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Abstract
Ensemble classifiers have been investigated by many in the artificial intelligence and 
machine learning community. Majority voting and weighted majority voting are two com-
monly used combination schemes in ensemble learning. However, understanding of them 
is incomplete at best, with some properties even misunderstood. In this paper, we present a 
group of properties of these two schemes formally under a geometric framework. Two key 
factors, every component base classifier’s performance and dissimilarity between each pair 
of component classifiers are evaluated by the same metric—the Euclidean distance. Conse-
quently, ensembling becomes a deterministic problem and the performance of an ensemble 
can be calculated directly by a formula. We prove several theorems of interest and explain 
their implications for ensembles. In particular, we compare and contrast the effect of the 
number of component classifiers on these two types of ensemble schemes. Some important 
properties of both combination schemes are discussed. And a method to calculate the opti-
mal weights for the weighted majority voting is presented. Empirical investigation is con-
ducted to verify the theoretical results. We believe that the results from this paper are very 
useful for us to understand the fundamental properties of these two combination schemes 
and the principles of ensemble classifiers in general. The results are also helpful for us to 
investigate some issues in ensemble classifiers, such as ensemble performance prediction, 
diversity, ensemble pruning, and others.
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1  Introduction

In the last three decades, ensemble learning has been investigated by many researchers. 
This technique has seen used in diverse tasks such as classification, regression, and cluster-
ing among others. Research has been conducted at multiple levels: from feature selection, 
component classifier generation and selection, to the ensemble model (Jurek et al., 2014; 
Dong et al., 2020). Some of the ensemble approaches have been very successful in inter-
national machine learning competitions such as Kaggle, KDD-Cups, etc. and the technolo-
gies have been extensively used in various application areas (Oza & Tumer, 2008).

Although some ensemble models (such as stacking, bagging, random forest, AdaBoost, 
gradient boosting machines, deep neural network-based models, and others) are more com-
plicated, two relatively simple combination schemes, majority voting and weighted major-
ity voting, have been used widely for the ensemble model (Sagi & Rokach, 2018). Even 
in those more complicated models, majority voting and weighted majority voting are still 
used frequently at intermediate or final combination stages.

How many component classifiers to use and how to select a subset from a large group 
for an ensemble are two related questions. Zhou et  al. (2002) investigated the impact of 
the number of component classifiers on ensemble performance. It is found that the num-
ber of component classifiers is not always a positive factor for improving performance 
when majority voting is used for combination. Later their finding is often referred to as the 
“many-could-be-better-than-all” theorem.

However, this finding is not echoed by many others. More empirical evidence indicates 
that the size of an ensemble has a positive impact on performance (Hernández-Lobato 
et  al., 2013). To balance ensemble performance and efficiency, many papers investigate 
how to achieve best possible performance by combining a fixed or a small number of clas-
sifiers selected from a large number of candidates (Latinne et al., 2001; Oshiro et al., 2012; 
Xiao et  al., 2010; Dias & Windeatt, 2014; Bhardwaj et  al., 2016; Ykhlef & Bouchaffra, 
2017; Zhu et al., 2019).

Possibly inspired by Zhou et  al’ work (Zhou et  al., 2002), Bonab and Can (2019) 
asserted that for weighted majority voting: the ideal condition for the ensemble to achieve 
maximum accuracy is for the number of component classifiers to equal the number of out-
put classes. However, their theoretical analysis is limited by the strength of assumptions 
used, which experimental results do not always support.

Diversity among component classifiers is a factor that may influence ensemble perfor-
mance (Bi, 2012; Jain et  al., 2020; Zhang et  al., 2020). However, there is no generally 
accepted definition of diversity (Kuncheva & Whitaker, 2003). Many measures, such as 
Yule’s Q statistics, the correlation coefficient, the disagreement measure, F-score, the dou-
ble fault measure, Kohavi-Wolpert’s variance, Kuncheva’s entropy, etc., have been pro-
posed and investigated (Tang et al., 2006; Visentini et al., 2016). Moreover, many diversity 
measures such as the F-score, the disagreement measure, the double fault measure, etc. are 
or related to performance measures. This explains why the effect of diversity on ensemble 
performance is unclear in some cases (Tang et al., 2006; Bi, 2012).

In short, although ensemble learning has garnered considerable attention from research-
ers, much of the literature comprise methodological and empirical studies, while the theory 
is underrepresented. Many fundamental questions remain unclear. We list some of these 
below: 
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1.	 What is the difference between majority voting and weighted majority voting?
2.	 When should we use majority voting rather than weighted majority voting, or vice versa?
3.	 There are a lot of weighting assignment methods for weighted majority voting, which 

one is the best?
4.	 How does the number of component classifiers affect ensemble performance?
5.	 How does each component classifier affect ensemble performance?
6.	 How does performance of component classifiers affect ensemble performance?
7.	 How does diversity of component classifiers affect ensemble performance?

The goal of this paper is to set up a geometric framework for ensemble classifiers, thereby 
enabling us to clearly answer the above questions. In this framework, the result from each 
base classifier is represented as a point in a multi-dimensional space. We can use the same 
measure—the Euclidean distance—for both performance and diversity. Ensemble learning 
becomes a deterministic problem. Many interesting theorems about the relation of com-
ponent classifiers and ensemble classifiers can be proven. Armed with this framework, we 
discover and present some useful features of majority voting and weighted majority voting. 
The major contributions of this paper is as follows: 

1.	 A geometric framework is presented for ensemble classifiers.
2.	 An optimal weighting scheme is given for weighted majority voting.
3.	 A Euclidean distance-based measure of diversity is given. Unlike all other diversity 

measures proposed so far, it is orthogonal to performance.
4.	 Experiments on twenty data sets validate the theory for practical use.

The rest of this paper is organized as follows: Sect.  2 presents some related work. In 
Sect.  3, we present the geometric framework for ensemble classifiers. Some characteris-
tics of majority voting and weighted majority voting are presented and compared. Discus-
sion regarding the questions raised previously is given in Sect. 4, supported by theory. In 
Sect. 5, we present some empirical investigation results to confirm our findings in Sect. 3. 
Finally Sect. 6 is the conclusion.

2 � Related work

Majority voting and weighted majority voting are commonly used in many ensemble mod-
els. Their features and some related tasks have been investigated by many researchers.

Zhou et al. (2002) investigated majority voting theoretically and empirically through an 
ensemble of a group of neural networks. It is found that selecting a subset may be able to 
achieve better performance than combining all available classifiers. Note that in both their 
theoretical and empirical study, weighted majority voting is mentioned, but not considered.

Fumera et al. (2008) set up a probabilistic framework to analyse the bagging misclas-
sification rate when the ensemble size increases. Majority voting is used for combination. 
Both their theoretical analysis and empirical investigation show that bagging misclassifica-
tion rate decreases when more and more component classifiers are combined. This is some-
what inconsistent with the finding of Zhou et al. (2002).
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Latinne et al. (2001) used the McNemar test to decide if two sets of component clas-
sifiers are significantly different. More and more classifiers are added to the pool and the 
McNemar test is carried out repeatedly, the process stops if no significant difference can be 
observed.

Oshiro et  al. (2012) raised the problem of how many component classifiers (trees) 
should be used for an ensemble (random forest). Experimenting with 29 real data sets 
in the biomedical domain, they observed that higher accuracy is achievable when more 
trees are combined by majority voting. However, when the number of trees is relatively 
large (say, over 32 or 64), the improvement is no longer significant. Therefore, a good 
choice is to consider both ensemble accuracy and computing cost. This issue is also 
addressed in Hernández-Lobato et al. (2013); Adnan and Islam (2016); Probst and Bou-
lesteix (2017).

Many researchers find that if more base classifiers are combined, then the ensemble is 
able to achieve better performance. Although it is possible to achieve better performance 
by fusing more base classifiers, it costs more. Quite a few papers investigated the ensemble 
pruning problem that aims at increasing efficiency by reducing the number of base classi-
fiers, without losing much performance at the same time. Various kinds of methods have 
been proposed. See Xiao et al. (2010); Dias and Windeatt (2014); Bhardwaj et al. (2016); 
Ykhlef and Bouchaffra (2017); Zhu et  al. (2019); Mohammed et  al. (2022) for some of 
them.

How to assign proper weights for weighted majority vote has been investigated by 
quite a few researchers. Some methods may consider different aspects of base classi-
fiers for the weights: performance-based in Opitz and Shavlik (1996); Wozniak (2008), 
Bayesian model-based in Duan et al. (2007), prediction confidence-based in Schapire and 
Singer (1999), and Matthews correlation coefficient-based in Haque et  al. (2016). Some 
methods may have different goals for weight optimisation: minimizing classification error 
in Kuncheva and Diez (2014); Mao et al. (2015); Bashir et al. (2015), reducing variance 
while preserving given accuracy in Derbeko et al. (2002), minimizing Euclidean distance 
in Bonab and Can (2018). Different search methods are also used: A linear programming-
based method is presented in Zhang and Zhou (2011), Georgiou et  al. (2006) applied 
a game theory to weight assignment, Liu et  al. (2014) applied the genetic algorithm to 
weight assignment. Dynamic adjustment of weights is investigated in Valdovinos and 
Sánchez (2009).

Wu and Crestani (2015) proposed a geometric framework for data fusion in informa-
tion retrieval. In this query-level framework, for a certain query each component retrieval 
system assigns scores to all the documents in the collection, which indicates their relevance 
to the query. Also predefined values are given to documents that are relevant or irrele-
vant to the query, which are ideal scores for the documents involved. Therefore, the scores 
from each component retrieval system can be regarded as a point in a multiple dimensional 
space, and the ideal scores form an ideal point. Under this framework, performance and 
dissimilarity can be measured by the same metric—the Euclidean distance. Both major-
ity voting and weighted majority voting can be explained and calculated in the geomet-
ric space. However, the framework is set up at the query level, which is equivalent to the 
instance level in ensemble classifiers.

Bonab and Can (2018, 2019) adapted the model in Wu and Crestani (2015) to ensemble 
classifiers. Some properties of majority voting and weighted majority voting are presented. 
However, as in Wu and Crestani (2015), their framework is at the instance level. This 
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means that the theorems hold for each individual instance, but it is unclear if they remain 
true for multiple instances collectively. The latter is a more important and realistic situation 
we should consider. As we know, a training data set or a test data set usually comprises a 
group of instances. It is desirable to know the collective properties of an ensemble classi-
fier over all the instances, rather than that of any individual instance. This generalization is 
the major goal of this paper.

To do this, we first define a dataset-level framework and then go about proving a number of 
useful theorems.

3 � The geometric framework

In this section, we introduce the dataset-level geometric framework.
Suppose for a machine learning problem we have p classes CL={cl1,cl2,⋯,clp }, the ensem-

ble has m component base classifiers CF={cf1,cf2,⋯,cfm }, and the dataset DT has n instances 
T={t1,t2,⋯,tn }. For every instance ti and every class clj , each base classifier cfk provides a score 
sk
ij
 , which indicates the estimated probability score that ti is an instance of class clk given by 

cfj . skij ∈ [0, 1] . Each instance ti has a real label for each class clk , which is 0 or 1. We may set 
up a n ∗ p-dimensional space for the above problem. There are m points {S1, S2,⋯ , Sm} , each 
represents the scores given by a specific classifier to all the instances in the dataset for all the 
classes. Point Sk is:

As such, we can always organize all the scores first by instances and then by classes. Thus 
a two-dimensional array with n elements in one dimension and p in the other is trans-
formed to a list of n ∗ p elements: sk

ij
 becomes sk

(i−1)∗n+j
 The ideal point is also represented 

in the same style.

which indicates the real labels of every instance in the dataset to each of the classes 
involved: 1 for a true label and 0 for a false label. The notation used in this paper is sum-
marized in Table 1.

This framework is a generalization of the one presented in Bonab and Can (2018, 2019). If 
the dataset only has one instance, then the above framework is the same as the one in Bonab 
and Can (2018, 2019). This framework is suitable for soft voting (Cao et al., 2015), in which 
each component classifier provides probability scores for every instance relating to each class. 
If no such probability scores are provided (hard voting), then it is still possible to apply it to 
the geometric framework if we transform estimated class labels into proper scores. The geo-
metric framework is applicable to both single-label and multi-label classification problems.

Sk ={(sk
11
, sk

12
,⋯ , sk

1p
), (sk

21
, sk

22
,⋯ , sk

2p
),⋯ (sk

n1
, sk

n2
,⋯ , sk

np
)}

={sk
1
, sk

2
,⋯ , sk

n∗p
}

O ={(o11, o12,⋯ , o1p), (o21, o22,⋯ , o2p),⋯ (on1, on2,⋯ , onp)}

={o1, o2,⋯ , on∗p}
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Example 1  A dataset includes two instances t1 and t2 , and three classes cl1 , cl2 , and cl3 . t1 is 
an instance of cl2 but not the other two, and t2 is an instance of both class cl1 and cl3 but not 
cl2 . The scores got from the three base component classifiers cf1 , cf2 , and cf3 are as follows: 

Instance Classifier Class cl1 Class cl2 Class cl3

t1 cf1 s1
11

= 0.5 s1
12

= 0.6 s1
13

= 0.3

cf2 s2
11

= 0.4 s2
12

= 0.7 s2
13

= 0.2

cf3 s3
11

= 0.6 s3
12

= 0.8 s3
13

= 0.4

Real label o11 = 0 o12 = 1 o13 = 0

t2 cf1 s1
21

= 0.7 s1
22

= 0.3 s1
23

= 0.9

cf2 s2
21

= 0.3 s2
22

= 0.6 s2
23

= 0.7

cf3 s3
21

= 0.2 s3
22

= 0.6 s3
23

= 0.8

Real label o21 = 1 o22 = 0 o23 = 1

Table 1   Notation used in this paper

Symbols                          Meaning

C Centroid of a group of points in X
CL A set of classes
clj One of the classes in CL
CF A set of component classifiers
cfk One of the component classifiers in CF
DT A dataset has components CF, CL, S, T, and O
ed(Si, Sj) the Euclidean distance between two points (Si, Sj) in X
F Fused point by linear combination of a group of points in X
m Number of component classifiers in CF
n Number of instances in T
O All the real labels for T constitute the ideal point in X
oij One of the elements of O
ol Another form of oij , in which l = (i − 1) ∗ n + j

p Number of classes in CL
S Scores given by CF members relating to CL, a set of points in X
Sk Scores given by cfk for T relating to CL, a point in X
sk
ij

A score given by cfk for ti relating to cj
sk
l

Another form of sk
ij
 , in which l = (i − 1) ∗ n + j

T A set of instances
ti One of the instances in T
wk Weight assigned to component classifier cfk
X a n ∗ p-dimensional space relating to DT
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In a 6-dimensional geometric space, we may set up four points to represent 
this scenario: S1 = {0.5, 0.6, 0.3, 0.7, 0.3, 0.9} , S2 = {0.4, 0.7, 0.2, 0.3, 0.6, 0.7} , 
S3 = {0.6, 0.8, 0.4, 0.2, 0.6, 0.8} , and O = {0, 1, 0, 1, 0, 1} . 	�  ◻

In the following we use point and component result interchangeably if no confusion 
will be caused. We can calculate the Euclidean distance of two points Su and Sv

We may use the Euclidean distance to evaluate the performance of classifier cfu over n 
instances and p classes.

It is an advantage of the geometric framework to evaluate both performance of a compo-
nent result and dissimilarity of two component results by using the same metric. They will 
be referred to as performance distance and dissimilarity distance later in this paper.

Definition 1  (Performance distribution). In a geometric space X, there are m points S
={S1, S2,⋯ , Sm} ( m ≥ 1 ). O is the ideal point. Performance distribution of these m points 
in S is defined as ed(Si,O) for ( 1 ≤ i ≤ m).

Definition 2  (Dissimilarity distribution). In a geometric space X, there are m points S
={S1, S2,⋯ , Sm} ( m ≥ 1 ). Dissimilarity distribution of these m points in S is ed(Si, Sj) for 
( 1 ≤ i ≤ m , 1 ≤ j ≤ m , i ≠ j).

From their definitions, we can see that performance distribution and dissimilarity dis-
tribution are two completely different aspects of S , and not related to each other. Their 
independence is a good thing for us to investigate the properties of ensembles, especially 
the effect of each on ensemble performance.

3.1 � Majority voting

In a n ∗ p-dimensional space, there are m points S={S1,S2,⋯,Sm } ( m ≥ 2 ). Combining them 
by majority voting can be understood to be finding the centroid of these m points. It is 
referred to as the centroid-based fusion method in Wu and Crestani (2015).

Theorem 1  In a geometric space X, there are m points S={S1, S2,⋯ , Sm} ( m ≥ 2 ). C is the 
centroid of these m points and O is the ideal point. The distance between C and O is no 
longer than the average distance between each of the m points and O:

(1)ed(Su, Sv) =

√

√

√

√

n
∑

i=1

p
∑

j=1

(su
ij
− sv

ij
)2 =

√

√

√

√

n∗p
∑

l=1

(su
l
− sv

l
)2

(2)ed(Su,O) =

√

√

√

√

n
∑

i=1

p
∑

j=1

(su
ij
− oij)

2 =

√

√

√

√

n∗p
∑

l=1

(su
l
− ol)

2

(3)

√

√

√

√

n∗p
∑

l=1

(cl − ol)
2 ≤

1

m

m
∑

k=1

√

√

√

√

n∗p
∑

l=1

(sk
l
− ol)

2
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Proof  Replace C with its definition cl =
1

m

∑m

k=1
sk
l
 for ( 1 ≤ l ≤ n ∗ p ) in Eq. (3) and move 

1

m
 on the right side to the left as m, we get

The Minkowski Sum Inequality (Minkowski, 2020) is

where q > 1 and al , bl > 0. For our question, we let q = 2 and al = sk
l
− ol . Then we have:

Now notice the left side of Inequation 4

	�  ◻

This theorem tells us, if we take all the instances together and use the Euclidean distance as 
the performance metric, then the performance of the ensemble by majority voting is at least as 
good as the average performance of all component classifiers involved. This theorem confirms 
the observation by many researchers that the results from the ensemble are stable and good.

Example 2  Consider the points in Example  1. C = {0.5, 0.7, 0.3, 0.4, 0.5, 0.8} , 
ed(S1,O) = 0.83 , ed(S2,O) = 1.11 , ed(S3,O) = 1.26 , ed(C,O) = 1.04 , 
(ed(S1,O) + ed(S2,O) + ed(S3,O))∕3 = 1.06 . ed(C, O) is slightly smaller than the average 
of ed(S1,O) , ed(S2,O) , and ed(S3,O) . 	�  ◻

Theorem 2  In a space X, suppose that S={S1 , S2,⋯ , Sm } and O are known points. C is the 
centroid of S1 , S2,⋯ , Sm . The distance between C and O can be represented as

(4)m

√

√

√

√

n∗p
∑

l=1

(
1

m

m
∑

k=1

sk
l
− ol)

2 ≤

m
∑

k=1

√

√

√

√

n∗p
∑

l=1

(sk
l
− ol)

2

(

n∗p
∑

l=1

(al + bl)
q)

q−1

≤

n∗p
∑

l=1

a
q

l

q−1

+

n∗p
∑

l=1

b
q

l

q−1

m
∑

k=1

√

√

√

√

n∗p
∑

l=1

(sk
l
− ol)

2
=

m
∑

k=1

√

√

√

√

n∗p
∑

l=1

(al)
2

≥

√

√

√

√

n∗p
∑

l=1

(a1 + a2)
2 +

m
∑

k=3

√

√

√

√

n∗p
∑

l=1

(al)
2

≥ ... ≥

√

√

√

√

n∗p
∑

l=1

(a1 + a2 + ... + am)
2 =

√

√

√

√

n∗p
∑

l=1

(

m
∑

k=1

ak)
2

m

√

√

√

√

n∗p
∑

l=1

(
1

m

m
∑

k=1

sk
l
− ol)

2 =

√

√

√

√

n∗p
∑

l=1

(

m
∑

k=1

sk
l
− m ∗ ol)

2 =

√

√

√

√

n∗p
∑

l=1

(

m
∑

k=1

ak)
2

(5)ed(C,O) =
1

m

√

√

√

√m

m
∑

i=1

ed(Si,O)
2
−

m−1
∑

i=1

m
∑

j=i+1

ed(Si, Sj)
2
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Proof  Assume that O=(0,...,0), which can always be done by coordinate transformation. 
According to its definition C = (

1

m

∑m

i=1
si
1
, ...,

1

m

∑m

i=1
si
n∗p

) , we have

Note that the distance between Si and Sj is ed(Si, Sj) =

�

∑n∗p

k=1
(si

k
− s

j

k
)
2

  or 

ed(Si, Sj)
2
=
∑n∗p

k=1
(si

k
)2 +

∑n∗p

k=1
(s

j

k
)2 − 2

∑n∗p

k=1
si
k
∗ s

j

k

Because ed(Si,O)2 =
∑n∗p

k=1
(si

k
)
2 and ed(Sj,O)2 =

∑n∗p

k=1
(s

j

k
)
2

 , we get

Considering all possible pairs of points Si and Sj and we get

In Eq. (6), we use the right side of the above equation to replace

Also note that 
∑m

i=1

∑n∗p

k=1
(si

k
)2 =

∑m

i=1
ed(Si,O)

2 , we obtain

	�  ◻

This theorem tells us that the ensemble performance is completely decided by ed(Si,O) (for 
1 ≤ i ≤ m ) and ed(Si, Sj) (for 1 ≤ i ≤ m , 1 ≤ j ≤ m , i ≠ j ). The impact of both performance 
of component classifiers and dissimilarity of all pairs of component classifiers on ensemble 
performance can be seen clearly. According to Theorem 2, in order to minimize ed(C, O), we 
need to minimize 

∑m

i=1
ed(Si,O)2 and maximize 

∑m−1

i=1

∑m

j=i+1
ed(Si, Sj)2 at the same time. 

Therefore, for performance distribution, both average and variance affect ensemble perfor-
mance. Lower average and lower variance lead to better performance. For dissimilarity dis-
tribution, both average and variance also affect ensemble performance. Higher average and 
higher variance lead to better performance.

Example 3  Assume that S1={S1 , S2 }, S2={S3 , S4 }, ed(S1, S2) = ed(S3, S4) , ed(S1,O)=0.5, 
ed(S2,O)=0.5, ed(S3,O)=0.4, ed(S4,O)=0.6. The centroid of S1 and S2 is C1 , and the cen-
troid of S3 and S4 is C2 . We have cd(C1,O) < cd(C2,O).

(6)

ed(C,O) =

√

√

√

√(
1

m

m
∑

i=1

si
1
)2 + ... + (

1

m

m
∑

i=1

si
n∗p

)2

=
1

m

√

√

√

√

m
∑

i=1

n∗p
∑

k=1

(si
k
)
2
+ 2

n∗p
∑

k=1

m−1
∑

i=1

m
∑

j=i+1

si
k
∗ s

j

k

2

n∗p
∑

k=1

si
k
∗ s

j

k
= ed(Si,O)

2
+ ed(Sj,O)

2
− ed(Si, Sj)

2

2

n∗p
∑

k=1

m−1
∑

i=1

m
∑

j=i+1

si
k
∗ s

j

k
= (m − 1)

m
∑

i=1

ed(Si,O)
2
−

m−1
∑

i=1

m
∑

j=i+1

ed(Si, Sj)
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In this example, because dissimilarity distance is the same for both S1 and S2 , we 
only need to consider performance distribution. The average of ed(S1,O) and ed(S2,O) is 
0.5, and the average of ed(S3,O) and ed(S4,O) is also 0.5. The variance of S1 is smaller 
than that of S2 . ed(S1,O)2 + ed(S2,O)2=0.50, ed(S3,O)2 + ed(S4,O)2=0.52. Because 
ed(S1, S2) = ed(S3, S4) , we get ed(C1,O) < ed(C2,O) . 	�  ◻

Example 4  In the figure below, there are six points Si (1 ≤ i ≤ 6) . Among these points, S1 is 
the closest to O. It is followed by S2 and S3 , which are equally distant to O. Finally, S4 , S5 
and S6 are equally distant to O and they are all further from O than the other three points. 
Now we try to work out a subset of these to maximize performance.

Now, if we select one point only, then S1 is the best option; if we select two points, then 
combining S2 and S3 is the best option, in this instance the centroid would be C2 ; if we 
select three points, then combining S4 , S5 and S6 is the best option, this gives the centroid 
O. Fusing all six points is also a good option, but it may not be as good as fusing S4 , S5 and 
S6 . The “many-could-be-better-than-all” theorem seems reasonable (Zhou et al., 2002) in 
this case. Because the centroid of a group of points is decided by the positions of all the 
points collectively, each of which has an equal weight, removing or adding even a single 
point may change the position of the centroid of a group of points significantly. It also indi-
cates that it is not an easy task to find the best subset from a large group of base classifiers. 
As a matter of fact, it is an NP-hard problem, as our next theorem proves. 	�  ◻

Theorem 3  S = { S1 , S2,⋯ , Sm } for (m ≥ 3) is a group of points and O is an ideal point. 
For a given number m′ ( 2 ≤ m′

< m ), the problem is to find a subset of m′ points from S 
to minimize the distance of the centroid of these m′ points to the ideal point O. The above 
question is NP-hard.

Proof  First let us have a look at the maximum diversity problem (MDP), which is a known 
NP-hard problem (Wang et al., 2014). The MDP is to identify a subset E≃ of m′ elements 
from a set E of m elements, such that the sum of the pairwise distance between the ele-
ments in the subset is maximized. More precisely, let E = { e1 , e2,⋯ , em } be a group of ele-
ments, and dij be the distance between elements ei and ej . The objective of the MDP can be 
formulated as:
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Maximize

subject to 
∑m

i=1
xi = m�, xi ∈ {0, 1}, i = 1,⋯ ,m

where each xi is a binary (zero–one) variable indicating whether an element ei ∈ E is 
selected to be a member of E≃.

On the other hand, according to Theorem 2, our problem may be written as minimizing 
ed(C,O)2 . Here C is the centroid of m′ selected points.

subject to 
∑m

i=1
xi = m�, xi ∈ {0, 1}, i = 1,⋯ ,m

where each xi is also a binary (zero–one) variable indicating whether a point Si ∈ S is 
selected to be a member of S≃.

If we assume that ed(Si,O) equals to each other for all i = 1,⋯ ,m , then 
1

m�

∑m

i=1
ed(Si,O)

2
∗ xi becomes a constant and minimizing ed(C,O)2 equals to maximizing 

div(C,O)2

Let g(x)=div(C,O)2 and dij =
2

m�∗m�
ed(Si, Sj)2 , then the above equation can be rewritten as

Comparing Eqs. (7) and (8), we can see that a simplified version of our problem is an MDP 
problem. Therefore, our problem is an NP-hard problem. 	�  ◻

Theorem 3 tells us: for a given number of classifiers, choosing a subset for best ensem-
ble performance by majority voting is an NP-hard problem.

Although the “many-could-be-better-than-all” theorem may be applicable to some 
cases, it does not tell the whole story. Now let us have a look at how the size of the ensem-
ble impacts its performance. Because the performance of an ensemble is affected by a few 
different factors, we need to find a way of separating this from other factors.

Theorem 4  In a space X, S = {S1, S2,⋯ , Sm} and O are known points. C is the centroid of 
S1, S2,⋯ , Sm , C1 is the centroid of m − 1 points S2, S3,⋯ , Sm , C2 is the centroid of m − 1 
points S1, S3,⋯ , Sm,⋯ , Cm is the centroid of m − 1 points S1, S2,⋯ , Sm−1 . We have

Proof  According to the definition of C1 , C2 , ⋯ , Cm , C is the centroid of these m points. The 
theorem can be proven by applying Theorem 1. 	�  ◻

(7)f (x) =
1

2

m
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i=1

m
∑

j=1

dij ∗ xi ∗ xj

ed(C,O)2 =
1

m�

m
∑

i=1

ed(Si,O)
2
∗ xi −

1

m� ∗ m�

m
∑

i=1

m
∑

j=1

ed(Si, Sj)
2
∗ xi ∗ xj

div(C,O)2 =
1

m� ∗ m�

m
∑

i=1

m
∑

j=1

ed(Si, Sj)
2
∗ xi ∗ xj

(8)g(x) =
1

2

m
∑

i=1

m
∑

j=1

dij ∗ xi ∗ xj

(9)ed(C,O) ≤
1

m

m
∑

i=1

ed(Ci,O)
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Theorem  4 can be used repeatedly to prove more general situations in which a sub-
set includes m − 2,m − 3,⋯,or 2 points. This demonstrates that the number of component 
results has a positive effect on ensemble performance. 	�  ◻

Example 5  In a space X, {S1, S2, S3, S4} and O are known points. There are four different 
combinations of three points and six combinations of two points. We use C1234 to represent 
the centroid of all 4 points. Similarly, C23 represents the centroid of S2 and S3 , and so on. 
Applying Theorem 4 repeatedly, we have

	�  ◻

Although Theorem  4 shows that the number of component classifiers has a positive 
effect on ensemble performance, it is not clear how significant the effect is. Next let us look 
at this matter quantitatively. In order to focus on the number of component classifiers, we 
make a few simplifying assumptions. Suppose that S1 , S2,⋯ , Sm and O are known points 
in space X. ed(Si , O)=cp for any ( 1 ≤ i ≤ m ), ed(Si , Sj)=cd for any ( 1 ≤ i ≤ m , 1 ≤ j ≤ m , 
i ≠ j ), and cd = � ∗ cp . According to Theorem 2 and the above assumptions, we have

Therefore,

By definition, ed(C, O) cannot be negative and (1 − m−1

2m
�
2) ≥ 0 should hold. Therefore, for 

a given m, � must have a maximal limit. If m = 2 and � = 2 , then ed(C,O) = 0 . � = 2 must 
be the maximal value in this case. Likewise, when m = 3 , the maximal value for � is 

√

3.
Figure  1 shows the values of ed(C,  O) in cp unit for � = 0.25, 0.5, 0.75, 1 and 

m = 2, 3,⋯ , 100 . From Fig. 1 we can see that in all four cases, ed(C, O) decreases with 
m. However, as m becomes larger and larger, the rate of decrease becomes smaller and 
smaller. When m tends to infinity, ed(C,  O) approaches 

√

1 − 0.5�2 cp units. They are 
0.984, 0.935, 0.848, and 0.707 when � equals to 0.25, 0.5, 0.75, and 1, respectively. How-
ever, adding more component results does not help much if there is already a large number. 
For example, when � = 1.0 and m = 27 , ed(C, O) is 0.720 cp units. It is close to the limit of 
0.707 cp units. It suggests that fusing 30 or more component results may not be very useful 

ed(C1234,O) ≤
1

4
[ed(C123,O) + ed(C124,O) + ed(C134,O) + ed(C234,O)]

≤
1

6
[ed(C12,O) + ed(C13,O) + ed(C14,O)

+ ed(C23,O) + ed(C24,O) + ed(C34,O)]

≤
1

4
[ed(S1,O) + ed(S2,O) + ed(S3,O) + ed(S4,O)]

ed(C,O)2 =
1

m2
[m
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2
−

m−1
∑
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m
∑
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(10)ed(C,O) =
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m − 1
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for further improving ensemble performance. This has been observed in some empirical 
studies before, such as in Oshiro et al. (2012), and others.

Theorem 1 tells us that the ensemble performance is at least as good as the average 
performance of all the component classifiers involved. This may not be positive enough 
for many applications of the technique. Theorem 3 indicates that it may take too much 
time to choose a subset from a large group of candidates for good ensemble perfor-
mance. This problem may be solved in other ways. In particular, if we want the ensem-
ble performance to be better than the best component classifier, more favorable condi-
tions are required for those component classifiers. It means that we need to apply some 
restrictions to all the component classifiers involved. Theorem 5 can be useful for this.

Theorem  5  In a space X, S = {S1 , S2,⋯ , Sm} and O are known points. At least one 
of the points in S is different from the others. C is the centroid of S1 , S2,⋯ , Sm . If 
ed(S1,O) = ed(S2,O) = ⋯ = ed(Sm,O) , then ed(C,O) < ed(S1,O) must hold.

Proof  According to Theorem 2, we have

Therefore, we obtain ed(C,O) < ed(S1,O) . 	�  ◻
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1

m

m
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Fig. 1   The impact of component classifier number on ensemble performance
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Theorem 5 tells us if all the component classifiers are equally effective, then majority 
voting is able to do a better job than Theorem 1’s guarantee. In practice, this has been 
implemented in various situations. For example, if using bagging with random forest or 
neural networks (Oshiro et al., 2012; Yang et al., 2013), then we are can generate a large 
number of almost equally-effective component classifiers. Good performance is achiev-
able by fusing such classifiers. See Sect. 4 for more discussions.

3.2 � Weighted majority voting

Weighted majority voting is a generalization of majority voting. It is more flexible than its 
counterpart because different weighting schemes can be de-fined. It might be believed that 
both are similar, and this is indeed true for the cases when weights across component clas-
sifiers are largely similar. However, for the weighted majority voting, we have little interest 
in the universe of all possible weighting schemes, but are rather focused on the optimum 
weighting scheme. We delve into the following two questions especially. 

1.	 How to find the optimum weights for a group of component classifiers?
2.	 What are the properties of weighted majority voting with the optimum weights?

Let us begin with the first question. In a space X, S = {S1, S2,⋯ , Sm} and O are known 
points. Let F be the fused point for linear combination of m points in S with weighting 
w1,w2,⋯ ,wm.

Our goal is to minimize ed(F,O)2 . Assuming f (w1,w2,⋯ ,wm) = ed(F,O)2 , we have

Let �f
�wq

= 0 for (q=1,2,⋯,m), then

Let aqk =
∑n

i=1

∑p

j=1
sk
ij
s
q

ij
 for (1 ≤ q ≤ m) and (1 ≤ k ≤ m) , and bq =

∑n

i=1

∑p

j=1
oijs

q

ij
 

for (1 ≤ q ≤ m) . Thus we obtain the following m linear equations with m variables 
w1,w2,⋯ ,wm:
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The optimum weights can be calculated by finding the solution to these m linear equations. 
Note that minimizing ed(F,O)2 and minimizing ed(F, O) is equivalent for us to find the 
optimum weights because ed(F, O) can not be negative.

Theorem 6  In a n ∗ p dimensional space X, S={S1 , S2,⋯ , Sm } and O are known points. 
If every point in S is linearly independent from the others, then the above process and 
Eq. (12) can find the unique solution to the problem.

Proof  The independency of each point in S indicates that m ≤ n ∗ p holds. For the same 
reason, any point that can be represented linearly by these m points has a unique represen-
tation. We may write ed(F, O) as f (w1,w2,⋯ ,wm) , which is a continuous function. In the 
whole space, there is only one minima and no other saddle points or maxima. The point 
at which all partial derivatives of the function to all variables equal to zero must be the 
minimum point. The m equations set up in Eq. (12) are able to find the point with a unique 
representation of weights. 	�  ◻

Intuitively, in a n ∗ p dimensional space X, m points in S={S1 , S2,⋯ , Sm } comprise a 
subspace X′ in X. For any point O, there exists one and only one point in X′ that has the 
shortest distance to O. This point can be linearly represented by S1 , S2,⋯ , Sm.

Theorem  6 can be explained as follows. For a (training) dataset with n instances, p 
classes, and m classifiers, each of the classifiers gives a score for each instance and each 
class. For each instance, we also have real labels relating to all the classes. Then we are 
able to find a group of weights w1,w2,⋯ ,wm for S1 , S2,⋯ , Sm to achieve the best ensem-
ble performance by weighted majority voting.

The following Theorem 7 answers the second question.

Theorem 7  In a n ∗ p dimensional space X, S1={S1 , S2,⋯ , Sm }, S2={S1 , S2,⋯ , Sm , Sm+1 }, 
and O is an ideal point. If the optimum weights are used for both S1 and S2 , then the per-
formance of Group S2 is at least as effective as that of Group S1.

Proof  Assume that w1,w2,⋯ ,wm are optimum weights for S1 , S2,⋯ , Sm of S1 to obtain the 
best performance. For S2 , if using the same weights w1,w2,⋯ ,wm for S1 , S2,⋯ , Sm , and 0 
for Sm+1 , then the ensemble performance of S2 will be the same as that of S1 . Note that the 
above weighting scheme is by no means the best for S2 and it is also possible to find more 
profitable weights for S2 . 	�  ◻

Theorem 7 can be explained as follows: for a given dataset, consider two groups of 
classifiers. Group 1 has n classifiers: cf1,cf2,⋯,cfm , and Group 2 has m + 1 classifiers, cf1
,cf2,⋯,cfm,cfm+1 . m classifiers in both groups are the same. If using weighted majority 
voting with the optimum weights, then the ensemble performance of Group 2 is at least 
as effective as that of Group 1.

Corollary 7.1  In a n ∗ p dimensional space X, assume that weighted majority voting is 
applied with the optimum weights. When more and more points are added, the ensemble 
performance is monotonically non-decreasing.

Proof  It can be proven by applying Theorem 7 repeatedly. 	�  ◻
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Intuitively, when more and more points are added, the subspace becomes bigger and 
bigger. During this process, it is possible to find new points that has the shortest dis-
tance to the ideal point.

Corollary  7.1 can be explained in this way. Assume for a given dataset, an ideal 
ensemble is implemented by weighted majority voting with the optimum weights. When 
more and more classifiers are added into such an ensemble, its performance is non-
decreasing monotonically.

Theorem 2 tells us about how individual classifier performance ( ed(Si,O) ) and dissimi-
larity between classifiers ( ed(Si, Sj) ) affect ensemble performance with the majority voting 
scheme. We may regard weighted majority voting as a variation of majority voting. Before 
applying Theorem  2, weighted majority voting changes the positions of all component 
results’ position by a linear weighting scheme, thus Eq. (5) becomes

where wi
⋅ Si =

∑n

j=1

∑p

k=1
wi ∗ si

jk
 . After that, both can be treated in the same way.

4 � Discussion

In Sect. 3 we have set up a geometric framework and presented the properties of majority 
voting and weighted majority voting. Now we are in a good position to compare the two 
different levels of geometric frameworks and answer the questions raised in the first section 
of this paper.

4.1 � Dataset‑level vs. instance‑level frameworks

A major objective of the ensemble problem is to try to provide a solution for all the 
instances in a dataset. A framework at different levels has certain impact on the way we can 
deal with the problem. For an instance-level framework, we need an approach to expand it 
to cover all the instances in the whole dataset, while the dataset-level framework does not 
need it.

In the dataset-level framework, all the instances in the whole dataset are concatenated to 
form a super-instance. Thus, all the properties stand in the instance-level framework also 
stand in the dataset-level framework.

However, a few differences need to be noted. One is the dimensionality of the geometric 
space involved. For a classification problem with p classes and a dataset with n instances, 
the dimensionality of the instance-level geometric space is p, while that of the dataset-level 
geometric space is p ∗ n.

How to calculate optimal weights for weighted majority voting is another place where 
we may have different solutions. The solution given in Sect. 3 of this paper is to minimize 
the Euclidean distance between the linear combination of all the component points and the 
ideal point (refer to Equation 11). Recall that all the instances in the dataset is transformed 
to a single super-instance. However, for the instance-level framework, we still need to con-
sider multiple instances together. One possible way is to minimize the sum of the distance 
over all instances, or

(13)ed(C,O) =
1

m

√

√

√

√m

m
∑

i=1

ed(wi
⋅ Si,O)

2
−
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i=1

m
∑

j=i+1

ed(wi
⋅ Si,wj
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2
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It is tricky to optimise Equation 14 directly. To simplify, we may optimise 
∑n

i=1
ed(F,O)2 

instead (Wu & Crestani, 2015; Bonab & Can, 2018). In this way, it is the same as Equa-
tion 11. It demonstrates that there are connections between the two levels of frameworks. 
For the instance-level framework, optimising 

∑n

i=1
ed(F,O)2 approximates optimising 

∑n

i=1
ed(F,O) . On the other hand, for the dataset-level framework, optimising ed(F,O)2 is 

the same as optimising ed(F, O). It means that the weights obtained are optimum.

4.2 � The size of ensemble

As discussed in Sect. 3, we proved that the number of component classifiers has positive 
impact on ensemble performance for both majority voting and weighted majority voting. 
However, this contradicts the assertion in Bonab and Can (2019): for a multi-classification 
problem with k classes, k is the ideal number of base classifiers to constitute an optimum 
ensemble by weighted majority voting. Let us analyse this further.

Example 6  Consider a classification problem with two classes and three base classi-
fiers. One instance is shown in the figure below. Weighted majority voting is used for 
combination.

In the figure above, it shows a two-dimensional space with three points S1 , S2 , S3 to be a 
combination. The ideal point is O. We can see that combining three points can lead to the 
optimal results of zero distance than fusing any two. Therefore, in this example the asser-
tion in Bonab and Can (2019) even does not hold at the instance level. However, as shown 
in this example, for a n dimensional space, n + 1 independent points are enough. 	�  ◻

We may add some restrictions to the points involved. For example, for a binary clas-
sification problem, we let all the points to be on the line segment of [0,1] and [1,0]. The 
ideal point is either [1,0] or [0,1]. In this way, a maximum of two points are needed for the 
optimal fusion results. In the figure below, any two of the three points S1 , S2 , and S3 are 
competent for this task.

(14)
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Anyhow, the assertation at the instance level is not very useful. To consider the problem 
in a more realistic way, we need to look at it at the dataset level. A dataset usually com-
prises at least a good number of instances. If we consider three instances with a binary 
classification problem, then the dimensionality of the dataset-level geometric framework is 
up to 2*3=6, and not 2 any more. If the dataset has more instances, then we may include 
even more independent classifiers. With an increased number of base classifiers, we will 
likely get better ensemble performance (Corollary 7.1).

On the other hand, we can obtain the same conclusion as Corollary 7.1 even under the 
instance-level framework. Assume that the whole dataset has n instances. Fi and Oi are the 
fused point and the ideal point for instance ti , respectively. The optimal weighting for m 
base classifiers are w1,w2,⋯,wm . Then we have

Now one more base classifier is added. We can set a new weighting scheme as w1
new

= w1

,w2
new

= w2,⋯,wm
new

= wm , wm+1
new

= 0.

Then 
∑n

i=1
ed(Fi,Oi) =

∑n

i=1
ednew(Fi,Oi) . w1,w2,⋯,wm is the optimal weighting scheme for 

m base classifiers, while w1
new

,w2
new

,⋯,wm
new

 , wm+1
new

 may not be optimal for m + 1 base classi-
fiers. Therefore, if the optimal weighting scheme is used, then fusing m + 1 base classifiers 
can achieve at least the same performance as fusing m base classifiers. This is exactly what 
Corollary 7.1 tells us.

4.3 � Answer to some questions

In Sect. 1, we listed some outstanding questions. Now let us discuss them one by one.
Question 1: What is the difference between majority voting and weighted majority 

voting?
In a sense, both weighting schemes can potentially enhance ensemble performance. 

However, there are certain aspects, including their abilities, to consider. Weighted majority 
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voting can be better than the best component classifier if optimum weights are used, while 
majority voting can be better than the average of all component classifiers. Majority voting 
is a “mild” method because all the component results are treated equally and the centroid 
is the solution, while weighted majority voting is an “extreme” method because it does not 
treat all component results equally and it tries to take the most effective solution from all 
possible ones.

Question 2: When should we use majority voting rather than weighted majority voting, 
or vice versa?

Theoretically, weighted majority voting is always better than or at least as good as 
majority voting if optimal weights are applied and Euclidean distance is used for perfor-
mance evaluation. However, in reality the above two conditions may not be satisfied. The 
weights leant in the training dataset may not be the best in the test dataset. Therefore, a 
general answer is: in cases majority voting does not work well (e.g., ensemble performance 
is worse than that of the the best component classifier), then weighted majority voting 
should be used.

Now a further question is: when is majority voting a good method? Performance of all 
component results, dissimilarity of all pairs of component results, number of component 
results have positive impact on ensemble performance. A judicious decision should con-
sider these factors thoroughly. More specifically, Theorem 2 answers this question quan-
titatively. One easy noticeable situation is that when all the component classifiers are of 
equal or very close performance, then majority voting may be able to achieve better ensem-
ble performance than the best component classifier (Theorem 5).

Question 3: There are a lot of weighting assignment methods for weighted majority vot-
ing, which one is the best?

Optimality is a complicated issue and it is related to the goal of optimisation. There 
are many diffent measures and any individual method cannot do the best work for all 
those measures. The least squares is the best weighting assignment method for the meas-
ure of Euclidean distance. Compared with many others, it is efficient and effective at the 
same time. Almost all other weighting assignment methods are either heuristic or opti-
misation methods. For the former, its effectiveness is not guaranteed; for the latter, it is 
timing-consuming.

Question 4: How does the number of component classifiers affect ensemble 
performance?

The number of component classifiers has a positive effect on ensemble performance. 
The situation is straightforward for weighted majority voting. When more and more com-
ponent results are added to an ensemble, its performance becomes better and better. Here 
we assume that the optimal weights are used in the ensemble.

On the other hand, the situation for majority voting is more complicated. Adding more 
component classifiers into an ensemble cannot always improve performance. From a 
group of candidates, to find a subset for best ensemble performance is a NP-hard problem 
(Theorem 3).

Question 5: How does each component classifier affect ensemble performance?
It is related to the first question. For majority voting, each contributes equally; for 

weighted majority voting, each contributes differently in order to get the optimal results for 
the whole data set. If a very good component classifier is added, then weighted majority 
voting can take advantage of it. On the other hand, for majority voting, if many component 
classifiers are poor, then a few good ones may not be able to improve performance very 
much.
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Question 6: How does performance of component classifiers affect ensemble 
performance?

Performance of component classifiers is the most important aspect that affect ensemble 
performance. For majority voting, a high-performance point is able to move the centroid of 
the group closer to the ideal point. For weighted majority voting, a high-performance point 
very likely enables the subspace to expand with some points closer to the ideal point.

Question 7: How does diversity of component classifiers affect ensemble performance?
For diversity, there are many different types of definitions before. In this paper, we 

define it as the dissimilarity distribution of all pairs of component results. Apart from per-
formance, diversity is another aspect that impacts ensemble performance significantly. For 
majority voting, a comparative investigation about it and performance has been done in 
Sect. 3.1. Based on a simplified situation, the importance ratio between diversity and per-
formance is calculated to be in the range of (0.25,0.5], varying with the number of com-
ponent classifiers. For weighted majority voting, high diversity among component results 
will make the subspace bigger, thus it is more likely to find closer points to the ideal point 
in such a space.

The advantage of the diversity measure defined in this paper is its orthogonality to per-
formance, which makes its effect on ensemble performance very clear. It is also helpful 
when we try to select a subset of base classifiers from all available ones (classifier pruning 
(Mohammed et al., 2022)) for effective and efficient ensembling.

One final comment about the framework is: all the theorems in the geometric frame-
work hold when the Euclidean distance is used for measuring performance. When other 
metrics are used, the conclusions we obtain may hold for many of the instances, but not 
every single instance. However, there is strong correlations between any other meaningful 
performance metrics and the Euclidean distance. If enough instances are observed, we may 
expect consistent conclusions.

5 � Empirical investigation

In this section we are going to investigate how theoretical conclusions presented in Sect. 3 
can be confirmed for practical use. Within the geometric framework, all the theorems hold 
perfectly when Euclidean distance is used as performance metric on the same dataset. We 
would like to see how they behave when the conditions are partially satisfied. Specifically, 
two points are considered:

•	 Quite a few weighting schemes have been proposed before for ensemble learning. 
We are going to see how the newly proposed optimal scheme is related to two typical 
weighting schemes proposed before. We also compare their performance and efficiency 
through experiments.

•	 Usually classification accuracy or some other metrics, rather than Euclidean distance, is 
used for performance evaluation. It is interesting to find the strength of the correlation 
between the Euclidean distance and other commonly used metrics.
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To allow for reproducbility, the datasets, source code, raw results of this study are available 
in GitHub.1

5.1 � Weighting schemes for ensemble learing

Before presenting the results of empirical investigation, let us further discuss the weighting 
schemes proposed in this paper and two others proposed before.

Recall the optimal weighting scheme, we may obtain it through minimizing the Euclid-
ean distance between the ensemble point and the ideal point. See Eq. (11) for it. Actually, 
this can be implemented by applying multiple linear regression ,2. We illustrate it using an 
example taken from Seewald (2002) with some necessary modifications. Suppose that the 
training data set includes m base classifiers, a group of n instances, and three class labels 
a, b, and c. Table 2 shows an example of the original training set (left side) and class prob-
ability distribution of a base classifier ( cli ) (right side).

Stacking (Ting & Witten, 1999) and StackingC with multiple linear regression (MLR) 
(Seewald, 2002) are two typical weighting schemes for ensemble learning. Multiple lin-
ear regression is used for both of them. It is also noticeble that the optimal weights by 
minimizing the Euclidean distance can also be solved by multiple linear regression. This 
method is referred to as ED (Euclidean Distance) with MLR later in this paper. Although 
many other weighting schemes have also been proposed (e.g., in Caruana et  al. (2004); 

Table 2   A data set used for 
training weights; it includes m 
base classiers, n instances, and 
three classes (a, b, and c); si

jk
 

refers to the probability score 
given by base classifier cfi for 
class k on instance number j 

Instance Class Classifier cli

a b c

Instance1 a Si
1a

=0.90 Si
1b

=0.05 Si
1c

=0.05
Instance2 b Si

2a
=0.15 Si

2b
=0.70 Si

2c
=0.15

Instance3 b Si
3a

=0.10 Si
3b

=0.80 Si
3c

=0.10
Instance4 c Si

4a
=0.20 Si

4b
=0.20 Si

4c
=0.60

⋮ ⋮ ⋮ ⋮ ⋮

Instancen a Si
na

=0.80 Si
1b

=0.10 Si
1c

=0.10

Table 3   Meta training set for 
class a, Stacking with MLR

Classifier cl1 Classifier cl2 Classifier cln class

a b c a b c a b c =a?

S1
1a

S1
1b

S1
1c

S2
1a

S2
1b

S2
1c

⋯ Sn
1a

Sn
1b

Sn
1c

1

S1
2a

S1
2b

S1
2c

S2
2a

S2
2b

S2
2c

⋯ Sn
2a

Sn
2b

Sn
2c

0
S1
3a

S1
3b

S1
3c

S2
3a

S2
3b

S2
3c

⋯ Sn
3a

Sn
3b

Sn
3c

0
S1
4a

S1
4b

S1
4c

S2
4a

S2
4b

S2
4c

⋯ Sn
4a

Sn
4b

Sn
4c

0
⋮ ⋮ ⋮ ⋮

S1
na

S1
nb

S1
nc

S2
na

S2
nb

S2
nc

⋯ Sn
na

Sn
nb

Sn
nc

1

1  https://​github.​com/​MuxLZ/-​Ensem​ble-​Learn​ing-​exper​iment
2  Linear regression is a stable method (Bousquet et al., 2003) its genelization error bound is given in Elis-
seeff (2000)

https://github.com/MuxLZ/-Ensemble-Learning-experiment
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Mao et al. (2015); Nguyen et al. (2019); Sen and Erdogan (2013); Ting and Witten (1999); 
Zhang and Zhou (2011)), these three are very closely related to each other. The training 
sets used by these three methods are shown in Tables 3, 4, 5, respectively.

In both Stacking and StackingC, a multiple linear regression model is set to learn 
the weights for each class label. Therefore p models are required for a data set with p 
classes. However, Stacking uses all available m × p variables, while StackingC uses m 
variables, which are related to the given class, in each regression model. ED only uses 
one regression model for all the classes and m variables are invovled in its regression 
model. In a sense, StackingC is a simplified version of Stacking and ED is a simplified 
version of StackingC.

Note that for binary classification problems, the three weighting schemes are almost 
the same. Although more variables are used in Stacking, half of the variables are redun-
dant. This is because the probablity scores of any instance j obtained from a base classifier 

Table 4   Meta training set for 
class a, StackingC with MLR

classifiercl1 classifiercl2 classifiercln class
a a a =a?

S1
1a

S2
1a

⋯ Sn
1a

1

S1
2a

S2
2a

⋯ Sn
2a

0
S1
3a

S2
3a

⋯ Sn
3a

0
S1
4a

S2
4a

⋯ Sn
4a

0
⋮ ⋮ ⋮ ⋮

S1
na

S2
na

⋯ Sn
na

1

Table 5   Meta training set for all 
the classes, ED with MLR; the 
last collumn is not a part of the 
training data

classifiercl1 classifiercl2 classifiercln label Note

S1
1a

S2
1a

⋯ Sn
1a

1 Class a

S1
2a

S2
2a

⋯ Sn
2a

0 Related
S1
3a

S2
3a

⋯ Sn
3a

0 Scores
S1
4a

S2
4a

⋯ Sn
4a

0
⋮ ⋮ ⋮ ⋮

S1
nb

S2
nb

⋯ Sn
nb

1
S1
1b

S2
1b

⋯ Sn
1b

0 Class b
S1
2b

S2
2b

⋯ Sn
2b

1 Related
S1
3b

S2
3b

⋯ Sn
3b

1 Scores
S1
4b

S2
4b

⋯ Sn
4b

0
⋮ ⋮ ⋮ ⋮

S1
nb

S2
nb

⋯ Sn
nb

0
S1
1c

S2
1c

⋯ Sn
1c

0 Class c
S1
2c

S2
2c

⋯ Sn
2c

0 Related
S1
3c

S2
3c

⋯ Sn
3c

0 Scores
S1
4c

S2
4c

⋯ Sn
4c

1
⋮ ⋮ ⋮ ⋮

S1
nc

S2
nc

⋯ Sn
nc

0
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cli sum to 1: Si
ja
+ Si

jb
= 1 ). Using either Si

ja
 or Si

jb
 is enough. Due to the same reason, the 

weights learnt by either Stacking or StackingC are the same for both classes a and b. There-
fore, it is enough to learn weights for one of the classes.

For multiclass classification problems, the model trained by Stacking is more accurate 
than the one by StackingC, and the model trained by StackingC is more accurate than the 
one by EU with regard to the training dataset. However, this may not always be the case 
with regard to the test dataset. More complex models have a bigger chance to be overfit-
ting. Such a phenomenon is observed in Seewald (2002). It is also confirmed in our experi-
ments. See later sections for detailed results.

5.2 � Comparison of three weighting schemes

In this subsection we investigate empirically three weighting schemes including Stacking, 
StackingC, and ED. 26 datasets, downloaded from the UCI Machine Learning Repository,3 

Table 6   Statistics of the datasets used in the study

Data set # Instances # Features # Classes

Abalone (Ab) 4177 8 3
Annealing (An) 798 38 5
Audiology (Au) 226 69 18
Bank Marketing (Ba) 4520 17 2
Breast-tissue (Br) 106 10 6
Bupa (Bu) 345 7 2
Car (Ca) 1728 6 4
Chart (Ch) 600 60 6
Conn (Co) 528 11 11
Connectionist (Ct) 208 60 2
Dermatology (De) 366 34 6
Energy (En) 768 8 3
Glass (Gl) 214 10 6
Iris (Ir) 214 4 3
Knowledge (Kn) 172 5 4
Leaf (Le) 340 15 30
Lenses (Ls) 24 4 3
Lymphography (Ly) 148 18 4
Pen-Based Recognition (Pe) 10992 16 10
Pittsburg-bridges-MATERIAL (PM) 108 13 3
Pittsburg-bridges-TYPE (PT) 108 13 6
Primary-tumor (Pr) 339 17 15
Seeds (Se) 210 7 3
Soybean (So) 683 35 18
Statlog (St) 846 18 4
Zoo (Zo) 101 17 7

3  https://​archi​ve.​ics.​uci.​edu/​ml/​index.​php

https://archive.ics.uci.edu/ml/index.php
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are used for this. The main statistics of the these 26 datasets are listed in Table 6. These 
datasets vary in number of instances, features, and classes.

Three types of base classifiers, including decision tree, support vector machine, and 
logistic regression-based classifiers, were involved for the ensemble.

For each dataset, we divided it into five equal subsets. All the instances were randomly 
allocated to each subset. Two of the subsets were used to generate base classifiers, another 
two were used to train weights for the ensemble, and the remaining one were used for test-
ing. All 30 different combinations were tried. In order to reduce the impact of random-
ness of selection, we repeat the above process 20 times for each dataset. The results are 
shown in Table 7. The figure is the average over 20 iterations and 30 combinations for each 
dataset.

From Table 7 we can see that StackingC and ED are close in performance, while Stack-
ing is not as good as the others. However, the difference between them is small and not 

Table 7   Performance (in Accuracy) comparison of three weighting schemes (R denotes the performance 
difference between the best and worst base classifiers)

The best performance in each data set is shown in bold

Data set Stacking StackingC ED Majority-Voting R >10%

Ab 0.671 0.672 0.674 0.691 No
An 0.941 0.941 0.940 0.830 Yes
Au 0.912 0.919 0.914 0.911 Yes
Ba 0.900 0.900 0.900 0.900 No
Br 0.633 0.633 0.701 0.700 Yes
Bu 0.726 0.727 0.724 0.747 No
Ca 0.970 0.970 0.970 0.960 Yes
Ch 0.984 0.986 0.987 0.982 Yes
Co 0.816 0.775 0.759 0.762 No
Ct 0.832 0.832 0.827 0.833 No
De 0.970 0.974 0.979 0.970 Yes
En 0.940 0.940 0.941 0.900 Yes
Gl 0.684 0.706 0.709 0.702 Yes
Ir 0.956 0.956 0.957 0.958 No
Kn 0.884 0.885 0.877 0.866 No
Le 0.544 0.589 0.606 0.607 Yes
Ls 0.631 0.685 0.725 0.692 Yes
Ly 0.856 0.856 0.859 0.860 No
Pe 0.993 0.993 0.993 0.988 Yes
PM 0.845 0.858 0.860 0.862 Yes
PT 0.526 0.582 0.601 0.585 Yes
Pr 0.536 0.573 0.589 0.580 Yes
Se 0.939 0.940 0.937 0.936 No
So 0.941 0.944 0.941 0.931 Yes
St 0.764 0.768 0.766 0.771 Yes
Zo 0.971 0.972 0.951 0.926 No
Average 0.822 0.830 0.834 0.825
Average(Yes) 0.801 0.816 0.826 0.811
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significant if we consider all the cases together. In one of the datasets (Ba), all four weight-
ing schems equally-performed. Out of the remaining 25 datasets, majority-voting wins 
eight of them. Stacking, StackingC, and ED are winners in 4, 8, and 10 datasets, respec-
tively. Note that in two datasets Ca and Pe, these three are joint winners; and in one dataset 
An, Stacking and StackingC are joint winners.

In some cases, weighted ensemble does not perform as good as simple majority-voting. 
This happens when the condition is unfavorable to weighted ensemble. If all the base clas-
sifiers are close in performance, then it is harder for weighted ensemble to beat majority-
voting. Therefore, we measured the performance of base classifiers and calculated the dif-
ference ratio of the best and worst R. Two groups are formed base on the difference (10% 
as the threshold). If only considering one group of 16 datasets in which R>10% (labelled 
“yes” in the column “R>10%” in Table 7), we find that the difference between Stacking 
and StackingC, and Stacking and ED is significant (paired-samples T test, two-sided, 0.010 
and 0.008 respectively); while the difference between StackingC and ED is 0.055, just out 
of the signicance level of 0.05.

We also measured the time required for the training of these three weighting schemes. 
A personal desk computer with an i7-11700 CPU and 16 G RAM was used. Table 8 shows 
the results on seven selected datasets. All three methods run very fast. Understanably, ED 
is the fastest, Stacking is the slowest, while StackingC is in the middle. When a dataset 
has a small number of instances and a small number of classes, their difference is also 
small. This is the case for Ba, Ca, De, En, and GL. When a dataset has a larger number 
of classes, their difference becomes larger. Pe has over 10,000 instances and 10 classes, 
and So only has 683 instances but relatively a large number of 18 classes. So the time dif-
ference between Stacking and ED is over 8 times for Pe (Pen-Based Recognition) and 18 
times for So (Soybean).

5.3 � Correlation between Euclidean distance and other metrics

In this subsection we investigate the strength of correlation between Euclidean distance 
and other commonly used metrics.

In fact, Euclidean distance and all other reasonable metrics are directly related to prob-
ability scores. Considering one instance in a binary classification problem, a distance of 
below 0.5 always means a wrong classification, while a distance of above 0.5 alway means 
a correct classification. Therefore, an observable property of Euclidean distnace is: it is 
more sensitive to the change of probability scores than all other metrics. However, if a 

Table 8   Time (in second) for 
weights training by different 
methods

Data set Stacking StackingC ED

Ba 0.0013 0.0012 0.0010
Ca 0.0017 0.0013 0.0008
De 0.0017 0.0014 0.0006
En 0.0013 0.0011 0.0008
Gl 0.0016 0.0013 0.0006
Pe 0.0251 0.0047 0.0030
So 0.0162 0.0046 0.0009
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larger number of instances are considered together, we can expect a stronger (either nega-
tive or positive) correlation between Euclidean distance and other metrics such as precision 
and recall.

For all the instances in a dataset, we divide them into two equal partitions by selecting 
instances randomly. One partition is used to train a group of classifiers. Then we evalu-
ate all the instances in the other partition by a few different metrics including Euclidean 
distance. Finally, the correlation between different metric pairs are calculated. The roles of 
training and testing are exchanged for the two partitions.

Two types of classifiers, decision tree-based (20) and support vector machine-based 
(20), were generated. To increase the diversity of those classifiers generated, different set-
tings were tried. Rather than using all the features, we randomly selected a subset (2/3) of 
all the features. we also set different values for a few parameters including criterion and 
maximum deepth (for CART decision trees), and kernel and gamma (for SVMs).

Apart from Euclidean distance, Accuracy, Precision, Recall, and F1 are invovled. All 
the 26 datasets in Table 6 are also used in this experiment. For each dataset, we repeated 

Table 9   Correlation (by Pearson correlation coefficient) of different metric pairs )DS denotes Dataset, A 
denotes Accuracy, P denotes Precision, R denotes Recall, F denotes F1, and E denotes Euclidean distance)

DS A &P A &R A &F A &E P &R P &F P &E R &F R &E F &E

Ab 0.92 1.00 0.95 −0.91 0.94 0.95 −0.92 0.97 −0.91 −0.88
An 0.95 0.97 0.98 −0.94 0.96 0.97 −0.93 1.00 −0.92 −0.93
Au 0.73 0.71 0.73 −0.89 0.84 0.93 −0.67 0.90 −0.64 −0.66
Ba 0.76 0.91 0.91 −0.87 0.76 0.83 −0.76 0.99 −0.91 −0.91
Br 0.99 1.00 1.00 −0.99 1.00 1.00 −1.00 1.00 −0.99 −1.00
Bu 0.86 0.97 0.95 −0.92 0.89 0.93 −0.74 0.98 −0.93 −0.87
Ca 0.72 0.84 0.80 −0.92 0.94 0.98 −0.81 0.99 −0.86 −0.85
Ch 1.00 1.00 1.00 −0.99 1.00 1.00 −0.98 1.00 −0.99 −0.99
Co 0.94 1.00 0.99 −0.95 0.94 0.97 −0.90 0.99 −0.95 −0.94
Ct 0.98 1.00 1.00 −0.93 0.97 0.97 −0.93 1.00 −0.93 −0.93
De 0.99 1.00 1.00 −0.98 0.99 1.00 −0.99 1.00 −0.98 −0.98
En 0.81 0.96 0.91 −0.85 0.94 0.98 −0.95 0.99 −0.95 −0.96
Gl 0.98 0.99 0.99 −0.98 0.99 1.00 −0.96 1.00 −0.96 −0.96
Ir 1.00 1.00 1.00 −0.97 1.00 1.00 −0.97 1.00 −0.97 −0.97
Kn 0.98 0.99 0.99 −0.99 0.99 0.99 −0.98 1.00 −0.99 −0.99
Le 0.95 1.00 0.99 −0.92 0.95 0.98 −0.93 0.99 −0.93 −0.89
Ls 0.96 0.96 0.97 −0.68 0.99 1.00 −0.71 0.99 −0.75 −0.71
Ly 0.65 0.70 0.69 −0.93 0.98 0.98 −0.56 1.00 −0.59 −0.59
Pe 1.00 1.00 1.00 −1.00 1.00 1.00 −1.00 1.00 −1.00 −1.00
PE 0.98 0.99 0.98 −0.91 0.99 1.00 −0.90 1.00 −0.92 −0.92
Pi 0.91 0.94 0.94 −0.79 0.98 0.99 −0.77 1.00 −0.79 −0.79
Pr 0.98 0.99 0.99 −0.90 0.98 0.99 −0.87 1.00 −0.88 −0.88
Se 1.00 1.00 1.00 −0.95 1.00 1.00 −0.96 1.00 −0.95 −0.95
So 0.94 0.96 0.96 −0.95 0.98 0.99 −0.88 1.00 −0.89 −0.89
St 0.96 1.00 0.99 −0.98 0.96 0.97 −0.95 0.99 −0.98 −0.99
Zo 0.99 0.99 0.99 −0.82 1.00 1.00 −0.78 1.00 −0.79 −0.78
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the above-mentioned process 20 times. Table  9 presents the Pearson correlation coeffi-
cients between each pair of those five metrics.

From Table 9, we can see that the correlation between all those pairs are very strong in 
most cases. In 12 datasets, the correlation coefficients are always above 0.9 for all different 
metric pairs. In a few datasets, the corrlelation is relatively weaker. The weakest is 0.56 (P 
&E in Ly). In general, it demonstrates that Euclidean distnace has strong correlation with 
all four metrics considered in the experiment. Therefore, we conclude that in general, the 
theorems we obtain from the geometric framework still make sense even when other met-
rics such as Accuracy is used for performance evaluation.

6 � Conclusions

In this paper, we have presented a dataset-level geometric framework for ensemble classifi-
ers. The most important advantage of the framework is it makes ensemble learning a deter-
ministic problem. Euclidean distance has some good properties. One is its continuity. This 
makes it a good candidate as a target variable for optimization, such as using regression to 
deal with classification problems. Another property is it can measure both performance and 
dissimilarity, thus it is a good platform for us to understand the fundamental properties of 
ensembles clearly and investigate many issues in ensemble classifiers, such as the impact 
of multiple aspects on ensemble performance, predicting ensemble performance, selecting 
a small number of base classifiers to get efficient and effective ensembles, etc. Otherwise, it 
is very challenging to grasp even an incomplete picture. This is why up to now some of the 
properties of majority voting and weighted majority voting have not been fully understood.

Compared with the instance-level framework in Wu and Crestani (2015); Bonab and 
Can (2019), the dataset-level framework presented in this paper is a step forward. It maps 
the ensemble classifier problem for a whole dataset into one multi-dimensional space, thus 
it is more convenient for us to investigate the properties of ensembles. Otherwise, we have 
to deal with multiple spaces at the same time, each for one instance. To find out the collec-
tive properties in those spaces is more complicated. Based on the dataset-level framework, 
we have deduced some useful theorems which had not been found before.

An empirical investigation has also been conducted to see how those theorems in the 
geometric framework hold when Accuracy rather than the Euclidean distance is used for 
performance evaluation. The experimental results show that the theorems are still mean-
ingful for other metrics.

In this geometric framework, we can present by a mathematical equation the exact rela-
tionship between ensemble performance and two major factors including all base classi-
fiers’ performance and diversity of the group, thus the profitability of ensembling a group 
of base classifiers can be calculated out very quickly. Ensemble pruning (Mohammed et al., 
2022), which is to select a subset of component classifiers from all available ones for better 
performance and efficiency, has been investigated widely. This framework can be used for 
this task in different ways.

In this paper, the setting for the proposed framework is traditionally with a batch of 
training data. In recent years, data stream classification has attracted some attention 
(Gomes et  al., 2017). How to adapt the geometric framework for this is worth further 
research. Especially, incorporating dynamic updates is a key point. Another research topic 
is multi-model data fusion (Gao et al., 2020). Again how to adapt the framework to support 
multi-modal data fusion is an interesting research issue. One possible solution is to use a 
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separate framework for each mode and then to combine them. These research issues remain 
to be our future work.
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