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Abstract
We propose an approach to symbolic regression based on a novel variational autoencoder 
for generating hierarchical structures, HVAE. It combines simple atomic units with 
shared weights to recursively encode and decode the individual nodes in the hierarchy. 
Encoding is performed bottom-up and decoding top-down. We empirically show that 
HVAE can be trained efficiently with small corpora of mathematical expressions and can 
accurately encode expressions into a smooth low-dimensional latent space. The latter can 
be efficiently explored with various optimization methods to address the task of symbolic 
regression. Indeed, random search through the latent space of HVAE performs better than 
random search through expressions generated by manually crafted probabilistic grammars 
for mathematical expressions. Finally, EDHiE system for symbolic regression, which 
applies an evolutionary algorithm to the latent space of HVAE, reconstructs equations from 
a standard symbolic regression benchmark better than a state-of-the-art system based on a 
similar combination of deep learning and evolutionary algorithms.
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1 Introduction

Symbolic regression (also known as equation discovery) aims at discovering closed-form 
equations in collections of measured data  (Schmidt & Lipson, 2009; Todorovski, 2017). 
Methods for symbolic regression explore the vast space of candidate equations to find those 
that fit the given data well. They often employ modeling knowledge from the domain of use 
to constrain the search space of candidate equations. The knowledge is usually formalized 
into grammars (Brence et al., 2021) or libraries of model components, such as entities and 
processes  (Bridewell et  al., 2008). Knowledge-based equation discovery methods have 
successfully solved practical modeling problems in various domains (Radinja et al., 2021; 
Simidjievski et al., 2020).

Grammars and libraries of model components are used to generate candidate expressions 
that might appear in the discovered equations. However, they must be manually crafted, 
which is a severe obstacle to their broader use. The central aim of this article is to develop a 
novel generative model of mathematical expressions that can be used for efficient symbolic 
regression. The model can be trained from a corpus of mathematical expressions from the 
domain of interest, thus automatically tailoring the space of candidate equations to the 
application at hand. The developed generative model must have two essential properties 
to be applicable in such a scenario. First, it should be trainable from a small number of 
mathematical expressions, e.g., collected from a textbook or from scientific literature in the 
application domain. Second, the model should encode the expressions in a low-dimensional 
latent space. The latter space can then be efficiently explored by optimization methods to 
solve the task of symbolic regression. Lowering the dimensionality of the latent space will 
significantly increase the efficiency of symbolic regression.

Recently, several variational autoencoders (VAEs) have been shown to be efficient 
generative models. CVAE  (Gómez-Bombarelli et  al., 2018) employs a VAE based on 
recurrent neural networks to encode discrete expressions into a continuous latent space 
and then decode points from the latent space back into discrete mathematical expressions. 
This decoder can be used to generate expressions. However, CVAE still generates invalid 
sequences and requires extensive training data to reduce the likelihood of generating invalid 
expressions  (Kusner & Hernández-Lobato, 2016). The grammar variational autoencoder, 
GVAE  (Kusner et  al., 2017), and its successor, SD-VAE  (Dai et  al., 2018), employ a 
context-free grammar to ensure the syntactic validity of the generated expressions. Instead 
of directly training models on sequences, they model the distribution of parse trees that 
are produced by the grammar while deriving syntactically (and, in the case of SD-VAE, 
semantically) valid expressions.

We claim that grammars are an unnecessarily powerful and too general formalism for 
generating mathematical expressions. Grammars add syntactic categories to the expression 
symbols rendering the parse trees, i.e., the structures modeled with the autoencoder, more 
complex than the original sequences. This overhead on training expressions inevitably 
translates to a requirement for more extensive training data and a latent space with larger 
dimensionality, reducing the efficiency of optimization methods for symbolic regression 
operating in that latent space.

We propose a novel variational autoencoder for hierarchical data objects, HVAE, to 
address these issues. It builds upon the ideas of variational autoencoders for hierarchical 
data  (Jin et  al., 2021) and gated recursive convolutional neural networks  (Cho et  al., 
2014a). HVAE combines simple atomic units with shared weights to encode and decode 
the individual nodes in the hierarchy. The atomic units are extensions of the standard 
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gated recurrent unit (GRU) cells. The encoding units are stacked into a tree that follows 
the hierarchy of the training object, and they encode the hierarchy bottom-up, compiling 
the codes of the descendants to encode the ancestor nodes. The decoding units proceed 
top-down and use the decoded symbols of the ancestor nodes to decide upon the need 
to extend the hierarchy with descendant nodes. We claim that HVAE can be efficiently 
trained to generate valid mathematical expressions from a training set of modest size, 
while using a low-dimensional latent space.

We exploit these expected properties of our HVAE to implement a novel approach 
for symbolic regression, EDHiE. It performs an evolutionary search through the latent 
space of a HVAE trained on mathematical expression trees as shown in Fig.  1. The 
genetic operations utilize the HVAE encoder to obtain the expressions’ latent codes, 
generate new individuals with crossover and mutation in the latent space, and decode 
the latter back to mathematical expressions. EDHiE can then evaluate the fit of the 
obtained expressions against the measurements. We conjecture that the performance of 
EDHiE on standard benchmarks  (Udrescu & Tegmark, 2020; Uy et  al., 2011) would 
compare favorably to that of a state-of-the-art symbolic regression methods  (Mund-
henk et  al., 2021). The results of our empirical evaluation of HVAE and EDHiE con-
firm our conjectures. HVAE can achieve better reconstruction of the training expres-
sions with order-of-magnitude fewer training examples while using latent spaces with 

Fig. 1  A schematic representation of the EDHiE approach. In the first step, we train a HVAE model. In the 
second step, we explore the latent space of the HVAE model with an evolutionary algorithm. The red dot 
represents the best expression in a given iteration (Color figure online)
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fewer dimensions. EDHiE outperforms alternative methods for symbolic regression on 
the task of reconstructing the ten equations in the Ngyuen benchmark.

We can summarize the contributions of this work as follows:

• We propose HVAE, a variational autoencoder for hierarchical data, that can be 
efficiently trained to generate mathematical expressions from modest amounts of data, 
while using a low-dimensional latent space.

• We introduce EDHiE, a symbolic regression approach that exploits HVAE to efficiently 
search through the space of candidate equations.

The remainder of the paper is organized as follows. Section  2 reviews related work on 
generative models and symbolic regression. We introduce the hierarchical variational 
autoencoder HVAE and the symbolic regression approach EDHiE in Sect  3. Section  4 
presents the results of the empirical evaluation of HVAE and EDHiE. Finally, Section 5 
summarizes and discusses the contributions of the presented work and outlines directions 
for further research.

2  Related work

Most of the early successful applications of generative models have been in the domains of 
text, speech, images, and video, i.e., they have been mainly used for generating unstructured 
data objects composed of continuous data elements. The discrete data structures that 
generative models have most often tackled are strings or sequences of characters, where 
the data elements are discrete symbols. The models that use strings as input (and output) 
usually do so by training a recurrent neural network (Sherstinsky, 2020), most commonly 
using seq2seq autoencoders (Sutskever et al., 2014).

A major problem of sequence-to-sequence autoencoders is that they do not guarantee 
the syntactic correctness of the generated expressions. One way to solve this problem 
is to learn an additional validation model for checking the correctness of the generated 
sequence  (Janz et  al., 2017). Grammar variational autoencoders (GVAE)  (Kusner et  al., 
2017) use context-free grammars for specifying the space of valid structured data objects. 
Each data object can be then represented as a sequence of grammar productions (rewrite 
rules) that derives it. In turn, GVAE encode sequences of rewrite rules that derive objects 
instead of the objects themselves. The structure of the decoder is constrained to generate 
valid sequences of rewrite rules that are then used together with the grammar to generate 
valid expressions.

Dai et  al. (2018) propose the use of attribute grammars, i.e., context-free grammars 
that attach attributes to the grammar’s syntactic categories. By prescribing properties and 
relationships between the attributes, such grammars can also encode semantic constraints 
on the derived data objects. The attribute grammars, together with SD-VAE, i.e., syntax-
directed VAE, can generate expressions that are consistent with a set of both syntactic 
and semantic constraints. Alternative generalizations of grammars have been used for 
generative modeling of program source code in high-level languages (Bielik et al., 2016).

Most of the above approaches can also generate mathematical expressions. However, 
they need the complex formalism of grammars to generate more complex data structures, 
most often molecular structures (Dai et al., 2018; Gómez-Bombarelli et al., 2018). Since 
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mathematical expressions can be represented as simpler structures, i.e., binary trees, our 
work concerns generative models for hierarchical (tree-structured) data.

Hierarchical data have been tackled by generative models in several ways. By making 
a node depend on its parent and previous sibling, DRNN  (Alvarez-Melis & Jaakkola, 
2017) combines representations obtained from the depth-wise and width-wise recurrent 
cells to generate new nodes, which proves useful for recovering the structure of a tree. 
On the other hand, Tree-LSTM (Tai et  al., 2015) and JT-VAE  (Jin et  al., 2021) focus 
on adapting equations for recurrent cells to encode (and decode) hierarchical structures 
more efficiently. Tree-LSTM proposes a generalization of the LSTM cell for encoding 
trees into a representation that proves effective for classification tasks and semantic 
relatedness of sentence pairs. JT-VAE adapts recurrent cells for tree message passing. 
Trees are used as scaffolding for the graph that represents molecules. Encoding and 
decoding are thus split into four parts: encoding of the graph, encoding of the tree, 
decoding of the tree, and decoding of the graph. While these adaptations are similar to 
the ones presented in our work, their focus is on encoding more general structures that 
are unrelated to mathematical expressions.

Note that our model falls into the general framework of gated recursive convolutional 
neural networks (Cho et al., 2014a) that combine atomic units with shared parameters 
in a hierarchy. The output of the root node produces a fixed-length encoding of a 
data object with an arbitrarily complex structure. Another model, marginally related 
to ours, is the one of equivalence neural networks  (Allamanis et  al., 2017). The 
encoding produced by these networks follows the expressions’ semantic similarity and 
equivalence, in contrast to their syntactic similarity, which is followed by all the other 
approaches, including ours.

Finally, our work is also related to algorithms for equation discovery and symbolic 
regression. Most of them generate candidate expressions for equations first and then 
estimate the values of their constant parameters by matching the equations against 
data in the second phase. Classical symbolic regression approaches  (Cranmer, 2023; 
Guimerà et  al., 2020; Schmidt & Lipson, 2009), based on evolutionary algorithms, 
use stochastic generators of expression trees: At the beginning, the expression trees 
are randomly sampled, and later on, they are transformed using the evolutionary 
stochastic operations of mutation and cross-over. In contrast, process-based modeling 
approaches  (Bridewell et  al., 2008) generate equations by following domain-specific 
knowledge (provided by the user) that specifies a set of entities (variables) and processes 
(interactions among entities). Grammar-based approaches to equation discovery employ 
user-specified context-free grammars (which can also be based on domain knowledge), 
deterministic  (Todorovski & Dzeroski, 1997) or probabilistic  (Brence et  al., 2021), as 
efficient generators of expressions.

Recently, many symbolic regression approaches based on neural networks have been 
proposed  (Biggio et  al., 2021; d’Ascoli et  al., 2022; Kamienny et  al., 2022; Martius 
& Lampert, 2016; Petersen et  al., 2021; Udrescu & Tegmark, 2020). In particular, 
Deep Symbolic Optimization, DSO approaches symbolic regression [among other 
optimization tasks  (Mundhenk et  al., 2021)] by combining neural networks and 
reinforcement learning with evolutionary algorithms. The neural networks are used 
to sample the individuals in the initial population of the evolutionary algorithm and 
are retrained at each iteration to focus on expressions leading to better fit. It is closely 
related to our work, since it combines similar methods. Yet our focus here is on efficient 
neural networks for generating mathematical expressions that are trained before the 
beginning of the evolutionary process.



4568 Machine Learning (2023) 112:4563–4596

1 3

3  Methodology

We start this section by briefly introducing the task of symbolic regression and the search 
space of mathematical expressions (Sect. 3.1). After this, we introduce variational autoen-
coders and the structure of the hierarchical variational autoencoder, HVAE (Sect. 3.2). We 
finish the section by explaining how to use HVAE for generating mathematical expressions 
and how to combine it with an evolutionary algorithm for symbolic regression (Sect. 3.3).

3.1  Symbolic regression and expression trees

Symbolic regression (SR) is the machine learning task of discovering equations in 
collections of measured data. Symbolic regression methods take a data set S consisting of 
multiple measurements of a set of real-valued variables V = {x1, x2,… , xp, y} , where y is a 
designated target variable. The output of SR is an equation of the form y = f (x1, x2,… , xp) , 
where the right-hand side of the equation is a closed-form mathematical expression. The 
equation should provide an optimal fit against the measurements from S, i.e., minimize the 
discrepancy between the observed values of the target variable y and values calculated by 
using the equation. Symbolic regression methods usually follow the parsimony principle, 
preferring simpler expressions over more complex ones.

Symbolic regression methods search through the space of candidate mathematical 
expressions for the right-hand side of the equation to find the one that optimally fits the 
measurements. Mathematical expressions can be represented in different ways. We 
commonly use the infix notation, where operators are placed between two sub-expressions 
they operate on, e.g., A + B , where A and B are sub-expressions. Infix notation uses 
parentheses to indicate the order in which the operations need to be performed. Prefix 
(Polish) or postfix (reverse Polish) notations do not need parentheses since the operators 
are written before or after the two sub-expressions, e.g., +AB or AB+ . The three notations 
correspond to different traversals of the nodes in an expression tree. The latter is a 
hierarchical data structure, where the inner nodes correspond to mathematical operators 
and functions, while the leaf nodes correspond to variables and constants.

In symbolic regression, the constants’ values are fitted against the measured data from 
S, while variables include elements from V without the target variable. We assume binary 
expression trees since standard arithmetic operators are binary. We take that the second 
descendant node is null in the inner nodes corresponding to single-argument functions. We 
define the height of an expression tree as the number of nodes on the longest path from the 
root node to one of the leaves. Figure 2 depicts an example expression tree with a height of 
four, along with the corresponding mathematical expression in different notations.

Our model generates expression trees, as they have several advantages over sequences 
(strings). Firstly, it is easy to achieve syntactic correctness, since operators and functions 

Fig. 2  An expression tree 
with a height of four and three 
sequence-based representations 
of the corresponding mathemati-
cal expression
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are in the inner nodes, while variables and constants are in the leafs. Secondly, information 
needs to travel at most log n steps up the tree (up to the tree’s height) instead of n steps 
along the sequence (up to the length of the sequence). Lastly, sub-expressions can be 
encoded independently of each other during the encoding process.

3.2  Hierarchical variational autoencoder

In recent years, variational autoencoders (Kingma & Welling, 2014) have emerged as one 
of the most popular generative models. The reason for this is that, when trained correctly, 
variational autoencoders map the observed data with an unknown distribution into a latent 
representation with a known distribution. This results in a continuous latent space, from 
which one can sample and synthesize new data. In contrast to a (deterministic) autoencoder, 
where the encoder outputs a latent representation z that is directly fed into the decoder, the 
encoder in the variational autoencoder outputs the parameters for an approximate posterior 
distribution, e.g., � and � in the case of a latent space parameterized by a multivariate 
Gaussian distribution.

Thus, a representation z that is fed into the decoder is sampled from the underlying 
distribution with the learned parameters ( � , � ). The loss of the variational autoencoder is 
the reconstruction error, i.e., the difference between the input to the encoder and the output 
of the decoder. Additionally, variational autoencoders typically use Kullback–Leibler (KL) 
divergence (Kullback & Leibler, 1951) as the regularization term for the loss. The loss can 
thus be calculated as:

where Jrec(x) is the reconstruction loss of x and � ≥ 0 the regularization cost parameter. In 
case the underlying distribution is Gaussian, KL divergence to an isotropic unit Gaussian 
can be estimated as

We use cost annealing  (Bahuleyan, 2018) to focus on the reconstruction error (i.e., 
use small values of � ) at the beginning and then gradually shift the focus towards the 
smoothness of the latent space by increasing the value of �.

3.2.1  Model overview

Our approach uses a variational autoencoder structure that consists of an encoder and 
a decoder. The encoder takes tree-structured data as input and outputs a distribution in 
the latent vector space, represented with the mean ( �z ) and the logarithm of the variance 
( log �z ) vectors. The decoder works in the opposite direction, sampling a point from the 
latent vector space as input and transforming it into a binary expression tree. To make the 
backward propagation possible, we sample points with the reparametrization trick.

Trees are encoded recursively, starting from leafs and ending at root nodes. To encode a 
subtree with a root in n, we first encode its left and right subtrees. We then pass their codes, 
along with the symbol in the node n, as inputs to the encoding cell (further described in 
Sect.  3.2.2). This cell outputs the code of the subtree rooted in n. At the beginning of the 
recursion, in each leaf node, the codes corresponding to the (missing) children are assumed to 
be vectors of zeros. Once the root of the tree is encoded, its code is passed through two fully 

(1)J(x,�z, �z) = Jrec(x) + � ⋅ KL(N(�z, �z) ‖N(0, I)),

(2)KL(N(�z, �z) ‖N(0, I)) =
1

2

�
1 + log �2

z
− �2

z
− �2

z

�
.
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connected layers that give the mean and log-variance vectors that form the latent representation 
of the tree. Figure 3a illustrates the recursive encoding process on the expression x + cos x.

The first layer of the decoder transforms the sampled point from the latent space into the 
code of the hierarchy. After this, the tree is generated recursively by passing the code of 
the current node (subtree) through the decoding cell (further described in Sect. 3.2.3). This 
cell takes the code of the node (subtree) as input and generates a node symbol, along with 
the codes of the two child nodes. There are three possible symbol types. If we encounter 
an operator, both child nodes are generated recursively. On the other hand, if the symbol 
represents a function, we only generate the left child. Lastly, if the symbol is either a 
variable or a constant, no further child nodes are generated in this branch. This process is 
shown in Fig. 3b, where the expression x + cos x is decoded.

During training, we follow the structure of the encoded tree and try to predict the 
correct node symbols. In turn, we jointly learn to predict the structure of the expression 
tree and the symbols inside the node, since the structure is determined by the symbols. We 
calculate the loss using cross-entropy on a sequence of symbols obtained with the in-order 
traversal of the expression tree. Some additional implementation details are explained in 
Appendix 4.

3.2.2  Encoder

The encoding proceeds in two phases. The first follows the hierarchy of the input and 
applies the encoding cell to each node of the hierarchy as described above. In the second 
phase, the code of the root node is transformed into the mean and log-variance vectors of 
the input’s latent representation.

Encoding comprises a GRU21 cell, which we have adapted from the GRU cell  (Cho 
et  al., 2014b). The (output) code h in GRU21 is computed from the input vector x, and 
codes hl of the left and hr of the right child with the following equations:

(3)r = �S(Wirx + bir +Whr(hl ∦ hr) + bhr)

(4)u = �S(Wiux + biu +Whu(hl ∦ hr) + bhu)

Fig. 3  The processes of a encoding and b decoding the expression tree of x + cos x . The acronyms EC and 
DC stand for “encoding cell” (introduced in Sect. 3.2.2) and “decoding cell” (introduced in Sect. 3.2.3)
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where �S denotes the Sigmoid activation function. In these expressions, r, u, and n 
represent the standard reset gate, update gate and candidate activation vectors from a 
GRU cell. When compared to the original equations of the GRU cell, Eqs.  (3), (4), (5) 
exhibit two differences. First, instead of the code of the previous symbol in the sequence, 
the concatenation of the codes hl and hr of the child nodes is used (denoted by (hl ∦ hr) ). 
Second, the dimension of the weight matrices Whr,Whu,Whn must be dim(hl) + dim(hr) 
instead of dim(h) . Thus, while Eq. (6) remains similar to the original one, we change the 
second term (from its usual form u ∗ ht−1 ) to u

2
∗ hl +

u

2
∗ hr , to retain information from 

the codes of the two child nodes. Recall that ∗ denotes the element-wise multiplication of 
vectors.

In the second phase, the model transforms the code of the root node into the latent 
representation of the input expression through two fully-connected layers.

3.2.3  Decoder

The decoding also comprises two phases. In the first, a fully-connected layer transforms a 
point from the latent vector space into the code of the root node. In the second phase, the 
decoding cell is recursively deployed to decode each of the nodes in the expression tree.

Figure  4 depicts the structure of the decoding cell. The cell is composed of a fully 
connected layer, a softmax layer, and the GRU12 cell, an adaptation of the original GRU cell. 
The input code is first passed through the sequence of a fully-connected and a softmax layer. 
The latter creates the vector of probabilities, from which the most probable output symbol is 
chosen. If the output symbol is either a constant or a variable, the decoding stops. Otherwise, 
the output vector is also used as an input to the GRU12 cell, together with the code that is 
given as input into the decoding cell. The GRU12 cell produces two codes, one for the left and 
one for the right child.

GRU12 computes the two codes hl and hr for the child nodes using the input vector x and 
the code h with the following equations:

(5)n = tanh(Winx + bin + r ∗ (Whn(hl ∦ hr) + bhn))

(6)h = (1 − u) ∗ n +
u

2
∗ hl +

u

2
∗ hr,

(7)r = �S(Wirx + bir +Whrh + bhr)

(8)u = �S(Wiux + biu +Whuh + bhu)

Fig. 4  The structure of the 
decoding cell
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There are two major differences between GRU12 and the original GRU cell. First, 
the vectors r,u, and n in Eqs.  (7), (8), (9) are of dimension 2 ⋅ dim(h) instead of dim(h) . 
Consequently, all bias vectors are of dimension 2 ⋅ dim(h) , and all weight matrices have an 
output dimension of 2 ⋅ dim(h) . Second, in Equation (10), the code h is concatenated with 
itself to make the dimensions in the equation match. Vector d is then split in half in Eq. 11. 
The first part is used as a code for the left child, while the second is used as a code for the 
right child.

3.3  Generating expressions for symbolic regression

Recall that the goal of symbolic regression is to efficiently search through the space of 
mathematical expressions and find the one that, when used on the right-hand of an 
equation, fits given measurements well. In this section, we explain how to use HVAE for 
generating expressions.

3.3.1  HVAE as a generative model

We can generate expressions in two ways, corresponding to two different symbolic 
regression scenarios. The first way, which aims at discovering equations from data, samples 
random vectors from the standardized Gaussian distribution N(0, I) in the latent space and 
passes them through the decoder.

On the other hand, we might want to generate expressions in a scenario that corresponds 
to the revision of existing equations to fit newly gathered data. Here, we want to generate 
mathematical expressions that are similar to the one given as input. Our approach achieves 
this by encoding an expression and sampling its immediate neighborhood in the latent 
space. We expect these points to be decoded into expressions similar to the one given as 
input. We will show that HVAE meets this expectation in Sect. 4.1.4.

3.3.2  Evolutionary algorithm operators

Finally, we can search the latent space spanned by our model with evolutionary 
algorithms  (Koza, 1994), one of the most commonly used paradigms for symbolic 
regression. Evolutionary algorithms explore the search space by first randomly sampling 
individuals for the initial population. Then they repetitively generate new populations by 
combining pairs of individuals from the current population with the genetic operators of 
mutation and crossover.

An individual in a population is in our case a real-valued vector z, corresponding to 
the code of an expression tree in the latent vector space. Using the HVAE model, z can be 
decoded into an expression tree. To calculate the individual’s fit against the training data, 
we first fit the values of the constant parameters in the decoded expression tree and then 
measure the error of the equation with the resulting expression on the right-hand side (with 

(9)n = tanh(Winx + bin + r ∗ (Whnh + bhn))

(10)d = (1 − u) ∗ n + u ∗ (h ∦ h)

(11)d ≡ hl ∦ hr
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respect to the training data). We generate the initial population by randomly sampling 
individuals from the Gaussian distribution N(0, I).

Crossover combines two individuals, referred to as parents zA and zB , into an offspring zO . 
We generate the latter as a convex combination of zA and zB , i.e. zO = (1 − a) ⋅ zA + a ⋅ zB , 
where a is sampled from the uniform distribution on the interval [0, 1]. For values of a 
close to 0 and 1, the offspring is close to one of the parents, while values of a close to 0.5 
lead to an offspring equally dissimilar to both parents.

The mutation operator transforms an individual z into a mutated individual zM . To 
perform a mutation, we first decode z into an expression tree and immediately encode it 
back into its latent space representation to obtain the value of �z . Now, we can mutate 
z into an individual with a syntactically similar expression by sampling from N(�z, �z) 
or into a random individual by sampling the offspring zO from N(0, I) . Similarly to 
the case of crossover, we interpolate between these two extremes by sampling from 
N(a ⋅ �z + (1 − a) ⋅ 0, a ⋅ �z + (1 − a) ⋅ I) = N(a ⋅ �z, a ⋅ �z + (1 − a) ⋅ I) , where a is 
randomly sampled from the uniform distribution on the interval [0, 1]. When a is close to 
0, the offspring zO is chosen at random (see the first paragraph of Sect. 3.3.1). On the other 
hand, when a is close to 1, zO is syntactically similar to z (second paragraph of Sect. 3.3.1).

We implement the EDHiE (Equation Discovery with Hierarchical variational 
autoEncoders) approach for symbolic regression by combining HVAE with evolutionary 
algorithms using these operators. Our implementation uses pymoo (Blank & Deb, 2020) 
for evolutionary algorithms and ProGED (Brence et al., 2021) functionality for evaluating 
the fit of a candidate equation.

4  Evaluation

In this section, we will investigate the validity of our hypothesis that the hierarchical 
variational autoencoder is a more efficient generator of mathematical expressions than the 
alternative VAEs for sequences by conducting two series of computational experiments. 
In the first series, we are going to evaluate the performance and efficiency of HVAE on 
the task of generating mathematical expressions. In the second series, we will evaluate the 
performance of EDHiE on the symbolic regression downstream task.

4.1  The performance of HVAE

We start this section by introducing the experimental setup (Sect. 4.1.1). We continue with 
reporting the experimental results of evaluating HVAE with respect to the reconstruction 
error (Sect. 4.1.2), efficiency in terms of the size of training data needed, the dimensionality 
of the latent space (Sect. 4.1.3), and finally the smoothness of the latent space (Sect. 4.1.4). 
In Appendix 2, we further justify our claim that points close in the latent space of HVAE 
are decoded into similar expressions.

4.1.1  Experimental setup

Data sets We estimate the reconstruction error of the variational autoencoders on a 
collection of six synthetic data sets, ranging from small ones, including simple expressions, 
to large ones, including complex expressions. The data sets are as follows: 
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AE4-2k, AE5-15k, and AE7-20k have 2, 15, and 20 thousand mathematical expressions 
with trees with a maximum height of four, five, and seven. These expressions can 
contain constants, variables, and the operators +, −, ⋅ , /, and ̂.
Trig4-2k, Trig5-15k, and Trig7-20k are the same as above, but the expressions also 
contain the sine and cosine functions.

We create these data sets with the ProGED (Brence et al., 2021) system by randomly 
sampling mathematical expressions from a given probabilistic context-free grammar. 
The generated expressions are simplified using the Python library SymPy (Meurer et al., 
2017). The context-free grammars that constrain the output of GVAE and the ones used to 
generate the data sets are documented in Appendix 1.

Parameter setting We train GVAE and CVAE for 150 epochs with the following val-
ues of their hyper-parameters: latent dimension = 128 , hidden dimension = 128 , batch size 
= 64 , kernel sizes of the convolution layers = 2, 3, 4 , and the ADAM optimizer (Kingma 
et  al., 2015). For reconstruction results created with our approach (HVAE), the hyper-
parameters are: latent size = 128 , batch size = 32 , and the ADAM optimizer with the 
default learning rate. For the first 1,800 iterations i, we calculate the regularization cost 
parameter � using �i = 0.5 ⋅ (tanh

i−4,500

2
+ 1) , after this, we set �i to �1,800.

Estimating the reconstruction error The Levenshtein distance  (Levenshtein, 1965) 
(often referred to as the edit distance) quantifies the dissimilarity of two strings in terms of 
the number of insertion, removal, and substitution operations that are needed to transform 
one string into the other. We use this distance to test how well our autoencoder recreates 
expressions.

We first pass the expression through the VAE to get the predicted expression. If needed, 
we validate the syntactical correctness of the latter and transform it into an expression 
tree. We then traverse the input and the output trees in post-order (left child, right child, 
node symbol) to obtain the input and the output expressions in the postfix notation (which 
does not require parentheses and is hence more suited for calculating the distance between 
expressions). Finally, we calculate the edit distance between those two strings.

To estimate the reconstruction error on unseen expressions, we use five-fold cross-
validation with the same splits across all methods. GVAE and CVAE sometimes produce 
invalid expressions, which we discard from the evaluation. Because of this, the results in 
Sects. 4.1.2 and 4.1.3 might be biased in favor of CVAE due to many syntactically incorrect 
expressions being discarded. Note that GVAE has fixed-size input (and output) that might 
be too short for encoding all the grammar rules needed to derive an expression. In those 
cases, GVAE returns empty strings, which we consider invalid expressions. CVAE, on 
the other hand, produces syntactically incorrect expressions such as xc(∕x)c) sin sin(c)) , 
⋅ ⋅ x − c ⋅ ∕ sin(x)) , or (∕x(−x)c) (presented here in infix notation).

4.1.2  Out‑of‑sample reconstruction error

Table 1 compares the out-of-sample reconstruction error and the ratio of invalid expres-
sions for the three variational autoencoders. Our hierarchical VAE significantly outper-
forms the other two methods on all data sets. An interesting observation is that GVAE 
works consistently better on expressions involving trigonometric functions, while HVAE 
and CVAE perform worse. The reason for the opposite effect is probably the following: 
for GVAE, functions only represent yet another production rule in the grammar, while 
for HVAE and CVAE they drastically change the structure of the expression (tree). This 
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translates to better performance of GVAE, as expressions with trigonometric functions are 
usually shorter, given that the nodes corresponding to the trigonometric functions have 
only one descendant instead of the usual two.

The percentages of invalid expressions generated by the approaches show that our 
approach always produces syntactically correct expressions, while GVAE and CVAE 
sometimes fail to produce valid outputs. The fraction of such expressions is quite small 
when the GVAE approach is used (see the explanation above) but quite significant when 
CVAE is used. Lastly, we can notice that, as expected, longer expressions are harder to 
recreate and thus have higher edit distance and a higher percentage of invalid expressions 
than shorter ones, provided enough training data is used.

4.1.3  Training efficiency and the latent space dimensionality

We proceed to test our conjectures about the efficiency of training the generators of math-
ematical expressions. We expect that HVAE would require less training data and a lower 
dimensionality of the latent space to achieve the same levels of reconstruction error in 
comparison to other approaches. The latter is especially important because of the explora-
tion of the latent space, which is more efficient in low-dimensional latent spaces.

Figure  5a depicts the impact of the number of expressions in the training set on the 
reconstruction error for the three different generative models. Again, HVAE significantly 
outperforms the other two VAEs. Its reconstruction error is estimated to be consistently 
lower than 0.25, even when trained on 2 thousand examples only. This error is an order of 
magnitude lower than the lowest error of 1.5 achieved by the second best model, GVAE, 
when trained on the whole data set of 12 thousand examples.

Figure  5b shows the impact of the dimensionality of the latent space on the 
reconstruction error across different VAEs. In line with the previous results, HVAE 
significantly outperforms both CVAE and GVAE. HVAE with latent space of 
dimension 16 performs on par or better than GVAE and CVAE with latent spaces of 
256 dimensions. We can see that the reconstruction error quickly raises when the latent 
space dimension is less than 32, but otherwise, the reconstruction error is consistently 
low. Even with a latent space size of 16, our approach is still comparable to the other 
two methods with a latent space of dimension 256. This allows us to reduce the 

Table 1  The out-of-sample reconstruction error and the percentages of syntactically incorrect expressions 
generated by the three variational autoencoders

Bold values indicate the best performing approaches (on a specific data set/expression)

Dataset HVAE GVAE CVAE

Edit distance Invalid Edit distance Invalid Edit distance Invalid

AE4-2k 0.076 (± 0.024) 0.0 (± 0.0) 3.959 (± 0.135) 0.2 (± 0.0) 3.873 (± 0.132) 33.8 (± 1.1)
Trig4-2k 0.119 (± 0.026) 0.0 (± 0.0) 3.199 (± 0.068) 0.0 (± 0.0) 3.619 (± 0.045) 48.3 (± 0.6)
AE5-15k 0.079 (± 0.014) 0.0 (± 0.0) 2.827 (± 0.280) < 0.1 (± 0.0) 1.547 (± 0.466) 3.5 (± 0.0)
Trig5-15k 0.093 (± 0.010) 0.0 (± 0.0) 1.489 (± 0.195) < 0.1 (± 0.0) 2.086 (± 0.346) 13.9 (± 0.0)
AE7-20k 0.501 (± 0.017) 0.0 (± 0.0) 5.201 (± 0.289) < 0.1 (± 0.0) 3.654 (± 0.349) 9.9 (± 0.0)
Trig7-20k 0.530 (± 0.036) 0.0 (± 0.0) 3.423 (± 0.467) < 0.1 (± 0.0) 3.660 (± 0.287) 26.3 (± 0.1)
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dimensionality of the latent space by two orders of magnitude, which makes HVAE an 
excellent candidate for generating expressions for symbolic regression.

The reason for the superior efficiency of HVAE is the use of expression trees, as 
subexpressions are always encoded into the same code, regardless of their position 
in the expression. This significantly reduces the space of possible codes and allows 
for training the model in a way that better generalizes to the repetitive subexpressions 
(subpatterns) it encounters.

4.1.4  Latent space smoothness

Finally, we expect the latent space of HVAE to be smooth in the sense that samples 
close to the latent representation of the input expression are decoded into expres-
sions similar to the one given as input. We investigate the validity of this conjecture 
by applying linear interpolation (performing a homotopic transformation) between two 
expressions in the latent space. Assume that we are given two expressions, A and B. 
Using the model, we encode them into their latent representations zA and zB . We can 
then generate new latent representations z� by combining the two representations with 
the formula z� = (1 − �) ⋅ zA + � ⋅ zB , where � ∈ {i∕n ∶ i ∈ ℕ ∧ i ≤ n} . Decoding the 
latent representations z� in a smooth latent space should produce intermediate expres-
sions that represent a smooth transition from A to B in n steps.

Table 2 shows the results of such a linear interpolation in the latent spaces of the 
different VAEs. HVAE and GVAE produce continuous latent spaces where the tran-
sition from expression A to expression B is indeed smooth. CVAE also produces a 
smooth transition, but some of the intermediate expressions might be syntactically 
incorrect. The second interpolation in the lower part of the table is an example of a 
smooth transition in the HVAE latent space. We can see that at each step only a few 
expression symbols change and that these changes are rarely redundant. Appendix  2 
provides further examples of interpolations with visualizations of the expression trees.

Fig. 5  The impact of the a training data set size and b dimensionality of the latent space on the reconstruc-
tion error of the three autoencoders
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4.2  Evaluating EDHiE

In the second series of experiments, we evaluate the performance of EDHiE. We start the 
section by introducing the experimental setup (Sect. 4.2.1). We then report on the impact 
of the dimensionality of the latent space on the performance of symbolic regression 
(Sect.  4.2.2). Furthermore, we compare the performance of EDHiE with that of other 
methods for symbolic regression on the Nguyen benchmark (Sect.  4.2.3) and report the 
performance of EDHiE on the Feynman benchmark (Sect. 4.2.4).

4.2.1  Experimental setup

Data sets The Nguyen (Uy et al., 2011) benchmark contains eight equations with one non-
target variable and two equations with two non-target variables. The right-hand sides of 
these equations are shown in the second column of Table  3. We generate two data sets 
(train and test) with five thousand simulated measurements for each equation. We use the 
train set to select the best expressions and the test set to evaluate their performance with the 
metrics described below. We sample points from the interval [−20, 20] for equations 1–6, 
the interval [0, 40] for equation 7, [0, 80] for equation 8, and [0, 20] for equations 9 and 10.

We further evaluate our approach on the 16 equations involving up to two variables 
from the Feynman benchmark (Udrescu & Tegmark, 2020). The right-hand sides of these 
equations are shown on in the last column of Table 3. Because equations in the Feynman 
benchmark represent real-world equations, each of the equations FM-3, FM-4, FM-5, 
and FM-7 contains two entries. Each entry comes with its own variables and data sets of 
measurements.

Evaluation process We compare the performance of EDHiE on the Nguyen benchmark 
equations to the performance of three other symbolic regression systems. ProGED (Brence 
et  al., 2021) uses probabilistic grammars as generators of mathematical expressions. 

Table 2  Examples of linear interpolation between two expressions in the latent spaces of the three 
VAEs. Expressions that are colored red are syntactically incorrect. Here, we set n = 4 and � = i∕4, 0 ≤ i ≤ 4
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DSO (Petersen et al., 2021) combines deep neural networks with evolutionary algorithms. 
PySR (Cranmer, 2023) employs evolutionary optimization with operators directly applied 
to the expression trees. We run each system ten times on each equation and evaluate at 
most 100,000 sampled expressions. All approaches use the same library of tokens and/
or grammars, further described in Appendix 1. When running PySR, we allow fitting the 
values of the constant parameters since it can not be turned off in the implementation. The 
dimensionality of the latent space of HVAE is set to 32; the ADAM optimizer uses the 
default learning rate. We elaborate on the setting of the dimensionality of the latent space 
in the next section. Appendix  3 gives the complete report on the experiments in latent 
spaces with varying dimensions.

Estimating the performance We use three metrics: the number of successful 
reconstructions, i.e., runs leading to an equation equivalent to the original one; the mean R2 
of the best equation; and the number of expressions sampled to achieve reconstruction. We 
consider a run successful if we find an expression where the RMSE between the target and 
predicted values is lower than 10−10 . To guarantee accurate reporting, we manually check if 
the original and expression with the lowest RMSE are equivalent. In each run, we use the 
expression with the lowest RMSE to calculate the bounded R2 metric on the test set using 
the formula

where ŷi denotes the predicted value of the target variable (calculated by using the 
equation), yi is the measured value of the target variable, and y is the mean value of y in 
the training data set. Lastly, we show the average number (across the ten runs) of unique 
expressions considered before reconstructing the original equation. To this end, we count 
the unique expressions that the symbolic regression system has considered before the 
reconstructed equation is encountered in the generation process for all the methods that 
report this.

(12)R2(ŷ, y) = max

�
0, 1 −

∑
i(yi − ŷi)

2

∑
i(yi − y)2

�
,

Table 3  Expressions from the Nguyen (first two columns on the left-hand side) and Feynman (last three 
columns on the right-hand side) benchmarks

ID Expression ID ID-Feynman Expression

NG-1 x
3 + x

2 + x FM-1 I.6.2a
(2�)−0.5e−

x
2

2

NG-2 x
4 + x

3 + x
2 + x FM-2 I.6.2

(
√
2� ⋅ y)−1e−

(x∕y)2

2

NG-3 x
5 + x

4 + x
3 + x

2 + x FM-3 I.12.1, I.12.5 xy
NG-4 x

6 + x
5 + x

4 + x
3 + x

2 + x FM-4 I.14.4, II.8.31 0.5 xy
2

NG-5 sin x
2
⋅ cos x − 1 FM-5 I.25.13, I.29.4 x/y

NG-6 sin x + sin(x + x
2) FM-6 I.26.2 arcsin(x sin y)

NG-7 ln(x + 1) + ln(x2 + 1) FM-7 I.34.27, III.12.43 (2�)−1xy

NG-8
√
x FM-8 I.39.1 1.5 xy

NG-9 sin x + sin y
2 FM-9 II.3.24 x

4�y2

NG-10 2 sin x ⋅ cos y FM-10 II.11.28 1+xy

1−(0.3 xy)

FM-11 II.27.18 xy
2

FM-12 II.38.14 x

2⋅(1+y)



4579Machine Learning (2023) 112:4563–4596 

1 3

4.2.2  The impact of the dimensionality of the latent space

Let us start with a series of computational experiments exploring the latent space for 
encoding mathematical expressions with random sampling. Here, we perform symbolic 
regression by taking randomly sampled points in the latent space and decoding them into 
expressions that are then evaluated on the measurements/data. The expression that fits the 
data best is selected as the candidate for the discovered equation.

Table 4 shows the number of successful runs of the random sampling approaches based 
on the three VAEs, CVAE, GVAE, and HVAE. In the further discussion of results, we use 
the name HVAR for HVAE with random sampling. We can see here a typical example 
of the curse of dimensionality at work. When the symbolic regression algorithm explores 
high-dimensional latent spaces, it can easily slip into parts of those spaces that do not 
lead to optimal equations. This shows that the ability of HVAE to encode mathematical 
expressions in low-dimensional latent spaces is crucial for the performance of symbolic 
regression with HVAR.

Based on the results of the experiments in Table 4 and Appendix 3, in the remainder of 
this section, we use 32-dimensional latent space for EDHiE.

4.2.3  Comparison on the Nguyen equations

In the next series of experiments, we compare the performance of HVAR, the random 
sampling method using HVAE, to the one of ProGED—the latter samples mathematical 
expressions using manually crafted probabilistic grammar. Table 5 reports the results of the 
comparison. The results show that the generator used within HVAE is not worse than the 
probabilistic grammar. To our surprise, HVAR outperforms ProGED significantly. First, 
it successfully reconstructs five (of the ten) equations from the Nguyen benchmark in ten 
runs, one more than ProGED. Second, for the three equations of NG-2, NG-6, and NG-9, 
the reconstruction is achieved faster, i.e., by evaluating fewer candidate expressions.

Furthermore, we check the contribution of the evolutionary approach in EDHiE over 
the random sampling method HVAR. To this end, we compare the last three columns of 
Table 5 with the last three columns of Table 6. EDHiE successfully reconstructs all ten 

Table 4  The performance of 
symbolic regression (number 
of successful reconstructions) 
by randomly sampling with 
CVAE, GVAE, and HVAE on the 
Nguyen benchmark

Equation/approach CVAE GVAE HVAR

Latent space size 32 64 128 32 64 128 32 64 128

NG-1 4 2 2 10 9 10 10 10 10
NG-2 0 0 0 2 4 3 10 5 9
NG-3 0 0 0 0 0 0 0 0 1
NG-4 0 0 0 0 1 0 0 0 0
NG-5 0 0 0 0 0 0 0 0 0
NG-6 0 0 0 2 0 0 4 4 0
NG-7 0 0 0 0 0 0 0 0 0
NG-8 10 10 3 10 10 10 10 10 10
Total/Mean 14 12 5 24 24 23 34 29 30
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equations from the Nguyen benchmarks in at least one of the ten runs. In three cases, the 
equations are reconstructed in every run. Note also that the successful reconstructions 
with EDHiE require fewer evaluations of candidate equations than the random sampling 
approaches.

Table 6 compares EDHiE with PySR, which uses evolutionary operators on expression 
trees directly (i.e., without embedding them into a latent space), and DSO, that similarly 
to our approach, combines deep learning with evolutionary optimization. Overall, EDHiE 
performs better than the other two methods across all metrics1: it achieves the highest total 
number of successful reconstructions. EDHiE has more successful reconstructions for five 
equations than PySR and less for a single equation, NG-9. The superior performance of 
EDHiE relative to PySR indicates that evolutionary optimization is more efficient in the 
latent space than in the space of expression trees. For four equations, EDHiE achieves suc-
cessful reconstruction more often than DSO. In the two instances of reconstructing NG-3 
and NG-4, DSO achieves success twice as often as our method.

Finally, note that the experiments on the Nguyen benchmark were performed on noise-
free synthetic data. The results of the experiments on synthetic data with added noise, 
reported in Appendix 3, show that EDHiE is robust to noise: The increasing noise level has 
little effect on the reconstruction success rate while significantly increasing the rank of the 
successfully reconstructed equation in the list of evaluated equations, sorted with respect to 
increasing RMSE. Appendix 3 also includes additional results on the Nguyen benchmark 
by random sampling of CVAE, GVAE, and HVAE latent space with varying number of 
dimensions.

Table 5  Comparison of the performance of symbolic regression (number of successful reconstructions, 
R
2 , and number of evaluated equations) with random sampling on the Nguyen benchmark.  We compare 

sampling from a manually-crafted probabilistic grammar (ProGED) with sampling using a trained HVAE 
(HVAR)

Bold values indicate the best performing approaches (on a specific data set/expression)

ProGED (Brence et al., 2021) HVAR (Ours)

Name Successful Average R2 Evaluated Successful Average R2 Evaluated

NG-1 10 1.00 (± 0.00) 2374 (± 1451) 10 1.00 (± 0.00) 901 (± 1332)
NG-2 2 1.00 (± 0.01) 7680 (± 670) 10 1.00 (± 0.00) 9729 (± 5337)
NG-3 0 1.00 (± 0.01) NA 0 1.00 (± 0.01) NA
NG-4 0 1.00 (± 0.01) NA 0 1.00 (± 0.01) NA
NG-5 0 0.01 (± 0.01) NA 0 0.00 (± 0.00) NA
NG-6 0 0.60 (± 0.11) NA 4 0.81 (± 0.20) 37619 (± 2773)
NG-7 0 0.99 (± 0.01) NA 0 0.99 (± 0.01) NA
NG-8 10 1.00 (± 0.00) 319 (± 287) 10 1.00 (± 0.00) 392 (± 456)
NG-9 1 0.56 (± 0.14) 12602 (± 0) 5 0.83 (± 0.21) 23236 (± 11844)
NG-10 0 0.65 (± 0.11) NA 0 0.55 (± 0.08) NA
Total/mean 23 0.78 (± 0.31) 39 0.81 (± 0.31)

1 PySR does not report the number of evaluated equation. Hence, we could not include them in Table 6.
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4.2.4  Results on the Feynman equations

In this section, we evaluate the ability of EDHiE to reconstruct real equations from the 
domain of physics included in the Feynman database. Table  7 presents the results of 
symbolic regression on a subset of 16 equations from the database with up to two non-
target variables. EDHiE successfully reconstructs 13 equations in all the runs. Most of 
these equations are simple; thus, EDHiE explores small search spaces comprising less than 
two hundred evaluated expressions. A more complex equation FM-10 is reconstructed in 
five out of ten runs exploring more than 20 thousand expressions on average. The equation 
FM-6 could not be reconstructed in any of the runs since it includes the function arcsin 
that has not been included in our token library. Finally, EDHiE fails to reconstruct the most 
complex equation FM-2.

5  Discussion and conclusion

We introduce a novel variational autoencoder for hierarchies, HVAE, that can be efficiently 
trained to generate valid mathematical expressions represented as expression trees. 
Compared to generators based on variational autoencoders for sequences, HVAE has 
three significant advantages. First, it consistently generates valid expressions. Second, its 
performance is robust even for small training sets: HVAE trained from only two thousand 
expressions achieves much lower reconstruction error than sequential VAEs trained from 
12 thousand examples. Third, the HVAE operating in 32-dimensional latent space has a 
lower reconstruction error than sequential VAEs with comparable latent spaces.

Table 7  Results of EDHiE on the 
16 equations from the Feynman 
database that include at most two 
non-target variables

Name Successful Mean R2 Evaluated

FM-1 10 1.00 (± 0.00) 4311 (± 1914)
FM-2 0 0.98 (± 0.01) NA
FM-3.1 10 1.00 (± 0.00) 38 (± 37)
FM-3.2 10 1.00 (± 0.00) 53 (± 28)
FM-4.1 10 1.00 (± 0.00) 184 (± 123)
FM-4.2 10 1.00 (± 0.00) 188 (± 204)
FM-5.1 10 1.00 (± 0.00) 63 (± 44)
FM-5.2 10 1.00 (± 0.00) 101 (± 109)
FM-6 0 0.99 (± 0.01) NA
FM-7.1 10 1.00 (± 0.00) 43 (± 36)
FM-7.2 10 1.00 (± 0.00) 39 (± 39)
FM-8 10 1.00 (± 0.00) 62 (± 45)
FM-9 10 1.00 (± 0.00) 950 (± 72)
FM-10 5 0.99 (± 0.01) 22668 (± 21676)
FM-11 10 1.00 (± 0.00) 62 (± 42)
FM-12 10 1.00 (± 0.00) 924 (± 795)
Total/mean 135 1.00 (± 0.01)
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The ability of HVAE to encode mathematical expressions in a low-dimensional 
latent space makes it an excellent proxy for exploring the search space of candidate 
expressions in symbolic regression. Indeed, when performing a random search through 
the latent space, we achieve comparable performance with a random search through the 
space of candidate expressions defined by a manually crafted probabilistic grammar. 
EDHiE, a symbolic regression system that performs evolutionary optimization in the 
latent space of the HVAE, significantly outperforms methods based on random search 
and achieves performance comparable to the state-of-the-art symbolic regression system 
DSO based on a similar combination of evolutionary algorithms and deep learning. 
The comparison of EDHiE with PySR, a genetic programming approach operating on 
expression trees directly, shows the benefit of performing evolutionary optimization in 
the latent space.

HVAE has been used here for symbolic regression, but its potential to efficiently 
generate and encode hierarchies makes it useful in many different contexts, e.g., generating 
molecular structures or more general symbolic expressions. Analysis of its performance 
in these application domains is a promising direction for further research. Moreover, 
the ability of HVAE to learn from small corpora of expressions might prove helpful in 
retraining the generator after each generation of the evolutionary search, much like the 
iterative learning in DSO. This will narrow its focus to generating better expressions, 
leading to more accurate equations. In general, training the generator on expressions 
involved in mathematical models that have proved useful in a domain of interest will 
enable seamless integration and transfer of background knowledge in symbolic regression.

Appendix 1: Grammars and token libraries

In the empirical evaluation of the hierarchical autoencoder, we use several context-free 
grammars and different token libraries. Grammars used to generate synthetic data sets 
are probabilistic. Mathematical expressions in the data sets with a name prefix of AE 
include the five common binary arithmetic operators and are generated using the following 
grammar:

Data sets with a name prefix Trig include, in addition, the trigonometric functions of sine 
and cosine and are generated using the same grammar as the one above, with different 
productions for the non-terminal (syntactic category) T and a new non-terminal L:

While we do not explicitly have the power operator in the grammars to be used during the 
generation of the data sets, exponentiation (and thus the power operator) can occur during 

S → SAF [0.4] | F [0.6]

A → + [0.5] | − [0.5]

F → FBT [0.4] | T [0.6]

B → ⋅ [0.5] | ∕ [0.5]
T → (S) [0.25] | c [0.375] | x [0.375]

T → (S) [0.15] | cos(S) [0.05] | sin(S) [0.05] | L [0.75]
L → c [0.5] | x [0.5].
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the simplification of the generated expressions. Because of this, expressions in the data sets 
also contain the power operator.

In addition, GVAE also needs grammars for generating valid expressions. When applied 
to the data sets with a name prefix of AE, GVAE uses the following grammar:

For the data sets with the name prefix of Trig, GVAE uses the same grammar as above with 
different productions for the non-terminal symbol T:

CVAE uses the token library {+,−, ⋅, ∕, ̂, x, c, (, ), ”} for data sets with the name prefix AE, 
and {+,−, ⋅, ∕, ̂, sin, cos, x, c, (, ), ”} for data sets with the name prefix Trig.

For experiments on the Nguyen benchmark, we use the grammar:

for ProGED, GVAE, and to generate training examples for HVAE. HVAE and DSO use 
the token library {x,+,−, ⋅, ∕, ̂2, ̂3, ̂4, ̂5, sin, cos, exp, log, sqrt} , while CVAE uses token 
{(, ), ”} in addition to the tokens used by HVAE and DSO. For expressions with two non-
target variables, we add token y and change the non-terminal symbol V to:

For experiments on the Feynman benchmark, we use the grammar:

to generate training examples for HVAE and tokens {x, c,+,−, ⋅, ∕, ̂2, ̂3, sin, cos, exp, sqrt} . 
For expressions with two non-target variables, we add token y and change the non-terminal 
symbol V to:

S → S + T | S − T | S ⋅ T | S
T
| ST |T

T → (S) | x | c

T → (S) | sin(S) | cos(S) | x | c.

E → E + F [0.2] | E − F [0.2] | F [0.6]

F → E ⋅ T [0.2] | E∕T [0.2] | T [0.6]

T → V [0.4] | (E)P [0.2] | (E) [0.2] | R(E) [0.2]
V → x [1.0]

P → ̂
2 [0.39] | ̂3 [0.26] | ̂4 [0.19] | ̂5 [0.16]

R → sin [0.2] | cos [0.2] | ê [0.2] | log [0.2] | sqrt [0.2]

V → x [0.5] | y [0.5].

E → E + F [0.2] | E − F [0.2] | F [0.6]

F → E ⋅ T [0.2] | E∕T [0.2] | T [0.6]

T → V [0.4] | c [0.3] | A [0.3]

A → (E)P [0.1] | (E) [0.55] | R(E) [0.35]
V → x [1.0]

P → ̂
2 [0.8] | ̂3 [0.2]

R → sin [0.25] | cos [0.25] | ê [0.25] | sqrt [0.25]

V → x [0.5] | y [0.5].
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Appendix 2: Additional latent space smoothness results

Additional examples of linear interpolation with HVAE are shown in Table 8. We can see 
that the space is continuous, as the expressions smoothly transition from Expression 1 to 
Expression 2. This is best seen in example 1 from the Trig5-15k data set, where in each 
step, only a few (relevant) symbols change. In the first step, sin c and x change to c. Then in 
the next step, c + c and sin x change to x. In the next step x

c
 changes to c and x/c changes to 

x ⋅ sin c . In the last step x + c changes to xc.
While most of the time, expressions change gradually, this is not always the case. This 

can be best seen in the examples from the AE4-2k data set, where only the expressions at 
� = 0.5 differ from the starting ones.

Since we write expressions as a sequence, it is not always obvious how the underlying 
expression tree changes during interpolation. Visualization of the gradual change for two 
pairs of expressions is shown in Fig. 6.

Trees are being transformed by changing their structure and the symbols inside 
nodes. These transformations are interrelated as changing a constant or a variable into 
an operator also transforms the structure. This is best seen in the transition between 
� = 0 and � = 0.25 for the expression trees at the bottom of Fig.  6. However, the 

Table 8  Linear interpolation of 
examples in the HVAE latent 
space. The first row shows 
examples from the AE4-2k data 
set, the second examples from 
the AE7-20k data set, and the 
third from the Trig5-15k data set. 
Here n = 4 and � =

i

4
, 0 ≤ i ≤ 4

Dataset � Example 1 Example 2

Expression A c ⋅ (x + c) +
x
c

c

c − x ⋅ c + x

� = 0 c ⋅ (x + c) +
x
c

c

c − x ⋅ c + x

� = 0.25 c ⋅ (x + c) +
x
c

c

c − x ⋅ c + x

AE4-2k � = 0.5 c ⋅ x +
x+c

c

c − c ⋅ x + x

� = 0.75 c − x +
x+c

c

c+c⋅x

c

� = 1 c − x +
x+c

c

c+c⋅x

c

Expression B c − x +
x+c

c

c+c⋅x

c

Expression A c⋅x
c+xc

c

+ c

c⋅x

c−x
+ c − x + c

� = 0 c⋅x
c+xc

c

+ c

c⋅x

c−x
+ c − x + c

� = 0.25 c+xc

c

+ c c ⋅ (c − x) + c − x + c

AE7-20k � = 0.5 c⋅x
c

c

+
x

c

c ⋅ x ⋅ c − x + c

� = 0.75 c −
x
c

c

c⋅x
c

c+x
+ x

� = 1 c −
x
c

c

c⋅x
c

c+x
+ x

Expression B c −
x
c

c

c⋅x
c

c+x
+ x

Expression A c + sin c +
sin x

x

−
x

c

x
c
⋅ cos c + x

� = 0 c + sin c +
sin x

x

−
x

c

x
c
⋅ cos c + x

� = 0.25 c + c +
sin x

c

−
x

c

x ⋅ cos c + x

Trig5-15k � = 0.5 x +
x

c

−
x

c

c ⋅ cos c + cos x
c

� = 0.75 x + c − x ⋅ sin c c + cos
x
c

c

� = 1 x
c − x ⋅ sin c c + cos

x
c

c

Expression B x
c − x ⋅ sin c c + cos

x
c

c
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structure of the expression tree does not always change. This is most noticeable for tran-
sitions between � = 0 and � = 0.5 for expression trees at the top of Fig. 6. Here only an 
operator changes at each step.

Appendix 3: Additional results on the Nguyen benchmark

In this appendix, we show additional results of the empirical evaluation. First, we show 
the performance of HVAR on the first eight equations from the Nguyen benchmark with 
random sampling (By sampling points from the standardized Gaussian distribution) 
and different dimensions of the latent space in Sect.  1. Next, we show the learning 
curves of approaches HVAR, ProGED, and EDHiE in Sect. 2. After this, we show the 
performance of EDHiE on noisy data in Sect. 3. Finally, we conclude this section in 4 
by showing the performance of CVAE with random sampling and GVAE with both 
random sampling and an evolutionary algorithm.

A3.1 Dimensions

Table 9 shows the results of evaluation using HVAE with different dimensions of the 
latent vector space. Here new expressions are generated by randomly sampling points 
from the standardized Gaussian distribution and decoding them. We can see overall, 
models, where the dimension of the latent vector space is either 16 or 32, perform the 
best. HVAE 32 produces expressions that usually have a slightly higher mean R2 , while 
HVAE 16 usually needs to evaluate less unique expressions to generate the desired one. 
Because we prefer the number of successful runs and the mean R2 metrics, we select 
the model with the latent vector space dimension 32 for experiments where the HVAE 
model is coupled together with evolutionary algorithms.

Fig. 6  Examples of linearly interpolated mathematical expressions visualized as expression trees
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A3.2 Learning curves

Optimization algorithms continually enhance solutions over time by iteratively 
exploring the input space to minimize an objective function or maximize performance. 
The learning curve serves as a valuable measure for evaluating algorithmic performance, 

Fig. 7  Learning curves for HVAR, ProGED, and EDHiE on the selected equations from the Nguyen bench-
mark. Curves for the equations NG-2, NG-3, NG-4, and NG-7 are omitted since they resemble the curve for 
the NG-1 equation
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illustrating how the chosen metric evolves as optimization progresses. Steep 
improvements in the learning curve indicate rapid convergence towards better solutions, 
while plateaus or slow convergence suggest challenges in finding superior solutions. 
By analyzing the learning curve, we can be gain an insight into the algorithm’s 
effectiveness, convergence, stability, and potential for further improvement.

Figure 7 shows the learning curves of HVAR, ProGED, and EDHiE on six equations 
from the Nguyen benchmark. We can see that overall EDHiE performs the best as it 
achieves the highest R2 score and needs to test the least expression to do so. This is not 
true on equation NG-8, where the other two approaches find the desired expressions 
quicker. This happens because all approaches find the desired expression quickly and 
the evolution part of EDHiE does not yet come into effect.

A3.3 Robustness to noise

In practical scenarios, working with noisy data is common, making it crucial for 
symbolic regression approaches to perform well in the presence of noise. The 
performance of EDHiE on noisy data is demonstrated in Table 10. To generate noisy 
data sets, we sample values � from a Gaussian distribution N(0, I) and add them to the 
target values y using the formula ỹ = y ⋅ (1 + 𝜂𝜖) , where � represents the noise level.

To evaluate our approach on noisy data, we employ two metrics: the number of 
successful runs and the mean rank. We execute our approach on noisy data, rank all 
the generated expressions based on their RMSE, and evaluate these expressions using 
noiseless data. A run is considered successful if we find an expression that achieves an 
RMSE below 10−10 on noiseless data. In the case of a successful run, we record the rank 
of the first expression with an RMSE below 10−10 and use it to calculate the mean rank.

The results demonstrate that the number of successful runs remains relatively 
consistent across different noise levelsm indicating the robustness of our approach. 
Additionally, we can see that the mean rank increases as the amount of noise rises. This 
outcome is expected, as higher noise levels allow more expressions to overfit the noisy 
data. In practical applications, expressions that overfit can be eliminated by assigning 
complexity scores to each expression and selecting less complex expressions from the 
Pareto front.

A3.4 Performance of CVAE and GVAE on symbolic regression

Table 11 shows the results of the CVAE baseline. Models presented in the table use the 
same parameters as they do in Sect.  4.1.1 apart from the dimension of the latent vector 
space. We can see that this baseline performs very poorly, as it finds only the two simplest 
equations. The main reason for this is the high number of invalid expressions (more than 
96.8% ) the baseline produces.

Lastly, Table  12 shows the results of the GVAE baseline. We can see that GVAE 
performs better than CVAE but worse than HVAE. For the GVAE Evo approach we use the 
GVAE baseline with the latent space dimension 64 together with the evolutionary operators 
presented in Sect. 3.3.2. Here, different models find different equations: GVAE 32 finds the 
equation NG-6, while GVAE 64 finds NG-4, and GVAE Evo NG-3. Overall GVAE Evo 
performs the best as it successfully finishes 4 runs more than other models.
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Appendix 4: Implementation details

This section provides implementation details that are not part of the methodology but 
are crucial for the reproducibility of our approach and its implementation. These details 
include batching, encoding/decoding, and training.

A4.1 Batching

Since our approach works on expression trees with varying structures, we cannot employ 
standard batching methods. Instead, we represent a batch of expression trees with a Python 
object we refer to as a “batched node”. A batched node contains a list of symbols, a left 
(batched) child node, and a right (batched) child node.

Since an expression tree may not contain all the nodes in the batched tree, the list 
of symbols within a batched node might include an empty string as a placeholder for 
the missing symbol. During training, each batched node also contains a target matrix, 
a prediction matrix, and a mask vector. The target matrix comprises one-hot symbol 
encodings, with empty strings represented by zero values. The decoding cell generates the 
prediction matrix, which, in turn, predicts the target matrix. Finally, the mask vector is a 
binary vector where the value at index i equals one if the node appears in the expression 
tree i and equals zero otherwise.

A4.2 Encoding/decoding

The encoding process involves traversing the batched node using a post-order traversal. We 
first visit and encode the left (batched) child, followed by the right (batched) child. Finally, 
we generate the code for the batched node using codes obtained from the child nodes.

Decoding is performed in reverse. We start by decoding the (batched) root code, which 
yields a list of symbols, the codes for the left and right (batched) child nodes, and the 
masks for the left and right child nodes. The masks for the left and right child nodes are 
calculated using symbols produced by the decoding cell and the mask of the current node. 
Specifically, if the value of the current mask at a given position is 0, the corresponding 
values in the mask for the left and right child nodes remain 0. Otherwise, the masks are 
assigned values appropriate to the symbol type: both 1 for an operator, 1, and right 0 for 
a function, and both 0 for a variable or constant. When all values in a mask become 0, the 
decoding process for this branch terminates.

A4.3 Training

Expression trees have two components: the binary tree structure and the symbols within the 
nodes. However, the structure of the binary tree can be inferred from the symbols present 
in the nodes. Therefore, it is sufficient for our approach to learn to reconstruct the symbols 
occurring in the nodes.

When training the model, we restrict the output tree’s structure to match the input 
structure. Specifically, we utilize the input batched node and incorporate a prediction 
matrix into each node. We then calculate the reconstruction error using the target and 
prediction sequences obtained through an in-order traversal of the batched node. While 
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computing the cross-entropy loss, we apply a masking technique to exclude nodes that do 
not occur in an expression tree from the loss calculation, effectively removing them from 
the training process.
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