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Abstract
Contamination can severely distort an estimator unless the estimation procedure is suitably 
robust. This is a well-known issue and has been addressed in Robust Statistics, however, 
the relation of contamination and distorted variable selection has been rarely considered 
in the literature. As for variable selection, many methods for sparse model selection have 
been proposed, including the Stability Selection which is a meta-algorithm based on some 
variable selection algorithm in order to immunize against particular data configurations. 
We introduce the variable selection breakdown point that quantifies the number of cases 
resp. cells that have to be contaminated in order to let no relevant variable be detected. 
We show that particular outlier configurations can completely mislead model selection. We 
combine the variable selection breakdown point with resampling, resulting in the Stability 
Selection breakdown point that quantifies the robustness of Stability Selection. We pro-
pose a trimmed Stability Selection which only aggregates the models with the best perfor-
mance so that, heuristically, models computed on heavily contaminated resamples should 
be trimmed away. An extensive simulation study with non-robust regression and classifica-
tion algorithms as well as with two robust regression algorithms reveals both the potential 
of our approach to boost the model selection robustness as well as the fragility of variable 
selection using non-robust algorithms, even for an extremely small cell-wise contamination 
rate.
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1 Introduction

Feature selection in machine learning became popular once Tibshirani introduced the 
Lasso (Tibshirani, 1994). This opened the path for a plethora of feature selection meth-
ods in regression [e.g., (Bühlmann & Yu, 2003; Efron et al., 2004; Zou, 2006; Yuan & 
Lin, 2006; Simon et al., 2013)], classification (Park & Hastie, 2007; Meinshausen, 2007; 
Van de Geer, 2008), clustering [e.g., (Witten & Tibshirani, 2010; Alelyani et al., 2013) 
and references therein], ranking (Tian et al., 2011; Lai et al., 2013; Laporte et al., 2014) 
and sparse covariance or precision matrix estimation (Banerjee et al., 2008; Friedman 
et al., 2008; Van de Geer, 2016).

It has been observed that single regularized models often tend to overfit, which was 
the starting point for a more sophisticated concept that combines ensemble models 
with feature selection, namely Stability Selection (Meinshausen & Bühlmann, 2010). 
Roughly speaking, in Stability Selection one considers subsamples of the training data, 
performs feature selection on each subsample and aggregates the models to get a final 
stable model at the end. Stability Selection can be interpreted as meta-algorithm for 
which algorithms like the usual Lasso but also Lasso variants and Boosting (Hofner 
et al., 2015) can enter as base algorithm for feature selection.

All non-ensemble non-robust feature selection algorithms, including standalone 
Boosting models, usually get distorted once the training data are contaminated, for 
example, by wrong measurements or by manipulations done by an attacker who is able 
to intercept the data and, maybe targetedly, alter entries. Safeguarding against such con-
tamination is done by methods of Robust Statistics [e.g., (Maronna et al., 2019; Huber 
& Ronchetti, 2009; Hampel et  al., 2011; Rieder, 1994)]. Although outlier detection 
strategies [e.g., (Rocke & Woodruff, 1996; Shieh & Hung, 2009; Filzmoser et al., 2008; 
Rousseeuw & Hubert, 2011; Rousseeuw & Van Den Bossche, 2018)] are important for 
data cleaning so that a classical algorithm may be applied, robust learning algorithms 
can directly cope with contaminated data. The main idea [see (Huber & Ronchetti, 2009; 
Hampel et al., 2011)] is to bound the effects of contamination by replacing unbounded 
loss functions like the squared loss by a loss function with a bounded derivative or, even 
better, by a redescender whose derivative tends to zero for large arguments, or to assign 
less weight to suspicious instances. Robust techniques have successfully entered sparse 
feature selection like robust Lasso algorithms (Rosset & Zhu, 2007; Chen et al., 2010b, 
a; Chang et al., 2018), robust L2-Boosting (Lutz et al., 2008) and Sparse Least Trimmed 
Squares (SLTS) (Alfons et al., 2013), among several other variants.

In practice, especially for high-dimensional data, cell-wise outliers (Alqallaf et  al., 
2009) are more realistic than case-wise outliers, so single cells are allowed to be contami-
nated, independently from whether the other cells in the respective instance are contami-
nated. In contrast to case-wise contamination, which can be interpreted as measuring all 
variables for an instance with one single sensor which may be corrupted with a certain 
probability, cell-wise contamination can be identified with measuring each variable with an 
individual sensor, and that the sensors are corrupted independently [see (Filzmoser et al., 
2020)]. For high-dimensional data, this can cause each instance to be contaminated while 
the fraction of outliers, measured by the relative part of contaminated cells and not of con-
taminated rows, can still remain very low. There are already some algorithms that can cope 
with cell-wise outliers like the robust clustering algorithm that trims outlying cells (García-
Escudero et al., 2021), cell-wise robust location and scatter matrix estimation algorithms 
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(Agostinelli et al., 2015; Leung et al., 2017) and several regression approaches (Bottmer 
et al., 2022; Leung et al., 2016; Filzmoser et al., 2020).

A common robustness measure is given by the breakdown point. In contrast to the 
prominent influence curve which quantifies the local robustness of an estimator, i.e., only 
allowing for an infinitesimal fraction of the data to be contaminated, the breakdown point 
(BDP), introduced in Hampel (1971, Sect. 6) in a functional version and in Donoho and 
Huber (1983) in a finite-sample version, studies the global robustness of an estimator. The 
finite-sample BDP from Donoho and Huber (1983) quantifies the minimum fraction of 
instances in a data set that guarantees the estimator to “break down” when being allowed 
to be contaminated arbitrarily while the functional BDP essentially quantifies the mini-
mum Prokhorov distance of the ideal and contaminated distribution that leads to such a 
breakdown. There has already been a lot of work on BDPs, see for example Rousseeuw 
(1984, 1985), Davies (1993) and Hubert (1997), Genton (1998), Becker and Gather (1999), 
Gather and Hilker (1997) or Hubert et al. (2008) which cover location, scale, regression, 
spatial and multivariate estimators. Recently, BDP concepts for classification (Zhao et al., 
2018), multiclass-classification (Qian et al., 2019) and ranking (Werner, 2022b) have been 
proposed. Another type of breakdown point which relates the quotient of the number of 
variables and observations to the sparsity of the true model was studied in Donoho and 
Stodden (2006), illuminating that in high-dimensional settings, classical model selection 
procedures like Lasso can only find a reliable model provided that the true model is suf-
ficiently sparse.

Despite the recent successes of robust model selection methods and path-breaking 
theoretical results concerning model selection consistency [see, e.g., (Bühlmann & Van 
De Geer, 2011)], the question how contamination affects variable selection is seldomly 
addressed, leaving the connection of the paradigms of sparse model selection (select a 
small fraction of columns), stability (select variables that are appropriate for the major-
ity of the data, i.e., a majority of the rows) and robustness (focus on a certain “clean” 
majority of the rows) still opaque. Although the frequency of contamination in real data 
is high and although the issue that non-aggregated feature selection models are usually 
unstable and tend to overfit is well-known, combining both stability and robustness seems 
to have rarely been considered in the literature so far. A robust Stability Selection based 
on cleaned data has been introduced in Uraibi et al. (2015). The author of Uraibi (2019) 
applies a weighted LAD-Lasso (Arslan, 2012) as base algorithm for the Stability Selec-
tion where the weights are computed according to a robust distance in order to downweigh 
leverage points. The authors of Park et  al. (2019) proposed a robust Stability Selection 
where the term “robust” however refers to an immunization against a specific regulariza-
tion parameter of the underlying Lasso models, therefore considers a different goal than we 
do. Notable work on aggregating robust estimators has been done in Salibián-Barrera and 
Zamar (2002); Salibián-Barrera et al. (2008) who propose a linear update rule for robust 
MM-estimators in order to avoid computing it on each of the drawn Bootstrap samples, 
see also Salibián-Barrera (2006) for fixed-design regressor matrices and Salibián-Barrera 
et al. (2006) for robust PCA estimators. While these techniques do not consider variable 
selection, Salibián-Barrera and Van Aelst (2008) extend their method to variable selection 
where a backward selection strategy according to a minimization of the expected predic-
tion error is applied.

We aim at making a tiny step towards the connection of robustness, stability and spar-
sity by introducing the variable selection breakdown point, which describes the number 
of (case-wise or cell-wise) outliers that can make variable selection completely unreli-
able, and the Stability Selection breakdown point, which corresponds to a sufficiently 
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high probability that a stable model becomes completely unreliable. We study the rela-
tive robustness improvement that a Stability Selection grants, compared to a single model 
selection algorithm. It turns out that a rank-based Stability Selection where a fixed number 
of best variables enters the stable model is generally more robust than a threshold-based 
Stability Selection where all variables whose aggregated selection frequency exceeds the 
threshold enters the stable model. We propose a trimmed Stability Selection (TrimStab-
Sel) and investigate its performance on a large variety of simulated data in comparison 
with a non-robust Stability Selection, where L2-Boosting, LogitBoost and SLTS are used 
model selection algorithms. The numerical results show that even an extremely small 
cell-wise contamination rate can already have a severe impact on variable selection. Our 
TrimStabSel can in particular be recommended in settings where the contamination rate is 
expected to be low but non-zero and in presence of rather high noise levels. Moreover, it 
can, depending on the particular model selection algorithm, even enhance the performance 
of a Stability Selection with a robust model selection algorithm.

Our contribution is threefold: (i) we propose BDP definitions for (stable) variable selec-
tion; (ii) we propose (oracle) outlier schemes that can completely distort model selec-
tion with usually very few cell-wise outliers; (iii) we lift the popular concept of trimming 
from single instances to whole models that allows for contamination rates exceeding 50% 
while maintaining the 50%-bound for the standard BDPs of the underlying model selection 
algorithms.

This paper is organized as follows. Section  2 compiles relevant notions from Robust 
Statistics which are contamination models and the breakdown point. We also recapitulate 
the concept of Stability Selection. Section  3 is devoted to the definition of our variable 
selection BDP and to a discussion on resampling BDPs which are required for our Stability 
Selection. Our BDP concept for Stability Selection is introduced in Sect. 4. Section 5 pre-
sents the Trimmed Stability Selection. Section 6 provides a detailed simulation study that 
compares the performances of the standard Stability Selection and the Trimmed Stability 
Selection on simulated data. Most of the figures that depict the simulation results have 
been moved to the appendix for better readability.

2  Preliminaries

Let D ∈ ℝ
n×(p+k) be the data matrix consisting of a regressor matrix X ∈ ℝ

n×p and a 
response matrix Y ∈ ℝ

n×k . If univariate responses are considered, Y ∈ ℝ
n is a response col-

umn. We denote the i-th row of X by Xi and the j-th column of X by X
⋅,j . The i-th row of Y 

is denoted by Yi and for k = 1 , Yi denotes the i-th component of Y. Let nsub ≤ n always be 
the number of instances in subsamples resp. Bootstrap samples.

We always assume that we have a parametric regression or classification model 
f� ∶ X → Y that maps an Xi ∈ X ⊂ ℝ

p onto f𝛽(Yi) ∈ Y ⊂ ℝ
k , with a parameter � ∈ ℝ

p that 
is to be inferred.

2.1  Contamination models

We begin with the definition of convex contamination balls (see Rieder (1994, Sect. 4.2) 
for a general definition of contamination balls).
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Definition 1 Let (Ω,A) be a measurable space. Let P ∶= {P� | � ∈ Θ} be a parametric 
model where each P� is a distribution on (Ω,A) and where Θ ⊂ ℝ

p is some parameter 
space. Let P�0

 be the ideal distribution [“model distribution”, Rieder (1994, Sect. 4.2)]. A 
convex contamination model is the family of contamination balls

where r ∈ [0,∞[ is the contamination radius and for the set M1(A) of probability distribu-
tions on A.

Definition  1 only considers case-wise (row-wise/instance-wise) outliers, i.e., either a 
whole row in the regressor matrix or in the response is contaminated or not. A more real-
istic scenario where the entries (cells) of the regressor matrix are allowed to be perturbed 
independently (cell-wise outliers) has been introduced in Alqallaf et al. (2009). See also 
Agostinelli et al. (2015) for the notation.

Definition 2 Let W ∼ P�0
 where P�0

 is a distribution on some measurable space (Ω,A) for 
Ω ⊂ ℝ

p . Let U1, ...,Up ∼ Bin(1, r) i.i.d. for r ∈ [0, 1] . Then the cell-wise convex contamina-
tion model considers all sets

where W̃ ∼ Q̃ for any distribution Q̃ on (Ω,A) and for the unit matrix Ip of dimension p × p 
and the matrix U with diagonal entries Uj . L denotes the distribution (law) of the respective 
random variable.

The authors in Alqallaf et al. (2009) pointed out that if all Uj are perfectly dependent, 
one either gets the original row or a fully contaminated row which is just the classical con-
vex contamination model in Definition 1. In supervised learning, the Xi or the (Xi, Yi) take 
the role of W in Definition 2.

Remark 1 Note that for response matrices, one can similarly construct cell-wise outliers 
that operate on the response matrix only, and clearly combine it with cell-wise outliers on 
the regressor matrix to get cell-wise outliers on both the regressor and the response matrix.

In the cell-wise contamination model, the probability that at least one case is contami-
nated grows with the dimension p. Note that a single contaminated cell already makes an 
observation an (case-wise) outlier [e.g., (Öllerer & Croux, 2015; Croux & Öllerer, 2016)].

2.1.1  The breakdown point concept

The goal of Robust Statistics is to provide robust estimators, i.e., estimators that tolerate a 
certain amount of contaminated data without being significantly distorted. As for the term 
“robustness”, in this work, we use the global robustness concept that allows for a large fraction 
of the data points being contaminated arbitrarily [in contrast to local robustness, correspond-
ing to influence curves (Hampel, 1974), where an infinitesimal amount of contamination is 
considered]. The minimum fraction of (case-wise) outliers that can lead to a breakdown of the 

Uc(�0, r) = {(1 − r)+P�0
+min(1, r)Q | Q ∈ M1(A)}

Ucell(𝜃0, r) ∶= {Q | Q = L(UW + (Ip − U)W̃)}
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estimator is called the (case-wise) breakdown point (BDP) of this particular estimator. The 
finite-sample BDP of Donoho and Huber (1983) is defined as follows.

Definition 3 Let Zn be a sample consisting of instances (X1, Y1), ..., (Xn, Yn) . The finite-
sample breakdown point of the estimator 𝛽  is defined by

where Zm
n

 denotes any sample with (n − m) instances in common with the original sample 
Zn , so one can arbitrarily contaminate m instances of Zn , and where 𝛽(Zn) is the estimated 
coefficient on Zm

n
.

2.2  Stability selection

The Stability Selection is an ensemble model selection technique that has been introduced 
in Meinshausen and Bühlmann (2010), mainly with the goal to reduce the number of false 
positives (non-relevant variables that are selected by the algorithm) and also motivated by the 
fact that the true predictor set S0 ⊂ {1, ..., p} is often not derivable by applying a single model 
selection procedure [cf. Meinshausen and Bühlmann (2010, p. 423)]. In short, one draws B 
subsamples from the data of usually around n/2 instances and performs a model selection 
algorithm on each subsample which leads to a set Ŝ(b) ⊂ {1, ..., p} of selected variables for 
each b = 1, ...,B . The next step is to aggregate the selection frequencies of all variables, i.e., 
the binary indicators whether a particular variable has been selected in a specific predictor set. 
More precisely, one computes �̂�j ∶=

1

B

∑B

b=1
I(j ∈ Ŝ(b)) for all j.

In the original Stability Selection from Meinshausen and Bühlmann Meinshausen and Büh-
lmann (2010), one defines a threshold �thr based on an inequality derived in Meinshausen and 
Bühlmann (2010, Theorem 1) so that the stable model then consists of all variables j for which 
�̂�j ≥ 𝜋thr . There are some variants of this Stability Selection, most notably the one in Hofner 
et al. (2015) that makes it applicable for Boosting while the original one from Meinshausen 
and Bühlmann (2010) is tailored to algorithms that invoke a regularization term like the Lasso 
(Tibshirani, 1994) or the Graphical Lasso (Banerjee et al., 2008; Friedman et al., 2008). An 
excellent implementation of the Stability Selection can be found in the �-packages mboost 
(Hothorn et al., 2017; Hofner et al., 2014; Hothorn et al., 2010; Bühlmann & Hothorn, 2007; 
Hofner et  al., 2015; Hothorn & Bühlmann, 2006) and stabs (Hofner & Hothorn, 2017; 
Hofner et al., 2015; Thomas et al., 2018).

As for the selection of the stable model according to the aggregated selection frequencies, 
another paradigm that defines a number q of variables that have to enter the stable model so 
that the q variables with the highest selection frequencies are chosen has been suggested in 
the literature [e.g., (Zhou et al., 2013; Werner, 2022a)]. The reason is that the threshold-based 
approach is less intuitive for the user due to the number of stable variables not being predict-
able in the first place.

(1)𝜀∗(𝛽, Zn) = min

{
m

n

||||
sup
Zm
n

(||𝛽(Zm
n
)||) = ∞

}
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3  Breakdown of variable selection

In this section, we first define a BDP for variable selection. Based on this definition, we 
discuss why this BDP may be very small and outline the path from the robustness of single 
algorithms concerning variable selection to ensembles of such algorithms.

3.1  Variable selection breakdown point

Donoho and Stodden (2006) already provided a very insightful work where the notion of a 
“breakdown of model selection” has been introduced. They computed phase diagrams that 
show under which configurations of the dimensionality of the data and the sparsity level 
of the true underlying model a successful model selection is possible. More precisely, they 
derive that the underlying model has to be sufficiently sparse, expressed in the fraction of 
the true dimensionality q of the model (which is given by the number of non-zero entries 
of the true parameter � ) and the number n of observations, the question whether model 
selection is possible depends on the fraction n/p for p being the number of predictors.

Our idea also considers to compute a breakdown for model selection, but we restrict 
ourselves to the standard setting of Robust Statistics where we want to examine how many 
(case- or cell-wise) outliers can be tolerated for model selection. In order not to confuse 
our BDP concept with the one in Donoho and Stodden (2006), we call our concept the 
variable selection breakdown point (VSBDP).

Definition 4 Let D be a data set with n instances and predictor dimension p. Let k ∈ ℕ be 
the dimension of the responses. 

(a) The case-wise variable selection breakdown point (case-VSBDP) is given by 

 where Zm
n

 again denotes any sample that has (n − m) instances in common with Zn.
(b) The cell-wise variable selection breakdown point (cell-VSBDP) is given by 

 where Z̃m
cell

 denotes the data set where m cells can be modified arbitrarily and where 
all other cell values remain as in the original data.

In other words, the VSBDP quantifies the relative number of rows resp. cells that have 
to be contaminated in order to guarantee that none of the relevant variables are selected. 
The fraction of outlying cells as a breakdown measure has for example already been con-
sidered in Velasco et al. (2020). Note that finite-sample breakdown points usually do not 
assume knowledge of the true model. We assumed this knowledge however in our defini-
tion because otherwise one would have to consider some empirically derived model and 
tailor the BDP definition to that. In the context of variable selection, such a definition could 
imply issues, for example, if the computed model is empty. Therefore, we restrict ourselves 
to the proposed definition here. Let us now formulate a very simple but important result.

(2)
m∗

n
, m∗ = min{m | 𝛽j(Zm

n
) = 0 ∀j ∶ 𝛽j ≠ 0}

(3)
m̃∗

(p + k)n
, m̃∗ = min{m | 𝛽j(Z̃m

cell
) = 0 ∀j ∶ 𝛽j ≠ 0}
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Theorem 1 Let p be the total number of variables and let q ≤ p be the true dimension of 
the underlying model and let again k be the response dimension and n be the number of 
instances in the data set. 

(a) Then the cell-VSBDP is at most min(q,k)

p+k
.

(b) Let p = p(n) so that it grows when n grows. If q or k stays constant, the asymptotic 
cell-VSBDP is zero.

(c) Let p = p(n) and q = q(n) so that both quantities grow when n grows. Let contamination 
only be allowed on the predictor matrix. Then the asymptotic cell-VSBDP is given by 
limn→∞

(
q(n)

p(n)

)
.

Proof 

 (a) If q < k , just replace the entries Xij for all i and for all j corresponding to the relevant 
variables by zeroes, so that one has to modify qn cells of the data set, more precisely, 
only of the predictor matrix. Then the originally relevant columns remain without 
any predictive power and therefore will not be selected. If q ≥ k , replace all entries 
of the response matrix with zeroes which would result in an empty model since no 
predictor column remains correlated with the response, requiring kn outlying cells.

 (b)+(c) Directly follows from (a).  ◻

This is a universal result, regardless of the data structure or the applied algorithms. 
We want to point out that the classical understanding of robustness would only consider 
the estimated coefficients themselves and call an estimator robust if the coefficients stay 
bounded. However, if the non-zero coefficients correspond to non-relevant variables, the 
learning procedure results in a robust fit on noisy variables which will definitely have poor 
prediction quality on out-of-sample data. Our analysis is based on an interplay between 
model selection and coefficient estimation so that the ultimate goal is to achieve both sub-
goals in order to get a reliable model. Let us therefore pose the following statement: From 
the perspective of retrieving the correct model, all robust regression and classification 
models are doomed to have a breakdown point less than q/p.

When having simulated data and a random cell-wise outlier scheme, it is extremely 
unlikely that such column-wise outliers that make the true model irretrievable would 
appear. However, from a practical perspective, one can for example think of an attacker 
that is aware of (most of) the relevant variables, maybe due to intercepting and analyzing 
the data first.

3.2  Resampling and robustness

We recapitulate the resampling breakdown point introduced in Berrendero (2007) in a 
slightly modified version.

Definition 5 Let n be the number of observations in a data set and let B be the number of 
Bootstrap resp. subsamples with nsub ≤ n observations each. Let c ∈ [0, 1] be the BDP of 
each estimator applied on the individual Bootstrap samples resp. subsamples. For a toler-
ance level � ∈ [0, 1] , the � resampling BDP for Bootstrap is given by
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where �̂� = m∕n indicates the empirical rate of outlying rows in the data set, the � resam-
pling BDP for Subsampling is given by

where Hyp(n, n − m, nsub) is the hypergeometrical distribution describing the number of 
clean instances (successes) for (n − m) = (1 − �̂�)n clean instances.

This resampling BDP defines the maximum fraction of contaminated instances in the 
data so that the probability that a mean aggregation breaks down exceeds the tolerance 
level [cf. also Camponovo et  al. (2012), Filzmoser et  al. (2020, Sect.  3.5)]. This defini-
tion is important since it lifts the worst-case BDP concept to a probabilistic concept that 
respects that the worst case is often very unlikely and that solely reporting it would be too 
pessimistic. Robust aggregation procedures such as Bragging [median aggregation (Ber-
rendero, 2007; Bühlmann, 2012)] and trimmed bagging (Croux et al., 2007) require up to 
⌊(B + 1)∕2⌋ resamples being sufficiently contaminated to break down.

The idea from the rejoinder of Davies and Gather (2005) to map the boundary values 
of a bounded image set of an estimator to infinite values is important when assessing the 
effects of resampling on the robustness. A classical example is a correlation estimator 
which takes only values in the compact interval [−1, 1] . It is claimed in Grandvalet (2000) 
that Bagging never improves the BDP. This is not true if the value set is bounded. We first 
formally spell out why Bagging is usually not robust, although this fact has already been 
observed in the literature.

Proposition 1 Let B be the number of resamples and let Sn be some estimator, mapping 
onto an unbounded domain, for a data set with n observations. If the (classical) BDP of the 
estimator is c, so it is for the bagged estimator.

Proof Since the BDP of the estimator is c, manipulating a relative fraction of c instances in 
one single resample b suffices to let the estimator S(b)

n
 on this resample break down, i.e., the 

norm of the estimated value is fully controlled by the outliers. Then, as the bagged estima-
tor being the empirical mean of all S(b)

n
 , b = 1, ..,B , its norm is also fully controlled.   ◻

The proof is rather unusual since it assumes that one can targetedly contaminate a 
selected resample. Usually, the attacker should only have access to the whole training data 
set. Then, a probabilistic statement in the spirit of the resampling BDP becomes more 
appropriate.

Proposition 2 Let B be the number of resamples and let Sn be some estimator, mapping 
onto an unbounded domain, for a data set with n observations. If the (classical) BDP of the 
estimator is c, the resampling BDP of the bagged estimator equals (�⟂(c, nsub,B, �))∗ for 
⟂= Boot for Bootstrap resp. for ⟂= Subs for subsampling.

(4)
(𝜀Boot(c, nsub,B, 𝛼))

∗

∶= inf{𝜀 ∈ {0, 1∕n, ..., 1} � 1 − P(Bin(nsub, �̂�) < ⌈cnsub⌉)B > 𝛼}

(5)
(𝜀Subs(c, nsub,B, 𝛼))

∗

inf{𝜀 ∈ {0, 1∕n, ..., 1} � 1 − P(Hyp(n, n − m, nsub) > ⌊(1 − c)nsub⌋)B > 𝛼}
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Proof Evidently, if at least one resample is contaminated to an extent such that the estima-
tor breaks down, due to the unbounded domain and the mean aggregation, the bagged esti-
mator breaks down. By definition of the resampling BDP, this happens with a probability 
of more than � if the fraction of contaminated rows is (�⟂(c, nsub,B, �))∗ .   ◻

Remark 2 

(a) These results can be trivially extended to the case of cell-wise contamination.
(b) Bagging can nevertheless completely de-robustify the estimator [e.g., (Salibián-Barrera 

et al., 2008)] if B and the number of outlying instances in the data is high.

As for bounded domains however, the situation is different.

Proposition 3 

(a) Let B be the number of resamples and let Sn be some estimator, mapping onto a 
bounded domain, for a data set with n observations from which no one takes any of 
the boundary values. If the (classical) BDP of the estimator is c, the resampling BDP 
of the bagged estimator is 

 for Bootstrapping resp. 

 for subsampling.
(b) For Bragging, the resampling BDP becomes 

 for Bootstrapping resp. 

 for subsampling.

Proof 

(a) If at least one estimator does not break down, it takes a value in the interior of the 
domain by assumption. Hence, the aggregated estimated value will also lie in the 
interior of the domain, so there is no breakdown. A breakdown occurs if and only if all 
estimators break down to the same boundary value (which, by the worst-case perspec-
tive of the BDP concept, can be assumed to be possible).

(b) When taking the median of the estimated values, it suffices that at least the half estima-
tors have broken down to the same boundary value.  ◻

This is an unusual result since the median aggregation (and any other trimmed aggrega-
tion) is less robust than the mean aggregation. This artifact, resulting from a wrong notion 
of robustness for estimation, shows that a breakdown has to be defined very carefully if 

(6)inf{𝜀 ∈ {0, 1∕n, ..., 1} � P(Bin(B,P(Bin(nsub, 𝜀) ≥ ⌈cnsub⌉)) = B) > 𝛼}

(7)inf{𝜀 ∈ {0, 1∕n, ..., 1} � P(Bin(B,P(Hyp(n, n − 𝜀n, nsub) ≤ ⌊(1 − c)nsub⌋)) = B) > 𝛼}

(8)inf{𝜀 ∈ {0, 1∕n, ..., 1} � P(Bin(B,P(Bin(nsub, 𝜀) ≥ ⌈cnsub⌉)) ≥ ⌊(B + 1)∕2⌋) > 𝛼}

(9)
inf{𝜀 ∈ {0, 1∕n, ..., 1} �
P(Bin(B,P(Hyp(n, n − 𝜀n, nsub) ≤ ⌊(1 − c)nsub⌋)) ≥ ⌊(B + 1)∕2⌋) > 𝛼}
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the domain is bounded, providing another argument why the concept from the rejoinder of 
Davies and Gather (2005) to map the boundary values to infinite values is necessary.

4  Stability selection and robustness

Important work on stability of feature selection resp. feature ranking has been done in 
Nogueira and Brown (2016); Nogueira et al. (2017b, 2017a). Nogueira et al. (2017a), it is 
pointed out that stable feature selection is either represented by a hard subset selection of 
the candidate variables or by a ranking of the variable or individual weights which, given 
some threshold for the ranks resp. the weights, eventually leads to a subset of variables. 
The cited works propose similarity metrics in order to quantify the stability of feature 
selection resp. feature ranking. The authors of Nogueira et al. (2017a) consider the stabil-
ity of feature selection as a robustness measure for the feature preferences. Note that this 
robustness notion differs from the definition of robustness in the sense of Robust Statistics.

4.1  The stability selection BDP

Having the VSBDP and the resampling BDP defined, we are ready to define a BDP for 
Stability Selection itself.

Definition 6 Let n be the number of instances in a data set and let nsub be the number of 
instances in each resample. Let B be the number of resamples for the Stability Selection 
and let R be the resampling distribution. Let Sstab(⟂, nsub,B, Zn) denote the stable model 
derived from B resamples according to ⟂= Boot or ⟂= Subs with nsub instances from the 
data set Zn . 

(a) Then the case-wise Stability Selection BDP (case-Stab-BDP) for tolerance level � is 
given by 

 where c represents the case-BDP of the underlying model selection algorithm and 
where S0 ⊂ {1, ..., p} again denotes the true predictor set.

(b) Similarly, the cell-wise Stability Selection BDP (cell-Stab-BDP) for tolerance level � 
is given by 

 with the cell-BDP c̃ of the underlying model selection algorithm.

Intuitively, the Stab-BDP denotes the minimum fraction of outliers required so that the 
probability that the reported stable model does not contain any relevant variable is suffi-
ciently large. As Stability Selection does not aggregate coefficients but just indicator func-
tions, the influence of a model computed on a single resample is bounded by 1/B in the 

(10)�∗
Stab

(⟂, c, nsub,B, �) ∶= min

{
m

n

||||
PR(∀j ∈ S0 ∶ j ∉ Sstab(⟂, nsub,B,Z

m
n
)) ≥ �

}

(11)
�̃�∗
Stab

(⟂, c̃, nsub,B, 𝛼)

∶= min

{
m̃

n(p + k)

||||
PR(∀j ∈ S0 ∶ j ∉ Sstab(⟂, nsub,B, Z̃

m
cell

)) ≥ 𝛼

}
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sense that the aggregated selection frequencies computed on the original data can be at 
most distorted by 1/B (for certain j) if one single resample is (sufficiently) contaminated.

It remains to investigate how the Stab-BDP can be computed in practice. Although the 
BDP is known for many regression and classification estimators, the computation of the 
Stab-BDP requires the impact of contamination on variable selection, which is unknown. 
Therefore, we make assumptions concerning this impact in the next subsection.

4.2  Assumptions on the impact of contamination on variable selection

Relevant variables may not only be suppressed due to contamination as in Theorem 1 but 
non-relevant variables may also be promoted [cf. Li et al. (2020, 2021)]. To the best of our 
knowledge, a concise statement on the impact of outliers to model selection itself such as 
how many relevant variables can be suppressed or how many non-relevant variables can be 
promoted has not yet been proven in the literature. Therefore, we propose an optimistic and 
a pessimistic scenario concerning this impact.

Case-wise scenarios: in this scenario, we assume that for a variable selection method 
with instance-BDP c, a number of ⌈cn⌉ outlying rows in the regressor matrix, the response 
matrix or the regressor matrix reduced to the relevant columns

• is able to promote any subset of non-relevant variables resp. suppress any subset of rel-
evant variables which means that we assume that this outlier fraction can indeed, at least 
theoretically, cause all relevant variables to be ignored (pessimistic case-wise scenario);

• is able to targetedly suppress all relevant but promote only one single variable (optimis-
tic case-wise scenario).

Cell-wise scenarios: we assume that for a cell-BDP of c̃ , a fraction of at least c̃ of outlying 
cells in the regressor matrix, the response matrix or the regressor matrix reduced to the 
relevant columns

• can promote min(p − s0, c̃) non-relevant variables where s0 = |S0| resp. suppress any 
subset of relevant variables (pessimistic cell-wise scenario). This scenario is indeed 
very pessimistic since even in Li et al. (2020, 2021), it seems that one at least has to 
manipulate the regressor matrix and the response vector which would at least require 
two outlying cells for an estimator with c̃ = 0;

• is able to targetedly suppress all relevant variables but to promote only one single vari-
able (optimistic cell-wise scenario).

These scenarios should represent the extreme cases of which impact of contamination on 
variable selection one may expect. Milder scenarios than the optimistic one seem inappro-
priate in regard of Theorem 1 where one can easily suppress all relevant variables.

4.3  Robustness of threshold‑ and rank‑based stability selection

We now quantify the robustness of threshold- and rank-based Stability Selection. We 
assume that there is a fixed selection of instances resp. cells in the data matrix which are 
contaminated, so we quantify the probability that the Stability Selection breaks down. Note 
that the computations are only done for the scenarios introduced in the previous subsec-
tion, hence representing the range of breakdown probabilities. The true Stab-BDP for a 
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given data configuration and model selection algorithm may only be approximated empiri-
cally, which we do in Sect. 6.

Theorem 2 Let � be the threshold for the Stability Selection based on B resamples of size 
nsub from a data set with n instances. Let q be the pre-scribed number of stable variables for 
the Stability Selection based on B resamples of size nsub from a data set with n instances. 
Let �̂�+

j
 for j ∈ S0 resp. �̂�−

k
 for k ∈ {1, ..., p}⧵S0 be the aggregated selection frequencies on 

the original data where we assume that 
∑

k I(�̂�
−
k
≥ �̂�+

j
) ≤ q − 1 ∃j ∈ S0 for the rank-based 

Stability Selection resp. �̂�+
j
≥ 𝜋 ∃j ∈ S0 for the threshold-based Stability Selection, so there 

is no immediate breakdown. Let s be the number of relevant variables in the top-q vari-
ables. Then, w.l.o.g., let �̂�+

1
, ..., �̂�+

s
 be the corresponding aggregated selection frequencies 

of these variables on the original data, similarly, let �̂�−
1
, ..., �̂�−

q−s
 be the aggregated selection 

frequencies of the (q − s) non-relevant variables (out of (p − s) non-relevant variables in 
total) among the top−q variables. Let �̂�−

q−s+1
, ..., �̂�−

q
 be the aggregated selection frequencies 

of the next best s non-relevant variables. Then, 

(a) In the pessimistic scenario, the rank-based Stability Selection is more robust than 
the threshold-based Stability Selection in terms of the Stab-BDP if and only if 
𝜋 > 0.5(maxj=1,...,s(�̂�

+
j
) +mink=q−s+1,...,q(�̂�

−
k
));

(b) In the optimistic scenario, the rank-based Stability Selection is always more 
robust than the threshold-based Stability Selection in terms of the Stab-BDP if 
𝜋 > 0.5(maxj=1,...,s(�̂�

+
j
) +mink=q−s+1,...,q(�̂�

−
k
)) , and the threshold-based Stability Selec-

tion is always more robust if 𝜋 < mink=q−s+1,...,q(�̂�
−
k
).

Proof See App. A for the proof of (a) for cell-wise contamination and (b). 

(a) We distinguish between case-wise and cell-wise outlier configurations. (i) Here, we 
consider case-wise contamination. Let always a fixed selection of m instances be con-
taminated. Let c be the case-BDP of the applied model selection algorithm. First, note 
that for the threshold-based Stability Selection, the selection frequencies of the non-
relevant variables are not important, so one does not have to distinguish between the 
pessimistic and the optimistic scenario. A breakdown is achieved once each relevant 
variable no longer appears in the stable model, i.e., if all aggregated selection frequen-
cies are lower than the threshold � . Regarding the variable j∗ = argmax j(�̂�

+
j
) , there are 

more than ⌈B(�̂�+
j∗
− 𝜋)⌉ sufficiently contaminated resamples (at least ⌈cnsub⌉ instances 

in the resample are contaminated) required since each such resample can decrease the 
aggregated selection frequency by at most 1/B. Putting everything together, the Stabil-
ity Selection breaks down with a probability of 

 if the resamples are drawn by subsampling and with a probability of 

(12)P

�
Bin(B,P(Hyp(n, n − m, nsub) ≤ ⌊(1 − c)nsub⌋)) > ⌈B(max

j=1,...,s
(�̂�+

j
) − 𝜋)⌉

�
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 if the resamples are drawn by Bootstrapping. For the rank-based Stability Selection, 
a breakdown is achieved once each relevant instance has an aggregated selection fre-
quency smaller than the aggregated selection frequencies of q non-relevant variables. 
Therefore, it suffices to have more than ⌈0.5B(maxj=1,...,s(�̂�

+
j
) −mink=q−s+1,...,q(�̂�

−
k
))⌉) 

contaminated resamples since in each one, both the non-relevant variables corre-
sponding to �̂�−

k
 , k = 1, ..., q , can be promoted and at the same time, the relevant vari-

ables can be suppressed, so the distance between the quantities maxj=1,...,s(�̂�
+
j
) and 

mink=q−s+1,...,q(�̂�
−
k
) decreases by 2/B steps per contaminated resample. Hence, after 

⌈0.5B(maxj=1,...,s(�̂�
+
j
) −mink=q−s+1,...,q(�̂�

−
k
))⌉ such steps, they are equal or their order 

relation even has switched, so having one more contaminated resample, the formerly 
best relevant variable definitely has a lower aggregated selection frequency than the 
formerly q-th best non-relevant variable. The breakdown probabilities are then 

 if the resamples are drawn by subsampling and 

 if the resamples are drawn by Bootstrapping.   ◻

Remark 3 

 (i) The cases corresponding to P1 and P2 resp. to P̌1 and P̌2 in the proof of Theorem 2 have 
to be considered separately since having only contamination in the relevant columns 
makes it impossible that the whole predictor matrix is contaminated too much provided 
that s0∕p < c̃ . Similarly, if contamination only occurs in the non-relevant columns, a 
breakdown can still be possible due to promoting effects of the contamination.

 (ii) In Theorem 2, we considered the case of univariate responses. For multivariate 
responses with k response columns, one has to distinguish between the seemingly 
unrelated regression case (Zellner, 1962) where one fits a model for each response 
column separately and the general case that the response columns are correlated 
so that the entire response matrix enters as input for a unified model. In the second 
case, the probability of a breakdown would be 1 if the relative part of contaminated 
cells in the response matrix is at least c̃ , in the first case however, the relative part of 
outliers has to be larger than c̃ for one resp. for each response column if a breakdown 
of the set of the resulting k models is defined in the sense that at least one resp. each 
of the individual models break down.

Apart from the simple observation that robustness is increased by Stability Selection, we 
can extract one interesting recommendation for the Stability Selection variant. For the thresh-
old-based Stability Selection, the robustness depends on the difference of the aggregated 
selection frequency of the best relevant variable and the threshold. It is however not evident 

(13)P

�
Bin(B,P(Bin(nsub,m∕n) ≥ ⌈cnsub⌉)) > ⌈B(max

j=1,...,s
(�̂�+

j
) − 𝜋)⌉

�

(14)
P(Bin(B,P(Hyp(n, n − m, nsub) ≤⌊(1 − c)nsub⌋))

>⌈0.5B(max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉)

(15)
P(Bin(B,P(Bin(nsub,m∕n) ≥⌈cnsub⌉))

>⌈0.5B(max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉)
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that there even exists such a variable. This problem has been studied for example in Werner 
(2022a) for noisy data. Due to the combination of a high noise level, a large number p of can-
didate variables and a rather sparse true model, one often faces the situation that no variable 
(including non-relevant variables) can pass the threshold, leading to an empty model, i.e., an 
immediate breakdown in the sense of the VSBDP. As shown in Theorem 2, it depends on 
how well the aggregated selection frequencies of the best relevant and the best non-relevant 
variables are spread. Once there is a strong relevant variable j0 with �̂�+

j0
≈ 1 , it follows that 

the rank-based Stability Selection is better than the threshold-based variant if one follows the 
recommendation from literature to set �thr at least to 0.5. On the other hand, the condition 
𝜋 < mink=q−s+1,...,q(�̂�

−
k
) from part b) of Theorem 2 is very unlikely to become valid in prac-

tice, hence in the optimistic scenario, it should not happen that the threshold-based variant 
clearly beats the rank-based one in all configurations. Therefore, we recommend to prefer the 
rank-based Stability Selection over the threshold-based Stability Selection in regard of varia-
ble selection robustness. Note that this does not contradict Meinshausen and Bühlmann 
(2010, Theorem 1) as the number q can be fixed empirically so that an appropriate bound is 
achieved, where the aggregated selection probability of the q-th best variable replaces the 
universal threshold.

We learn from Theorem 2 that Stability Selection does not suffer from the numerical 
instabilities [cf. Salibián-Barrera et al. (2008) for this notion] of resampling that can lead to 
some resamples having a larger fraction of outlying instances/cells than the whole training 
data to that extent as standard bagged estimators do.

In contrast to a simple bagged estimator, Stability Selection allows for more than the 
half of the instances/cells being contaminated without violating equivariance proper-
ties [cf. Davies and Gather (2005)] of the underlying algorithm that prevent BDPs from 
exceeding 0.5. For example, in machine learning, especially regression, one assumes that 
there is an underlying model from which the clean data have been generated. Even if the 
relative fraction of outlying instances exceeds a half, say it is 60%, then it is nevertheless 
a desirable goal to infer the model which describes the correspondence structure of the 
responses and the predictors of the clean observations. There is no qualitative hindrance 
to aim at finding the underlying model due to the standard assumption that outliers do not 
have structure and just stem from some unknown, arbitrary distribution.

In order to clarify the argumentation, consider the awkward case-wise contamina-
tion situation that the outliers had structure, i.e., additionally to the underlying model 
f ∶ X → Y that relates the responses and the predictors of the clean observations one had 
another model g ∶ X → Y from which the outlying instances are generated. In this artificial 
setting, one would indeed try to infer g instead of f and treat the actual clean instances as 
the outliers, more precisely, as the outliers w.r.t. the model g.

The main problem, even for a Stability Selection, would be that the probability to draw 
resamples that are sufficiently contaminated to let the applied algorithm break down would 
become rather high if the fraction of outlying instances is already rather high on the origi-
nal data. Therefore, an additional robustification step is necessary which will be discussed 
in the next section.

5  Robustifying stability selection

In each iteration of SLTS (Alfons et al., 2013), the squared loss for all instances is com-
puted and the “clean subset” that enters the next iteration contains the h < n instances with 
the lowest in-sample losses. Regarding Stability Selection, the instances in a resample 
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cannot be treated individually since one aims at aggregating column information from 
whole resamples. One can however individualize the resamples themselves and the corre-
sponding selected sets of variables. In other words, we aim at lifting the trimming concept 
from instances in estimation problems to resamples in a model aggregation problem.

5.1  Related approaches

In contrast to (robust) Bagging, we do not combine classifiers nor other learners but pre-
dictor sets themselves. Zhang et  al. (2017, 2019), general ensemble variable selection 
techniques are pruned in the sense that the members with the highest prediction errors are 
trimmed. A very important related algorithm is the fast and robust Bootstrap (FRB), ini-
tially introduced in Salibián-Barrera and Zamar (2002); Salibián-Barrera et al. (2008) for 
regression MM-estimators. The main idea is that standard Bootstrapping of robust estima-
tors would take a long computational time and that a simple uniform Bootstrapping may 
would result in having resamples with more than half of the instances being contaminated 
with a considerable probability. They derived a linear update rule for the robust estimator 
that downweights outlying instances. These weights are derived by a robust MM-estimator 
which allows for identifying such instances according to the absolute value of their regres-
sion residual. Model selection using the FRB has been proposed by Salibián-Barrera and 
Van Aelst (2008). The idea is to approximate the prediction error of the model built on a 
particular set of predictors by using FRB and to select the predictor set for which the pre-
diction error was minimal. Their strategy suffers from the lack of scalability for data sets 
with a large number of predictors since they have to compute the prediction error for all 
possible models whose total number is 2p − 1 , and even their backward strategy becomes 
infeasible for high p.

5.2  Trimmed stability selection

In this paper, we usually intend to measure the quality of the resample-specific models on 
an in-sample loss basis, similarly as outlying instances are detected by their individual in-
sample loss as for example in Alfons et al. (2013). More precisely, if the contamination of 
a certain resample has caused the algorithm to select wrong variables, the in-sample loss 
should be high compared to another resample where a sufficiently well model has been 
selected which contains enough of the true predictors.

Our trimmed Stability Selection works as follows. We generate B resamples of size 
nsub from the training data and apply the model selection algorithm, for example, Lasso 
or Boosting, on each resample which selects a model Ŝ(b) ⊂ {1, ..., p} for b = 1, ...,B and 
which computes coefficients 𝛽(b) . Let I(b) be the index set of the rows that have been selected 
by the resampling algorithm, i.e., I(b) ∈ {1, ..., n}nsub for Bootstrapping resp. I(b) ⊂ {1, ..., n} 
with |I(b)| = nsub and I(b)

k
≠ I

(b)

l
∀k ≠ l, k, l = 1, ..., nsub , for subsampling. For the b-th resam-

ple, we compute the in-sample loss

for a loss function L ∶ Y × Y → [0,∞[ . Although, in regression, losses are usually con-
tinuous, we cannot exclude that there are ties, for example, if two resamples are identical 

(16)L(b) =
1

nsub

∑

i∈I(b)

L(Yi,Xi𝛽
(b))
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or if a trimmed loss is used. In this case, we perform random tie breaking. Note that there 
is no evidence that the models computed on identical resamples are identical since the 
model selection algorithm may include stochastic components like the SLTS whose result 
depends on the randomly chosen initial configurations.

For the set

with the trimming rate � ∈ [0, 1[ , we compute the trimmed aggregated selection 
frequencies

for all j = 1, ..., p , and let �̂�𝛾 ∶= (�̂�
𝛾

j
)
p

j=1
 . The actual identification of the stable model works 

as usual, based on the �̂�𝛾

j
.

As for the choice of the trimming rate � , note that the main computational time is used 
for the computation of the individual models Ŝ(b) which is not affected by � . Therefore, 
one can select � afterwards, for example, using cross-validation so that one computes the 
stable model corresponding to each element of some grid of trimming rates and finally 
selects the stable model which corresponds to the smallest cross-validated error.

We also want to elaborate why we suggest to prefer the in-sample losses and not 
out-of-sample losses, for example, on the remaining instances that are not part of 
the respective subsample. Assume that one has a clean subsample. Then, the model 
should perform well on this subsample, i.e., have a low in-sample loss, while the out-
of-sample loss would be high if some of the remaining instances contain large outli-
ers. On the contrary, when computing a model on a subsample that mostly contains 
contaminated instances, the in-sample loss should be high due to the contaminated 
instances not having a structure that could be well-approximated by the computed 
model, but the out-of-sample loss on mostly clean instances should be large as well. 
Therefore, when using the remaining instances and computing the out-of-sample 
losses, one may not be able to distinguish between clean and contaminated subsam-
ples appropriately. Nevertheless, for illustration, we will also make simulations where 
the out-of-sample loss is used.

The Trimmed Stability Selection (TrimStabSel) is described by the following algorithm:

(17)Itrim(�) ∶=

�
b ∈ {1, ...,B}

����

B�

b�=1

I(L(b
�) ≥ L(b)) ≤ ⌊�B⌋

�

(18)�̂�
𝛾

j
=

1

B − ⌊𝛾B⌋
�

b∈{1,...,B}⧵Itrim(𝛾)

I(j ∈ Ŝ(b))
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Now, we have to analyze the effect of this trimming procedure on the Stab-BDP. We 
abstain from detailing out each of the cases considered in Theorem 2 again but formulate a 
universal result which can be easily adapted to all the individual cases.

Theorem  3 For the robustness gain of TrimStabSel with trimming level � in compari-
son with the non-trimmed Stability Selection, let ⌈K⌉ be the (rounded) number of broken 
models necessary in order to let the respective non-trimmed Stability Selection break 
down. Assuming that there are k� broken models in the set of the ⌊�B⌋ trimmed models, 
k� ∈ {0, 1, ..., ⌊�B⌋} , for TrimStabSel, the number K is replaced by k� + (B − ⌊�B⌋)K∕B.

Proof Since the number of aggregated models decreases from B to B − ⌊�B⌋ , K has to be 
multiplied by (B − ⌊�B⌋)∕B in order to take the increasing effect of the individual non-
trimmed models into account. The only missing feature is the number k� of contaminated 
trimmed models which increases the allowed number of sufficiently contaminated resam-
ples by k� .   ◻

6  Simulation study

We now investigate the impact of our proposed outlier scheme on model selection and the 
performance of TrimStabSel.

We consider a variety of scenarios that differ by n, p, the fraction of outlying cells and 
the signal to noise ratio (SNR). In all scenarios, there are s0 = 5 relevant variables and the 
corresponding components of the coefficient � are i.i.d. N(4, 1)-distributed. The cells of 
the regressor matrix are i.i.d. N(5, 1)-distributed. In the regression settings, the responses 
are computed by Yi = Xi� + �i with �i ∼ N(0, �2) i.i.d. for all i where �2 is set so that a 
specific signal to noise ratio is valid. In the classification settings, we compute X� and 
�i ∶= exp(Xi�)∕(1 + exp(Xi�)) where Xi� ∶= Xi� −mean(X�) . The responses Yi are drawn 
according to Yi ∼ Bin(1, �i) . As there is no opportunity to simulate a target SNR, we distin-
guish three situations by drawing �j ∼ N(�, 1) so that a higher |�| corresponds to a higher 
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SNR. As for the outlier configuration, we consider different m̃ ≤ n and for each m̃ , we ran-
domly select m̃ rows of the regressor matrix so that in each of these rows, the value in the 
cells corresponding to the five relevant variables are replaced by zero. One may consider 
our contamination scheme as a structured form of cell-wise contamination as the instances 
are not fully contaminated (as in case-wise contamination setting) but as all cells corre-
sponding to the relevant predictors are contaminated in each selected instance.

We consider different model selection algorithms, namely, L2-Boosting (Bühlmann 
& Yu, 2003; Bühlmann & Hothorn, 2007), LogitBoost [see Bühlmann and Van De Geer 
(2011)] and SLTS (Alfons et  al., 2013). The stable model is always derived rank-based 
with q = 5 . In practice, one would either choose �thr according to its connection with the 
per-family error rate and the average number of selected variables in each of the B models 
(Meinshausen & Bühlmann, 2010; Hofner et al., 2015) or q according to an educated guess 
for the true dimensionality. If one does not have sufficient knowledge about these compo-
nents, one may try to find a suitable value for �thr or q empirically by investigating the out-
of-sample performance of different stable models (based on different values of �thr resp. q) 
as suggested in Werner (2022a). As this paper is solely about TrimStabSel, we fix q to the 
true dimension in our experiments. Another question is how to select the trimming rate � in 
practice. The selection of a trimming rate or other hyperparameters that control the robust-
ness of an algorithm is indeed a non-trivial problem which, for example, has been consid-
ered in Rieder et al. (2008) from the perspective of efficiency. In practice, for TrimStabSel, 
assuming that the hyperparameters q or �thr also have to be assessed, we suggest that one 
may select both � and q or �thr , respectively, empirically.

We are aware of the fact that a non-robust loss function is problematic in the pres-
ence of contamination when one aims at comparing different models (and subsamples 
here as they are indirectly compared by the models trained on them). This problem cannot 
even be alleviated using an established robust aggregation such as a trimmed squared loss 
since the contamination rate may exceed 0.5 on resamples (apart from the problem how 
to select the trimming rate), or a bounded loss such as Tukey’s biweight due to making 
moderate and large residuals incomparable, maybe hindering the comparison of different 
subsamples. Therefore, for illustration, we use the squared loss L(u, u�) = (u − u�)2 for the 
regression setting and the negative binomial likelihood or the AUC-loss, as implemented 
in the Binomial() and AUC() family in the �-package mboost, respectively, for the 
classification setting, as loss function L in order to rank the individual B models.

We evaluate the performance of the Stability Selection variants by computing the mean 
true positive rate (TPR) over V repetitions where for each v = 1, ...,V  , we generate an inde-
pendent data set. Moreover, we compute the fraction of breakdowns, i.e., where no rel-
evant variable has entered the stable model as well as the fraction of cases where the stable 
model is perfect, i.e., it consists only of the s0 relevant variables. These quantities are then 
plotted against the number m̃ of outlying instances. Note that the breakdown rate can be 
interpreted as empirical version of the probabilities computed in Sect. 4.

6.1  (Trimmed) stability selection with L
2
‑boosting

The scenario specifications are given in Table 1. We consider the SNRs 1, 2 and 5 and 
for each SNR and each value for m̃ from the set given in Table 1, we generate V = 1000 
independent data sets and apply all four Stability Selection variants specified in Table 1. 
We use the function glmboost from the �-package mboost (Hothorn et al., 2017) with 
family=Gaussian(), 100 iterations and a learning rate of 0.1.
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The results in Figs. 1, 2, 3 and 4 show the non-surprising facts that the TPR increases 
with increasing SNR and that the TPR curves and the curves representing the relative fre-
quency of perfect models decrease with the number of outliers while the curves representing 
the relative frequency of a breakdown increase. For a low number of outliers, in particular for 
clean data, the performance of the TrimStabSel variants is usually worse than that of the non-
trimmed Stability Selection due to the loss of evidence by trimming (good) models away. A 
characteristic aspect of all curves is that once contamination occurs, the TrimStabSel variants 
show better performance than the non-trimmed Stability Selection but that the robustness and 
performance gain decreases once too many cells are contaminated. The reason is that at some 
point, the expected number of contaminated subsamples becomes too high so that even Trim-
StabSel with the configurations in Table 1 is distorted. Note that the exact contamination rate 
where even TrimStabSel breaks down cannot be computed, but considering scenario 1, m̃ = 6 
leads to the probability P(Hyp(50, 44, 25) < 25) ≈ 0.989 to draw a contaminated subsample 
and therefore to the probability P(Bin(100,P(Hyp(50, 44, 25) < 25)) ≤ 90) ≈ 2.05 × 10−7 to 

Table 1  Scenario specification for L
2
-boosting and LogitBoost as model selection algorithms

Scen p n m̃ nsub StabSel TrimStabSel

B B � B � B �

1 25 50 {0,1,...,9} 25 100 100 0.5 100 0.75 100 0.9
2 50 100 {0,1,...,9} 50 100 100 0.5 100 0.75 100 0.9
3 200 200 {0,1,...,20} 100 100 100 0.5 1000 0.9 1000 0.95
4 500 200 {0,1,...,15} 100 100 100 0.75 1000 0.9 1000 0.95

Fig. 1  Results for scenarios 1 and 2 with L
2
-Boosting as model selection algorithm. Solid lines represent 

the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 2  Relative frequencies of perfect stable models for scenarios 1 and 2 with L
2
-Boosting as model selec-

tion algorithm. The black lines correspond to the non-trimmed Stability Selection and the red, green and 
blue lines to the first, second and third configuration of TrimStabSel, as specified in Table 1, respectively 
(Color figure online)

Fig. 3  Results for scenarios 3 and 4 with L
2
-Boosting as model selection algorithm. Solid lines represent 

the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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have at most 90 out of 100 contaminated subsamples. The inherent robustness of Stability 
Selection safeguards against a breakdown of the TrimStabSel variants here which would oth-
erwise be very likely.

At small contamination rates, for scenario 1 until around 12% and for scenario 2 until 
around 7%, TrimStabSel considerably improves model selection, especially for a high 
SNR. For example, the relative breakdown frequency in scenario 1 with an SNR of 5 and 
m̃ = 4 is around 10 times as high for the non-trimmed Stability Selection as for the third 
variant of TrimStabSel while the TPR is three times as high and even more than three 
times as high for m̃ = 3 . The results in scenario 2–4 look similar as for scenario 1. For an 
SNR of 5, one can observe even near perfect results for at least the third TrimStabSel vari-
ant for low contamination rates up to around 3%.

6.2  (Trimmed) stability selection with LogitBoost

We use the same specifications as in Table  1, but as we cannot targetedly let the data 
have some specified SNR, we generate the relevant �j according to a N(�, 1)-distribu-
tion with � ∈ {1, 4, 8} where higher means make, in expectation, the signals stronger 
and the SNR higher. Again, we use V = 1000 . We again use glmboost, here with 
family=Binomial(link=’logit’) and let the other hyperparameters be as for L2
-Boosting.

The results, depicted in Figs. 5, 6,  7 and 8, look similarly as in the previous subsec-
tion. One can observe a more compressed shape of the TPR curve for the case � = 1 while 
the curves corresponding to the different Stability Selection variants show a considerable 

Fig. 4  Relative frequencies of perfect stable models for scenarios 3 and 4 with L
2
-Boosting as model selec-

tion algorithm. The black lines correspond to the non-trimmed Stability Selection and the red, green and 
blue lines to the first, second and third configuration of TrimStabSel, as specified in Table 1, respectively 
(Color figure online)
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Fig. 5  Results for scenarios 1 and 2 with LogitBoost as model selection algorithm. Solid lines represent the 
TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed 
Stability Selection and the red, green and blue lines to the first, second and third configuration of TrimStab-
Sel, as specified in Table 1, respectively (Color figure online)

Fig. 6  Relative frequencies of perfect stable models for scenarios 1 and 2 with LogitBoost as model selec-
tion algorithm. The black lines correspond to the non-trimmed Stability Selection and the red, green and 
blue lines to the first, second and third configuration of TrimStabSel, as specified in Table 1, respectively 
(Color figure online)
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Fig. 7  Results for scenarios 3 and 4 with LogitBoost as model selection algorithm. Solid lines represent the 
TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed 
Stability Selection and the red, green and blue lines to the first, second and third configuration of TrimStab-
Sel, as specified in Table 1, respectively (Color figure online)

Fig. 8  Relative frequencies of perfect stable models for scenarios 3 and 4 with LogitBoost as model selec-
tion algorithm. The black lines correspond to the non-trimmed Stability Selection and the red, green and 
blue lines to the first, second and third configuration of TrimStabSel, as specified in Table 1, respectively 
(Color figure online)
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margin. In our opinion, these behaviours are a direct consequence of the SNRs. The empir-
ical mean SNRs on our data sets, computed as Var(X�)∕Var(Y) [the reciprocal value of 
the noise to signal ratio from Friedman et al. (2001)], is between 30 and 40 for � = 1 and 
more than 1200 for � = 8 . Although the interpretation of this SNR is not identical to the 
interpretation of the SNR in the regression setting, the margins between the curves for high 
values of � reflect the behaviour from the previous subsection, here even stronger.

6.3  (Trimmed) stability selection with SLTS

Due to the inherent robustness of SLTS, we additionally allow for situations with high 
contamination radii. More precisely, we use the set {0, 1, ..., 10, 15, 20, 25} for scenario 
1, {0, 1, ..., 10, 15, 20, ..., 45, 50} for scenario 2, {0, 1, ..., 20, 30, ..., 70} for scenario 3 and 
{0, 1, ..., 15, 20, 30, ..., 70} for scenario 4.

We only consider regression scenarios here, i.e., we use family=Gaussian() in the 
sparseLTS function from the �-package robustHD (Alfons, 2016). We use a trimming 
rate in SLTS of 0.25 and for the penalty parameter, we propose the grid {0.05, 0.55, ..., 4.55} 
and let the best element be chosen data-driven by a winsorization strategy corresponding 
to mode=’fraction’ in sparseLTS. Due to the computational complexity, we set 
V = 100 . The remaining configurations are as in Table 1.

The results in Figs.  9, 10,  11 and 12 show that the region where the non-trimmed 
Stability Selection leads to a better performance than the trimmed variants is consider-
ably extended in contrast to the former experiments. This can be explained by the fact 
that SLTS with an internal trimming rate of 25% itself has a BDP of around 25% while 

Fig. 9  Results for scenarios 1 and 2 with SLTS as model selection algorithm. Solid lines represent the TPR, 
dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed Stabil-
ity Selection and the red, green and blue lines to the first, second and third configuration of TrimStabSel, as 
specified in Table 1, respectively (Color figure online)
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Fig. 10  Relative frequencies of perfect stable models for scenarios 1 and 2 with SLTS as model selection 
algorithm. The black lines correspond to the non-trimmed Stability Selection and the red, green and blue 
lines to the first, second and third configuration of TrimStabSel, as specified in Table 1, respectively (Color 
figure online)

Fig. 11  Results for scenarios 3 and 4 with SLTS as model selection algorithm. Solid lines represent the 
TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed 
Stability Selection and the red, green and blue lines to the first, second and third configuration of TrimStab-
Sel, as specified in Table 1, respectively (Color figure online)
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L2-Boosting and LogitBoost have a BDP of 0. Therefore, the trimmed Stability Selec-
tion pays off late, more precisely, once the contamination rate is sufficiently high to 
let SLTS break down on many subsamples, which is even more delayed for high SNR 
values due to the better performance of the underlying model selection in these cases. 
Also, the performance loss of TrimStabSel for low contamination rates is more consid-
erable for low SNR values than for high SNR values.

It should be noted that the TPR starts with lower values for m̃ = 0 than in the previ-
ous experiments. In particular, the relative fraction of perfect models is very low for 
scenario 1, even without contamination and with an SNR of 5, in contrast to the experi-
ments with L2-Boosting. The reason could be that, similarly as in TrimStabSel where 
the trimming decreases the evidence and makes the stable model therefore more fragile, 
trimming instances away in SLTS decreases the evidence of the fitted model and there-
fore its performance. The loss in efficiency of robust methods seems to carry over to 
model selection itself.

One can observe that trimming eventually pays off, but due to the fraction of bro-
ken models already being very high resp. the mean TPR already being very low, the 
improvement itself granted by TrimStabSel may no longer be reasonable as the relative 
fraction of broken models is still very high, for example, in scenario 2 with an SNR of 
2, 99% of the models have broken down for the non-trimmed Stability Selection while 
for the third version of TrimStabSel, still 89% of the models have broken down.

Experiments with a higher B and � so that a larger number of models is considered 
for aggregation showed a slight improvement of TrimStabSel, but we omit detailed fig-
ures here as they essentially resemble the ones before.

Fig. 12  Relative frequencies of perfect stable models for scenarios 3 and 4 with SLTS as model selection 
algorithm. The black lines correspond to the non-trimmed Stability Selection and the red, green and blue 
lines to the first, second and third configuration of TrimStabSel, as specified in Table 1, respectively (Color 
figure online)
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Finally, we directly compare the performance of the non-trimmed Stability Selec-
tion with SLTS with that of the TrimStabSel variants with L2-Boosting in order to check 
whether TrimStabSel can be beneficial or if the traditional Stability Selection with a robust 
model selection algorithm is always superior. This is done exemplarily for scenarios 2 and 
3 and depicted in Fig. 13. One can observe that for high signal-to-noise ratios, the standard 
Stability Selection with SLTS is nearly always superior, both in terms of mean TPR and 
mean breakdown rate, than any TrimStabSel variant with L2-Boosting. Interestingly, for 
low signal-to-noise ratios, while the robustness in terms of VSBDP is higher for the Stabil-
ity Selection with SLTS than for the TrimStabsel variants with L2-Boosting, the precision 
in terms of mean TPR is superior for the TrimStabSel variants with a high trimming rate, 
indicating that is strongly depends not only on the contamination rate but also on the noise 
level which model aggregation strategy should be selected. Summarizing, TrimStabSel 
with a non-robust model selection algorithm can outperform the traditional Stability Selec-
tion with a robust model selection algorithm.

6.4  Threshold‑based stability selection

We repeat all experiments with L2-Boosting and LogitBoost with a threshold-based Stabil-
ity Selection with a fixed threshold of �thr = 0.75 . In addition to the standard setting q = 5 
for the number of variables in the rank-based Stability Selection, we also run simulations 
with q = 8 for a better comparison with the threshold-based variant as the true number of 

Fig. 13  Results for scenarios 2 and 3 with the traditional Stability Selection with SLTS (thick purple lines) 
and the TrimStabSel variants with L

2
-Boosting. Solid lines represent the TPR, dashed lines the relative fre-

quencies of a breakdown. The black lines correspond to the non-trimmed Stability Selection and the red, 
green and blue lines to the first, second and third configuration of TrimStabSel, as specified in Table  1, 
respectively, all with L

2
-Boosting as model selection algorithm (Color figure online)
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variables is not known in practice, so q = 5 grants the rank-based variant an unfair advan-
tage here.

One can observe in Figs. 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 that the characteristics 
of the curves are similar as in the rank-based case. However, one can clearly see that the 
performance of the threshold-based variant is usually worse than the rank-based variant as 
the TPRs are lower and the relative breakdown frequencies attain high values more quickly, 
which corresponds to our theoretical results in Theorem 2. As expected, the TPR slightly 
increases for the case q = 8 (note that the accuracy does decrease) and that the empirical 
breakdown rate slightly decreases in comparison with the case q = 5 for the rank-based 
variant. Nevertheless, the results are still considerably better than for the threshold-based 
variant.

6.5  Large outliers

We repeat the experiments for scenarios 2 and 3 with L2-Boosting and SLTS as model 
selection algorithms with an alternative contamination scheme where we replace cells 
with the value 50 instead of replacing them with zeroes. As the cells are generated from 
a N(5, 1)-distribution, these values will definitely appear as large outliers. From here on, 
we only use the rank-based variant due to the reduced performance of the threshold-based 
variant experienced in the previous subsections.

One can observe in Figs. 26, 27, 28, 29, 30 and 31 that the curves show a similar behav-
iour as for the case of replacing the values of the contaminated cells with zeroes, but the 
individual curves corresponding to the four Stability Selection variants are much better 
separated now. It should be noted that the usage of SLTS as model selection algorithm 
leads to superior performance than a TrimStabSel with L2-Boosting as model selection 
algorithm here.

6.6  Out‑of‑sample loss

We repeat all experiments for scenario 2 and 3 with L2-Boosting, LogitBoost and SLTS 
as model selection algorithms where TrimStabSel is based on the out-of-sample losses 
and not on the in-sample losses. As for the out-of-sample losses, we always consider the 
instances in the training data that were not selected in the subsample on which the respec-
tive model has been trained.

It is revealed in Figs. 32 and 33 that it has a significant effect whether one considers 
the in-sample loss or the out-of-sample loss for TrimStabSel when using L2-Boosting 
as model selection algorithm. While the TrimStabSel variants with the in-sample losses 
showed superior performance than the non-trimmed Stability Selection, the performance 
of the TrimStabSel variants with the out-of-sample performance is inferior to that of the 
non-trimmed Stability Selection, confirming our argumentation for using the in-sample 
losses here. As for LogitBoost as model selection algorithm, Figs. 34 and 35 indicate that 
this observation also holds here but that the difference between the performances is much 
smaller than in Figs. 32 and 33, maybe resulting from a generally higher signal-to-noise 
ratio.

Finally, the curves Figs. 36 and 37 are very similar to their counterparts in Figs. 9, 10, 
11 and 12, indicating that with a robust model selection algorithm, it may not be important 
whether to consider the in-sample or the out-of-sample losses in the TrimStabSel. A pos-
sible reason is that, due to using the usual squared loss when computing the in-sample and 
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out-of-sample performance of the individual models, robust methods that avoid to overfit 
outliers result in an in-sample performance that is worse than that of a model computed 
by a non-robust method. At the same time, due to avoiding to overfit, the out-of-sample 
performance may, on the contrary, be better than for non-robust methods, making the trim-
ming procedure less susceptible for the choice of whether to use the in-sample or the out-
of-sample loss.

6.7  Out‑of‑sample loss and large outliers

We combine the out-of-sample loss approach with the situation of large outliers.
One can observe in Figs. 38, 39, 40 and 41 that the combination of large outliers and 

the consideration of the out-of-sample loss for the validation of the individual models sig-
nificantly decreases the performance of both the non-trimmed Stability Selection and the 
trimmed variants compared to the scenario where the out-of-sample loss is combined with 
the situation of replacing cells with zeroes. The comparison of the results here with the 
situation where the in-sample loss is used in the presence of large outliers is highly inter-
esting as Figs. 26, 27, 28, 29, 30 and 31 have revealed the benefit of the trimmed variants, 
according to the in-sample loss, in this case, while using the out-of-sample loss is clearly 
disadvantageous in Figs. 38, 39, 40 and 41.

Again, Figs. 42 and 43 indicate that TrimStabSel with SLTS as model selection algo-
rithm is indifferent whether the in-sample or the out-of-sample loss is considered, as the 
curves look very similar to those in Figs. 30 and 31.

6.8  RRBoost

We apply the RRBoost algorithm (Ju & Salibián-Barrera, 2021) as an alternative robust 
model selection algorithm. We use the implementation in the �-package RRBoost (Ju 
& Salibián-Barrera, 2020). In our experiments, we used the default configurations of the 
Boost function in the package RRBoost.

The results in Figs.  44,  45, 46 and  47 show interesting differences between the case 
where SLTS is used as model selection algorithm, as shown in Figs.  9, 10,  11 and 12. 
One can observe in scenario 2 that the Stability Selection with RRB is much more robust 
and achieves a much higher mean TPR than the Stability Selection with SLTS. Moreover, 
the TrimStabSel with a low trimming rate achieves similar performance concerning mean 
TPR than the non-trimmed Stability Selection, while TrimStabsel with a high trimming 
rate achieves a better robustness than the non-trimmed Stability Selection, in contrast to 
the Stability Selection with SLTS where trimming generally worsened the performance. In 
scenario 3, it turns out that TrimStabSel with a high trimming rate is also beneficial for the 
mean TPR. Similar observations can be made for the relative frequency of perfect models, 
which is higher with RRB than with SLTS as model selection algorithm and where trim-
ming is beneficial in scenario 3 but not in scenario 2.

For scenario 2 with an SNR of 5, we also applied TrimStabSel with RRB for the cases 
of out-of-sample loss, large outliers, and their combination. Figures 46 and 47 reveal that 
it depends on the contamination rate whether trimming pays off, in contrast to the case of 
SLTS as model selection algorithm were trimming never resulted in better performance for 
this particular scenario, as shown in Fig. 30. Similar observations can be made for the case 
of using out-of-sample loss where trimming is considerably better for rather high contami-
nation rates concerning the robustness, in harsh contrast to the case with SLTS as shown in 



5025Machine Learning (2023) 112:4995–5055 

1 3

Fig. 32. The results for the case of the out-of-sample loss in combination with large outliers 
is comparable. Interestingly, the rate of perfect models is generally better for the case of 
SLTS than when using RRB.

6.9  AUC‑Boosting

Finally, we use AUC-Boosting which considers the AUC-loss, i.e., 1 minus the AUC. 
Since this loss function is not differentiable, a smooth approximation is used [cf. Hothorn 
et al. (2017)]. The results, depicted in Figs. 48 and 49 for the in-sample loss and in the top 
right part of Figs. 50 and 51 show almost flat curves for the trimmed Stability Selection. 
A closer inspection revealed that AUC-Boosting tends to overfit, leading to a perfect in-
sample performance so that all samples are indistinguishable, so that selection of the “best” 
(1 − �)-fraction is just done randomly.

For the top left and bottom part of Figs. 50 and 51, the out-of-sample losses were used, 
resulting in a considerable improvement of the performance when combining AUC-Boost-
ing with TrimStabSel instead of the traditional Stability Selection.

7  Conclusion

We intended to make a step towards the unification of sparse model selection, robustness 
and stability in order to lift the understanding of robustness from the rows of a data matrix 
to the columns and investigated how contamination can affect model selection. We started 
with the introduction of the variable selection breakdown point and an outlier scheme 
which allows a very small number of contaminated cells to completely distort variable 
selection, making a robustification in the usual sense that provides coefficients whose norm 
is always bounded obsolete if no relevant variable is considered.

We extended the notion of the resampling breakdown point, which quantifies the rela-
tive fraction of outlying instances so that the probability that a resample is contaminated 
too much exceeds some threshold, by the Stability Selection BDP which we computed for 
different scenarios where we postulate different effects of outliers onto model selection due 
to the absence of concrete results in literature. Our analysis reveals that a Stability Selec-
tion where the stable model is given by the best q variables for a pre-defined q can be 
expected to be more robust than the standard threshold-based Stability Selection.

Finally, we propose a Trimmed Stability Selection which considers only the best resa-
mples, based on the in-sample losses, when aggregating the models. A simulation study 
reveals the potential of this Trimmed Stability Selection to robustify model selection, 
although it evidently inherits the necessity to find appropriate hyperparameter configura-
tions. The simulations also prove the alarming fragility of variable selection, even for an 
very low number of outlying cells, if the outliers are targetedly placed onto the relevant 
columns. In particular, regarding the rapid performance decrease of the non-trimmed Sta-
bility Selection with L2-Boosting as model selection algorithm, one has to keep in mind 
that even 2 resp. 5 outlying instances in scenario 1 and 2 resp. 3 and 4 suffice to let nearly 
no stable model be perfect, accompanied with a somewhat decreased mean TPR, so the 
cell-wise contamination rates range from 25/100500 in scenario 4 to 10/1275 in scenario 1.

We recommend to consider a trimmed Stability Selection with a non-robust model selec-
tion algorithm in situations where the contamination rate can be expected to be low and the 
noise level to be high. In such settings, the trimmed Stability Selection with a non-robust 
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model selection algorithm like L2-Boosting shows a significant improvement concerning 
mean TPR, breakdown rate and the relative number of perfect stable models in contrast to the 
non-trimmed Stability Selection, and can even outperform the Stability Selection combined 
with a robust model selection algorithm, while being very easy to implement. This avoids the 
application of robust model selection algorithms which are computationally more expensive 
and which alone do not follow the stability paradigm which would in fact necessitate to even 
apply a Stability Selection with a robust model selection algorithm. In cases with larger con-
tamination rates, one however cannot avoid the application of much more expensive robust 
model selection algorithms, but our simulations revealed that aggregating the resulting mod-
els with TrimStabSel instead of the traditional Stability Selection can considerably improve 
the performance. One should however note that it depends on the model selection algorithm 
whether an improvement can be achieved. It turns out that one should not combine TrimStab-
Sel with trimming algorithms such as SLTS due to the reduced evidence by trimming train-
ing instances in each of the subsamples, reducing their comparability.

We want to emphasize that in our experiments, a robust model selection algorithm seems 
to show inferior performance than a non-robust model selection algorithm if applied on 
clean data. Although it is well-known that robust algorithms are less efficient in terms of 
asymptotic covariance, this loss in efficiency seems to carry over to variable selection itself.

Future research is necessary in order to study the potential of outliers for targeted vari-
able promotion or suppression further. Although our proposed outlier schemes seem to be 
artificial so that they most probably would not occur by chance, one has to be aware of the 
attacking paradigm emerging from the deep learning community. Similarly as popular situ-
ations where models have to be inferred before attacks can be crafted (see, e.g., Papernot 
et al. 2017), one could intercept a data transfer, try to detect relevant variables and suppress 
them targetedly or try to detect certainly non-relevant variables (for example by Sure Inde-
pendence Screening, see Fan & Lv 2008) in order to targetedly promote them.

A Proof of Theorem 2

Proof 

(a)    (ii)       Now, we consider cell-wise contamination. Let, for i = 1, ..., n , a fixed selection 
of ci cells in instance i be contaminated, let Zl , l = 0, 1, ..., p + 1 , be the number of 
instances for with ci = l and let m̃ ∶=

∑
i ci . Let further Zrel

l′
 , l� = 1, ..., s0 , denote 

the number of instances with l′ outlying cells in the relevant columns. Let m̌ 
be the number of outliers in the response column. Let c̃ be the cell-BDP of the 
applied model selection algorithm.

   First, note that for both the rank-based and the threshold-based Stability 
Selection, the following two facts obviously hold: The probability that the 
model selection breaks down in terms of the VSBDP is 1 if the fraction of 
cell-wise outliers exceeds c̃ in the relevant columns or in the response column; 
and it is 0 if ci ≤ ⌊c̃(p + 1)⌋ ∀i resp. 1 if ci > ⌊c̃(p + 1)⌋ ∀i.

   Otherwise, there are three ways how to achieve a breakdown as already 
mentioned when defining the cell-wise scenarios: 1.) The probability that, due 
to subsampling, the fraction of cell-wise outliers in the whole data matrix 
becomes at least c̃ ; 2.) The analogous probability for the set of relevant col-
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umns; 3.) The probability that a fraction of at least c̃ of the responses are con-
taminated which also can cause the wrong variables to be selected according 
to the assumption in the cell-wise scenarios.

   Let 

 where fZ,nsub for Z = (Z0, ...,Zp+1) represents the probability func-
tion of a multivariate hypergeometric distribution with values in 
{(z0, ..., zp+1) | z0 + ... + zp+1 = nsub} , i.e., fZ,nsub (z0, ..., zp+1) is the probability 
that when sampling nsub instances without replacement, one gets z0 out of the 
Z0 instances without cell-wise outliers, z1 out of the Z1 instances with one cell-
wise outlier and so forth. Moreover, let 

 for Zrel = (Zrel
0
, ...,Zrel

s0
) . The probabilities p1 and p2 correspond to one resam-

ple, so we define P1 and P2 corresponding to a sufficient contamination of suf-
ficiently many resamples, leading to the probabilities 

 and 

 that the threshold-based Stability Selection breaks down due to (1) or (2). 
As for (3), denote the quantity in Eq. (12), where m is replaced by m̌ , by P3 , 
so that we finally get the probability min(P1,P2,P3) that the model selection 
breaks down if the resamples are drawn by subsampling.

   Analogously, by the same arguments, the probability of a VSBDP for the 
threshold-based Stability Selection if the resamples are drawn by Bootstrapping 
is given by min(P̌1, P̌2, P̌3) for 

 where 

 where fMult represents the density of a multinomial distribution with param-
eters (Z0∕

∑
l Zl, ...,Zp+1∕

∑
l Zl) and nsub ; for 

 where 

p1 ∶=
�

z0,...,zp+1∶
∑

l lzl≥⌈c̃nsub(p+1)⌉
fZ,nsub (z0, ..., zp+1)

p2 ∶=
�

z̃0,...,z̃s0
∶
∑

l lz̃l≥⌈c̃nsubs0⌉
fZrel ,nsub

(z̃0, ..., z̃s0 )

(19)P1 ∶= P(Bin(B, p1) > ⌈B(max(�̂�+
j
) − 𝜋)⌉)

(20)P2 ∶= P(Bin(B, p2) > ⌈B(max(�̂�+
j
) − 𝜋)⌉)

(21)P̌1 ∶= P(Bin(B, p̌1 > ⌈B(max(�̂�+
j
) − 𝜋)⌉)

p̌1 ∶=
�

z0,...,zp+1∶
∑

l lzl≥⌈c̃nsub(p+1)⌉
fMult(z0, ..., zp+1)

(22)P̌2 ∶= P(Bin(B, p̌2 > ⌈B(max(�̂�+
j
) − 𝜋)⌉)
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 and for P̌3 as in Eq. (13) where m is replaced by m̌.
   By the same arguments as in i) for the rank-based Stability Selection and for 

the threshold-based Stability Selection with cell-wise contamination above, 
the probability that the rank-based Stability Selection breaks down is given by 
min(P1,P2,P3) for 

 for v = 1, 2 and for P3 as in Eq. (14), where m is replaced by m̌ , if the resam-
ples are drawn by subsampling; and it is given by min(P̌1, P̌2, P̌3) for 

 and P̌3 as in Eq. (15), where m is replaced by m̌ , if the resamples are drawn by 
Bootstrapping.

   Now, we are ready to compare the robustness of threshold- and rank-based 
Stability Selection by simply comparing the right-hand sides inside the P(⋅)
-brackets in Eqs. (12) and (14), (13) and (15), (19), (20) and (23) and (21), (22) 
and (24), respectively, indicating that both variants are equally robust if and 
only if 

 directly proving statement a).
(b) The threshold-based Stability Selection has already been covered in a). 

 (i) Again, we first consider case-wise contamination.
   As for rank-based Stability Selection, it is indeed important that in the opti-

mistic scenario, we can only targetedly promote one non-relevant variable. 
Therefore, the breakdown of rank-based Stability Selection depends on the 
terms s, q, maxj(�̂�

+
j
) and all �̂�−

k
 for k = 1, ..., q , so one cannot make a universal 

precise statement. However, there are two extreme cases. If for 

 the difference between maxj(�̂�
+
j
) and �̂�−

k
 for (q − 1) indices k from {1, ..., q} 

is exactly Δ∕2 , except for k∗ ∶= argmin k=q−s+1,...,q(�̂�
−
k
) for which it is Δ , then 

more than 0.5⌈BΔ⌉ contaminated samples suffice for a breakdown if the vari-
able corresponding to �̂�−

k∗
 is promoted in each of these resamples since the 

same reasoning as in a) applies, i.e., the difference of the selection probabili-
ties for the worst non-relevant and best relevant variable decreases with a step 
size of 2/B. The other extreme case is that all �̂�−

k
 are equal. Then, if s > ⌈BΔ⌉ , 

even after promoting each of these non-relevant variables in one single con-
taminated resample does not suffice for a breakdown since there will be at 
least one remaining one whose aggregated selection frequency was still not 
promoted. In that case, we can treat �̂�−

k
 (in general, mink=q−s+1,...,q(�̂�

−
k
) ) as 

p̌2 ∶=
�

z̃0,...,z̃s0
∶
∑

l lz̃l≥⌈c̃nsubs0⌉
fMult(z̃0, ..., z̃s0 );

(23)Pv ∶= P(Bin(B, pv) > ⌈0.5B(max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉)

(24)P̌v ∶= P(Bin(B, p̌v) > ⌈0.5B(max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉)

max
j=1,...,s

(�̂�+
j
) − 𝜋 = 0.5(max

j=1,...,s
(�̂�+

j
) − min

k=q−s+1,...,q
(�̂�−

k
)),

max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
) =∶ Δ
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threshold so that the results for the threshold-based Stability Selection are 
applicable, so the relevant variables have to be suppressed in so many resa-
mples such that the selection frequency of the best of them finally crosses the 
threshold. Hence, the probability of a VSBDP of rank-based Stability Selec-
tion here lies in the interval 

 if the resamples are drawn by subsampling and lies in the interval 

 if the resamples are drawn by Bootstrapping.
 (ii) Now, we consider cell-wise contamination.
   As for the rank-based variant, by the same arguments as before, it lies in one 

of the intervals 

 for v = 1, 2 with p1 and p2 as above or in the interval given in Eq. (25), where 
m is replaced by m̌ , if the resamples are drawn by subsampling; lies in one of 
the intervals 

 for v = 1, 2 with p̌1 and p̌2 as before; or in the interval given in Eq.  (26), 
where m is replaced by m̌ , if the resamples are drawn by Bootstrapping. These 
statements are slightly more tricky than for the threshold-based variant since 
one has intervals. However, for a concrete data set and a concrete model selec-
tion algorithm, one value in the respective intervals is realized so that the 
probability of a breakdown of the Stability Selection is the minimum.

   Again, the statement b) is proven by comparing the right-hand sides in the 
respective P(⋅)-brackets. Due to the interval statements, we can only consider 
the cases where one variant is definitely more robust than the other one. The 
rank-based variant is definitely more robust than the threshold-based variant 
i f  0.5B(maxj=1,...,s(�̂�

+
j
) −mink=q−s+1,...,q(�̂�

−
k
)) > B(maxj=1,...,s(�̂�

+
j
) −mink=q−s+1,...,q(�̂�

−
k
)) . 

(25)

[P(Bin(B,P(Hyp(n, n − m, nsub) ≤⌊(1 − c)nsub⌋))
>⌈B(max

j=1,...,s
(�̂�+

j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉),

P(Bin(B,P(Hyp(n, n − m, nsub) ≤⌊(1 − c)nsub⌋))
>⌈0.5B(max

j=1,...,s
(�̂�+

j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉)]

(26)

[P(Bin(B,P(Bin(nsub,m∕n) ≥⌈cnsub⌉))
>⌈B(max

j=1,...,s
(�̂�+

j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉),

P(Bin(B,P(Bin(nsub,m∕n) ≥⌈cnsub⌉))
>⌈0.5B(max

j=1,...,s
(�̂�+

j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉)]

[P(Bin(B, pv) > ⌈B(max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉),

P(Bin(B, pv) ≥ ⌈cnsub⌉)) > ⌈0.5B(max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉)]

[P(Bin(B, p̌v) >⌈B(max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉),P(Bin(B, p̌v)

>⌈0.5B(max
j=1,...,s

(�̂�+
j
) − min

k=q−s+1,...,q
(�̂�−

k
))⌉)]
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The converse relation is true if B(maxj=1,...,s(�̂�
+
j
) −mink=q−s+1,...,q(�̂�

−
k
))

< max
j=1,...,s(�̂�

+
j
) − 𝜋 . Simple arithmetic leads to the statements of b).

  ◻

B Further simulation results

B1 Threshold‑based stability selection

See Appendix Figs. 14, 15, 16, 17, 18, 19, 20 and 21.
Below, we depict the results of the rank-based Stability Selection with q = 8 (see 

Appendix Figs. 22, 23).

Fig. 14  Results for scenarios 1 and 2 with L
2
-Boosting as model selection algorithm. Solid lines repre-

sent the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 15  Relative frequencies of perfect stable models for scenarios 1 and 2 with L
2
-Boosting as model 

selection algorithm. The black lines correspond to the non-trimmed Stability Selection and the red, green 
and blue lines to the first, second and third configuration of TrimStabSel, as specified in Table 1, respec-
tively (Color figure online)

Fig. 16  Results for scenarios 3 and 4 with L
2
-Boosting as model selection algorithm. Solid lines repre-

sent the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 17  Results for scenarios 3 and 4 with L
2
-Boosting as model selection algorithm. The black lines corre-

spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 18  Results for scenarios 1 and 2 with LogitBoost as model selection algorithm. Solid lines represent 
the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 19  Results for scenarios 1 and 2 with LogitBoost as model selection algorithm. The black lines corre-
spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 20  Results for scenarios 3 and 4 with LogitBoost as model selection algorithm. Solid lines represent 
the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 21  Results for scenarios 3 and 4 with LogitBoost as model selection algorithm. The black lines corre-
spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 22  Results for scenarios 1 and 2 with L
2
-Boosting as model selection algorithm. Solid lines repre-

sent the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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B2 Less sparse true models

We repeat the experiments for L2-Boosting in Scenario 3 with less sparse true models, 
i.e., with s0 = 20 instead of s0 = 5 , both for the threshold- and the rank-based Stability 
Selection.

Fig.  24 reveals that the rank-based and the threshold-based variant indeed can lead 
to very different results in this situation. While the rank-based variant already shows a 
decreased performance in contrast to the case s0 = 5 , the performance of the threshold-
based variant is very poor, most likely due to the fact that due to the higher number of rel-
evant variables, it could be more likely to miss some in each of the models, decreasing the 
relative selection frequencies for the Stability Selection so that more relevant variables are 
discarded in the threshold-based variant.

Figure  25 reveals that the relative frequency of perfect models has significantly 
decreased which is not surprising as it can be assumed to be much more difficult to retrieve 
all 20 relevant variables in the stable model without selecting any noise variable than find-
ing only 5 relevant variables without selecting any noise variable.

Fig. 23  Results for scenarios 3 and 4 with L
2
-Boosting as model selection algorithm. Solid lines repre-

sent the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 24  Results for scenario 3 with L
2
-Boosting as model selection algorithm. Upper row: Rank-based Sta-

bility Selection; Lower row: Threshold-based Stability Selection. Solid lines represent the TPR, dashed 
lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed Stability 
Selection and the red, green and blue lines to the first, second and third configuration of TrimStabSel, as 
specified in Table 1, respectively (Color figure online)

Fig. 25  Results for scenario 3 with L
2
-Boosting as model selection algorithm. Upper row: Rank-based Sta-

bility Selection; Lower row: Threshold-based Stability Selection. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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B3 Large outliers

See Appendix Figs. 26, 27, 28, 29, 30 and 31

Fig. 26  Results for scenarios 2 and 3 with L
2
-Boosting as model selection algorithm. Solid lines repre-

sent the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 28  Results for scenarios 2 and 3 with LogitBoost as model selection algorithm. Solid lines represent 
the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 27  Results for scenarios 2 and 3 with L
2
-Boosting as model selection algorithm. The black lines corre-

spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 29  Results for scenarios 2 and 3 with LogitBoost as model selection algorithm. The black lines corre-
spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 30  Results for scenarios 2 and 3 with SLTS as model selection algorithm. Solid lines represent the 
TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed 
Stability Selection and the red, green and blue lines to the first, second and third configuration of TrimStab-
Sel, as specified in Table 1, respectively (Color figure online)
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B4 Out‑of‑sample loss

See Appendix Figs. 32, 33, 34, 35, 36 and 37.

Fig. 31  Results for scenarios 2 and 3 with SLTS as model selection algorithm. The black lines correspond 
to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third con-
figuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 32  Results for scenarios 2 and 3 with L
2
-Boosting as model selection algorithm. Solid lines repre-

sent the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 33  Results for scenarios 2 and 3 with L
2
-Boosting as model selection algorithm. The black lines corre-

spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 34  Results for scenarios 2 and 3 with LogitBoost as model selection algorithm. Solid lines represent 
the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 35  Results for scenarios 2 and 3 with LogitBoost as model selection algorithm. The black lines corre-
spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 36  Results for scenarios 2 and 3 with SLTS as model selection algorithm. Solid lines represent the 
TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed 
Stability Selection and the red, green and blue lines to the first, second and third configuration of TrimStab-
Sel, as specified in Table 1, respectively (Color figure online)
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B5 Out‑of‑sample loss and large outliers

See Appendix Figs. 38, 39, 40, 41, 42 and 43.

Fig. 37  Results for scenarios 2 and 3 with SLTS as model selection algorithm. The black lines correspond 
to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third con-
figuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 38  Results for scenarios 2 and 3 with L
2
-Boosting as model selection algorithm. Solid lines repre-

sent the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 39  Results for scenarios 2 and 3 with L
2
-Boosting as model selection algorithm. The black lines corre-

spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 40  Results for scenarios 2 
and 3 with LogitBoost as model 
selection algorithm. Solid lines 
represent the TPR, dashed lines 
the relative frequencies of a 
breakdown. The black lines 
correspond to the non-trimmed 
Stability Selection and the red, 
green and blue lines to the first, 
second and third configuration 
of TrimStabSel, as specified 
in Table 1, respectively (Color 
figure online)

Fig. 41  Results for scenarios 
2 and 3 with LogitBoost as 
model selection algorithm. The 
black lines correspond to the 
non-trimmed Stability Selection 
and the red, green and blue lines 
to the first, second and third 
configuration of TrimStabSel, as 
specified in Table 1, respectively 
(Color figure online)
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Fig. 42  Results for scenarios 2 and 3 with SLTS as model selection algorithm. Solid lines represent the 
TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed 
Stability Selection and the red, green and blue lines to the first, second and third configuration of TrimStab-
Sel, as specified in Table 1, respectively (Color figure online)

Fig. 43  Results for scenarios 2 and 3 with SLTS as model selection algorithm. The black lines correspond 
to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third con-
figuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)
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B6 RRBoost

See Appendix Figs. 44, 45, 46 and 47.

Fig. 44  Results for scenarios 2 and 3 with robust Boosting as model selection algorithm. Solid lines repre-
sent the TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-
trimmed Stability Selection and the red, green and blue lines to the first, second and third configuration of 
TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 45  Results for scenarios 2 and 3 with robust Boosting as model selection algorithm. The black lines 
correspond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and 
third configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 46  Results for scenario 2 with robust Boosting as model selection algorithm. Top left: Out-of-sample 
losses were used; top right: Large outliers were generated; bottom: Out-of-sample losses in combination 
with large outliers. Solid lines represent the TPR, dashed lines the relative frequencies of a breakdown. The 
black lines correspond to the non-trimmed Stability Selection and the red, green and blue lines to the first, 
second and third configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)

Fig. 47  Results for scenario 2 with robust Boosting as model selection algorithm. Top left: Out-of-sample 
losses were used; top right: Large outliers were generated; bottom: Out-of-sample losses in combination 
with large outliers. The black lines correspond to the non-trimmed Stability Selection and the red, green and 
blue lines to the first, second and third configuration of TrimStabSel, as specified in Table 1, respectively 
(Color figure online)
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B7 AUC‑Boosting

See Appendix Figs. 48, 49, 50 and 51.

Fig. 48  Results for scenario 2 with AUC-Boosting as model selection algorithm. Solid lines represent the 
TPR, dashed lines the relative frequencies of a breakdown. The black lines correspond to the non-trimmed 
Stability Selection and the red, green and blue lines to the first, second and third configuration of TrimStab-
Sel, as specified in Table 1, respectively (Color figure online)

Fig. 49  Results for scenario 2 with AUC-Boosting as model selection algorithm. The black lines corre-
spond to the non-trimmed Stability Selection and the red, green and blue lines to the first, second and third 
configuration of TrimStabSel, as specified in Table 1, respectively (Color figure online)
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Fig. 50  Results for scenario 2 
with AUC-Boosting as model 
selection algorithm. Top left: 
Out-of-sample losses were used; 
top right: Large outliers were 
generated; bottom: Out-of-
sample losses in combination 
with large outliers. Solid lines 
represent the TPR, dashed lines 
the relative frequencies of a 
breakdown. The black lines 
correspond to the non-trimmed 
Stability Selection and the red, 
green and blue lines to the first, 
second and third configuration 
of TrimStabSel, as specified 
in Table 1, respectively (Color 
figure online)

Fig. 51  Results for scenario 2 
with AUC-Boosting as model 
selection algorithm. Top left: 
Out-of-sample losses were used; 
top right: Large outliers were 
generated; bottom: Out-of-sam-
ple losses in combination with 
large outliers. The black lines 
correspond to the non-trimmed 
Stability Selection and the red, 
green and blue lines to the first, 
second and third configuration 
of TrimStabSel, as specified 
in Table 1, respectively (Color 
figure online)
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