
Vol.:(0123456789)

Machine Learning (2023) 112:4563–4596
https://doi.org/10.1007/s10994-023-06400-2

1 3

Efficient generator of mathematical expressions for symbolic
regression

Sebastian Mežnar1,2 · Sašo Džeroski1 · Ljupčo Todorovski1,3

Received: 14 February 2023 / Revised: 20 June 2023 / Accepted: 16 August 2023 /
Published online: 6 September 2023
© The Author(s) 2023, corrected publication 2023

Abstract
We propose an approach to symbolic regression based on a novel variational autoencoder
for generating hierarchical structures, HVAE. It combines simple atomic units with
shared weights to recursively encode and decode the individual nodes in the hierarchy.
Encoding is performed bottom-up and decoding top-down. We empirically show that
HVAE can be trained efficiently with small corpora of mathematical expressions and can
accurately encode expressions into a smooth low-dimensional latent space. The latter can
be efficiently explored with various optimization methods to address the task of symbolic
regression. Indeed, random search through the latent space of HVAE performs better than
random search through expressions generated by manually crafted probabilistic grammars
for mathematical expressions. Finally, EDHiE system for symbolic regression, which
applies an evolutionary algorithm to the latent space of HVAE, reconstructs equations from
a standard symbolic regression benchmark better than a state-of-the-art system based on a
similar combination of deep learning and evolutionary algorithms.

Keywords Symbolic regression · Equation discovery · Generative models · Variational
autoencoders · Evolutionary algorithms

Editors: Fabio Vitale, Tania Cerquitelli, Marcello Restelli, Charalampos Tsourakakis.

 * Sebastian Mežnar
 sebastian.meznar@ijs.si

 Sašo Džeroski
 saso.dzeroski@ijs.si

 Ljupčo Todorovski
 ljupco.todorovski@fmf.uni-lj.si

1 Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana,
Slovenia

2 Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, 1000 Ljubljana,

Slovenia

http://orcid.org/0000-0002-0469-6696
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06400-2&domain=pdf

4564 Machine Learning (2023) 112:4563–4596

1 3

1 Introduction

Symbolic regression (also known as equation discovery) aims at discovering closed-form
equations in collections of measured data (Schmidt & Lipson, 2009; Todorovski, 2017).
Methods for symbolic regression explore the vast space of candidate equations to find those
that fit the given data well. They often employ modeling knowledge from the domain of use
to constrain the search space of candidate equations. The knowledge is usually formalized
into grammars (Brence et al., 2021) or libraries of model components, such as entities and
processes (Bridewell et al., 2008). Knowledge-based equation discovery methods have
successfully solved practical modeling problems in various domains (Radinja et al., 2021;
Simidjievski et al., 2020).

Grammars and libraries of model components are used to generate candidate expressions
that might appear in the discovered equations. However, they must be manually crafted,
which is a severe obstacle to their broader use. The central aim of this article is to develop a
novel generative model of mathematical expressions that can be used for efficient symbolic
regression. The model can be trained from a corpus of mathematical expressions from the
domain of interest, thus automatically tailoring the space of candidate equations to the
application at hand. The developed generative model must have two essential properties
to be applicable in such a scenario. First, it should be trainable from a small number of
mathematical expressions, e.g., collected from a textbook or from scientific literature in the
application domain. Second, the model should encode the expressions in a low-dimensional
latent space. The latter space can then be efficiently explored by optimization methods to
solve the task of symbolic regression. Lowering the dimensionality of the latent space will
significantly increase the efficiency of symbolic regression.

Recently, several variational autoencoders (VAEs) have been shown to be efficient
generative models. CVAE (Gómez-Bombarelli et al., 2018) employs a VAE based on
recurrent neural networks to encode discrete expressions into a continuous latent space
and then decode points from the latent space back into discrete mathematical expressions.
This decoder can be used to generate expressions. However, CVAE still generates invalid
sequences and requires extensive training data to reduce the likelihood of generating invalid
expressions (Kusner & Hernández-Lobato, 2016). The grammar variational autoencoder,
GVAE (Kusner et al., 2017), and its successor, SD-VAE (Dai et al., 2018), employ a
context-free grammar to ensure the syntactic validity of the generated expressions. Instead
of directly training models on sequences, they model the distribution of parse trees that
are produced by the grammar while deriving syntactically (and, in the case of SD-VAE,
semantically) valid expressions.

We claim that grammars are an unnecessarily powerful and too general formalism for
generating mathematical expressions. Grammars add syntactic categories to the expression
symbols rendering the parse trees, i.e., the structures modeled with the autoencoder, more
complex than the original sequences. This overhead on training expressions inevitably
translates to a requirement for more extensive training data and a latent space with larger
dimensionality, reducing the efficiency of optimization methods for symbolic regression
operating in that latent space.

We propose a novel variational autoencoder for hierarchical data objects, HVAE, to
address these issues. It builds upon the ideas of variational autoencoders for hierarchical
data (Jin et al., 2021) and gated recursive convolutional neural networks (Cho et al.,
2014a). HVAE combines simple atomic units with shared weights to encode and decode
the individual nodes in the hierarchy. The atomic units are extensions of the standard

4565Machine Learning (2023) 112:4563–4596

1 3

gated recurrent unit (GRU) cells. The encoding units are stacked into a tree that follows
the hierarchy of the training object, and they encode the hierarchy bottom-up, compiling
the codes of the descendants to encode the ancestor nodes. The decoding units proceed
top-down and use the decoded symbols of the ancestor nodes to decide upon the need
to extend the hierarchy with descendant nodes. We claim that HVAE can be efficiently
trained to generate valid mathematical expressions from a training set of modest size,
while using a low-dimensional latent space.

We exploit these expected properties of our HVAE to implement a novel approach
for symbolic regression, EDHiE. It performs an evolutionary search through the latent
space of a HVAE trained on mathematical expression trees as shown in Fig. 1. The
genetic operations utilize the HVAE encoder to obtain the expressions’ latent codes,
generate new individuals with crossover and mutation in the latent space, and decode
the latter back to mathematical expressions. EDHiE can then evaluate the fit of the
obtained expressions against the measurements. We conjecture that the performance of
EDHiE on standard benchmarks (Udrescu & Tegmark, 2020; Uy et al., 2011) would
compare favorably to that of a state-of-the-art symbolic regression methods (Mund-
henk et al., 2021). The results of our empirical evaluation of HVAE and EDHiE con-
firm our conjectures. HVAE can achieve better reconstruction of the training expres-
sions with order-of-magnitude fewer training examples while using latent spaces with

Fig. 1 A schematic representation of the EDHiE approach. In the first step, we train a HVAE model. In the
second step, we explore the latent space of the HVAE model with an evolutionary algorithm. The red dot
represents the best expression in a given iteration (Color figure online)

4566 Machine Learning (2023) 112:4563–4596

1 3

fewer dimensions. EDHiE outperforms alternative methods for symbolic regression on
the task of reconstructing the ten equations in the Ngyuen benchmark.

We can summarize the contributions of this work as follows:

• We propose HVAE, a variational autoencoder for hierarchical data, that can be
efficiently trained to generate mathematical expressions from modest amounts of data,
while using a low-dimensional latent space.

• We introduce EDHiE, a symbolic regression approach that exploits HVAE to efficiently
search through the space of candidate equations.

The remainder of the paper is organized as follows. Section 2 reviews related work on
generative models and symbolic regression. We introduce the hierarchical variational
autoencoder HVAE and the symbolic regression approach EDHiE in Sect 3. Section 4
presents the results of the empirical evaluation of HVAE and EDHiE. Finally, Section 5
summarizes and discusses the contributions of the presented work and outlines directions
for further research.

2 Related work

Most of the early successful applications of generative models have been in the domains of
text, speech, images, and video, i.e., they have been mainly used for generating unstructured
data objects composed of continuous data elements. The discrete data structures that
generative models have most often tackled are strings or sequences of characters, where
the data elements are discrete symbols. The models that use strings as input (and output)
usually do so by training a recurrent neural network (Sherstinsky, 2020), most commonly
using seq2seq autoencoders (Sutskever et al., 2014).

A major problem of sequence-to-sequence autoencoders is that they do not guarantee
the syntactic correctness of the generated expressions. One way to solve this problem
is to learn an additional validation model for checking the correctness of the generated
sequence (Janz et al., 2017). Grammar variational autoencoders (GVAE) (Kusner et al.,
2017) use context-free grammars for specifying the space of valid structured data objects.
Each data object can be then represented as a sequence of grammar productions (rewrite
rules) that derives it. In turn, GVAE encode sequences of rewrite rules that derive objects
instead of the objects themselves. The structure of the decoder is constrained to generate
valid sequences of rewrite rules that are then used together with the grammar to generate
valid expressions.

Dai et al. (2018) propose the use of attribute grammars, i.e., context-free grammars
that attach attributes to the grammar’s syntactic categories. By prescribing properties and
relationships between the attributes, such grammars can also encode semantic constraints
on the derived data objects. The attribute grammars, together with SD-VAE, i.e., syntax-
directed VAE, can generate expressions that are consistent with a set of both syntactic
and semantic constraints. Alternative generalizations of grammars have been used for
generative modeling of program source code in high-level languages (Bielik et al., 2016).

Most of the above approaches can also generate mathematical expressions. However,
they need the complex formalism of grammars to generate more complex data structures,
most often molecular structures (Dai et al., 2018; Gómez-Bombarelli et al., 2018). Since

4567Machine Learning (2023) 112:4563–4596

1 3

mathematical expressions can be represented as simpler structures, i.e., binary trees, our
work concerns generative models for hierarchical (tree-structured) data.

Hierarchical data have been tackled by generative models in several ways. By making
a node depend on its parent and previous sibling, DRNN (Alvarez-Melis & Jaakkola,
2017) combines representations obtained from the depth-wise and width-wise recurrent
cells to generate new nodes, which proves useful for recovering the structure of a tree.
On the other hand, Tree-LSTM (Tai et al., 2015) and JT-VAE (Jin et al., 2021) focus
on adapting equations for recurrent cells to encode (and decode) hierarchical structures
more efficiently. Tree-LSTM proposes a generalization of the LSTM cell for encoding
trees into a representation that proves effective for classification tasks and semantic
relatedness of sentence pairs. JT-VAE adapts recurrent cells for tree message passing.
Trees are used as scaffolding for the graph that represents molecules. Encoding and
decoding are thus split into four parts: encoding of the graph, encoding of the tree,
decoding of the tree, and decoding of the graph. While these adaptations are similar to
the ones presented in our work, their focus is on encoding more general structures that
are unrelated to mathematical expressions.

Note that our model falls into the general framework of gated recursive convolutional
neural networks (Cho et al., 2014a) that combine atomic units with shared parameters
in a hierarchy. The output of the root node produces a fixed-length encoding of a
data object with an arbitrarily complex structure. Another model, marginally related
to ours, is the one of equivalence neural networks (Allamanis et al., 2017). The
encoding produced by these networks follows the expressions’ semantic similarity and
equivalence, in contrast to their syntactic similarity, which is followed by all the other
approaches, including ours.

Finally, our work is also related to algorithms for equation discovery and symbolic
regression. Most of them generate candidate expressions for equations first and then
estimate the values of their constant parameters by matching the equations against
data in the second phase. Classical symbolic regression approaches (Cranmer, 2023;
Guimerà et al., 2020; Schmidt & Lipson, 2009), based on evolutionary algorithms,
use stochastic generators of expression trees: At the beginning, the expression trees
are randomly sampled, and later on, they are transformed using the evolutionary
stochastic operations of mutation and cross-over. In contrast, process-based modeling
approaches (Bridewell et al., 2008) generate equations by following domain-specific
knowledge (provided by the user) that specifies a set of entities (variables) and processes
(interactions among entities). Grammar-based approaches to equation discovery employ
user-specified context-free grammars (which can also be based on domain knowledge),
deterministic (Todorovski & Dzeroski, 1997) or probabilistic (Brence et al., 2021), as
efficient generators of expressions.

Recently, many symbolic regression approaches based on neural networks have been
proposed (Biggio et al., 2021; d’Ascoli et al., 2022; Kamienny et al., 2022; Martius
& Lampert, 2016; Petersen et al., 2021; Udrescu & Tegmark, 2020). In particular,
Deep Symbolic Optimization, DSO approaches symbolic regression [among other
optimization tasks (Mundhenk et al., 2021)] by combining neural networks and
reinforcement learning with evolutionary algorithms. The neural networks are used
to sample the individuals in the initial population of the evolutionary algorithm and
are retrained at each iteration to focus on expressions leading to better fit. It is closely
related to our work, since it combines similar methods. Yet our focus here is on efficient
neural networks for generating mathematical expressions that are trained before the
beginning of the evolutionary process.

4568 Machine Learning (2023) 112:4563–4596

1 3

3 Methodology

We start this section by briefly introducing the task of symbolic regression and the search
space of mathematical expressions (Sect. 3.1). After this, we introduce variational autoen-
coders and the structure of the hierarchical variational autoencoder, HVAE (Sect. 3.2). We
finish the section by explaining how to use HVAE for generating mathematical expressions
and how to combine it with an evolutionary algorithm for symbolic regression (Sect. 3.3).

3.1 Symbolic regression and expression trees

Symbolic regression (SR) is the machine learning task of discovering equations in
collections of measured data. Symbolic regression methods take a data set S consisting of
multiple measurements of a set of real-valued variables V = {x1, x2,… , xp, y} , where y is a
designated target variable. The output of SR is an equation of the form y = f (x1, x2,… , xp) ,
where the right-hand side of the equation is a closed-form mathematical expression. The
equation should provide an optimal fit against the measurements from S, i.e., minimize the
discrepancy between the observed values of the target variable y and values calculated by
using the equation. Symbolic regression methods usually follow the parsimony principle,
preferring simpler expressions over more complex ones.

Symbolic regression methods search through the space of candidate mathematical
expressions for the right-hand side of the equation to find the one that optimally fits the
measurements. Mathematical expressions can be represented in different ways. We
commonly use the infix notation, where operators are placed between two sub-expressions
they operate on, e.g., A + B , where A and B are sub-expressions. Infix notation uses
parentheses to indicate the order in which the operations need to be performed. Prefix
(Polish) or postfix (reverse Polish) notations do not need parentheses since the operators
are written before or after the two sub-expressions, e.g., +AB or AB+ . The three notations
correspond to different traversals of the nodes in an expression tree. The latter is a
hierarchical data structure, where the inner nodes correspond to mathematical operators
and functions, while the leaf nodes correspond to variables and constants.

In symbolic regression, the constants’ values are fitted against the measured data from
S, while variables include elements from V without the target variable. We assume binary
expression trees since standard arithmetic operators are binary. We take that the second
descendant node is null in the inner nodes corresponding to single-argument functions. We
define the height of an expression tree as the number of nodes on the longest path from the
root node to one of the leaves. Figure 2 depicts an example expression tree with a height of
four, along with the corresponding mathematical expression in different notations.

Our model generates expression trees, as they have several advantages over sequences
(strings). Firstly, it is easy to achieve syntactic correctness, since operators and functions

Fig. 2 An expression tree
with a height of four and three
sequence-based representations
of the corresponding mathemati-
cal expression

4569Machine Learning (2023) 112:4563–4596

1 3

are in the inner nodes, while variables and constants are in the leafs. Secondly, information
needs to travel at most log n steps up the tree (up to the tree’s height) instead of n steps
along the sequence (up to the length of the sequence). Lastly, sub-expressions can be
encoded independently of each other during the encoding process.

3.2 Hierarchical variational autoencoder

In recent years, variational autoencoders (Kingma & Welling, 2014) have emerged as one
of the most popular generative models. The reason for this is that, when trained correctly,
variational autoencoders map the observed data with an unknown distribution into a latent
representation with a known distribution. This results in a continuous latent space, from
which one can sample and synthesize new data. In contrast to a (deterministic) autoencoder,
where the encoder outputs a latent representation z that is directly fed into the decoder, the
encoder in the variational autoencoder outputs the parameters for an approximate posterior
distribution, e.g., � and � in the case of a latent space parameterized by a multivariate
Gaussian distribution.

Thus, a representation z that is fed into the decoder is sampled from the underlying
distribution with the learned parameters (� , �). The loss of the variational autoencoder is
the reconstruction error, i.e., the difference between the input to the encoder and the output
of the decoder. Additionally, variational autoencoders typically use Kullback–Leibler (KL)
divergence (Kullback & Leibler, 1951) as the regularization term for the loss. The loss can
thus be calculated as:

where Jrec(x) is the reconstruction loss of x and � ≥ 0 the regularization cost parameter. In
case the underlying distribution is Gaussian, KL divergence to an isotropic unit Gaussian
can be estimated as

We use cost annealing (Bahuleyan, 2018) to focus on the reconstruction error (i.e.,
use small values of �) at the beginning and then gradually shift the focus towards the
smoothness of the latent space by increasing the value of �.

3.2.1 Model overview

Our approach uses a variational autoencoder structure that consists of an encoder and
a decoder. The encoder takes tree-structured data as input and outputs a distribution in
the latent vector space, represented with the mean (�z) and the logarithm of the variance
(log �z) vectors. The decoder works in the opposite direction, sampling a point from the
latent vector space as input and transforming it into a binary expression tree. To make the
backward propagation possible, we sample points with the reparametrization trick.

Trees are encoded recursively, starting from leafs and ending at root nodes. To encode a
subtree with a root in n, we first encode its left and right subtrees. We then pass their codes,
along with the symbol in the node n, as inputs to the encoding cell (further described in
Sect. 3.2.2). This cell outputs the code of the subtree rooted in n. At the beginning of the
recursion, in each leaf node, the codes corresponding to the (missing) children are assumed to
be vectors of zeros. Once the root of the tree is encoded, its code is passed through two fully

(1)J(x,�z, �z) = Jrec(x) + � ⋅ KL(N(�z, �z) ‖N(0, I)),

(2)KL(N(�z, �z) ‖N(0, I)) =
1

2

�
1 + log �2

z
− �2

z
− �2

z

�
.

4570 Machine Learning (2023) 112:4563–4596

1 3

connected layers that give the mean and log-variance vectors that form the latent representation
of the tree. Figure 3a illustrates the recursive encoding process on the expression x + cos x.

The first layer of the decoder transforms the sampled point from the latent space into the
code of the hierarchy. After this, the tree is generated recursively by passing the code of
the current node (subtree) through the decoding cell (further described in Sect. 3.2.3). This
cell takes the code of the node (subtree) as input and generates a node symbol, along with
the codes of the two child nodes. There are three possible symbol types. If we encounter
an operator, both child nodes are generated recursively. On the other hand, if the symbol
represents a function, we only generate the left child. Lastly, if the symbol is either a
variable or a constant, no further child nodes are generated in this branch. This process is
shown in Fig. 3b, where the expression x + cos x is decoded.

During training, we follow the structure of the encoded tree and try to predict the
correct node symbols. In turn, we jointly learn to predict the structure of the expression
tree and the symbols inside the node, since the structure is determined by the symbols. We
calculate the loss using cross-entropy on a sequence of symbols obtained with the in-order
traversal of the expression tree. Some additional implementation details are explained in
Appendix 4.

3.2.2 Encoder

The encoding proceeds in two phases. The first follows the hierarchy of the input and
applies the encoding cell to each node of the hierarchy as described above. In the second
phase, the code of the root node is transformed into the mean and log-variance vectors of
the input’s latent representation.

Encoding comprises a GRU21 cell, which we have adapted from the GRU cell (Cho
et al., 2014b). The (output) code h in GRU21 is computed from the input vector x, and
codes hl of the left and hr of the right child with the following equations:

(3)r = �S(Wirx + bir +Whr(hl ∦ hr) + bhr)

(4)u = �S(Wiux + biu +Whu(hl ∦ hr) + bhu)

Fig. 3 The processes of a encoding and b decoding the expression tree of x + cos x . The acronyms EC and
DC stand for “encoding cell” (introduced in Sect. 3.2.2) and “decoding cell” (introduced in Sect. 3.2.3)

4571Machine Learning (2023) 112:4563–4596

1 3

where �S denotes the Sigmoid activation function. In these expressions, r, u, and n
represent the standard reset gate, update gate and candidate activation vectors from a
GRU cell. When compared to the original equations of the GRU cell, Eqs. (3), (4), (5)
exhibit two differences. First, instead of the code of the previous symbol in the sequence,
the concatenation of the codes hl and hr of the child nodes is used (denoted by (hl ∦ hr)).
Second, the dimension of the weight matrices Whr,Whu,Whn must be dim(hl) + dim(hr)
instead of dim(h) . Thus, while Eq. (6) remains similar to the original one, we change the
second term (from its usual form u ∗ ht−1) to u

2
∗ hl +

u

2
∗ hr , to retain information from

the codes of the two child nodes. Recall that ∗ denotes the element-wise multiplication of
vectors.

In the second phase, the model transforms the code of the root node into the latent
representation of the input expression through two fully-connected layers.

3.2.3 Decoder

The decoding also comprises two phases. In the first, a fully-connected layer transforms a
point from the latent vector space into the code of the root node. In the second phase, the
decoding cell is recursively deployed to decode each of the nodes in the expression tree.

Figure 4 depicts the structure of the decoding cell. The cell is composed of a fully
connected layer, a softmax layer, and the GRU12 cell, an adaptation of the original GRU cell.
The input code is first passed through the sequence of a fully-connected and a softmax layer.
The latter creates the vector of probabilities, from which the most probable output symbol is
chosen. If the output symbol is either a constant or a variable, the decoding stops. Otherwise,
the output vector is also used as an input to the GRU12 cell, together with the code that is
given as input into the decoding cell. The GRU12 cell produces two codes, one for the left and
one for the right child.

GRU12 computes the two codes hl and hr for the child nodes using the input vector x and
the code h with the following equations:

(5)n = tanh(Winx + bin + r ∗ (Whn(hl ∦ hr) + bhn))

(6)h = (1 − u) ∗ n +
u

2
∗ hl +

u

2
∗ hr,

(7)r = �S(Wirx + bir +Whrh + bhr)

(8)u = �S(Wiux + biu +Whuh + bhu)

Fig. 4 The structure of the
decoding cell

4572 Machine Learning (2023) 112:4563–4596

1 3

There are two major differences between GRU12 and the original GRU cell. First,
the vectors r,u, and n in Eqs. (7), (8), (9) are of dimension 2 ⋅ dim(h) instead of dim(h) .
Consequently, all bias vectors are of dimension 2 ⋅ dim(h) , and all weight matrices have an
output dimension of 2 ⋅ dim(h) . Second, in Equation (10), the code h is concatenated with
itself to make the dimensions in the equation match. Vector d is then split in half in Eq. 11.
The first part is used as a code for the left child, while the second is used as a code for the
right child.

3.3 Generating expressions for symbolic regression

Recall that the goal of symbolic regression is to efficiently search through the space of
mathematical expressions and find the one that, when used on the right-hand of an
equation, fits given measurements well. In this section, we explain how to use HVAE for
generating expressions.

3.3.1 HVAE as a generative model

We can generate expressions in two ways, corresponding to two different symbolic
regression scenarios. The first way, which aims at discovering equations from data, samples
random vectors from the standardized Gaussian distribution N(0, I) in the latent space and
passes them through the decoder.

On the other hand, we might want to generate expressions in a scenario that corresponds
to the revision of existing equations to fit newly gathered data. Here, we want to generate
mathematical expressions that are similar to the one given as input. Our approach achieves
this by encoding an expression and sampling its immediate neighborhood in the latent
space. We expect these points to be decoded into expressions similar to the one given as
input. We will show that HVAE meets this expectation in Sect. 4.1.4.

3.3.2 Evolutionary algorithm operators

Finally, we can search the latent space spanned by our model with evolutionary
algorithms (Koza, 1994), one of the most commonly used paradigms for symbolic
regression. Evolutionary algorithms explore the search space by first randomly sampling
individuals for the initial population. Then they repetitively generate new populations by
combining pairs of individuals from the current population with the genetic operators of
mutation and crossover.

An individual in a population is in our case a real-valued vector z, corresponding to
the code of an expression tree in the latent vector space. Using the HVAE model, z can be
decoded into an expression tree. To calculate the individual’s fit against the training data,
we first fit the values of the constant parameters in the decoded expression tree and then
measure the error of the equation with the resulting expression on the right-hand side (with

(9)n = tanh(Winx + bin + r ∗ (Whnh + bhn))

(10)d = (1 − u) ∗ n + u ∗ (h ∦ h)

(11)d ≡ hl ∦ hr

4573Machine Learning (2023) 112:4563–4596

1 3

respect to the training data). We generate the initial population by randomly sampling
individuals from the Gaussian distribution N(0, I).

Crossover combines two individuals, referred to as parents zA and zB , into an offspring zO .
We generate the latter as a convex combination of zA and zB , i.e. zO = (1 − a) ⋅ zA + a ⋅ zB ,
where a is sampled from the uniform distribution on the interval [0, 1]. For values of a
close to 0 and 1, the offspring is close to one of the parents, while values of a close to 0.5
lead to an offspring equally dissimilar to both parents.

The mutation operator transforms an individual z into a mutated individual zM . To
perform a mutation, we first decode z into an expression tree and immediately encode it
back into its latent space representation to obtain the value of �z . Now, we can mutate
z into an individual with a syntactically similar expression by sampling from N(�z, �z)
or into a random individual by sampling the offspring zO from N(0, I) . Similarly to
the case of crossover, we interpolate between these two extremes by sampling from
N(a ⋅ �z + (1 − a) ⋅ 0, a ⋅ �z + (1 − a) ⋅ I) = N(a ⋅ �z, a ⋅ �z + (1 − a) ⋅ I) , where a is
randomly sampled from the uniform distribution on the interval [0, 1]. When a is close to
0, the offspring zO is chosen at random (see the first paragraph of Sect. 3.3.1). On the other
hand, when a is close to 1, zO is syntactically similar to z (second paragraph of Sect. 3.3.1).

We implement the EDHiE (Equation Discovery with Hierarchical variational
autoEncoders) approach for symbolic regression by combining HVAE with evolutionary
algorithms using these operators. Our implementation uses pymoo (Blank & Deb, 2020)
for evolutionary algorithms and ProGED (Brence et al., 2021) functionality for evaluating
the fit of a candidate equation.

4 Evaluation

In this section, we will investigate the validity of our hypothesis that the hierarchical
variational autoencoder is a more efficient generator of mathematical expressions than the
alternative VAEs for sequences by conducting two series of computational experiments.
In the first series, we are going to evaluate the performance and efficiency of HVAE on
the task of generating mathematical expressions. In the second series, we will evaluate the
performance of EDHiE on the symbolic regression downstream task.

4.1 The performance of HVAE

We start this section by introducing the experimental setup (Sect. 4.1.1). We continue with
reporting the experimental results of evaluating HVAE with respect to the reconstruction
error (Sect. 4.1.2), efficiency in terms of the size of training data needed, the dimensionality
of the latent space (Sect. 4.1.3), and finally the smoothness of the latent space (Sect. 4.1.4).
In Appendix 2, we further justify our claim that points close in the latent space of HVAE
are decoded into similar expressions.

4.1.1 Experimental setup

Data sets We estimate the reconstruction error of the variational autoencoders on a
collection of six synthetic data sets, ranging from small ones, including simple expressions,
to large ones, including complex expressions. The data sets are as follows:

4574 Machine Learning (2023) 112:4563–4596

1 3

AE4-2k, AE5-15k, and AE7-20k have 2, 15, and 20 thousand mathematical expressions
with trees with a maximum height of four, five, and seven. These expressions can
contain constants, variables, and the operators +, −, ⋅ , /, and ̂.
Trig4-2k, Trig5-15k, and Trig7-20k are the same as above, but the expressions also
contain the sine and cosine functions.

We create these data sets with the ProGED (Brence et al., 2021) system by randomly
sampling mathematical expressions from a given probabilistic context-free grammar.
The generated expressions are simplified using the Python library SymPy (Meurer et al.,
2017). The context-free grammars that constrain the output of GVAE and the ones used to
generate the data sets are documented in Appendix 1.

Parameter setting We train GVAE and CVAE for 150 epochs with the following val-
ues of their hyper-parameters: latent dimension = 128 , hidden dimension = 128 , batch size
= 64 , kernel sizes of the convolution layers = 2, 3, 4 , and the ADAM optimizer (Kingma
et al., 2015). For reconstruction results created with our approach (HVAE), the hyper-
parameters are: latent size = 128 , batch size = 32 , and the ADAM optimizer with the
default learning rate. For the first 1,800 iterations i, we calculate the regularization cost
parameter � using �i = 0.5 ⋅ (tanh

i−4,500

2
+ 1) , after this, we set �i to �1,800.

Estimating the reconstruction error The Levenshtein distance (Levenshtein, 1965)
(often referred to as the edit distance) quantifies the dissimilarity of two strings in terms of
the number of insertion, removal, and substitution operations that are needed to transform
one string into the other. We use this distance to test how well our autoencoder recreates
expressions.

We first pass the expression through the VAE to get the predicted expression. If needed,
we validate the syntactical correctness of the latter and transform it into an expression
tree. We then traverse the input and the output trees in post-order (left child, right child,
node symbol) to obtain the input and the output expressions in the postfix notation (which
does not require parentheses and is hence more suited for calculating the distance between
expressions). Finally, we calculate the edit distance between those two strings.

To estimate the reconstruction error on unseen expressions, we use five-fold cross-
validation with the same splits across all methods. GVAE and CVAE sometimes produce
invalid expressions, which we discard from the evaluation. Because of this, the results in
Sects. 4.1.2 and 4.1.3 might be biased in favor of CVAE due to many syntactically incorrect
expressions being discarded. Note that GVAE has fixed-size input (and output) that might
be too short for encoding all the grammar rules needed to derive an expression. In those
cases, GVAE returns empty strings, which we consider invalid expressions. CVAE, on
the other hand, produces syntactically incorrect expressions such as xc(∕x)c) sin sin(c)) ,
⋅ ⋅ x − c ⋅ ∕ sin(x)) , or (∕x(−x)c) (presented here in infix notation).

4.1.2 Out‑of‑sample reconstruction error

Table 1 compares the out-of-sample reconstruction error and the ratio of invalid expres-
sions for the three variational autoencoders. Our hierarchical VAE significantly outper-
forms the other two methods on all data sets. An interesting observation is that GVAE
works consistently better on expressions involving trigonometric functions, while HVAE
and CVAE perform worse. The reason for the opposite effect is probably the following:
for GVAE, functions only represent yet another production rule in the grammar, while
for HVAE and CVAE they drastically change the structure of the expression (tree). This

4575Machine Learning (2023) 112:4563–4596

1 3

translates to better performance of GVAE, as expressions with trigonometric functions are
usually shorter, given that the nodes corresponding to the trigonometric functions have
only one descendant instead of the usual two.

The percentages of invalid expressions generated by the approaches show that our
approach always produces syntactically correct expressions, while GVAE and CVAE
sometimes fail to produce valid outputs. The fraction of such expressions is quite small
when the GVAE approach is used (see the explanation above) but quite significant when
CVAE is used. Lastly, we can notice that, as expected, longer expressions are harder to
recreate and thus have higher edit distance and a higher percentage of invalid expressions
than shorter ones, provided enough training data is used.

4.1.3 Training efficiency and the latent space dimensionality

We proceed to test our conjectures about the efficiency of training the generators of math-
ematical expressions. We expect that HVAE would require less training data and a lower
dimensionality of the latent space to achieve the same levels of reconstruction error in
comparison to other approaches. The latter is especially important because of the explora-
tion of the latent space, which is more efficient in low-dimensional latent spaces.

Figure 5a depicts the impact of the number of expressions in the training set on the
reconstruction error for the three different generative models. Again, HVAE significantly
outperforms the other two VAEs. Its reconstruction error is estimated to be consistently
lower than 0.25, even when trained on 2 thousand examples only. This error is an order of
magnitude lower than the lowest error of 1.5 achieved by the second best model, GVAE,
when trained on the whole data set of 12 thousand examples.

Figure 5b shows the impact of the dimensionality of the latent space on the
reconstruction error across different VAEs. In line with the previous results, HVAE
significantly outperforms both CVAE and GVAE. HVAE with latent space of
dimension 16 performs on par or better than GVAE and CVAE with latent spaces of
256 dimensions. We can see that the reconstruction error quickly raises when the latent
space dimension is less than 32, but otherwise, the reconstruction error is consistently
low. Even with a latent space size of 16, our approach is still comparable to the other
two methods with a latent space of dimension 256. This allows us to reduce the

Table 1 The out-of-sample reconstruction error and the percentages of syntactically incorrect expressions
generated by the three variational autoencoders

Bold values indicate the best performing approaches (on a specific data set/expression)

Dataset HVAE GVAE CVAE

Edit distance Invalid Edit distance Invalid Edit distance Invalid

AE4-2k 0.076 (± 0.024) 0.0 (± 0.0) 3.959 (± 0.135) 0.2 (± 0.0) 3.873 (± 0.132) 33.8 (± 1.1)
Trig4-2k 0.119 (± 0.026) 0.0 (± 0.0) 3.199 (± 0.068) 0.0 (± 0.0) 3.619 (± 0.045) 48.3 (± 0.6)
AE5-15k 0.079 (± 0.014) 0.0 (± 0.0) 2.827 (± 0.280) < 0.1 (± 0.0) 1.547 (± 0.466) 3.5 (± 0.0)
Trig5-15k 0.093 (± 0.010) 0.0 (± 0.0) 1.489 (± 0.195) < 0.1 (± 0.0) 2.086 (± 0.346) 13.9 (± 0.0)
AE7-20k 0.501 (± 0.017) 0.0 (± 0.0) 5.201 (± 0.289) < 0.1 (± 0.0) 3.654 (± 0.349) 9.9 (± 0.0)
Trig7-20k 0.530 (± 0.036) 0.0 (± 0.0) 3.423 (± 0.467) < 0.1 (± 0.0) 3.660 (± 0.287) 26.3 (± 0.1)

4576 Machine Learning (2023) 112:4563–4596

1 3

dimensionality of the latent space by two orders of magnitude, which makes HVAE an
excellent candidate for generating expressions for symbolic regression.

The reason for the superior efficiency of HVAE is the use of expression trees, as
subexpressions are always encoded into the same code, regardless of their position
in the expression. This significantly reduces the space of possible codes and allows
for training the model in a way that better generalizes to the repetitive subexpressions
(subpatterns) it encounters.

4.1.4 Latent space smoothness

Finally, we expect the latent space of HVAE to be smooth in the sense that samples
close to the latent representation of the input expression are decoded into expres-
sions similar to the one given as input. We investigate the validity of this conjecture
by applying linear interpolation (performing a homotopic transformation) between two
expressions in the latent space. Assume that we are given two expressions, A and B.
Using the model, we encode them into their latent representations zA and zB . We can
then generate new latent representations z� by combining the two representations with
the formula z� = (1 − �) ⋅ zA + � ⋅ zB , where � ∈ {i∕n ∶ i ∈ ℕ ∧ i ≤ n} . Decoding the
latent representations z� in a smooth latent space should produce intermediate expres-
sions that represent a smooth transition from A to B in n steps.

Table 2 shows the results of such a linear interpolation in the latent spaces of the
different VAEs. HVAE and GVAE produce continuous latent spaces where the tran-
sition from expression A to expression B is indeed smooth. CVAE also produces a
smooth transition, but some of the intermediate expressions might be syntactically
incorrect. The second interpolation in the lower part of the table is an example of a
smooth transition in the HVAE latent space. We can see that at each step only a few
expression symbols change and that these changes are rarely redundant. Appendix 2
provides further examples of interpolations with visualizations of the expression trees.

Fig. 5 The impact of the a training data set size and b dimensionality of the latent space on the reconstruc-
tion error of the three autoencoders

4577Machine Learning (2023) 112:4563–4596

1 3

4.2 Evaluating EDHiE

In the second series of experiments, we evaluate the performance of EDHiE. We start the
section by introducing the experimental setup (Sect. 4.2.1). We then report on the impact
of the dimensionality of the latent space on the performance of symbolic regression
(Sect. 4.2.2). Furthermore, we compare the performance of EDHiE with that of other
methods for symbolic regression on the Nguyen benchmark (Sect. 4.2.3) and report the
performance of EDHiE on the Feynman benchmark (Sect. 4.2.4).

4.2.1 Experimental setup

Data sets The Nguyen (Uy et al., 2011) benchmark contains eight equations with one non-
target variable and two equations with two non-target variables. The right-hand sides of
these equations are shown in the second column of Table 3. We generate two data sets
(train and test) with five thousand simulated measurements for each equation. We use the
train set to select the best expressions and the test set to evaluate their performance with the
metrics described below. We sample points from the interval [−20, 20] for equations 1–6,
the interval [0, 40] for equation 7, [0, 80] for equation 8, and [0, 20] for equations 9 and 10.

We further evaluate our approach on the 16 equations involving up to two variables
from the Feynman benchmark (Udrescu & Tegmark, 2020). The right-hand sides of these
equations are shown on in the last column of Table 3. Because equations in the Feynman
benchmark represent real-world equations, each of the equations FM-3, FM-4, FM-5,
and FM-7 contains two entries. Each entry comes with its own variables and data sets of
measurements.

Evaluation process We compare the performance of EDHiE on the Nguyen benchmark
equations to the performance of three other symbolic regression systems. ProGED (Brence
et al., 2021) uses probabilistic grammars as generators of mathematical expressions.

Table 2 Examples of linear interpolation between two expressions in the latent spaces of the three
VAEs. Expressions that are colored red are syntactically incorrect. Here, we set n = 4 and � = i∕4, 0 ≤ i ≤ 4

4578 Machine Learning (2023) 112:4563–4596

1 3

DSO (Petersen et al., 2021) combines deep neural networks with evolutionary algorithms.
PySR (Cranmer, 2023) employs evolutionary optimization with operators directly applied
to the expression trees. We run each system ten times on each equation and evaluate at
most 100,000 sampled expressions. All approaches use the same library of tokens and/
or grammars, further described in Appendix 1. When running PySR, we allow fitting the
values of the constant parameters since it can not be turned off in the implementation. The
dimensionality of the latent space of HVAE is set to 32; the ADAM optimizer uses the
default learning rate. We elaborate on the setting of the dimensionality of the latent space
in the next section. Appendix 3 gives the complete report on the experiments in latent
spaces with varying dimensions.

Estimating the performance We use three metrics: the number of successful
reconstructions, i.e., runs leading to an equation equivalent to the original one; the mean R2
of the best equation; and the number of expressions sampled to achieve reconstruction. We
consider a run successful if we find an expression where the RMSE between the target and
predicted values is lower than 10−10 . To guarantee accurate reporting, we manually check if
the original and expression with the lowest RMSE are equivalent. In each run, we use the
expression with the lowest RMSE to calculate the bounded R2 metric on the test set using
the formula

where ŷi denotes the predicted value of the target variable (calculated by using the
equation), yi is the measured value of the target variable, and y is the mean value of y in
the training data set. Lastly, we show the average number (across the ten runs) of unique
expressions considered before reconstructing the original equation. To this end, we count
the unique expressions that the symbolic regression system has considered before the
reconstructed equation is encountered in the generation process for all the methods that
report this.

(12)R2(ŷ, y) = max

�
0, 1 −

∑
i(yi − ŷi)

2

∑
i(yi − y)2

�
,

Table 3 Expressions from the Nguyen (first two columns on the left-hand side) and Feynman (last three
columns on the right-hand side) benchmarks

ID Expression ID ID-Feynman Expression

NG-1 x
3 + x

2 + x FM-1 I.6.2a
(2�)−0.5e−

x
2

2

NG-2 x
4 + x

3 + x
2 + x FM-2 I.6.2

(
√
2� ⋅ y)−1e−

(x∕y)2

2

NG-3 x
5 + x

4 + x
3 + x

2 + x FM-3 I.12.1, I.12.5 xy
NG-4 x

6 + x
5 + x

4 + x
3 + x

2 + x FM-4 I.14.4, II.8.31 0.5 xy
2

NG-5 sin x
2
⋅ cos x − 1 FM-5 I.25.13, I.29.4 x/y

NG-6 sin x + sin(x + x
2) FM-6 I.26.2 arcsin(x sin y)

NG-7 ln(x + 1) + ln(x2 + 1) FM-7 I.34.27, III.12.43 (2�)−1xy

NG-8
√
x FM-8 I.39.1 1.5 xy

NG-9 sin x + sin y
2 FM-9 II.3.24 x

4�y2

NG-10 2 sin x ⋅ cos y FM-10 II.11.28 1+xy

1−(0.3 xy)

FM-11 II.27.18 xy
2

FM-12 II.38.14 x

2⋅(1+y)

4579Machine Learning (2023) 112:4563–4596

1 3

4.2.2 The impact of the dimensionality of the latent space

Let us start with a series of computational experiments exploring the latent space for
encoding mathematical expressions with random sampling. Here, we perform symbolic
regression by taking randomly sampled points in the latent space and decoding them into
expressions that are then evaluated on the measurements/data. The expression that fits the
data best is selected as the candidate for the discovered equation.

Table 4 shows the number of successful runs of the random sampling approaches based
on the three VAEs, CVAE, GVAE, and HVAE. In the further discussion of results, we use
the name HVAR for HVAE with random sampling. We can see here a typical example
of the curse of dimensionality at work. When the symbolic regression algorithm explores
high-dimensional latent spaces, it can easily slip into parts of those spaces that do not
lead to optimal equations. This shows that the ability of HVAE to encode mathematical
expressions in low-dimensional latent spaces is crucial for the performance of symbolic
regression with HVAR.

Based on the results of the experiments in Table 4 and Appendix 3, in the remainder of
this section, we use 32-dimensional latent space for EDHiE.

4.2.3 Comparison on the Nguyen equations

In the next series of experiments, we compare the performance of HVAR, the random
sampling method using HVAE, to the one of ProGED—the latter samples mathematical
expressions using manually crafted probabilistic grammar. Table 5 reports the results of the
comparison. The results show that the generator used within HVAE is not worse than the
probabilistic grammar. To our surprise, HVAR outperforms ProGED significantly. First,
it successfully reconstructs five (of the ten) equations from the Nguyen benchmark in ten
runs, one more than ProGED. Second, for the three equations of NG-2, NG-6, and NG-9,
the reconstruction is achieved faster, i.e., by evaluating fewer candidate expressions.

Furthermore, we check the contribution of the evolutionary approach in EDHiE over
the random sampling method HVAR. To this end, we compare the last three columns of
Table 5 with the last three columns of Table 6. EDHiE successfully reconstructs all ten

Table 4 The performance of
symbolic regression (number
of successful reconstructions)
by randomly sampling with
CVAE, GVAE, and HVAE on the
Nguyen benchmark

Equation/approach CVAE GVAE HVAR

Latent space size 32 64 128 32 64 128 32 64 128

NG-1 4 2 2 10 9 10 10 10 10
NG-2 0 0 0 2 4 3 10 5 9
NG-3 0 0 0 0 0 0 0 0 1
NG-4 0 0 0 0 1 0 0 0 0
NG-5 0 0 0 0 0 0 0 0 0
NG-6 0 0 0 2 0 0 4 4 0
NG-7 0 0 0 0 0 0 0 0 0
NG-8 10 10 3 10 10 10 10 10 10
Total/Mean 14 12 5 24 24 23 34 29 30

4580 Machine Learning (2023) 112:4563–4596

1 3

equations from the Nguyen benchmarks in at least one of the ten runs. In three cases, the
equations are reconstructed in every run. Note also that the successful reconstructions
with EDHiE require fewer evaluations of candidate equations than the random sampling
approaches.

Table 6 compares EDHiE with PySR, which uses evolutionary operators on expression
trees directly (i.e., without embedding them into a latent space), and DSO, that similarly
to our approach, combines deep learning with evolutionary optimization. Overall, EDHiE
performs better than the other two methods across all metrics1: it achieves the highest total
number of successful reconstructions. EDHiE has more successful reconstructions for five
equations than PySR and less for a single equation, NG-9. The superior performance of
EDHiE relative to PySR indicates that evolutionary optimization is more efficient in the
latent space than in the space of expression trees. For four equations, EDHiE achieves suc-
cessful reconstruction more often than DSO. In the two instances of reconstructing NG-3
and NG-4, DSO achieves success twice as often as our method.

Finally, note that the experiments on the Nguyen benchmark were performed on noise-
free synthetic data. The results of the experiments on synthetic data with added noise,
reported in Appendix 3, show that EDHiE is robust to noise: The increasing noise level has
little effect on the reconstruction success rate while significantly increasing the rank of the
successfully reconstructed equation in the list of evaluated equations, sorted with respect to
increasing RMSE. Appendix 3 also includes additional results on the Nguyen benchmark
by random sampling of CVAE, GVAE, and HVAE latent space with varying number of
dimensions.

Table 5 Comparison of the performance of symbolic regression (number of successful reconstructions,
R
2 , and number of evaluated equations) with random sampling on the Nguyen benchmark. We compare

sampling from a manually-crafted probabilistic grammar (ProGED) with sampling using a trained HVAE
(HVAR)

Bold values indicate the best performing approaches (on a specific data set/expression)

ProGED (Brence et al., 2021) HVAR (Ours)

Name Successful Average R2 Evaluated Successful Average R2 Evaluated

NG-1 10 1.00 (± 0.00) 2374 (± 1451) 10 1.00 (± 0.00) 901 (± 1332)
NG-2 2 1.00 (± 0.01) 7680 (± 670) 10 1.00 (± 0.00) 9729 (± 5337)
NG-3 0 1.00 (± 0.01) NA 0 1.00 (± 0.01) NA
NG-4 0 1.00 (± 0.01) NA 0 1.00 (± 0.01) NA
NG-5 0 0.01 (± 0.01) NA 0 0.00 (± 0.00) NA
NG-6 0 0.60 (± 0.11) NA 4 0.81 (± 0.20) 37619 (± 2773)
NG-7 0 0.99 (± 0.01) NA 0 0.99 (± 0.01) NA
NG-8 10 1.00 (± 0.00) 319 (± 287) 10 1.00 (± 0.00) 392 (± 456)
NG-9 1 0.56 (± 0.14) 12602 (± 0) 5 0.83 (± 0.21) 23236 (± 11844)
NG-10 0 0.65 (± 0.11) NA 0 0.55 (± 0.08) NA
Total/mean 23 0.78 (± 0.31) 39 0.81 (± 0.31)

1 PySR does not report the number of evaluated equation. Hence, we could not include them in Table 6.

4581Machine Learning (2023) 112:4563–4596

1 3

Ta
bl

e
6

 C
om

pa
ris

on
 o

f t
he

 p
er

fo
rm

an
ce

 o
f t

he
 sy

m
bo

lic
 re

gr
es

si
on

 sy
ste

m
s E

D
H

iE
, D

SO
, a

nd
 P

yS
R

 o
n

th
e

N
gu

ye
n

be
nc

hm
ar

k

B
ol

d
va

lu
es

 in
di

ca
te

 th
e

be
st

pe
rfo

rm
in

g
ap

pr
oa

ch
es

 (o
n

a
sp

ec
ifi

c
da

ta
 se

t/e
xp

re
ss

io
n)

ED
H

iE
 (o

ur
)

D
SO

 (P
et

er
se

n
et

 a
l.,

 2
02

1)
Py

SR
 (C

ra
nm

er
, 2

02
3)

N
am

e
Su

cc
es

sf
ul

M
ea

n
R
2

Ev
al

ua
te

d
Su

cc
es

sf
ul

M
ea

n
R
2

Ev
al

ua
te

d
Su

cc
es

sf
ul

M
ea

n
R
2

N
G

-1
10

1.
00

 (±
 0

.0
0)

57
3

(±
 2

61
)

10
1.

00
 (±

 0
.0

0)
45

65
 (±

 3
27

)
10

1.
00

 (±
 0

.0
0)

N
G

-2
10

1.
00

 (±
 0

.0
0)

58
03

 (±
 4

14
8)

10
1.

00
 (±

 0
.0

0)
12

,2
06

 (±
 9

18
6)

10
1.

00
 (±

 0
.0

0)
N

G
-3

6
1.

00
 (±

 0
.0

1)
20

,9
31

 (±
 4

85
8)

10
1.

00
 (±

 0
.0

0)
80

53
 (±

 3
76

6)
2

1.
00

 (±
 0

.0
1)

N
G

-4
3

1.
00

 (±
 0

.0
1)

21
,3

46
 (±

 4
47

9)
8

1.
00

 (±
 0

.0
1)

32
,9

46
 (±

 1
5,

61
3)

0
0.

99
 (±

 0
.0

1)
N

G
-5

3
0.

32
 (±

 0
.4

5)
20

,6
15

 (±
 8

39
4)

0
0.

00
 (±

 0
.0

0)
N

A
0

0.
16

 (±
 0

.1
5)

N
G

-6
8

0.
88

 (±
 0

.1
4)

12
,7

72
 (±

 7
92

3)
1

0.
59

 (±
 0

.1
5)

49
,5

99
 (±

 0
)

4
0.

86
 (±

 0
.1

3)
N

G
-7

8
1.

00
 (±

 0
.0

1)
19

,2
03

 (±
 3

59
5)

10
1.

00
 (±

 0
.0

0)
22

,5
79

 (±
 1

0,
26

4)
7

0.
99

 (±
 0

.0
1)

N
G

-8
10

1.
00

 (±
 0

.0
0)

40
5

(±
 1

74
)

10
1.

00
 (±

 0
.0

0)
55

21
 (±

 1
77

9)
10

1.
00

 (±
 0

.0
0)

N
G

-9
8

0.
95

 (±
 0

.1
5)

70
41

 (±
 3

93
3)

2
0.

60
 (±

 0
.2

0)
39

,7
86

 (±
 2

8,
19

7)
10

1.
00

 (±
 0

.0
0)

N
G

-1
0

1
0.

70
 (±

 0
.1

7)
31

86
3

(±
 6

97
0)

0
0.

56
 (±

 0
.1

0)
N

A
1

0.
80

 (±
 0

.1
6)

To
ta

l/m
ea

n
66

0.
89

 (±
 0

.2
1)

61
0.

78
 (±

 0
.3

1)
54

0.
88

 (±
 0

.2
6)

4582 Machine Learning (2023) 112:4563–4596

1 3

4.2.4 Results on the Feynman equations

In this section, we evaluate the ability of EDHiE to reconstruct real equations from the
domain of physics included in the Feynman database. Table 7 presents the results of
symbolic regression on a subset of 16 equations from the database with up to two non-
target variables. EDHiE successfully reconstructs 13 equations in all the runs. Most of
these equations are simple; thus, EDHiE explores small search spaces comprising less than
two hundred evaluated expressions. A more complex equation FM-10 is reconstructed in
five out of ten runs exploring more than 20 thousand expressions on average. The equation
FM-6 could not be reconstructed in any of the runs since it includes the function arcsin
that has not been included in our token library. Finally, EDHiE fails to reconstruct the most
complex equation FM-2.

5 Discussion and conclusion

We introduce a novel variational autoencoder for hierarchies, HVAE, that can be efficiently
trained to generate valid mathematical expressions represented as expression trees.
Compared to generators based on variational autoencoders for sequences, HVAE has
three significant advantages. First, it consistently generates valid expressions. Second, its
performance is robust even for small training sets: HVAE trained from only two thousand
expressions achieves much lower reconstruction error than sequential VAEs trained from
12 thousand examples. Third, the HVAE operating in 32-dimensional latent space has a
lower reconstruction error than sequential VAEs with comparable latent spaces.

Table 7 Results of EDHiE on the
16 equations from the Feynman
database that include at most two
non-target variables

Name Successful Mean R2 Evaluated

FM-1 10 1.00 (± 0.00) 4311 (± 1914)
FM-2 0 0.98 (± 0.01) NA
FM-3.1 10 1.00 (± 0.00) 38 (± 37)
FM-3.2 10 1.00 (± 0.00) 53 (± 28)
FM-4.1 10 1.00 (± 0.00) 184 (± 123)
FM-4.2 10 1.00 (± 0.00) 188 (± 204)
FM-5.1 10 1.00 (± 0.00) 63 (± 44)
FM-5.2 10 1.00 (± 0.00) 101 (± 109)
FM-6 0 0.99 (± 0.01) NA
FM-7.1 10 1.00 (± 0.00) 43 (± 36)
FM-7.2 10 1.00 (± 0.00) 39 (± 39)
FM-8 10 1.00 (± 0.00) 62 (± 45)
FM-9 10 1.00 (± 0.00) 950 (± 72)
FM-10 5 0.99 (± 0.01) 22668 (± 21676)
FM-11 10 1.00 (± 0.00) 62 (± 42)
FM-12 10 1.00 (± 0.00) 924 (± 795)
Total/mean 135 1.00 (± 0.01)

4583Machine Learning (2023) 112:4563–4596

1 3

The ability of HVAE to encode mathematical expressions in a low-dimensional
latent space makes it an excellent proxy for exploring the search space of candidate
expressions in symbolic regression. Indeed, when performing a random search through
the latent space, we achieve comparable performance with a random search through the
space of candidate expressions defined by a manually crafted probabilistic grammar.
EDHiE, a symbolic regression system that performs evolutionary optimization in the
latent space of the HVAE, significantly outperforms methods based on random search
and achieves performance comparable to the state-of-the-art symbolic regression system
DSO based on a similar combination of evolutionary algorithms and deep learning.
The comparison of EDHiE with PySR, a genetic programming approach operating on
expression trees directly, shows the benefit of performing evolutionary optimization in
the latent space.

HVAE has been used here for symbolic regression, but its potential to efficiently
generate and encode hierarchies makes it useful in many different contexts, e.g., generating
molecular structures or more general symbolic expressions. Analysis of its performance
in these application domains is a promising direction for further research. Moreover,
the ability of HVAE to learn from small corpora of expressions might prove helpful in
retraining the generator after each generation of the evolutionary search, much like the
iterative learning in DSO. This will narrow its focus to generating better expressions,
leading to more accurate equations. In general, training the generator on expressions
involved in mathematical models that have proved useful in a domain of interest will
enable seamless integration and transfer of background knowledge in symbolic regression.

Appendix 1: Grammars and token libraries

In the empirical evaluation of the hierarchical autoencoder, we use several context-free
grammars and different token libraries. Grammars used to generate synthetic data sets
are probabilistic. Mathematical expressions in the data sets with a name prefix of AE
include the five common binary arithmetic operators and are generated using the following
grammar:

Data sets with a name prefix Trig include, in addition, the trigonometric functions of sine
and cosine and are generated using the same grammar as the one above, with different
productions for the non-terminal (syntactic category) T and a new non-terminal L:

While we do not explicitly have the power operator in the grammars to be used during the
generation of the data sets, exponentiation (and thus the power operator) can occur during

S → SAF [0.4] | F [0.6]

A → + [0.5] | − [0.5]

F → FBT [0.4] | T [0.6]

B → ⋅ [0.5] | ∕ [0.5]
T → (S) [0.25] | c [0.375] | x [0.375]

T → (S) [0.15] | cos(S) [0.05] | sin(S) [0.05] | L [0.75]
L → c [0.5] | x [0.5].

4584 Machine Learning (2023) 112:4563–4596

1 3

the simplification of the generated expressions. Because of this, expressions in the data sets
also contain the power operator.

In addition, GVAE also needs grammars for generating valid expressions. When applied
to the data sets with a name prefix of AE, GVAE uses the following grammar:

For the data sets with the name prefix of Trig, GVAE uses the same grammar as above with
different productions for the non-terminal symbol T:

CVAE uses the token library {+,−, ⋅, ∕, ̂, x, c, (,), ”} for data sets with the name prefix AE,
and {+,−, ⋅, ∕, ̂, sin, cos, x, c, (,), ”} for data sets with the name prefix Trig.

For experiments on the Nguyen benchmark, we use the grammar:

for ProGED, GVAE, and to generate training examples for HVAE. HVAE and DSO use
the token library {x,+,−, ⋅, ∕, ̂2, ̂3, ̂4, ̂5, sin, cos, exp, log, sqrt} , while CVAE uses token
{(,), ”} in addition to the tokens used by HVAE and DSO. For expressions with two non-
target variables, we add token y and change the non-terminal symbol V to:

For experiments on the Feynman benchmark, we use the grammar:

to generate training examples for HVAE and tokens {x, c,+,−, ⋅, ∕, ̂2, ̂3, sin, cos, exp, sqrt} .
For expressions with two non-target variables, we add token y and change the non-terminal
symbol V to:

S → S + T | S − T | S ⋅ T | S
T
| ST |T

T → (S) | x | c

T → (S) | sin(S) | cos(S) | x | c.

E → E + F [0.2] | E − F [0.2] | F [0.6]

F → E ⋅ T [0.2] | E∕T [0.2] | T [0.6]

T → V [0.4] | (E)P [0.2] | (E) [0.2] | R(E) [0.2]
V → x [1.0]

P → ̂
2 [0.39] | ̂3 [0.26] | ̂4 [0.19] | ̂5 [0.16]

R → sin [0.2] | cos [0.2] | ê [0.2] | log [0.2] | sqrt [0.2]

V → x [0.5] | y [0.5].

E → E + F [0.2] | E − F [0.2] | F [0.6]

F → E ⋅ T [0.2] | E∕T [0.2] | T [0.6]

T → V [0.4] | c [0.3] | A [0.3]

A → (E)P [0.1] | (E) [0.55] | R(E) [0.35]
V → x [1.0]

P → ̂
2 [0.8] | ̂3 [0.2]

R → sin [0.25] | cos [0.25] | ê [0.25] | sqrt [0.25]

V → x [0.5] | y [0.5].

4585Machine Learning (2023) 112:4563–4596

1 3

Appendix 2: Additional latent space smoothness results

Additional examples of linear interpolation with HVAE are shown in Table 8. We can see
that the space is continuous, as the expressions smoothly transition from Expression 1 to
Expression 2. This is best seen in example 1 from the Trig5-15k data set, where in each
step, only a few (relevant) symbols change. In the first step, sin c and x change to c. Then in
the next step, c + c and sin x change to x. In the next step x

c
 changes to c and x/c changes to

x ⋅ sin c . In the last step x + c changes to xc.
While most of the time, expressions change gradually, this is not always the case. This

can be best seen in the examples from the AE4-2k data set, where only the expressions at
� = 0.5 differ from the starting ones.

Since we write expressions as a sequence, it is not always obvious how the underlying
expression tree changes during interpolation. Visualization of the gradual change for two
pairs of expressions is shown in Fig. 6.

Trees are being transformed by changing their structure and the symbols inside
nodes. These transformations are interrelated as changing a constant or a variable into
an operator also transforms the structure. This is best seen in the transition between
� = 0 and � = 0.25 for the expression trees at the bottom of Fig. 6. However, the

Table 8 Linear interpolation of
examples in the HVAE latent
space. The first row shows
examples from the AE4-2k data
set, the second examples from
the AE7-20k data set, and the
third from the Trig5-15k data set.
Here n = 4 and � =

i

4
, 0 ≤ i ≤ 4

Dataset � Example 1 Example 2

Expression A c ⋅ (x + c) +
x
c

c

c − x ⋅ c + x

� = 0 c ⋅ (x + c) +
x
c

c

c − x ⋅ c + x

� = 0.25 c ⋅ (x + c) +
x
c

c

c − x ⋅ c + x

AE4-2k � = 0.5 c ⋅ x +
x+c

c

c − c ⋅ x + x

� = 0.75 c − x +
x+c

c

c+c⋅x

c

� = 1 c − x +
x+c

c

c+c⋅x

c

Expression B c − x +
x+c

c

c+c⋅x

c

Expression A c⋅x
c+xc

c

+ c

c⋅x

c−x
+ c − x + c

� = 0 c⋅x
c+xc

c

+ c

c⋅x

c−x
+ c − x + c

� = 0.25 c+xc

c

+ c c ⋅ (c − x) + c − x + c

AE7-20k � = 0.5 c⋅x
c

c

+
x

c

c ⋅ x ⋅ c − x + c

� = 0.75 c −
x
c

c

c⋅x
c

c+x
+ x

� = 1 c −
x
c

c

c⋅x
c

c+x
+ x

Expression B c −
x
c

c

c⋅x
c

c+x
+ x

Expression A c + sin c +
sin x

x

−
x

c

x
c
⋅ cos c + x

� = 0 c + sin c +
sin x

x

−
x

c

x
c
⋅ cos c + x

� = 0.25 c + c +
sin x

c

−
x

c

x ⋅ cos c + x

Trig5-15k � = 0.5 x +
x

c

−
x

c

c ⋅ cos c + cos x
c

� = 0.75 x + c − x ⋅ sin c c + cos
x
c

c

� = 1 x
c − x ⋅ sin c c + cos

x
c

c

Expression B x
c − x ⋅ sin c c + cos

x
c

c

4586 Machine Learning (2023) 112:4563–4596

1 3

structure of the expression tree does not always change. This is most noticeable for tran-
sitions between � = 0 and � = 0.5 for expression trees at the top of Fig. 6. Here only an
operator changes at each step.

Appendix 3: Additional results on the Nguyen benchmark

In this appendix, we show additional results of the empirical evaluation. First, we show
the performance of HVAR on the first eight equations from the Nguyen benchmark with
random sampling (By sampling points from the standardized Gaussian distribution)
and different dimensions of the latent space in Sect. 1. Next, we show the learning
curves of approaches HVAR, ProGED, and EDHiE in Sect. 2. After this, we show the
performance of EDHiE on noisy data in Sect. 3. Finally, we conclude this section in 4
by showing the performance of CVAE with random sampling and GVAE with both
random sampling and an evolutionary algorithm.

A3.1 Dimensions

Table 9 shows the results of evaluation using HVAE with different dimensions of the
latent vector space. Here new expressions are generated by randomly sampling points
from the standardized Gaussian distribution and decoding them. We can see overall,
models, where the dimension of the latent vector space is either 16 or 32, perform the
best. HVAE 32 produces expressions that usually have a slightly higher mean R2 , while
HVAE 16 usually needs to evaluate less unique expressions to generate the desired one.
Because we prefer the number of successful runs and the mean R2 metrics, we select
the model with the latent vector space dimension 32 for experiments where the HVAE
model is coupled together with evolutionary algorithms.

Fig. 6 Examples of linearly interpolated mathematical expressions visualized as expression trees

4587Machine Learning (2023) 112:4563–4596

1 3

Ta
bl

e
9

 T
he

 p
er

fo
rm

an
ce

 o
f H

VA
R

 (n
um

be
r o

f s
uc

ce
ss

fu
l r

ec
on

str
uc

tio
ns

, R
2
 , a

nd
 n

um
be

r o
f e

va
lu

at
ed

 e
qu

at
io

ns
) w

ith
 v

ar
yi

ng
 n

um
be

r o
f l

at
en

t d
im

en
si

on
s

on
 th

e
N

gu
ye

n
be

nc
hm

ar
k

H
VA

R
 1

6
H

VA
R

 3
2

H
VA

R
 6

4
H

VA
R

 1
28

N
am

e
Su

cc
es

sf
ul

M
ea

n
R
2

Ev
al

ua
te

d
Su

cc
es

sf
ul

M
ea

n
R
2

Ev
al

ua
te

d
Su

cc
es

sf
ul

M
ea

n
R
2

Ev
al

ua
te

d
Su

cc
es

sf
ul

M
ea

n
R
2

Ev
al

ua
te

d

N
G

-1
10

1.
00

 (±

0.
00

)
50

0
(±

37

8)
10

1.
00

 (±

0.
00

)
90

1
(±

13

32
)

10
1.

00
 (±

0.

00
)

19
85

 (±

22
70

)
10

1.
00

 (±

0.
00

)
15

44
 (±

15

23
)

N
G

-2
10

1.
00

 (±

0.
00

)
44

07
 (±

29

04
)

10
1.

00
 (±

0.

00
)

97
29

 (±

53
37

)
5

1.
00

 (±

0.
01

)
14

43
5

(±

82
79

)
9

1.
00

 (±

0.
01

)
14

26
1

(±

13
07

4)
N

G
-3

1
1.

00
 (±

0.

01
)

16
,5

95
 (±

0)

0
1.

00
 (±

0.

01
)

N
A

0
1.

00
 (±

0.

01
)

N
A

1
1.

00
 (±

0.

01
)

24
56

2
(±

 0
)

N
G

-4
0

1.
00

 (±

0.
01

)
N

A
0

1.
00

 (±

0.
01

)
N

A
0

1.
00

 (±

0.
01

)
N

A
0

1.
00

 (±

0.
01

)
N

A

N
G

-5
0

0.
00

 (±

0.
00

)
N

A
0

0.
00

 (±

0.
01

)
N

A
0

0.
01

 (±

0.
01

)
N

A
0

0.
04

 (±

0.
07

)
N

A

N
G

-6
3

0.
75

 (±

0.
18

)
13

,3
45

 (±

42
5)

4
0.

81
 (±

0.

13
)

37
61

9
(±

27

73
)

4
0.

74
 (±

0.

22
)

26
16

9
(±

12

18
7)

0
0.

57
 (±

0.

09
)

N
A

N
G

-7
0

1.
00

 (±

0.
01

)
N

A
0

0.
99

 (±

0.
01

)
N

A
0

1.
00

 (±

0.
01

)
N

A
0

1.
00

 (±

0.
01

)
N

A

N
G

-8
10

1.
00

 (±

0.
00

)
34

5
(±

27

6)
10

1.
00

 (±

0.
00

)
39

2
(±

 4
56

)
10

1.
00

 (±

0.
00

)
23

3
(±

17

1)
10

1.
00

 (±

0.
00

)
27

3
(±

 2
05

)

To
ta

l/m
ea

n
34

0.
84

 (±

0.
33

)
34

0.
85

 (±

0.
32

)
29

0.
84

 (±

0.
33

)
30

0.
83

 (±

0.
33

)

4588 Machine Learning (2023) 112:4563–4596

1 3

A3.2 Learning curves

Optimization algorithms continually enhance solutions over time by iteratively
exploring the input space to minimize an objective function or maximize performance.
The learning curve serves as a valuable measure for evaluating algorithmic performance,

Fig. 7 Learning curves for HVAR, ProGED, and EDHiE on the selected equations from the Nguyen bench-
mark. Curves for the equations NG-2, NG-3, NG-4, and NG-7 are omitted since they resemble the curve for
the NG-1 equation

4589Machine Learning (2023) 112:4563–4596

1 3

illustrating how the chosen metric evolves as optimization progresses. Steep
improvements in the learning curve indicate rapid convergence towards better solutions,
while plateaus or slow convergence suggest challenges in finding superior solutions.
By analyzing the learning curve, we can be gain an insight into the algorithm’s
effectiveness, convergence, stability, and potential for further improvement.

Figure 7 shows the learning curves of HVAR, ProGED, and EDHiE on six equations
from the Nguyen benchmark. We can see that overall EDHiE performs the best as it
achieves the highest R2 score and needs to test the least expression to do so. This is not
true on equation NG-8, where the other two approaches find the desired expressions
quicker. This happens because all approaches find the desired expression quickly and
the evolution part of EDHiE does not yet come into effect.

A3.3 Robustness to noise

In practical scenarios, working with noisy data is common, making it crucial for
symbolic regression approaches to perform well in the presence of noise. The
performance of EDHiE on noisy data is demonstrated in Table 10. To generate noisy
data sets, we sample values � from a Gaussian distribution N(0, I) and add them to the
target values y using the formula ỹ = y ⋅ (1 + 𝜂𝜖) , where � represents the noise level.

To evaluate our approach on noisy data, we employ two metrics: the number of
successful runs and the mean rank. We execute our approach on noisy data, rank all
the generated expressions based on their RMSE, and evaluate these expressions using
noiseless data. A run is considered successful if we find an expression that achieves an
RMSE below 10−10 on noiseless data. In the case of a successful run, we record the rank
of the first expression with an RMSE below 10−10 and use it to calculate the mean rank.

The results demonstrate that the number of successful runs remains relatively
consistent across different noise levelsm indicating the robustness of our approach.
Additionally, we can see that the mean rank increases as the amount of noise rises. This
outcome is expected, as higher noise levels allow more expressions to overfit the noisy
data. In practical applications, expressions that overfit can be eliminated by assigning
complexity scores to each expression and selecting less complex expressions from the
Pareto front.

A3.4 Performance of CVAE and GVAE on symbolic regression

Table 11 shows the results of the CVAE baseline. Models presented in the table use the
same parameters as they do in Sect. 4.1.1 apart from the dimension of the latent vector
space. We can see that this baseline performs very poorly, as it finds only the two simplest
equations. The main reason for this is the high number of invalid expressions (more than
96.8%) the baseline produces.

Lastly, Table 12 shows the results of the GVAE baseline. We can see that GVAE
performs better than CVAE but worse than HVAE. For the GVAE Evo approach we use the
GVAE baseline with the latent space dimension 64 together with the evolutionary operators
presented in Sect. 3.3.2. Here, different models find different equations: GVAE 32 finds the
equation NG-6, while GVAE 64 finds NG-4, and GVAE Evo NG-3. Overall GVAE Evo
performs the best as it successfully finishes 4 runs more than other models.

4590 Machine Learning (2023) 112:4563–4596

1 3

Ta
bl

e
10

Th

e
pe

rfo
rm

an
ce

 o
f E

D
H

iE
 w

ith
 v

ar
yi

ng
 le

ve
l o

f n
oi

se
 a

dd
ed

 to
 sy

nt
he

tic
 d

at
a

fro
m

 th
e

N
gu

ye
n

be
nc

hm
ar

k

�
0.

01
0.

02
0.

05
0.

1
0.

2

N
am

e
Su

cc
es

sf
ul

M
ea

n
ra

nk
Su

cc
es

sf
ul

M
ea

n
ra

nk
Su

cc
es

sf
ul

M
ea

n
ra

nk
Su

cc
es

sf
ul

M
ea

n
ra

nk
Su

cc
es

sf
ul

M
ea

n
ra

nk

N
G

-1
10

7.
30

 (6
.7

4)
10

6.
00

 (6
.2

0)
10

9.
00

 (8
.0

4)
10

14
.6

0
(1

6.
27

)
10

23
.8

0
(1

3.
91

)
N

G
-2

10
1.

10
 (0

.3
0)

10
1.

20
 (0

.4
0)

10
6.

80
 (3

.0
9)

10
17

5.
10

 (4
2.

15
)

10
22

2.
80

 (2
8.

72
)

N
G

-3
5

39
.4

0
(4

.4
1)

3
32

.6
7

(2
0.

98
)

3
34

.3
3

(9
.8

1)
2

50
.5

0
(1

.5
0)

3
16

9.
33

 (2
5.

85
)

N
G

-4
2

85
.0

0
(3

8.
00

)
4

57
.0

0
(6

.1
6)

2
52

.5
0

(6
.5

0)
0

N
A

2
21

0.
50

 (4
.5

0)
N

G
-5

4
1.

00
 (0

.0
0)

1
1.

00
 (0

.0
0)

2
1.

00
 (0

.0
0)

4
1.

00
 (0

.0
0)

5
1.

00
 (0

.0
0)

N
G

-6
6

1.
00

 (0
.0

0)
6

1.
00

 (0
.0

0)
6

1.
00

 (0
.0

0)
9

1.
00

 (0
.0

0)
7

1.
00

 (0
.0

0)
N

G
-7

10
1.

00
 (0

.0
0)

8
1.

00
 (0

.0
0)

9
1.

00
 (0

.0
0)

9
1.

11
 (0

.3
1)

8
10

.0
0

(3
.4

6)
N

G
-8

10
1.

00
 (0

.0
0)

10
1.

50
 (1

.5
0)

10
1.

70
 (1

.1
9)

10
3.

30
 (3

.4
4)

10
5.

10
 (4

.3
9)

N
G

-9
9

1.
00

 (0
.0

0)
7

1.
00

 (0
.0

0)
9

1.
00

 (0
.0

0)
8

1.
00

 (0
.0

0)
8

1.
00

 (0
.0

0)
N

G
-1

0
1

1.
00

 (0
.0

0)
0

N
A

1
1.

00
 (0

.0
0)

1
1.

00
 (0

.0
0)

1
1.

00
 (0

.0
0)

To
ta

l
67

7.
33

 (1
8.

38
)

59
7.

37
 (1

6.
10

)
62

6.
61

 (1
1.

91
)

63
32

.7
5

(6
5.

10
)

64
55

.4
2

(8
7.

83
)

4591Machine Learning (2023) 112:4563–4596

1 3

Ta
bl

e
11

Re

su
lts

 o
f s

ym
bo

lic
 re

gr
es

si
on

 b
y

ra
nd

om
 sa

m
pl

in
g

of
 th

e
C

VA
E

la
te

nt
 sp

ac
e

w
ith

 v
ar

yi
ng

 n
um

be
r o

f d
im

en
si

on
s o

n
th

e
N

gu
ye

n
be

nc
ha

rk

B
ol

d
va

lu
es

 in
di

ca
te

 th
e

be
st

pe
rfo

rm
in

g
ap

pr
oa

ch
es

 (o
n

a
sp

ec
ifi

c
da

ta
 se

t/e
xp

re
ss

io
n)

C
VA

E
32

C
VA

E
64

C
VA

E
12

8

N
am

e
Su

cc
es

sf
ul

M
ea

n
R
2

In
va

lid
Su

cc
es

sf
ul

M
ea

n
R
2

In
va

lid
Su

cc
es

sf
ul

M
ea

n
R
2

In
va

lid

N
G

-1
4

1.
00

 (±
 0

.0
1)

96
,8

51
 (±

 5
7)

2
1.

00
 (±

 0
.0

1)
98

,1
31

 (±
 5

7)
2

1.
00

 (±
 0

.0
1)

99
,2

43
 (±

 2
5)

N
G

-2
0

1.
00

 (±
 0

.0
1)

96
,8

16
 (±

 3
8)

0
1.

00
 (±

 0
.0

1)
98

,1
43

 (±
 3

8)
0

1.
00

 (±
 0

.0
1)

99
,2

47
 (±

 1
8)

N
G

-3
0

0.
99

 (±
 0

.0
1)

96
,8

57
 (±

 5
9)

0
0.

99
 (±

 0
.0

1)
98

,1
31

 (±
 4

7)
0

0.
97

 (±
 0

.0
7)

99
,2

50
 (±

 2
2)

N
G

-4
0

0.
99

 (±
 0

.0
1)

96
,8

67
 (±

 3
9)

0
0.

99
 (±

 0
.0

1)
98

,1
51

 (±
 6

0)
0

0.
99

 (±
 0

.0
1)

99
,2

38
 (±

 1
7)

N
G

-5
0

0.
00

 (±
 0

.0
0)

96
,8

46
 (±

 4
6)

0
0.

00
 (±

 0
.0

0)
98

,1
48

 (±
 4

6)
0

0.
00

 (±
 0

.0
0)

99
,2

39
 (±

 1
8)

N
G

-6
0

0.
49

 (±
 0

.0
1)

96
,8

43
 (±

 5
5)

0
0.

49
 (±

 0
.0

2)
98

,1
27

 (±
 4

3)
0

0.
09

 (±
 0

.1
5)

99
,2

27
 (±

 2
4)

N
G

-7
0

0.
71

 (±
 0

.2
9)

96
,8

37
 (±

 4
9)

0
0.

60
 (±

 0
.3

2)
98

,1
08

 (±
 2

7)
0

0.
14

 (±
 0

.2
8)

99
,2

49
 (±

 3
1)

N
G

-8
10

1.
00

 (±
 0

.0
0)

96
,8

01
 (±

 4
8)

10
1.

00
 (±

 0
.0

0)
98

,1
46

 (±
 3

9)
3

0.
58

 (±
 0

.4
2)

99
,2

29
 (±

 3
4)

To
ta

l/m
ea

n
14

0.
77

 (±
 0

.3
4)

96
,8

39
 (±

 2
0)

12
0.

75
 (±

 0
.3

4)
98

,1
35

 (±
 1

3)
5

0.
59

 (±
 0

.4
2)

99
24

0
(±

 8
)

4592 Machine Learning (2023) 112:4563–4596

1 3

Ta
bl

e
12

Re

su
lts

 o
f

sy
m

bo
lic

 r
eg

re
ss

io
n

by
 r

an
do

m
 s

am
pl

in
g

an
d

ev
ol

ut
io

na
ry

 o
pt

im
iz

at
io

n
in

 th
e

G
VA

E
la

te
nt

 s
pa

ce
 w

ith
 v

ar
yi

ng
 n

um
be

r
of

 d
im

en
si

on
s

on
 th

e
N

gu
ye

n
be

nc
ha

rk

G
VA

E
32

G
VA

E
64

G
VA

E
12

8
G

VA
E

Ev
o

N
am

e
Su

cc
es

sf
ul

M
ea

n
R
2

In
va

lid
Su

cc
es

sf
ul

M
ea

n
R
2

Ev
al

ua
te

d
Su

cc
es

sf
ul

M
ea

n
R
2

In
va

lid
Su

cc
es

sf
ul

M
ea

n
R
2

In
va

lid

N
G

-1
10

1.
00

 (±

0.
00

)
15

,9
72

 (±

95
)

9
1.

00
 (±

0.

01
)

58
,2

29
 (±

14

9)
10

1.
00

 (±

0.
00

)
72

,8
63

 (±

96
)

10
1.

00
 (±

0.

00
)

0
(±

 1
)

N
G

-2
2

1.
00

 (±

0.
01

)
15

,9
17

 (±

11
1)

4
1.

00
 (±

0.

01
)

58
,2

95
 (±

15

0)
3

1.
00

 (±

0.
01

)
72

,8
40

 (±

11
0)

7
1.

00
 (±

0.

01
)

0
(±

 1
)

N
G

-3
0

1.
00

 (±

0.
01

)
15

,9
85

 (±

10
7)

0
1.

00
 (±

0.

01
)

58
,3

83
 (±

15

3)
0

1.
00

 (±

0.
01

)
72

,8
02

 (±

10
1)

1
1.

00
 (±

0.

01
)

1
(±

 0
)

N
G

-4
0

1.
00

 (±

0.
01

)
15

,9
00

 (±

11
5)

1
1.

00
 (±

0.

01
)

58
,3

18
 (±

16

9)
0

1.
00

 (±

0.
01

)
72

,8
48

 (±

10
5)

0
1.

00
 (±

0.

01
)

0
(±

 0
)

N
G

-5
0

0.
00

 (±

0.
01

)
15

,8
96

 (±

10
2)

0
0.

00
 (±

0.

01
)

58
,3

22
 (±

13

7)
0

0.
00

 (±

0.
00

)
72

,8
08

 (±

97
)

0
0.

00
 (±

0.

01
)

0
(±

 1
)

N
G

-6
2

0.
59

 (±

0.
20

)
15

,9
25

 (±

12
0)

0
0.

49
 (±

0.

00
)

58
,3

27
 (±

16

2)
0

0.
49

 (±

0.
00

)
72

,7
87

 (±

18
3)

0
0.

53
 (±

0.

09
)

1
(±

 1
)

N
G

-7
0

0.
92

 (±

0.
02

)
15

,9
87

 (±

12
3)

0
0.

92
 (±

0.

00
)

58
,2

68
 (±

10

7)
0

0.
91

 (±

0.
03

)
72

,8
65

 (±

11
6)

0
0.

92
 (±

0.

00
)

0
(±

 1
)

N
G

-8
10

1.
00

 (±

0.
00

)
15

,9
86

 (±

13
2)

10
1.

00
 (±

0.

00
)

58
,2

52
 (±

15

7)
10

1.
00

 (±

0.
00

)
72

,8
25

 (±

18
6)

10
1.

00
 (±

0.

00
)

0
(±

 1
)

To
ta

l/m
ea

n
24

0.
81

 (±

0.
33

)
15

,9
46

 (±

37
)

24
0.

81
 (±

0.

34
)

58
,2

99
 (±

45

)
23

0.
80

 (±

0.
34

)
72

,8
30

 (±

27
)

28
0.

81
 (±

0.

34
)

0
(±

 0
)

4593Machine Learning (2023) 112:4563–4596

1 3

Appendix 4: Implementation details

This section provides implementation details that are not part of the methodology but
are crucial for the reproducibility of our approach and its implementation. These details
include batching, encoding/decoding, and training.

A4.1 Batching

Since our approach works on expression trees with varying structures, we cannot employ
standard batching methods. Instead, we represent a batch of expression trees with a Python
object we refer to as a “batched node”. A batched node contains a list of symbols, a left
(batched) child node, and a right (batched) child node.

Since an expression tree may not contain all the nodes in the batched tree, the list
of symbols within a batched node might include an empty string as a placeholder for
the missing symbol. During training, each batched node also contains a target matrix,
a prediction matrix, and a mask vector. The target matrix comprises one-hot symbol
encodings, with empty strings represented by zero values. The decoding cell generates the
prediction matrix, which, in turn, predicts the target matrix. Finally, the mask vector is a
binary vector where the value at index i equals one if the node appears in the expression
tree i and equals zero otherwise.

A4.2 Encoding/decoding

The encoding process involves traversing the batched node using a post-order traversal. We
first visit and encode the left (batched) child, followed by the right (batched) child. Finally,
we generate the code for the batched node using codes obtained from the child nodes.

Decoding is performed in reverse. We start by decoding the (batched) root code, which
yields a list of symbols, the codes for the left and right (batched) child nodes, and the
masks for the left and right child nodes. The masks for the left and right child nodes are
calculated using symbols produced by the decoding cell and the mask of the current node.
Specifically, if the value of the current mask at a given position is 0, the corresponding
values in the mask for the left and right child nodes remain 0. Otherwise, the masks are
assigned values appropriate to the symbol type: both 1 for an operator, 1, and right 0 for
a function, and both 0 for a variable or constant. When all values in a mask become 0, the
decoding process for this branch terminates.

A4.3 Training

Expression trees have two components: the binary tree structure and the symbols within the
nodes. However, the structure of the binary tree can be inferred from the symbols present
in the nodes. Therefore, it is sufficient for our approach to learn to reconstruct the symbols
occurring in the nodes.

When training the model, we restrict the output tree’s structure to match the input
structure. Specifically, we utilize the input batched node and incorporate a prediction
matrix into each node. We then calculate the reconstruction error using the target and
prediction sequences obtained through an in-order traversal of the batched node. While

4594 Machine Learning (2023) 112:4563–4596

1 3

computing the cross-entropy loss, we apply a masking technique to exclude nodes that do
not occur in an expression tree from the loss calculation, effectively removing them from
the training process.

Acknowledgements The authors acknowledge the financial support of the Slovenian Research Agency via
the research core Funding No. P2-0103, Project No. N2-0128, and by the ARRS Grant for young researchers
(first author). The authors especially appreciate the helpful comments and suggestions by Nikola Simid-
jievski and the fruitful discussions within the SHED discussion group (with Jure Brence, Boštjan Gec, and
Nina Omejc).

Author contributions Conceptualization: SM, LT; methodology: SM, LT; writing—original draft prepara-
tion: SM, LT; writing—review and editing: SM, LT, SD; funding acquisition: SD; resources: SM; supervi-
sion: LT, SM; software: SM; Visualization: SM; data curation: SM; Investigation:SM; validation: SM.

Availability of data and materials All data used in this work is available in repositories https:// github. com/
smezn ar/ HVAE.

Code availability The implementation of HVAE and EDHiE and the scripts needed for performing their
evaluation, presented in this article, can be found at https:// github. com/ smezn ar/ HVAE.

Declarations

Funding The authors acknowledge the financial support of the Slovenian Research Agency via the research
core Funding No. P2-0103, Project No. N2-0128, and by the ARRS Grant for young researchers (first author).

Conflict of interest Not applicable.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Allamanis, M., Chanthirasegaran, P., Kohli, P., & Sutton, C. (2017). Learning continuous semantic repre-
sentations of symbolic expressions. In Proceedings of the 34th international conference on machine
learning (Vol. 70, pp. 80–88). JMLR.org

Alvarez-Melis, D., & Jaakkola, T. (2017). Tree-structured decoding with doubly-recurrent neural networks.
In ICLR.

Bahuleyan, H. (2018). Natural language generation with neural variational models.
Bielik, P., Raychev, V., & Vechev, M. (2016). PHOG: Probabilistic model for code. In Balcan, M. F., &

Weinberger, K. Q. (eds.), Proceedings of the thirty-third international conference on machine learn-
ing. Proceedings of machine learning research, New York, New York, USA (Vol. 48, pp. 2933–2942).

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., & Parascandolo, G. (2021). Neural symbolic regression that
scales. In Proceedings of 38th international conference on machine learning (ICML). Proceedings of

https://github.com/smeznar/HVAE
https://github.com/smeznar/HVAE
https://github.com/smeznar/HVAE
http://creativecommons.org/licenses/by/4.0/

4595Machine Learning (2023) 112:4563–4596

1 3

machine learning research (Vol. 139, pp. 936–945). PMLR. https:// proce edings. mlr. press/ v139/ biggi
o21a. html

Blank, J., & Deb, K. (2020). pymoo: Multi-objective optimization in python. IEEE Access, 8, 89497–89509.
Brence, J., Todorovski, L., & Džeroski, S. (2021). Probabilistic grammars for equation discovery. Knowl-

edge-Based Systems, 224, 107077. https:// doi. org/ 10. 1016/j. knosys. 2021. 107077
Bridewell, W., Langley, P., Todorovski, L., & Džeroski, S. (2008). Inductive process modeling. Machine

Learning, 71(1), 1–32. https:// doi. org/ 10. 1007/ s10994- 007- 5042-6
Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014a). On the properties of neural machine

translation: Encoder–decoder approaches. https:// doi. org/ 10. 48550/ ARXIV. 1409. 1259
Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y.

(2014b). Learning phrase representations using RNN encoder–decoder for statistical machine trans-
lation. In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP) (pp. 1724–1734). Association for Computational Linguistics, Doha, Qatar. https:// doi. org/
10. 3115/ v1/ D14- 1179

Cranmer, M. (2023). Interpretable machine learning for science with PySR and SymbolicRegression.jl
Dai, H., Tian, Y., Dai, B., Skiena, S., & Song, L. (2018). Syntax-directed variational autoencoder for struc-

tured data
d’Ascoli, S., Kamienny, P.-A., Lample, G., & Charton, F. (2022). Deep symbolic regression for recurrent

sequences. arXiv preprint arXiv: 2201. 04600
Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-

berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., & Aspuru-Guzik, A. (2018). Auto-
matic chemical design using a data-driven continuous representation of molecules. ACS Central Sci-
ence, 4(2), 268–276. https:// doi. org/ 10. 1021/ acsce ntsci. 7b005 72

Guimerà, R., Reichardt, I., Aguilar-Mogas, A., Massucci, F. A., Miranda, M., Pallarès, J., & Sales-Pardo, M.
(2020). A Bayesian machine scientist to aid in the solution of challenging scientific problems. Science
Advances, 6(5), 6971. https:// doi. org/ 10. 1126/ sciadv. aav69 71

Janz, D., van der Westhuizen, J., Paige, B., Kusner, M. J., & Hernández-Lobato, J. M. (2017). Learning a
generative model for validity in complex discrete structures. In The sixth international conference on
learning representations. https:// doi. org/ 10. 48550/ ARXIV. 1712. 01664

Jin, W., Barzilay, R., & Jaakkola, T. (2021). Junction tree variational autoencoder for molecular graph gen-
eration. In Artificial intelligence in drug discovery (pp. 228–249). The Royal Society of Chemistry.
https:// doi. org/ 10. 1039/ 97817 88016 841- 00228

Kamienny, P.-A., d’Ascoli, S., Lample, G., & Charton, F. (2022). End-to-end symbolic regression with
transformers. arXiv: 2204. 10532

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y. Bengio, Y. LeCun (eds.),
3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7–9,
2015, conference track proceedings.

Kingma, D. P., & Welling, M. (2014) Auto-encoding variational Bayes. In 2nd international conference
on learning representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track
Proceedings.

Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection. Sta-
tistics and Computing, 4(2), 87–112. https:// doi. org/ 10. 1007/ BF001 75355

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statis-
tics, 22(1), 79–86. https:// doi. org/ 10. 1214/ aoms/ 11777 29694

Kusner, M. J., & Hernández-Lobato, J. M. (2016). GANS for sequences of discrete elements with the Gum-
bel-softmax distribution. arxiv: 1611. 04051

Kusner, M. J., Paige, B., Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. In: Proceed-
ings of the 34th international conference on machine learning—volume 70. ICML’17, pp. 1945–1954.
JMLR.org. arxiv: 1703. 01925

Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10, 707–710.

Martius, G., & Lampert, C. H. (2016). Extrapolation and learning equations.
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S.,

Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H.,
Vats, S., Johansson, F., Pedregosa, F., … Scopatz, A. (2017). Sympy: Symbolic computing in python.
PeerJ Computer Science, 3, 103. https:// doi. org/ 10. 7717/ peerj- cs. 103

Mundhenk, T. N., Landajuela, M., Glatt, R., Santiago, C. P., Faissol, D. M., & Petersen, B. K. (2021). Sym-
bolic regression via neural-guided genetic programming population seeding. arXiv: 2111. 00053

https://proceedings.mlr.press/v139/biggio21a.html
https://proceedings.mlr.press/v139/biggio21a.html
https://doi.org/10.1016/j.knosys.2021.107077
https://doi.org/10.1007/s10994-007-5042-6
https://doi.org/10.48550/ARXIV.1409.1259
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://arxiv.org/abs/2201.04600
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1126/sciadv.aav6971
https://doi.org/10.48550/ARXIV.1712.01664
https://doi.org/10.1039/9781788016841-00228
http://arxiv.org/abs/2204.10532
https://doi.org/10.1007/BF00175355
https://doi.org/10.1214/aoms/1177729694
http://arxiv.org/abs/1611.04051
http://arxiv.org/abs/1703.01925
https://doi.org/10.7717/peerj-cs.103
http://arxiv.org/abs/2111.00053

4596 Machine Learning (2023) 112:4563–4596

1 3

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santiago, C. P., Kim, S. K., & Kim, J. T. (2021). Deep
symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradi-
ents. In Proceedings of the international conference on learning representations.

Radinja, M., Škerjanec, M., Šraj, M., Džeroski, S., Todorovski, L., & Atanasova, N. (2021). Automated
modelling of urban runoff based on domain knowledge and equation discovery. Journal of Hydrology,
603, 127077. https:// doi. org/ 10. 1016/j. jhydr ol. 2021. 127077

Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science,
324(5923), 81–85. https:// doi. org/ 10. 1126/ scien ce. 11658 93

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory
(LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. https:// doi. org/ 10. 1016/j. physd.
2019. 132306

Simidjievski, N., Todorovski, L., Kocijan, J., & Dzeroski, S. (2020). Equation discovery for nonlinear sys-
tem identification. IEEE Access, 8, 29930–29943. https:// doi. org/ 10. 1109/ access. 2020. 29720 76

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Pro-
ceedings of the 27th international conference on neural information processing systems—volume 2.
NIPS’14 (pp. 3104–3112). MIT Press

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-structured
long short-term memory networks. In Proceedings of the 53rd annual meeting of the Association for
Computational Linguistics and the 7th international joint conference on natural language process-
ing (Vol. 1: Long Papers, pp. 1556–1566). Association for Computational Linguistics, Beijing, China.
https:// doi. org/ 10. 3115/ v1/ P15- 1150

Todorovski, L., & Dzeroski, S. (1997). Declarative bias in equation discovery. In Proceedings of the four-
teenth international conference on machine learning. ICML ’97 (pp. 376–384). Morgan Kaufmann
Publishers Inc.

Todorovski, L. (2017). Equation discovery. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine
learning and data mining, Chap. 5 (pp. 410–414). Springer. https:// doi. org/ 10. 1007/ 978-1- 4899- 7687-
1_ 258

Udrescu, S.-M., & Tegmark, M. (2020). AI Feynman: A physics-inspired method for symbolic regression.
Science Advances, 6(16), 2631.

Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, R. I., & Galván-López, E. (2011). Semantically-based crosso-
ver in genetic programming: Application to real-valued symbolic regression. Genetic Programming
and Evolvable Machines, 12(2), 91–119.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/j.jhydrol.2021.127077
https://doi.org/10.1126/science.1165893
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1109/access.2020.2972076
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.1007/978-1-4899-7687-1_258
https://doi.org/10.1007/978-1-4899-7687-1_258

	Efficient generator of mathematical expressions for symbolic regression
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Symbolic regression and expression trees
	3.2 Hierarchical variational autoencoder
	3.2.1 Model overview
	3.2.2 Encoder
	3.2.3 Decoder

	3.3 Generating expressions for symbolic regression
	3.3.1 HVAE as a generative model
	3.3.2 Evolutionary algorithm operators

	4 Evaluation
	4.1 The performance of HVAE
	4.1.1 Experimental setup
	4.1.2 Out-of-sample reconstruction error
	4.1.3 Training efficiency and the latent space dimensionality
	4.1.4 Latent space smoothness

	4.2 Evaluating EDHiE
	4.2.1 Experimental setup
	4.2.2 The impact of the dimensionality of the latent space
	4.2.3 Comparison on the Nguyen equations
	4.2.4 Results on the Feynman equations

	5 Discussion and conclusion
	Appendix 1: Grammars and token libraries
	Appendix 2: Additional latent space smoothness results
	Appendix 3: Additional results on the Nguyen benchmark
	A3.1 Dimensions
	A3.2 Learning curves
	A3.3 Robustness to noise
	A3.4 Performance of CVAE and GVAE on symbolic regression

	Appendix 4: Implementation details
	A4.1 Batching
	A4.2 Encodingdecoding
	A4.3 Training

	Acknowledgements
	References

