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Abstract
Automated fault diagnosis can facilitate diagnostics assistance, speedier troubleshooting, 
and better-organised logistics. Currently, most AI-based prognostics and health manage-
ment in the automotive industry ignore textual descriptions of the experienced problems or 
symptoms. With this study, however, we propose an ML-assisted workflow for automotive 
fault nowcasting that improves on current industry standards. We show that a multilingual 
pre-trained Transformer model can effectively classify the textual symptom claims from 
a large company with vehicle fleets, despite the task’s challenging nature due to the 38 
languages and 1357 classes involved. Overall, we report an accuracy of more than 80% 
for high-frequency classes and above 60% for classes with reasonable minimum support, 
bringing novel evidence that automotive troubleshooting management can benefit from 
multilingual symptom text classification.

Keywords Automotive fault nowcasting · Natural language processing · Multilingual text 
classification

1 Introduction

Fault diagnosis is the task of detecting the fault that caused a problem or unexpected behav-
iour to a subject. If the subject is a human being and the nature of the problem is medical 
(e.g., COVID-19), a reasonable diagnostics process comprises the physician who reads or 
listens to the patient’s symptoms, looks at any radiographs or echocardiograms, studies the 
medical records, and so on. Then, the physician may conclude regarding the root cause 
and suggest the right treatment. In the automotive industry, a similar process is followed, 
because ensuring functional safety over the product life cycle while limiting maintenance 
costs has become a major challenge (Theissler et al., 2021; Zhao et al., 2021). Natural Lan-
guage Processing (NLP) has facilitated medical diagnostics (Irving et al., 2021; Izquierdo 
et al., 2020) and issue management in engineering contexts, e.g., telecommunications (Jon-
sson et al., 2016) and banking (Aktas & Yilmaz, 2020). In this work, by taking a vehicle 
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fleet as a subject, we show that NLP-assisted troubleshooting management is feasible also 
in the automotive domain. In line with previous work, we show that it can serve as an addi-
tional channel to serve corrective maintenance and health management (Nath et al., 2021; 
Safaeipour et al., 2021; Theissler et al., 2021; Vaish et al., 2021).

1.1  Automotive fault diagnosis

Upon a fault (e.g., mechanical) a driver typically communicates with the fleet manager, i.e., 
the one responsible for the vehicles in the company’s fleet throughout each vehicle’s life 
cycle. The driver shares the details of the problem as a text message (email, SMS, voice 
mail, etc.) and the department advises the driver to move the truck to a dedicated support 
centre (workshop) nearby. An expert is assigned to diagnose the root cause of the fault and 
when the diagnosis is complete, the problem can be fixed (e.g., by ordering replacement 
parts) so that the driver can continue the job routine. The time of the aforementioned pro-
cess is not short. The driver might be suggested a service-centre that is suboptimal for the 
fault in question or a technician that does not have the right skill set (e.g., high voltage for 
EVs), which leads to a longer time before the truck is repaired. However, if the problem at 
hand was known at an early stage, the company could plan accordingly and find an empty 
slot in a workshop, order spare parts, prepare invoices, etc.

We propose introducing an assistive large language model that can aid a human expert 
tasked with coordinating fleet repairs in making informed decisions at an early time. An 
overview of the resulting human-in-the-loop architecture is shown in Fig. 1. In specific, the 
fault description, which is usually written in natural language (e.g., emails, SMS), before 
arriving at the company’s front desk could first be passed through a text classifier, trained 
to detect the fault behind the claim. At this stage, neither the end-user nor the company 
knows the problem. A human expert will then decide on the most fitting service centre 
based on the original fault description and a ranking of the most probable causes. They 
then communicate the workshop information to the driver and fault description and prob-
able ranking to the workshop. The assumption, however, is that a classifier can learn to 
predict the underlying fault based solely on the textual claim while a system-predicted fault 

Fig. 1  Human-in-the-loop-
architecture of automotive fault 
nowcasting
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could: (a) assist the mechanics/diagnostics teams toward reaching faster to the root cause 
of the problem (speedier troubleshooting); (b) reduce the human error, given that the tired 
or inexperienced expert will be assisted with the system-prediction; (c) allow ordering of 
parts in a timely manner, by detecting early patterns in the fault reports, hence leading 
to better organisation of the logistics. Finally, the problem description together with the 
detected fault can be reused as pre-training and fine-tuning examples for an updated lan-
guage model.

1.2  Contribution

This study focuses on data shared by Scania, attempting to classify the textual descrip-
tions of the problems, as these were registered through work orders in workshops, regard-
ing the actual root cause for the vehicle malfunction. We formed a dataset of 452,071 texts, 
written in 38 languages, and classified manually into 1357 classes. We then investigated 
whether large-scale text classification could assist with faster resolution of faults, hence 
leading to a better working environment for drivers and mechanics, improved logistics, and 
better troubleshooting management overall. Although AI-enabled prognostics and health 
management are well-studied fields (Zhao et  al., 2021), in this work we show that NLP 
can open a new path for automotive troubleshooting management in effectiveness (diagnos-
tics assistance), efficiency (speedier troubleshooting), and management of decision-making 
trade-offs (better-organised logistics).

Different from medical fault diagnosis, which is most often based on image input, the 
large-scale multi-class and -linguality nature of automated fault report management in the 
automotive domain, combined with the terminology, constitute a specific task and a chal-
lenging problem from an NLP perspective. By training a text classifier to produce helpful 
rankings of probable causes of these faults, we show the feasibility of a novel human-in-
the-loop system for fault detection in the automotive industry. In this context, this study 
makes three contributions in light of previous work:

• We present the first large-scale study that demonstrates the applicability of automated 
fault report management in the automotive domain, reporting promising results for an 
industrial case at Scania.

• We show that state-of-the-art NLP methods can handle effectively multi-lingual fault 
diagnosis, hence unlocking the use of pre-trained masked language Transformer mod-
els (Conneau et  al., 2019; Devlin et  al., 2018) for fault diagnosis in the automotive 
domain and beyond, where customer support receives textual fault claims.

• We propose an ML-assisted human-in-the-loop workflow for handling text-based fault 
reports that improves on current industry standards and show its feasibility.

Additionally, we present a comparison of approaches for treating multilingual texts in an 
automotive context. By comparing the efficiency of a multilingual model to a single-lan-
guage model on pre-translated texts, we show that while the former is better for well sup-
ported classes, the latter can be more efficient for classes with low representation in the 
training data.

In the remainder of this article, Sect. 2 presents the related work and Sect. 3 presents the 
dataset. Section 4 provides an empirical analysis and Sect. 5 discusses the findings under 
the light of an error analysis. The paper concludes with our findings and suggested direc-
tions for future work.
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2  Related work

Fault diagnosis is a well-studied problem (Safaeipour et al., 2021) and it can be part of cor-
rective maintenance, defined as the task of repairing a system after a failure occurred (The-
issler et al., 2021). Fault diagnosis is also related to failure detection and predictive mainte-
nance (Carvalho et al., 2018), and prognostics and health management (Biteus & Lindgren, 
2017; Nath et al., 2021). Thanks to digitalisation, the management of fault reports in infor-
mation systems has provided organisations with new opportunities to increase the level of 
automation in related work tasks.

Guided by the “big data” mindset, research and practice have successfully used machine 
learning (ML) to automate fault report management. In large organisations, the inflow of 
textual fault reports often contains actionable patterns for ML models to learn. The soft-
ware engineering community was an early adopter of this approach and numerous papers 
on training classifiers to analyse bug reports have been published. Common applications 
include duplicate detection, bug prioritisation, and automated team assignment for rapid 
bug fixing (Borg & Runeson, 2014).

NLP is also used to facilitate business processing, but most often through the develop-
ment of task-directed dialogue systems (chatbots), e.g., to assist user satisfaction assess-
ment (Borsci et al., 2022) or troubleshooting (Thorne, 2017). Although machine learning 
is present in such studies, they do not aim to assist a diagnostics process but rather tasks 
such as intent classification (Adamopoulou & Moussiades, 2020). The broader potential of 
NLP in prognostics and health management, however, is not disregarded, with tasks such 
as keyword detection in maintenance records and prediction of the failure type remedied, 
proposed in Fink et al. (2020).

Most previous work that attempted to employ NLP to address fault diagnosis relied on 
simple bag-of-words models or the TFIDF statistical measure followed by standard tech-
niques available in open-source ML libraries. Jonsson et al. (2016), for example, compared 
most techniques available in WEKA1 for training classifiers for telecommunications fault 
reports at Ericsson. Aktas and Yilmaz (2020) presented a similar study for fault reports 
in the context of İşbank, the largest bank in Turkey. Vaish et  al. (2021) trained various 
ML classifiers for fault reports in the domain of power systems. Recently, deep learning 
has also been applied to classify fault reports, including recurrent and convolutional neural 
networks (Zhang et al., 2022) or transfer learning (Qian et al., 2022). All these approaches, 
however, are outdated, since BERT (Devlin et al., 2018) set a new state of the art in several 
NLP tasks.

3  The multilingual and multiclass dataset

Our dataset consists of textual descriptions of malfunctions in trucks. We extracted 452,071 
texts from a database containing work orders placed in workshops over the past years. Each 
text is labeled corresponding to a main group and a class. The main group refers to what 
overarching segment the faults belong to (e.g., ‘engine’ or ‘chassis’) and the class reflects 
the particular sub-part that has been identified as the root cause for the vehicle malfunction 
in a workshop (e.g., ‘oil pump’ or ‘yoke’). The average support of unique texts per class is 

1 https:// www. cs. waika to. ac. nz/ ml/ weka/.

https://www.cs.waikato.ac.nz/ml/weka/
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267.2, ranging from 1 to 6875 texts corresponding to the same class/problem. Furthermore, 
the same text may be classified into multiple classes, with a single text describing 1.04 
classes on average ( min. = 1,max. = 77 ). In all our experiments, we used 52% of the data 
for training, 24% for development and 24% for testing. The shortest text contains as little as 
one word, whereas the longest one consists of over 350 words.

3.1  Language distribution

Thirty-eight languages have been identified in the data with the help of the Amazon Trans-
late language detection service.2 In Fig.  2, which shows the most frequent languages, a 
large imbalance between the languages can be observed. The ten most frequent languages 
make up 93.3% of the total samples while the ten least frequently predicted languages 
make up 0.01%. The ten most frequent languages are the following (unordered)3: English, 
German, Swedish, Finnish, Norwegian, Danish, French, Dutch, Portuguese, and Italian.

The translation service was not able to identify a language for 49,652 texts in our data. 
These were assigned an unknown language (unk; highlighted in black in Figs. 2 and 4). 
Out of the texts assigned to the unknown language, 35,162 were empty strings that were 
removed. Out of the remaining 14,490 texts, 9165 were unique. Through manual inspec-
tion, it is possible to identify flaws in language detection and to find translations of cases 
where a language has been identified while the translation was not accurate. An example 
is “110-5002.06 SKARVKOPPLING 6 MM PLAST”, which is Swedish predicted to be 
Vietnamese; or “TMI 04 15 02 19” and “tpm 48180”, which were incorrectly predicted as 
Haitian and Indonesian, or the detected language “Esperanto”, which was not part of the 
dataset. Although we cannot exclude the case that another translation service would handle 
such cases better, we find that the translation of these texts is hard. In Table 1 the men-
tioned examples are shown together with two correctly identified languages (English and 
German) at the last and second to last row.

Fig. 2  The (log) frequency distribution of the languages in the data. Portuguese, German, and English are 
the most frequent languages of the texts, followed by an undefined language (in black)

2 https:// aws. amazon. com/ trans late/.
3 The order, along with further information, is not revealed to protect sensitive company information.

https://aws.amazon.com/translate/
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3.2  Class distribution

There are 1357 unique classes in the available data, each indicating a subpart that has 
been identified as being the root cause of a problem in a workshop work order. Class 
examples are ‘water valve’, ‘yoke’, and ‘oil pump’. The distribution between the classes 
is heavily imbalanced because some errors and faults are more likely to appear earlier 
in the life cycle of a truck than others. The histogram in Fig. 3 shows the right-skewed 
distribution.

Fig. 3  Histogram of the classes, 
the y-axis denotes the number of 
observations and the x-axis the 
class label

Fig. 4  Number of classes per language. The black bar corresponds to an undefined language (unk)
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The class distribution varies among languages and the number of unique classes that 
are represented in each individual language differs (Fig.  4),4 with German, English and 
unknown (i.e., where the translation fails) being the ones with the most classes. The ten 
most frequent classes make up 14.8% of total samples, while the one hundred least fre-
quent classes on the other hand make up less than 0.3%. The Venn–diagram in Fig. 5 shows 
the class overlap between the three most frequent languages, vis. Portuguese, German and 
English (see Fig. 2). Although we do not limit the number of classes, to those shared by 
all or certain languages, we note the fact that classes are not represented equally in the 
languages.

A manual inspection of the data showed that relatively common phrases exist, such as 
“customer complaint”, “driver complaint”, “attend to”, “vehicle presenting”, which do not 
provide any information regarding the actual fault. Inspecting to what extent these phrases 
are present in the data showed that around 7% of the training data comprised at least one of 
these phrases.5

4  Empirical analysis

The task of diagnosing a fault from its textual description can be approached as a large-
scale text classification problem. Given that the dataset we experimented with comprises 
texts in multiple languages, the task is a multilingual large-scale text classification (LSTC) 

Fig. 5  Overlap of represented 
classes for the three most 
frequent languages, Portuguese, 
German, and English

Table 1  Examples taken from 
the dataset

The predicted language of the topmost example was Norwegian (“110-
5002.06 JOINT COUPLING 6 MM PLASTIC”) and of the last it was 
German (“Air loss at driver’s seat”)

Group Original text Class

14 110-5002.06 SKARVKOPPLING 
6 MM PLAST

4

4 TMI 04 15 02 19 38
8 Noise from rear axle 1227
15 Luftverlust am Fahrersitz 223

4 The diversity of the class distribution across languages is probably due to the different specifications and 
utilisation of trucks in different markets (hence, languages).
5 These phrases were investigated in the context of translated data, to avoid the cumbersome work of 
searching in all possible languages.
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problem. Opted text classification methods were multilingual or they operated on the data 
after these were translated into English (ET).

4.1  Benchmarks under the light of translation

Our study aims to draw the baseline performance for this multiclass task, but also to inves-
tigate the benefits of employing translation as a service. Hence, we opted for multilingual 
methods, as well as for methods operating on texts translated into English. Our main mul-
tilingual method was XLM-R, a BERT-based model with state-of-the-art performance 
on multilingual tasks (Conneau et al., 2019). Our main method employing ET was a pre-
trained DistilBERT model (Sanh et al., 2019), preferred over the original BERT (Devlin 
et al., 2018) due to it being more lightweight and having significantly fewer parameters at 
almost the same classification performance. This helps reduce fine-tuning time (Sanh et al., 
2019; Shaheen et al., 2020). We compare two versions of DistilBERT, one fine-tuned on 
the translated training set and a second one fine-tuned on the original untranslated texts. 
As a base for these transformers, we use the sequence-classification models provided by 
the transformers-library for python and initialise them with pre-trained. weights from hug-
gingface6 We also experimented with a multinomial logistic regression on top of FastText 
(FTX) embeddings (Joulin et al., 2016) and with a Convolutional Neural Network (CNN). 
While the FTX was only trained on the translated training data, we based the CNN on 
a SentencePiece tokenizer trained on all of the available English translations. Although 
recurrent neural networks work well for the NLP tasks where comprehension of long range 
semantics is required, CNNs work well where detecting local and position-invariant pat-
terns is required, such as key phrases (Minaee et al., 2021; Wang et al., 2018). Overall, we 
experimented with six models: FTX-ET, CNN-ET, DistilBERT-ET, DistilBERT, CNN and 
XLM-R. A majority baseline classification is also used to highlight the task difficulty.

4.2  Evaluation

Our task is a multiclass problem with few classes outweighing thousands of others (see 
Fig. 3). Some of the rare classes occur in only a few observations, which are not of great 
interest for our troubleshooting management use case.7 By contrast, issues related to fewer 
yet frequently occurring classes can reveal trends that possibly transfer across countries and 
can be effectively addressed with early troubleshooting management. Hence, for evaluation 

Fig. 6  Segmentation based on 
the number of instances (lower-
most), showing the percentage 
of samples (horizontally) per 
segment (colored). The same is 
shown on top when segmenting 
based on the number of classes 
(Color figure online)

6 DistilBERT: distilbert-base-uncased XLM-R: jplu/tf-xlm-roberta-base.
7 Scania owns complementing tools to handle rare classes.
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purposes, we opt for top-k accuracy, which counts the number of times the true label is 
among the k classes predicted with the highest probability. To better present and analyse 
the results of this large-scale multiclass problem, we introduce support and language based 
zones, by segmenting the evaluation data based on their class-support and language. We 
show results with k = 1 , but Appendix A comprises results with more values, as well as 
with precision, recall and F1.

Segmentation based on class support is performed at test time by clustering the classes 
based on their size, and then evaluating per cluster. We used the 1st (25%) and 3rd (75%) 
quartile as our two thresholds, in order to yield three class zones, shown with the low-
ermost bar of Fig. 6. The low-support zone (in red) comprises 1,076 classes whose total 
number of instances (classified in one of those classes) does not exceed the first quartile of 
our data. The top zone (in blue) is similar but using 27 high-support classes. The mid zone 
comprises the rest. The top and low support zones comprise the same number of texts, in 
order to set a scene where low-support classes are of similar interest to management as 
high-support classes. Segmenting allows us to analyse the effect of class-support on the 
model performance. We did not segment based on the number of classes (upper horizontal 
bar in Fig. 6), instead of their support (lower), as this leads to heavily imbalanced zones. 

4.3  Experimental results

Table  2 presents the accuracy per model. A majority baseline that achieves a very low 
score shows the task difficulty, with the top-zone being the easiest due to fewer classes 
being considered. FTX-ET and CNN perform poorly, but with the latter being clearly bet-
ter. A DistilBERT fine-tuned on English translations is the best (61.4%), despite the fact 
that approximately 5% of the instances are missed due to the inability of the translation 
service to produce a translation. When ignoring these during the evaluation, the accuracy 
drives up to 61.9%. The multilingual XLM-R follows closely (61.3%), despite the fact that 
it does not employ any translation service, operating on texts presented with their original 
language in which they were written. Furthermore, when we fine-tune DistilBERT on all 
(multilingual) data, the performance improves for mid/top classes while it drops in low. 
This drop can be explained by the fact that there aren’t enough data to learn during fine-
tuning. By contrast, better-supported classes are better handled without any translation, 
probably because the model has enough data to learn to trust the terms ignoring the rest.

Table 2  Accuracy per model

Classification accuracy of models trained on English translations (ET) 
and on raw data (lowermost). Accuracy on all classes has been com-
puted, as well as on three clusters formed based on class support

Total (%) Low (%) Mid (%) Top (%)

Majority 2.46 0.32 1.03 9.80
FTX-ET 19.6 8.5 22.7 24.5
CNN-ET 49.5 22.8 53.0 68.3
DistilBERT-ET 61.4 35.5 62.2 78.8
DistilBERT 61.1 33.0 64.3 82.3
CNN 52.3 22.8 56.3 72.4
XLM-R 61.3 29.8 66.6 82.0
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4.3.1  Class‑based assessment

The performance per class-support zone is shown in the three rightmost columns of 
Table 2. CNN performs clearly better than FTX-ET but both fall behind the other mod-
els. DistilBERT-ET is better than DistilBERT only in the low-support zone. This means 
that when the class support is low, this monolingual pre-trained masked language model 
benefits (+  2.5) from using English translations as input, instead of the raw data. By 
contrast, when the class support is higher the translation step is not only redundant but 
also harms the results in the mid ( −  2.1) and in the top zone ( −  3.5). For frequently 
occurring classes (top segment, last column of Table  2), DistilBERT is the best, fol-
lowed closely by XLM-R ( −0.3) and DistilBERT-ET ( −3.5). Using the raw input infor-
mation, by disregarding the language and the translation, appears to provide a better 
input signal, which is also shown with the superiority of CNN (72.4%) over its transla-
tion-based counterpart (68.3%).

4.3.2  Language‑based assessment

Table  3 presents the Accuracy (%) per language of the best performing monolingual 
(DistilBERT-ET) and multilingual (XLM-R) model. Only languages with a log fre-
quency above five are shown, since below that threshold the support significantly drops 
(Fig. 2). At the same threshold, the number of unique classes is also reduced (Fig. 4).

The five most frequent languages are all better addressed by the multilingual XLM-R 
except from English (3rd in row), the language DistilBERT is pre-trained on. XLM-R also 
performs well (44.3%) for texts that the translation service fails to provide an English trans-
lation (unk), which are texts that DistilBERT is incapable of handling. When we use the 
original texts for samples whose translation is not available, DistilBERT gives 61.4% in 
total and 37.4%, 63.4% and 81.2% for low, mid and top classes respectively, which means 
that the low class is improved while mid and top are harmed. DistilBERT, however, is bet-
ter for the majority of the thirteen less frequent languages with 2.8 units on average, rang-
ing from 0.3 added units for the 10th language to 5.1 for the 17th. This unexpected finding 

Table 3  Accuracy per language

Bold values indicate the best model per language
Accuracy (%) per language of the best performing monolingual (DistilBERT-ET) and multilingual (XLM-
R) model. Only languages with log frequency above five are considered and DistilBERT is not computed 
when the language was undefined

Language #1 #2 #3 #4 #5 #6 #7 #8 #9 …

en unk

DistilBERT-ET 71.3 61.3 61.0 – 48.3 52.4 62.8 55.3 61.0 …

XLM-R 72.4 61.4 58.5 44.3 48.5 53.2 60.5 54.0 61.4 …

Language #10 #11 #12 #13 #14 #15 #16 #17 #18 #19

DistilBERT-ET 57.4 38.0 62.4 57.8 61.7 55.1 46.2 51.4 54.5 40.8
XLM-R 57.1 36.0 64.8 55.5 62.0 50.5 54.6 46.3 49.7 40.8
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shows that a simple lightweight translation-based model, outperforms overall its multilin-
gual counterpart for low-represented languages in this domain.

4.4  Oversampling low‑represented classes

To study the possibilities of mitigating the effects and learning issues caused by intrin-
sic and extrinsic factors through the use of simple methods, we oversampled under-repre-
sented classes through random sampling with replacement. Classes with fewer instances 
than a threshold were augmented by duplicating their instances.8 We varied this threshold 
from 10 to 50 and found that oversampling classes with less than 30 instances yields the 
most benefits for the low-segment (+2) without harming any of the other segments and 

Fig. 7  XLM-R’s F1-score per class (point) based on class support (horizontally; log10-scaled) when over-
sampling classes with a support lower than 0 (a), 30 (b) and 50 (c). Red dashed lines separate low (left), 
mid and top (right) support zones (Color figure online)

8 Instances were selected randomly, up to twenty per class.
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the overall accuracy.9 Fig.  7 shows XLM-R’s F1-score for each class plotted against its 
frequency in the training data. When no oversampling is employed (a), in the low-sup-
port zone on the left, there is a cut-off point below which classes are incorrectly predicted. 
When oversampling classes with a support lower than 30 (b) and 50 (c), the same region 
is more densely populated by classes with high F1-values. Indicatively, the total accuracy 
of XLM-R increased with oversampling from 61.3% to 62.5% (threshold equal to 10) to 
62.6% (20) to 62.7% (30) to 63.2% (50).

5  Discussion

As was shown in Sect. 4, DistilBERT operating on texts translated to English achieved the 
best results overall (see Table 2). This approach, however, carries the extra cost of transla-
tion. The multilingual XLM-R and the monolingual DistilBERT followed closely. Look-
ing at support zones, DistilBERT is the best for high-frequency classes, outperforming the 
multilingual XLM-R and the translation-based DistilBERT-ET. The vast amount of data 
for a limited number of classes, make the original languages a better input space com-
pared to English translations, despite the fact that this method is pre-trained on an Eng-
lish corpus. XLM-R is also left behind for the low-support-zone, outperformed by both 
DistilBERT models. However, its better performance for the bigger mid zone, makes it 
the best option overall when translation is not an option. On the other hand, DistilBERT, 
which is the best in the low and top zones, is also far more lightweight. In specific, the fine-
tuning time of XLM-R on an Nvidia T4 GPU is approx. 26 h while that of DistilBERT is 6. 
Also, as can be seen in Fig. 8, XLM-R is slower during inference.10 In general, the results 
show that the workflow shown in Fig. 1 is generally feasible: The results for top-1 accu-
racy of the tested transformer-based models are already exceeding baselines. If the human 
expert is presented with a ranking of the 5 most probable causes, the probability of show-
ing the right class again improves substantially (see Table 4). This means that the system is 

Fig. 8  Inference time for differ-
ent sequence lengths with a batch 
size of 1 on an Nvidia T4 GPU

9 Besides oversampling, we also added English translations of the texts, but preliminary experiments 
showed that this approach was overall worse.
10 The same finding was verified when we used the CPU. The difference was smaller for an Nvidia Tesla 
P100 GPU.
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generally able to support a person with domain knowledge in making meaningful decisions 
by suggesting possible causes based on historical data. This is especially useful as the sys-
tem is able to transfer knowledge from different language domains, that may not be directly 
accessible by the expert.

5.1  Language‑based assessment

As can be seen in Table 3, a multilingual Transformer can work equally well or better than 
a model operating on texts translated to English. This is important if costs are an impor-
tant factor while, as already discussed, this comes hand in hand with improved efficiency. 
Accuracy ranges from above 70% for the most frequent class to around 40% eighteen posi-
tions lower in the rank. This score is only five points above the best performing model 
for the low-zone, which achieved 35.5%. By oversampling the low-supported classes, we 
observed that better scores are feasible (Fig.  7), even with simple mechanisms, such as 
instance duplicating.

5.2  Error analysis

An error analysis for the most frequent classes revealed that both our best performing mod-
els, DistilBERT (monolingual) and XLM-R (multilingual), perform well, correctly clas-
sifying most of the instances of the respective class (the confusion matrices can be found 
in Appendix B). Although misclassifications are visible in the confusion matrices, these 
are quite similar for both models, which confused, for example, the following three pairs: 
(2, 12) that stands for ‘reductant hose’ and ‘NOx sensor’, (140, 159) that stands for ‘seal-
ing ring’ and ‘seal’, and (5, 16) that stands for ‘yoke’ and ‘support’. A linguistic analysis 

Fig. 9  Topic modeling with Latent Dirichlet Allocation on the validation data. The focus in on the third 
topic, shown in red. Topics are represented by circles whose size reflects the marginal distribution. The 
term-frequency is shown in blue bars overall and in red for the topic in question (Color figure online)
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revealed that the classes of the two former pairs concerned the same mechanical malfunc-
tion, which means that the prediction could have been even higher if we grouped classes 
together. In specific, a ‘sealing ring’ is a circular seal, which can be considered a more spe-
cific concept (hyponym) of ‘seal’. A ‘sealing ring’ that is classified as a ‘seal’ is now con-
sidered as a mistake. Also, a ‘yoke’ is a yoke-shaped plate or such, on which other compo-
nents can be attached. It can be considered as a subtype of ‘support’, which is defined as a 
device that supports and helps hold a unit in a certain position. Finally, a ‘NOx sensor’ and 
a ‘reductant hose’ are two components of the same system, the exhaust gas after-treatment 
that lies below the fuel and exhaust system. According to a domain expert, the symptoms 
of a faulty ‘NOx sensor’ and a ‘faulty reductant hose’ are similar but not identical. An anal-
ysis with topic modeling (Blei et al., 2003), however, revealed that ‘sensor’ and ‘reductant’ 
co-exist in the same topic (Fig. 9).11

5.3  Limitations

Due to the sensibility of the used data with regard to Scania’s economic interests, we are 
not able to release the data to the public. Also, we only explored the technical feasibility 
of the proposed workflow. In order to assess the realistic overall gain from the workflow, 
however, we note that further studies are required. Besides these two limitations, we also 
discuss three more:

Time locality Errors and faults are more likely to appear earlier in the life cycle of a 
truck compared to others. More generally, certain faults might cluster in time, which means 
that their respective claims will not be independent. For example, if component A brakes in 
Truck X, perhaps component B is more likely to break next. In this work, we ignored “time 
locality”, which we plan to investigate further in the future, along with its implications to 
training and evaluating machine learning models.

Non-optimized unilingual model Our application of DistilBERT assisted in the explora-
tion of the proposed framework’s resource efficiency. At the same time, however, we note 
that it may underperform compared to XLM-R. Future research should explore whether a 
non-optimized unilingual model, such as native BERT, can meet the performance of the 
multilingual XLM-R.

Metadata We only considered the text of the problem or the symptom, in this study, 
ignoring any metadata. We note, however, that predictive power may exist in the metadata 
in the issue management system. The location, the vehicle model, the time of the year, etc. 
can assist the classification and improve the performance. The assessment of the value of 
using metadata as input for automotive fault nowcasting is a research direction that should 
be explored in future work.

6  Conclusion

We presented the first large-scale study that demonstrates the applicability of auto-
mated fault report management in the automotive domain and show a possible work-
flow for applying such a system in an automotive industry scenario. This study showed 

11 We used: https:// pylda vis. readt hedocs. io, and the following LDA implementation by Gensim: https:// 
radim rehur ek. com/ gensim/ models/ ldamo del. html.

https://pyldavis.readthedocs.io
https://radimrehurek.com/gensim/models/ldamodel.html
https://radimrehurek.com/gensim/models/ldamodel.html
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that the textual descriptions of symptoms can be used to early diagnose the root causes 
and hence facilitate effectiveness, efficiency and decision-making of the automotive 
industry and management therein. Empirical findings, using data from vehicle fleets, 
revealed that Transformer-based models can adequately address this large-scale mul-
tilingual multiclass text classification task, opening the way for the application of the 
same workflow on similar domains. Our findings show that translation-based data 
assist low-represented classes while, when translation is not an option, using a model 
pre-trained on multilingual data or fine-tuning a model pre-trained on English data can 
perform equally well, or even better for high-frequency classes. Also, the relatively low 
performance of low-frequency classes can be improved with oversampling, a direc-
tion we plan to investigate further in future work, along with hierarchical classification 
and the exploitation of more (labeled and unlabeled) data. Further directions for future 
work comprise the study of time locality, the assessment of metadata as input, and the 
use of conformal prediction to assist the human expert. Also, although the focus of this 
study is within the automotive domain, the applicability of the proposed method goes 
beyond, concerning any troubleshooting point where fault claims are received in tex-
tual form. Therefore, a final direction for future work is the application to other areas, 
where results are of high value for all actors with a need for the diagnosis of complex 
systems, especially when the actor is global. In addition to heavy vehicles, this com-
prises the light vehicle industry, rail-based vehicle industry, process industry, defence 
industry, and consumer products.

Appendix A: Evaluation

Table 4 presents the top-k categorical Accuracy of XLM-R and DistilBERT, which considers 
a prediction as true if the correct class is within the top-k predictions. Experimenting with k 
equal to three and five, XLM-R is better in both.

Tables  5 and  6 show the Precision, Recall, and F1 scores of XLM-R and DistilBERT, 
macro-averaged per zone. XLM-R has a better F1 score than DistilBERT for top and mid 
classes, due to its better Recall. However, in low classes DistilBERT is superior in all metrics, 
lifting also the overall performance (1st column of Table 6).

Table 4  Top-3 and Top-5 
categorical Accuracy of XLM-R 
and DistilBERT

Bold values indicate the best model per row

DistilBERT (%) XLM-R (%)

Top-3 accuracy 75.4 77.9
Top-5 accuracy 79.2 82.6

Table 5  Precision, Recall and F1 
of XLM-R

Precision, Recall and F1 of XLM-R macro-averaged per zone. In bold 
the best results compared to the ones of DistilBERT in Table 6

Total (%) Top (%) Mid (%) Low (%)

Precision 28.4 74.5 57.9 20.4
Recall 26.4 80.2 63.0 16.6
F1 25.4 77.0 59.3 16.2
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Appendix B: Confusion matrices

Tables  7 and  8 below show the confusion matrices for the DistilBERT model and the 
XLM-R model for the ten most frequent classes. The high values on the diagonal of the 
matrices imply that both models predict the top 10 classes well.

Table 6  Precision, Recall and F1 
of DistilBERT

Precision, Recall and F1 of DistilBERT macro-averaged per zone. In 
bold the best results compared to ones of XLM-R in Table 5

Total (%) Top (%) Mid (%) Low (%)

Precision 44.0 74.6 60.0 39.7
Recall 35.6 79.4 60.1 29.0
F1 36.4 76.5 58.5 30.5

Table 7  Confusion matrix for the top-10 classes for DistilBERT
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