-
ceptible to the same (or similar) style of adversarial examples that we are developing in this 
paper. To formulate an LP optimizer, x∗(w)= argmax

x∈PA,b
⟨w, x⟩ , as a DPO one requires only 

the existence of a random noise vector z ∈ ℝ
n with positive and differentiable density p(z) 

such that for 𝜖 ∈ ℝ>0,

where x ∈ ℝ
n is the optimization variable living in the solution polytope P

A,b described 
by LP constraints A, b , where ŵ∶=w + �z is the peturbed LP cost parameterization, 
⟨⋅, ⋅⟩ ∈ ℝ ∈ ℝ

n the inner product and �p(x)[f (X)] the expected value of random variable X 
under the predictive model f. Related work on differentiability of more general MPs like 
quadratic/cone programs (Agrawal et al., 2019) or linear optimization within predict-and-
optimize settings (Mandi & Guns, 2020) generally rely on the Karush-Kuhn-Tucker (KKT) 
conditions. The general advantage of a perturbation method (as in Eq. 6) over the analyti-
cal approaches is its “black-box” nature i.e., we don’t require to know what kind of MP we 
are dealing with, since we simply add stochasticity into the problem. In other words, we 
don’t need to be experts on any specific MP (or any MP at all for that matter) to be able to 
reap the benefits of differentiability. This “invariance” to the underlying MP and the fact 
that differentiability is a necessary key concept behind adversarial attacks, leads to follow-
ing (informally stated) conjecture.

Conjecture 1 (HCAs on MPs, informal) Differentiability is a necessary condition for con-
structing Hidden Confounder Attacks on MPs (to be defined in Sect. 3.4).

3.2  Naïve mapping or “trying to make sense of what adversarial examples could 
mean in LPs”

Let’s start our derivation of HCA by first providing a naïve mapping/perspective between/
for the classical adversarial attack and the famous class of LPs known as Linear Assignment 
(LA), both of which have been previously introduced in Sect. 2. Mathematically, the following 
correspondence can be found,

where x is the feature vector (e.g. an image), y the class label, f� the neural predictive 
model, and J the cost function (e.g. mean-squared error)—all of these symbols follow the 
notation from Goodfellow et al. (2015). From the LP perspective, we interpret w ∈ ℝ

|A|×|B| 
as describing the suitability of worker a ∈ A for job b ∈ B and the optimal solution 
x∗(w) ∈ [0, 1]|A|×|B| as indicators highlighting the matched pairs (ai, bj) . The only addition 
we have to make to achieve the naïve mapping to adversarials is some distance measure F 
acting on the original x∗(w) and the expected perturbed solution x∗(ŵ) . This is necessary 
since we need to allow for a “class” change between solutions that should occur (or are 
caused) through an adversarial attack i.e., in the case of LA, F could be for instance the 
Structural Hamming Distance (Hamming, 1950). Also note, in slight abuse of notation, our 
program solver x∗(⋅) denotes argmax

x
LP(x;w,A, b).

(6)x
∗(ŵ) = �p(z)[argmax

x∈PA,b
⟨w + �z, x⟩],

(7)
x + ���∶=ŵ, f�∶=x

∗(⋅),

y∶=x∗(w), J∶=F(ŵ,w),
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Having completed the naïve mapping in LA specifically, we could then naïvely view 
each optimal matching “code” x∗(w) as a certain class (or label) and then the gradient ∇

w
F 

could be used for performing an ‘adversarial attack’ such that the ‘class’ changes (signifi-
cantly) while the input remains approximately the same. As one can easily make out, the 
major problem being faced here is that there exists no “semantic impact” to be observed for 
the human inspector akin to a neural network wrongly classifying a dog (small animal) as a 
plane (big travel machine). In other words, there is change but said change is not significant 
(or surprising, and thus not interesting). To make this point more clear, we summarize our 
key insight about adversarial examples obtained by looking at our naïve mapping onto LPs:

Missing Semantic Component. The human inspector’s invariance to the adversarial 
example is characteristic of an adversarial attack (e.g. still dog-looking image being 
classified as depicting a washing machine), while a naïve mapping to LPs as in (7) 
leaves out said human component. In other words, there is no general human expec-
tation towards different optimal solutions to an LP since humans measure LPs only 
on their objective and therefore different optimal solutions are not ‘different.’

3.3  Concepts from causality provide the missing semantic component

In the previous section we concluded that there is a missing semantic component when 
naïvely mapping between adversarials and LPs. Yet, the optimal solutions when considered 
in terms of codes as in the LA example will actually significantly deviate from each other. 
This deviation (or difference) seems to suggest that there exists some more ‘fundamen-
tal’ difference in solution albeit not for the specific optimization objective at hand since 
the cost values will remain similar (or even the same). But as suggested by the missing 
semantic component, a human inspector will have no general expectation towards either 
of the LP solutions. To put it differently, “they look different but that is that.” Nonetheless, 
to complete the picture it is worth taking a step back and observing the LP from a ‘meta’ 
level perspective. On this meta level, we can ask the question of how the LP cost vector w 
was provided in the first place. Here causality and its SCM come into play. The SCM M 
defines a mechanistic data-generating process which will generate the observational prob-
ability distribution pM that the human modeller usually observes an empirical fraction of, 
denoted as data D . So, to loop back to the meta-question of how the LP parameterization 
came to be, we observe the following relation for some function �:

According to Eq. 8, the human modeller that takes the observed data as a basis for deter-
mining the cost vector of the LP and then uses some function-mapping between the 
SCM and the LP denoted as � to produce said cost vector. To give a concrete example 
of such a modelling, consider Fig.  1 in which the human modeller observes a data set 
D∶={(hi, pi)}

n
i
∼ p(H,P) = pM but no other information. The human modeller does nei-

ther observe the SCM induced distribution pM nor any more information about the partial 
SCM M which would include knowledge on the structural equations fH , fP and the hidden 
confounder UC (i.e., UC is shared by both equations). Therefore, also no information on 
the true SCM M∗ either, where UC would be part of the endogenous variables (i.e., there 
would also be fW and all UC being replaced by W standing for Wealth). The only knowl-
edge available is the data set D ∼ pM which numerically describes the Health (H) and a 
general notion of Vaccine Priority (P) of certain individuals. Note that a simple linear 

(8)�(D) = w where D ∼ pM.
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regression on the data shown in Fig. 1 reveals the existence of a causal relation between H 
and P (but not the direction). The true causal direction is read as “lower health values cause 
higher priority values” and written H → P . However, P describes other factors as well (for 
instance the age of an individual) since P also depends on UP (and not only on its cause H 
and the hidden confounder UC).

As in the previous section, let’s consider an LA problem as our LP instance. We will 
make the example explicit. The setting is that of a pandemic and recently it has been 
announced that there is a new vaccine that can help in stopping the pandemic. For this, 
people need to get vaccinated and so it is now up to a human modeller scheduled for mak-
ing a plan on assigning the empty vaccine spots. Unfortunately, the amount of spots is 
limited and so there must be some sort of rule to decide how to actually assign the avail-
able free spots. The human modeller is trying to find the optimal matching of individu-
als (based on the data that covers relevant information/features about the individuals) to 
respective, available vaccination spots. The human modeller might choose to find the cost 
parameterization of the LP that will determine the optimal matching by following some 
sort of policy (or rule) like “individuals of low health and high priority should be matched 
to vaccine spots, while others can wait.” More importantly, in this case, we would now 
argue that the human modeller implicitly performed a mapping � as in Eq. 8 based on the 
observed data, and that this � essentially captures the policy description from before. Both 
interestingly and intriguingly, by construction, � does not consider the hidden confounder 
UC—that might be viewed as something like wealth of an individual—since UC is not even 
defined within the data distribution accessible to the human modeller (since M ≠ M

∗) . 
This ignorance is the key to defining a meaningful adversarial-style attack on LPs since we 
can use it to explicate what a change in optimal solutions could mean. In informal terms, 
we are now ready to formulate our main idea of the paper:

Theorem  1 (HCAs on LPs, informal) Let �M denote an LP parameterization based on 
SCM M while M∗ denotes the ‘true’ or optimal SCM for the phenomenon of interest. Any 
�M that identifies individuals in M is prone to Hidden Confounder Attacks (to be defined 
in Sect. 3.4) unless M = M

∗.

Put loosely, choosing the ‘wrong’ �M , one that does not represent the true, underlying 
SCM M∗ , allows for an adversarial-style attacks on LPs. In summary we state:

Fig. 1  Intriguing LP-Parameterizations Based on SCM. The observed observational distribution p(H,  P) 
was generated by some unobserved SCM. Even if we had some SCM, it might not be the actual underlying, 
complete SCM i.e., there could still be hidden confounders in our estimate. The cost vector w of an LP can 
be viewed as a function � applied to population individuals (h, p) ∼ p(H,P) . Intriguingly, � may very well 
be unaware of confounders in the true SCM (Color figure online)
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Bias in Vaccine Spot Assignments, Example from Fig. 2: The LP-parameterization 
�M based on the SCM M , with w = �(D) from Eq. 8 where w is the LP cost vector, 
follows the previously, informally described policy, so �M models only H, P since 
UC is not even defined in D . Therefore, Thm.1 predicts the existence of a HCA for 
LP(x;w,A, b) . Figure 2 reveals such an example HCA: the attack is unnoticable in 
visual terms, just as for a classical adversarial example, and so is the difference in 
cost w.r.t. the optimal matchings—however, w.r.t. to the wealth value of each individ-
ual, the new matching shows a significant skew towards individuals (or data points) 
of higher wealth value.

Rationale for Hidden Confounders within Mathematical Programming Considerably 
orthogonal at first glance as this bridge might seem, both Pearlian causality (and asso-
ciated concepts such as hidden confounders) and Mathematical Programming are con-
cerned with modelling assumptions that lie outside the data. While the MP is arguably 
data-independent per definition of the paradigm, MPs such as LPs can in fact be mod-
elled through data. To give an example, a warehouse that is concerned with profits will 
record its sales and eventually settle on optimizing the profits based on the recorded 
data (using both the data features or variables and insights on customer preferences), 
which in turn is formulated as an MP. Since data that we are given (or that is being 
recorded in the example of the warehouse) is assumed to be governed by some underly-
ing dynamics, it is safe to assume that we can denote said underlying data-generating 
process with causality’s center-piece formalism being that of SCM. In conclusion, we 
naturally find situations in which our approximation to the SCM that might be underly-
ing our data (what is typically called our induction hypothesis) is insufficient in that 
there are hidden confounders. However, since we used the SCM’s data to model an MP 
previously, we now have an eventuality of hidden confounders within our MP instance. 

Fig. 2  Lead Example: Hidden Confounder Attack on LP. A real world inspired matching problem under 
attack. The new matching shows significant bias for individuals with high wealth value. The adversarial LP 
cost vector is close to the original both value-wise (left) and cost-wise w.r.t. their optimal solution (middle) 
which means in words that health-wise people in higher need of vaccination are still guaranteed a vaccine 
spot. However, w.r.t. hidden confounder (Wealth) the adversarial solution drastically deviates (right) i.e., the 
distribution of vaccines is being skewed towards people of higher wealth, which can circumvent the origi-
nally intended policy (Color figure online)
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This rationale is the very basis of the present manuscript that proves the existence of 
hidden confounders within MPs that are modelled in accordance to an insufficient SCM 
(even in the cases where the MP generation is unaware of the assumptions placed on the 
SCM part of the modelling of the cost and constraint vectors).

Next, to complete the discussion, we finally formalize the informal notions presented 
in this section. However, it is worth noting that technical parts of this paper can be 
safely skipped as understanding them is not central to understanding the overall idea (as 
just now presented informally). Naturally, reading the technical part allows for a precise 
understanding of the assumptions and key aspects to our definition of HCA and subse-
quent insights.

3.4  Formalizing the newly proposed LP attacks “hidden confounder attacks”

Notation We use standard notation from deep learning for various mathematical base 
concepts such as scalars (a), vectors ( a ), matrices ( A ), sets (A), parameterized func-
tions ( f� ). In the cases where a set is actually denoted with (what is considered typi-
cally to be) matrix notation, we consider said set to be of special meaning in that it 
is literature-specific notation where the different considered literatures are adversarial 
examples, linear programming and causality. In the following, we go over each. From 
literature specific to adversarial examples we use: perturbation ( ��� ). We also make use of 
linear programming specific notation: optimal solution ( x∗ ), cost vector or matrix ( w ), 
inner product ( ⟨⋅, ⋅⟩ ), linear constraints ( A, b ). Finally, since HCA are based on causal-
ity’s conception of confounders, we use causality notation as well: SCM ( M ), exo- and 
endogenous variables ( U,V ). With the matching of the two paradigms as in Eq. 7, we 
can consider the notational extensions for HCA introduced in this work as a ‘generaliza-
tion’ of the previous notations deployed for discussing adversarial-style attacks. In other 
words, either side of the definitions (in the mapping of Eq.  7) can be used to denote 
HCA. The authors opt for notational convenience in the sense that notation which is 
useful for a given context should be deployed e.g. when discussing optimal solutions 
then x∗(w) ≠ x∗(w�) is easier to parse than y ≠ y′ since the former notation explicates 
that optimal solutions under different cost vectors are being considered, whereas the 
latter might only be interpreted as a difference in scalars. We now introduce extended 
fosrmalism to capture all the previously established ideas precisely, to define HCA and 
discuss its properties. We first start with Eq. 8.

Definition 1 We call a function �M LP-parameterization based on SCM M if for an obser-
vational data set D ∼ pM we can define an LP(x;�(D),A, b).

By default (unless clear from context), we might refer to such �M simply as LP-
parameterizations. Some LP-parameterizations fulfill a property that “identifies individ-
uals in M ” which we define next.

Definition 2 Let �M be an LP-parameterization based on SCM M with 
�M(D) = w = (w1,… ,wk) and D = {di}

n
i
 . We call �M integral if it satisfies:

∀i ∈ {1,… , n}.∃I ⊂ {1,… , k}.(di = 𝜙−1
M
((wj)j∈I).
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In words, the parameterization decomposes on the the data point (or unit) level.

These first two definitions give us the ability to talk about ‘special’ types of LPs, namely 
those that underly some SCM and further some that even allow for talking about the dif-
ferent units Uj of these SCM (exogenous variables). A simple yet important insight that 
immediately follows is:

Corollary 1 The LP problems Linear Assignment (LA) and Shortest Path (SP) have integral 
LP-parameterizations.

Proof For LA, simply map each data point indexed by i to the cost vector slice indexed by 
indices in the set I s.t. each i refers to the same unique a from the “workers" set A for all the 
different “jobs" b ∈ B . I.e., one data point sampled from the SCM’s observational distribu-
tion will correspond to one worker in the LP cost vector. For SP, there is a more direct one-
to-one correspondence where each data point is mapped to a unique edge in the graph.  
 ◻

This insight is important since LA and SP constitute arguably the two most important 
LPs in existence as accounted by their widespread use in applications in ML and beyond. 
Before we can define HCA, we need to state our two main assumptions that are necessary 
to HCA:

Assumption 1 For some fixed constraints A, b let X∗(w)∶={x ∣ x = argmax
x
LP(x;w,A,b)} 

denote the set of optimal LP solutions under w . Further let Bw

�
 denote an �-Ball with 𝜖 > 0 

around some LP cost w . Then there exists a ŵ ∈ Bw

�
 such that |X∗(ŵ)| > 1 . In words, we 

can find an �-close LP instance with multiple optimal solutions.

Assumption 2 Like before, let X∗(w) be the set of optimal LP solutions under cost 
vector w . Further, let x∗(w) ∈ X

∗(w) denote the solution returned by our solver and let 
ŵ = w + � ∇

w
F be the perturbed cost vector for some function F and 𝜖 > 0 . We assume 

x∗(w) ≠ x∗(ŵ) . In words, the perturbed LP instance returns a different optimal solution.

Arguably, both assumptions are fairly weak and compare to what can be found in stand-
ard adversarial learning literature, yet, it is crucial to make them explicit both for transpar-
ency on the given setting and for proving our theorem of HCAs on LPs. Now, we are set to 
give the technical description of what a Hidden Confounder Attack really is:

Definition 3 Let �M be an LP-parameterization based on SCM M . We call �M prone 
to Hidden Confounder Attacks if there exists an injective function h ∶ X

∗
→ ℝ with 

properties 

1. h(x∗) = f (
⨁

i∈x∗

M
�

C
(i)) and

2. ∃ŵ.(h(x∗(w)) ≠ h(x∗(ŵ)))

for some function f ∶ ℝ → ℝ , aggregation function 
⨁

 over units i active in x∗ (e.g. the 
sum for all matched “workers"), and LP cost vector w where
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is the projection of a unit i to its respective confounder value M�

C
(i) ∈ Val(C) where M′ is 

an alternate SCM containing C. That is, C is a hidden confounder of M.

In simple terms, property 1 in Def. 3 refers to the uncountable number of functions 
that can leverage information on the hidden confounder by using the alternate SCM 
M

′ to distinguish between different optimal LP solutions which is required by property 
2 (since otherwise, there would be no observed difference, alas no attack). Finally, we 
can provide our key result, that we have encountered previously in informal terms, in 
its complete formal version.

Theorem 2 (HCAs on LPs, formal) Let �M be an integral LP-parameterization based on 
SCM M , then we have:

Proof “⇒ ”: As discussed in Sect. 2, for an SCM M = ⟨U,V,F,P(U)⟩ to be causally insuf-
ficient there must exist at least one hidden confounder, denoted C, that is not an endog-
enous variable, C ∉ V . Therefore, for any LP-parameterization �M and any LP cost vector 
w , the latter also doesn’t depend on C. Then, take an alternate M� = ⟨U�,V�,F�,P�(U)⟩ for 
which C ∈ V

� and construct h as described by property 1 from Def. 3, which is guaranteed 
to exist since �M is integral. Through Assumption 1 we have guaranteed multiple optimal 
LP solutions for LP(x;w,A, b) to choose from. On the other hand, through Assumption 2 
we can perturb said LP cost vector w such that x∗(w) ≠ x∗(ŵ) . Since h is injective, we have 
that h(x∗(w)) ≠ h(x∗(ŵ)) which is property 2 of Def. 3 completing the implication.

“⇐ ”: Trivial, since HCA (Def. 3) are defined as attacks that exploit hidden confound-
ers.   ◻

This fundamental Theorem of our formalism on HCA guarantees us that the exist-
ence of hidden confounders implies the susceptibility of LPs to HCAs. In fact, we can 
even construct an uncountable number of HCAs based on said confounders. We fur-
ther argue that the HCAs that follow from Thm. 2 are highly non-trivial in the sense 
that they exploit information “outside of the data” i.e., assuming that the human mod-
eller only uses a causally insufficient �M , then an adversary is guaranteed a chance to 
exploit his/her better knowledge on the true, underlying SCM to perform an attack. 
Also, a simple corollary of Thm. 2 is that LA and SP are always prone to HCAs since 
they have integral �M and the odds are stacked against the model under consideration 
M actually being the true, underlying SCM M∗ (that is, in most practical cases we will 
encounter the situation where M ≠ M

∗ ). Another way of looking at HCA is possibly 
even more intriguing: since we need to take care of modelling assumptions to prevent 
HCA, the modelling of LPs ultimately becomes a causal problem since causality is 
mainly concerned with the discussion of modelling assumptions (usually for identifi-
ability of causal quantities, whereas in this case for the robustness of an LP towards 
HCAs).

M
�

C
∶ ℕ → Val(C)

M is causally insufficient ⟺ �M is prone to HCA.



1342 Machine Learning (2024) 113:1329–1349

1 3

4  Empirical evidence

This section is purely dedicated to discussing the existence of relevant HCA apart from the 
example that we have already discussed with the LA problem of assigning people to free 
vaccination spots. We first cover a SP for travelling between cities and then also a general 
LP for a real world inspired model of an energy system.

4.1  Shortest path LP

The caption of this example might be the following captivating headline for a newspaper 
article: “Travelling from New York City to San Francisco...via Canada?”. Surely, when 
travelling between NYC and SF, one would not take the detour over Canada, but this is 
exactly what occurs in our example in which we perform a HCA on a corresponding LP. 
Like before with our HCA on the LA-LP with the vaccine example, we depict the applica-
tion of the HCA visually within a figure. This new example is being showcased in Fig. 3 
which is concerned with a classical Shortest Path (SP) problem and we discuss the details 
in the following. In a corresponding real world setting for the example, we might consider 
the development of an autonomous car (since arguably any conscious driver would surely 
notice passing border patrol when actually travelling such a route) to argue for realism. 
We let the developmental autonomous car travel within North America from New York 
City (NY) to San Francisco (SF). Our SP has the intention of reducing overall toll costs 
for the optimal route. Therefore, the SP-LP is not concerned with the shortest route in 
terms of actual travelling distance but in terms of actual toll costs accumulated (noting this 
distinction is important). From experience, it is known that these toll costs can be hefty. 
Our LP cost wij ∈ ℝ>0 represents the toll cost when travelling on any road segment from 
i to j. In this example, we know the toll costs for a relevant set of road segments within 
North America where the Canadian road toll policy is comparably modest when compared 

Fig. 3  Another Example: Increased CO2 Emissions. The edges in the graph represent tolls to be paid for 
travelling a given road segment. The hidden confounder are CO2 emissions. We visualize the results of per-
forming a HCA using said hidden confounder on our SP-LP instance. Our HCA reveals that travelling via 
Canada instead of mid-US will amount to the same total travel toll to be paid but the CO2 emissions drasti-
cally deviate between the solutions (Color figure online)
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to the one in the US. Our LP model subsequently solves any given SP problem instance, 
fully parameterized by the directed acyclic graph (DAG) w ∈ ℝ

n×n with n being the total 
number of different cities we have specified, returning xUS∶=x∗(w) ∈ [0, 1]n×n suggest-
ing a route through the mid-US. We change this result by constructing a HCA. The HCA 
leads to a minimal perturbation of the original DAG (representing the toll costs), that is 
ŵ ≈ w , but our solver now chooses an alternate solution xCA∶=x∗(ŵ) suggesting a route 
across the border via Canada.3 While evidently the alternate route deviates strongly in 
terms of selected road segments, mathematically SHD(xUS, xCA) ≫ 0 where SHD(⋅, ⋅) ∈ ℕ 
is the Structural Hamming Distance, our model is in fact trustfully returning the optimal 
solution. In other words, cost-wise the statement �� xUS ≈ ŵ

� xCA holds. Nonetheless, the 
aforementioned deviation in terms of the resulting binary codes lends itself to a severe 
consequence in terms of the hidden confounder i.e., with respect to CO2 emissions. Like in 
the main text, we construct an HCA with function h accordingly. The hidden confounder 
is being exploited by the adversary, the alternate optimal solution performs significantly 
worse: h(xCA) ≫ h(xUS) . In words, both solutions require approximately the same toll costs 
and are therefore deemed equivalent in that regard but in terms of CO2 emmissions, the 
(distance-wise) longer route via Canada is far worse for the environment. By this, we have 
again provided existential proof that a hidden confounder can more generally define adver-
sarial attacks for mathematical programs beyond the original formulation in the classical 
setting for classification (and deep networks), making the attack a consequence of not the 
specific methodology being applied to the problem but problem specification itself.

4.2  Energy‑systems LP

In this final empirical simulation, we consider a large scale LP. Furthermore, this LP is a 
general LP, so neither LA nor SP and thereby it does not satisfy integrality. Our real world 
based example considers an energy model for modelling the energy portfolio of a single-fam-
ily house based on actual real world data for demand and commonly used equations from 
energy systems research (Schaber et al., 2012) to model the evolution of respective quantities. 
The examined model considers concepts such as photovoltaics (PV), market electricty and 
heating gas over a year time frame (in hours) and resembles a simplified version of the TIMES 

Table 2  Real-world optimization modelling example: 1-year energy systems LP for an average household

A large LP that unrolls for 8760 time steps (8760 h = 1 year). Model based on Schaber et al. (2012), the 
quantities represent: Cost for Photovoltaics cPV (€/kW), Battery cBat (€/kWh), Market Electricity cEle (€/
kWh), Gas cGas (€/kWh), and the total Demand D (kWh/Year).

minCap,p cPV × CapPV + cBat × CapS
Bat

+
∑

t cEle × pEle(t) +
∑

t cGas × pGas(t)

s.t. pEle(t) + pPV (t) + pout
Bat

(t) − pin
Bat

(t) + pGas(t) = D(t),∀t 0 ≤ pEle

pS
Bat

(t) = pS
Bat

(t − 1) + pout
Bat

(t) − pin
Bat

(t), t ∈ 2,… ,T

0 ≤ pPV (t) ≤ CapPV × availPV (t) × �t,∀t

0 ≤ pin
Bat

(t), pout
Bat

(t) ≤ CapBat ,∀t

0 ≤ pGas(t) ≤ UGas,∀t

pS
Bat

(0) = 0

3 Remember, it is essential for the technical Assumption 1 and 2, discussed in the previous section, to hold.
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model Loulou et al. (2005). The optimal solution balances the usage of the different technolo-
gies for matching the required demand of the family household such that overall cost is being 
minimized. The specific LP template is given in Table 2. Note the summation and functional 
dependencies on t ∈ {0,… , 8760} with 1 year = 8760 h rendering the template a very large 
single LP modelling each hour of the year with well over 40,000 constraints and an objec-
tive function with over 17,000 terms. Still, there are some technologies like for instance PV, 
in their capacity ( CapPV ), that do not depend on t which would correspond to the real world 
intuition that one does not decide and subsequently build new PV for any given hour as it 
poses a single investment fixed in time. Since in this example we cannot specify the underly-
ing SCM to then also identify confounders, as previously done for the LA- and SP-LPs, we 
need to treat this LP instance differently. We use heuristics for the SCM-part to produce an 
approximation to HCA to overcome the fact that we are not provided with a reasonable SCM 
a-priori. We then perform said approximation to produce an HCA that creates the results pre-
sented in Table 3. We observe the effect which energy-systems researchers call “dominating 
technologies,” where PV is being preferred over market-bought electricity. While we do not 
have a function h this time to evaluate the difference in solutions for the adversary, we can 
still make the argument that building this many PV modules comes at an increased risk of 
fire (which could be considered the hidden confounder in this case). Another possible inter-
pretation would be risk of working injury for the panel installing workers, since installing the 
panels usually happens at the upper level height of the house. To conclude this example with 
an important discussion, we want to mention that the limitations on PV-production and Mar-
ket-buy of electricity act as discrepancy counter-measures that require the system to balance 
out different technologies i.e., while there will still be dominating technologies under price 
advantages the maximum skew of the portfolio is naturally being protected from being too 
drastic as both PV and bought electricity are limited in their ‘availability’ (e.g. solar exposure, 
roof capacity, law regulations etc.) and thus cannot be naïvely maximized. In other words, 
we observe that this LP behaves qualitatively a little different when compared to the LA- and 
SP-LP examples in the sense that this energy system LP is more ‘balanced’ and thus somehow 
less prone to HCA. The aforementioned lack of integrality might be one of the reasons, but 
there is reason to believe based on the previous argument of the dynamics of the competing 
technologies that this might be the main cause. A precise formalization of these aspects is a 
remaining open problem.

4.3  Synthetic simulations, scalability and key assumptions

We’ve conducted several experiments of synthetic nature on LP problems. These LP prob-
lems included well-known integer problems such as matching or shortest path, and further 

Table 3  Dominating technologies

We perform an approximate HCA to reveal a new solution that highlights the fact that PV end up as a new 
“dominating technology.” Price perturbations in ( wPV ) have boosted PV production CapPV (green), which 
then again can be argued leads to a significant increase in risk of fire or injuries for the workers installing 
the panels.

Dem. (h) CapPV CapBat Self-Gen TOTEX CAPEX ConGas ConEle wPV

3000 1.76 2.45 0.42 597.41 161.64 1.70 1743.06 .005
3000 7.15 4.78 0.66 468.24 214.87 1.95 1013.49 .001
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general LP formulations as in the case of energy-systems. While the LP problems them-
selves are considerably data-independent, the presented HCA formalism relies on SCM as 
data-generating processes, therefore, sample or data set sizes in the LP parameterizations 
�M can vary. Unsurprisingly, since Def. 1 puts a constraint on the data set under consid-
eration there will be no downstream influence by the data set size onto the HCA. That is, 
since hidden confounders are a property of an SCM (on the model level) they do not have 
an influence on the data set we consider (on the sample level). Similarly, our simulations 
corroborate on the invariance (or rather orthogonality) of HCA to variable scales as this is 
a general property of the LPs under consideration e.g., the scale of a variable in the SP set-
ting that denotes “road segment will be taken, yes/no” can not be changed. In an analogue 
argument for the general LP, the variables having well-specified scales is a defining (thus 
necessary) property e.g. the quantities in the energy-system example need to satisfy given 
physical conservation laws.

Regarding the scalability of HCA, it can be added that the knowledge on a confounder 
and subsequent h is always O(1) , that is, independent of the size of any given SCM M , 
if that M is causally insufficient, then a single hidden confounder is sufficient for con-
structing a h that acts as HCA. Other than the causal aspect, regular scaling properties 
of DPOs apply to the construction of HCA. Concerning the usage of different LP solv-
ers for obtaining optimal solutions x∗ : the presented approach crucially builds upon DPOs 
that are characterized by their differentiability. Differentiability being a crucial property 
for adversarial examples, makes it a necessary condition for HCA as well, as they can be 
viewed as an extension to LP adversarial-style examples. In conclusion, only differenti-
able LP solvers can be employed, and to the best of our knowledge no other solvers, apart 
from the ones employed here, have been studied thus far. Regarding the assumptions, there 
are more nuanced views to be considered for justification purposes. The existence of an 
underlying SCM is the foundational assumption in Pearlian causality and can be taken as 
granted. Similarly, the fact that the underlying SCM is only being approximated by any 
given model of the data. Therefore, knowledge on hidden confounders is a strong assump-
tion. In our case, this assumption is relaxed since only a single hidden confounder need be 
known. Regarding the two technical assumptions 1 and 2 in this work, the latter is con-
cerned with a ‘tie-break’ resolution, that is, if there exist multiple solution to a given LP 
parameterization, then a certain permutation will always favour a certain solution. This is 
a straightforward assumption since the parameterization can be altered arbitrarily by an � 
change. However, the prior assumption which is concerned with the existence of multiple 
solutions within an �-ball is more demanding than in the standard adversarial case since 
LPs are polytopes of potentially complex shape. Nonetheless, on a conceptual level, the 
presented showcases for LA/SP demonstrate that various situations of multiple-solution 
sets for LPs do occur in practice.

5  Conclusive discussion

Ultimately, we believe HCAs to be a fundamental problem of mathematical optimi-
zation—to the same extent that hidden confounding is a fundamental problem of the 
Pearlian notion of causality (or science in general). It is intriguing that the formal tools 
from causality allowed for bridging the gap between classical adversarial attacks from 
deep learning and the first basic class of mathematical optimization namely LPs. While 
it is arguably of great scientific value to purely study the existence and properties of 
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HCA, naturally, the question arises on the severity of HCA for the real world. We 
believe that our examples have shown potentially worrisome real-world implications. 
Especially our lead example in Fig. 2 captures the Zeitgeist of the pandemic times with 
the rise of Covid (that hopeful has found an end finally). To thus ask the inverse ques-
tion on how to defend against HCA is equally important, yet, we believe this question to 
be ill-posed to begin with. Essentially, Thm.2 suggests an equivalence on the existence 
of hidden confounders and such attacks. Put differently, as long as our model assump-
tions are imperfect, we are exploitable—again, giving us reason to believe HCA to be 
of fundamental nature. However, that does not mean that we are doomed to accept that 
HCA will always be something that can happen anywhere but rather take the opportu-
nity to further study HCA beyond LPs (as initially conjectured, see Conj.1) but also 
alternate notions of attacks, in order to really understand what our assumptions cover 
and what not. With HCA we have presented one new way of thinking of adversarial 
style attacks and its serves as a representative example of what we mean by studying 
these phenomena. While our perspective put causality to good, there might exist other 
notions of attacks similar to HCA that might in fact not be based on causal knowledge 
(confounders) to begin with. Since we were able to develop HCA from first principles, 
by starting from classical adversarial attacks and naïve mappings to LPs, we have good 
reason to believe in the actual existence of related families of attacks. From a theoreti-
cal standpoint the question of whether the integral property (Def. 2) applied to Thm. 2 
could be dropped might be interesting for broadening the applicability of HCA, as we 
saw with our energy systems example where we still achieved some sort of reasonable 
HCA approximation although integrality did not hold.

On another note, we observe this work to form a triangular relationship to the works 
of Ilse et al. (2021) and Eghbal-zadeh et al. (2020). To elaborate: the first publication is 
concerned, again, with Pearlian causality and sees how it relates to data augmentation, 
while the second paper bridges augmentation and adversarials—our work can be seen 
as the missing link that then loops back adversarials to causality. From that perspective, 
we can clearly see that there seems to be an overarching research theme yet to be uncov-
ered. Separating our discussion from HCA for the moment, we nonetheless are tempted 
to believe that HCA (although being the focus and motivation behind this work) are not 
the most important discovery in this paper. The concept of LP-parameterization based on 
SCM (Def. 1) is an intriguing and original concept that for the first time connects the two 
seemingly independent notions of causality and mathematical optimization in a non-trivial 
manner. So, it might turn out to be more fruitful long-term to actually study the properties 
of mathematical programs which stand in direct relation to the data-generating capabili-
ties of SCM since that might lead to interesting concepts such as the estimation of causal 
effects in, say, constraints of mathematical programs. To put it bluntly, our current thinking 
imagines future research around LP-SCM relations as even more fundamental than HCA, 
but ideally both HCA and related attacks should be further studied alongside LP-SCM rela-
tions since both have real world implications. Arguably, for causality the latter is more 
important, whereas for ML the former is more important.

Takeaway and Societal Implications Our work seems to suggest (1) that we can have a 
similar, adversarial phenomenon outside classification and (2) that the current state of ML 
can be viewed ‘causal’ to the extent that the assumptions are ‘causal’ i.e., � summarizes 
essentially these causal assumptions. Of concern are mostly (a) raising awareness on the 
issue that adversaries could in fact use HCA as shown in the examples to produce harm and 
(b) provide incentives for studying the integration of ML with causality since modelling 
assumptions seem to lie at the core of it.
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6  Reproduction details

LA-LP: For the LA example, with the vaccination matching bias towards the wealthy, we 
use N = 15 sampling iterations with temperature parameter � = 0.5 for the perturbation in 
the DPO as defined by Berthet et al. (2020) and an attack step � = 0.01 for the final HCA. 
SP-LP: For the SP example, travelling from NY to SF via Canada, we use more sampling 
iterations ( N = 20 ) using a lower temperature ( � = 0.25 ). Real World LP: The energy sys-
tems LP has following parameter specifications (Table 4):

All experiments are being performed on a MacBook Pro (13-inch, 2020, Four Thunder-
bolt 3 ports) laptop running a 2,3 GHz Quad-Core Intel Core i7 CPU with a 16 GB 3733 
MHz LPDDR4X RAM on time scales ranging from a few minutes (e.g. evaluating LA/SP 
examples) up to a few hours (e.g. energy systems real world example). Code link in Sect. 1.
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Table 4  Parameterization 
energy-system

Cost for photovoltaics cPV (€/kW), battery cBat (€/kWh), market elec-
tricity cEle (€/kWh), gas cGas (€/kWh), and the total demand D (kWh/
Year).

cPV cBat cEle D cGas

0.005 300 0.25 3000 0.25
0.001 300 0.25 3000 0.25

https://github.com/zecevic-matej/Hidden-Confounder-Attacks
https://github.com/zecevic-matej/Hidden-Confounder-Attacks
http://creativecommons.org/licenses/by/4.0/


1348 Machine Learning (2024) 113:1329–1349

1 3

References

Abernethy, J., Lee, C., Sinha, A., & Tewari, A. (2014). Online linear optimization via smoothing. In Confer-
ence on learning theory (pp. 807–823). PMLR.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, Z. (2019). Differentiable convex opti-
mization layers. Neural Information Processing Systems, 32, 9562–9574.

Amos, B., & Kolter, J. Z. (2017). OptNet: Differentiable optimization as a layer in neural networks. In Inter-
national conference on machine learning (pp. 136–145). PMLR.

Bach, F. (2013). Learning with submodular functions: A convex optimization perspective. Foundations and 
Trends in Machine Learning, 6(2–3), 145–373.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P., & Bach, F. (2020). Learning with differentiable 
perturbed optimizers. Neural Information Processing Systems, 33, 9508–9519.

Bica, I., Alaa, A., & Van Der Schaar, M. (2020). Time series deconfounder: Estimating treatment effects 
over time in the presence of hidden confounders. In International conference on machine learning (pp. 
884–895). PMLR.

Brendel, W., Rauber, J., & Bethge, M. (2018). Decision-based adversarial attacks: Reliable attacks against 
black-box machine learning models, In International conference on learning representations. https:// 
openr eview. net/ forum? id= SyZI0 GWCZ

Chen, S.-T., Cornelius, C., Martin, J., & Chau, D. H. P. (2018). Shapeshifter: Robust physical adversarial 
attack on faster R-CNN object detector. In Machine learning and knowledge discovery in databases: 
European conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, 
Part I 18 (pp. 52–68). Springer International Publishing.

Eghbal-zadeh, H., Koutini, K., Primus, P., Haunschmid, V., Lewandowski, M., Zellinger, W., Moser, B. A., 
& Widmer, G. (2020). On data augmentation and adversarial risk: An empirical analysis. arxiv pre-
print arxiv: 2007. 02650

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In 
International conference on learning representations. arxiv. org/ abs/ 1412. 6572

Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications: A series of lec-
tures (Vol. 33). US Government Printing Office.

Guo, C., Gardner, J., You, Y., Wilson, A. G., & Weinberger, K. (2019). Simple black-box adversarial 
attacks. In International conference on machine learning (pp. 2484–2493). PMLR.

Hair, J. F., Jr., & Sarstedt, M. (2021). Data, measurement, and causal inferences in machine learning: 
Opportunities and challenges for marketing. Journal of Marketing Theory and Practice, 29(1), 65–77.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System Technical Booktitle, 
29(2), 147–160.

Handa, A., Sharma, A., & Shukla, S. K. (2019). Machine learning in cybersecurity: A review. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery.

Hernán, M. A., & Robins, J. M. (2020). Causal inference: What if. Chapman & Hall/CRC.
Hoiles, W., & Schaar, M. (2016). Bounded off-policy evaluation with missing data for course recommenda-

tion and curriculum design. In International conference on machine learning (pp. 1596–1604). PMLR.
Ilse, M., Tomczak, J. M., & Forré, P. (2021). Selecting data augmentation for simulating interventions. In 

International conference on machine learning (pp. 4555–4562). PMLR.
Loulou, R., Remme, U., Kanudia, A., Lehtila, A., & Goldstein, G. (2005). Documentation for the times 

model part II. Energy technology systems analysis programme. International Energy Agency.
Mandi, J., & Guns, T. (2020). Interior point solving for LP-based prediction+ optimisation. Neural Informa-

tion Processing Systems, 33, 7272–7282.
Papandreou, G., & Yuille, A. L. (2011). Perturb-and-map random fields: Using discrete optimization to 

learn and sample from energy models. In 2011 international conference on computer vision (pp. 193–
200). IEEE.

Paulus, A., Rolínek, M., Musil, V., Amos, B., & Martius, G. (2021). CombOptNet: Fit the right NP-hard 
problem by learning integer programming constraints. arxiv preprint arxiv: 2105. 02343

Pearl, J. (2009). Causality. Cambridge University Press.
Penn, D. C., & Povinelli, D. J. (2007). Causal cognition in human and nonhuman animals: A comparative, 

critical review. Annual Review of Psychology, 58, 97–118.
Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference. MIT Press.
Schaber, K., Steinke, F., & Hamacher, T. (2012). Transmission grid extensions for the integration of vari-

able renewable energies in Europe: Who benefits where? Energy Policy, 43, 123–135.
Spirtes, P. (2010). Introduction to causal inference. Journal of Machine Learning Research, 11, 1643–1662.

https://openreview.net/forum?id=SyZI0GWCZ
https://openreview.net/forum?id=SyZI0GWCZ
http://arxiv.org/abs/2007.02650
arxiv.org/abs/1412.6572
http://arxiv.org/abs/2105.02343


1349Machine Learning (2024) 113:1329–1349 

1 3

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014). Intrigu-
ing properties of neural networks. In International conference on learning representations. arxiv. org/ 
abs/ 1312. 6199

Tjeng, V., Xiao, K. Y., & Tedrake, R. (2019). Evaluating robustness of neural networks with mixed integer 
programming. In International conference on learning representations. https:// openr eview. net/ forum? 
id= HyGId iRqtm

Wu, K., Wang, A., & Yu, Y. (2020). Stronger and faster wasserstein adversarial attacks. In International 
conference on machine learning (pp. 10377–10387). PMLR.

Zhou, N., Luo, W., Lin, X., Xu, P., & Zhang, Z. (2020). Generating multi-label adversarial examples by lin-
ear programming. In 2020 international joint conference on neural networks (IJCNN) (pp. 1–8). IEEE.

Zügner, D., Akbarnejad, A., & Günnemann, S. (2018). Adversarial attacks on neural networks for graph 
data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & 
data mining (pp. 2847–2856).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm

	Structural causal models reveal confounder bias in linear program modelling
	Abstract
	1 Introduction
	2 Background and related work
	2.1 ‘Classical’ adversarial attacks (classification)
	2.2 Mathematical programmingoptimization
	2.3 Causality

	3 Step-by-step derivation of adversarial examples for linear programs
	3.1 Overarching hypothesis and the importance of differentiability
	3.2 Naïve mapping or “trying to make sense of what adversarial examples could mean in LPs”
	3.3 Concepts from causality provide the missing semantic component
	3.4 Formalizing the newly proposed LP attacks “hidden confounder attacks”

	4 Empirical evidence
	4.1 Shortest path LP
	4.2 Energy-systems LP
	4.3 Synthetic simulations, scalability and key assumptions

	5 Conclusive discussion
	6 Reproduction details
	References




