
Vol.:(0123456789)

Machine Learning (2024) 113:1967–1987
https://doi.org/10.1007/s10994-023-06377-y

1 3

Dense subgraphs induced by edge labels

Iiro Kumpulainen1 · Nikolaj Tatti1

Received: 6 March 2023 / Revised: 29 May 2023 / Accepted: 17 July 2023 /
Published online: 6 September 2023
© The Author(s) 2023

Abstract
Finding densely connected groups of nodes in networks is a widely-used tool for analysis in
graph mining. A popular choice for finding such groups is to find subgraphs with a high aver-
age degree. While useful, interpreting such subgraphs may be difficult. On the other hand,
many real-world networks have additional information, and we are specifically interested in
networks with labels on edges. In this paper, we study finding sets of labels that induce dense
subgraphs. We consider two notions of density: average degree and the number of edges
minus the number of nodes weighted by a parameter � . There are many ways to induce a sub-
graph from a set of labels, and we study two cases: First, we study conjunctive-induced dense
subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-
induced dense subgraphs, where the subgraph edges need to have at least one label. We show
that both problems are NP-hard. Because of the hardness, we resort to greedy heuristics. We
show that we can implement the greedy search efficiently: the respective running times for
finding conjunctive-induced and disjunctive-induced dense subgraphs are in O(p log k) and
O
(

p log2 k
)

 , where p is the number of edge-label pairs and k is the number of labels. Our
experimental evaluation demonstrates that we can find the ground truth in synthetic graphs
and that we can find interpretable subgraphs from real-world networks.

Keywords Dense subgraphs · Convex hull · Label-induced subgraphs

1 Introduction

Finding dense subgraphs in networks is a common tool for analyzing networks with poten-
tial applications in diverse domains, such as bioinformatics (Fratkin et al., 2006; Langston
et al., 2005), finance (Du et al., 2009), social media (Angel et al., 2014), or web graph
analysis (Fratkin et al., 2006).

Editor: Dino Ienco, Robert Interdonato, Pascal Poncelet.

 * Iiro Kumpulainen
 iiro.kumpulainen@helsinki.fi

 * Nikolaj Tatti
 nikolaj.tatti@helsinki.fi

1 HIIT, University of Helsinki, Helsinki, Finland

http://orcid.org/0000-0001-8521-6043
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06377-y&domain=pdf

1968 Machine Learning (2024) 113:1967–1987

1 3

While useful on their own, analyzing dense subgraphs without any additional explana-
tion may be difficult for domain experts and consequently may limit its usability.

Fortunately, it is often the case that the network has additional information such as labels
associated with nodes and/or edges. For example, in social networks, users may have tags
describing themselves. In networks arising from communication, for example, by email or Twit-
ter, the tags associated with the edge can be the tags associated or extracted with the message.

Using the available label information to provide explainable dense subgraphs may ease
the burden of domain experts when, for example, studying social networks. In this paper,
we consider finding dense subgraphs in networks with labeled edges. More formally, we
are looking for a label set that induces a dense subgraph. As a measure of density, a sub-
graph (W, F) with nodes W and edges F will use |F|∕|W| , the ratio of edges over the nodes,
a popular choice for measuring the density of a subgraph.

We consider two cases: conjunctive-induced and disjunctive-induced dense subgraphs.
In the former, the induced subgraph consists of all the edges that have the given label set.
In the latter, the induced subgraph consists of all the edges that have at least one label com-
mon with the label set. We give an example of both cases in Fig. 1.

Finding the densest subgraph—with no label constraints—can be done in polynomial
time (Goldberg et al., 1984) and can be 2-approximated in linear time (Charikar, 2000).
Unfortunately, additional requirements on the labels will make solving the optimization
problem exactly computationally intractable: we show that both problems are NP-hard,
which forces us to resort to heuristics. We propose a greedy algorithm for both problems:
we start with an empty label set and keep adding the best possible label until no additions
are possible. We then return the best observed induced subgraph.

The computational bottleneck of the greedy method is selecting a new label. If done
naively, evaluating a single label candidate requires enumerating over all the edges.
Since this needs to be done for every candidate during every addition, the running time
is O(p|L|) , where |L| is the number of labels and p is the number of edge-label pairs in the
network. By keeping certain counters we can speed up the running time. We show that
conjunctive-induced graphs can be discovered in O(p log |L|) time using a balanced search
tree, and that disjunctive-induced graphs can be discovered in O

(

p log2 |L|
)

 time with the
aid of an algorithm originally used to maintain convex hulls.

This is an extended version of our previously published conference paper (Kumpulainen
& Tatti, 2022). We extend our earlier work by considering an alternative definition of den-
sity: namely, we search for label-induced subgraphs (W, F) with high �-density |F| − �|W| .
This density is closely related to the problem of finding a subgraph with maximum den-
sity (Goldberg et al., 1984) but also has been used to decompose graphs (Tatti, 2019;

= �1
= �2

= �1
= �2
= �3

Fig. 1 Example graphs with labels on the edges. Edge labels are indicated by colors; dashed edges indicate
edges with 2 labels. Left figure: Label �

1
 induces a subgraph with 6 nodes and 9 edges, and �

2
 induces a

subgraph with 7 nodes and 11 edges, while the conjunction of �
1
 and �

2
 induces a subgraph with 5 nodes

and 8 edges resulting in the highest density of 8∕5 = 1.6 . Right figure: Labels �
1
 , �

2
 , and �

3
 each induce

subgraphs with 5 nodes and 4 edges, while the disjunction of �
1
 and �

2
 induces a subgraph with 5 nodes

and 7 edges, resulting in a density of 7∕5 = 1.4 . The colours are used to indicate edge labels. For example,
orange edges have one label while purple edges have another label, and dashed edges with both orange and
purple colours have both labels

1969Machine Learning (2024) 113:1967–1987

1 3

Danisch et al., 2017). We show that there are � such that the �-densest label-induced graph
also has the highest density. We then modify the greedy algorithms to find subgraphs with
high �-density in O(p log |L|) for both the conjunctive and disjunctive cases.

The remainder of the paper is organized as follows. In Sect. 2 we introduce the nota-
tion and formalize the optimization problem. In Sects. 3–4 we present our algorithms. In
Sect. 5, we analyze the case of using an alternative density metric and adapt the previous
algorithms to this problem. Section 6 is devoted to the related work. Finally, we present the
experimental evaluation in Sect. 7 and conclude with a discussion in Sect. 8. The computa-
tional complexity proofs are given in Appendix 1.

2 Preliminary notation and problem definition

In this section, we first describe the common notation and then introduce the formal defini-
tion of our problem.

Assume that we are given an edge-labeled graph, that is, a tuple G = (V ,E, lab) , where
V is the set of vertices, E ⊆ {(x, y) ∣ (x, y) ∈ V2, x ≠ y} is the set of undirected edges, and
lab ∶ E → 2L is a function that maps each edge e ∈ E to the set of labels lab(e) . Here L is
the set of all possible labels.

Given a label � ∈ L , let us write E(�) to be the edges having the label � . In addition, let
us write V(�) to be the nodes adjacent to E(�).

Our goal is to search for dense regions of graphs that can be explained using the labels.
In other words, we are looking for a set of labels that induce a dense graph. More formally,
we define an inducing function to be a function f that maps two sets of labels to a binary
number. An example of such a function could be f (A;B) = [B ⊆ A] which returns 1 if and
only if B is a subset of A.

Given a set of labels B ⊆ L , an inducing function f, and a graph G, we define the label-
induced subgraph H = G(f ,B) as (V(B),E(B), lab) , where

is the subset of edges that satisfy f, and V(B) is the set of vertices that are adjacent to E(B).
Given a graph G with vertices V and edges E, we measure the density of the graph d(G)

as the number of edges divided by the number of vertices: d(G) = |E|

|V|
.

We should point out that there are alternative choices for a notion of density. For exam-
ple, one option is to consider a fraction of edges |E|∕

(

|V|

2

)

 . However, this measure is how-
ever problematic since a single edge will yield a maximum value. Consequently, either
a size needs to be incorporated into the objective, which leads to discovering maximum
cliques—an NP-hard problem with bad approximation guarantees (Håstad, 1996), or enu-
merating all pseudo-cliques with an exponential-time algorithm (Uno, 2010; Abello et al.,
2002). On the other hand, finding graph with maximum d(G) can be done in polynomial
time (Goldberg et al., 1984), and 2-approximated in linear time (Charikar, 2000). See
related work for additional discussion.

We are now ready to state our generic problem.

Problem 1 (LD) Let G = (V ,E, lab) be an edge-labeled graph over a set of labels L with mul-
tiple labels being possible for each edge. Assume an inducing function f. Find a set of labels
L∗ such that the density d(H) of the label-induced subgraph H = G(f , L∗) is maximized.

E(B) = {e ∈ E ∣ f (lab(e);B) = 1}

1970 Machine Learning (2024) 113:1967–1987

1 3

We consider two special cases of LD. Firstly, let us define fAND(A;B) = [B ⊆ A] ,
that is, the induced edges need to contain every label in B. We will denote the prob-
lem LD paired with fAND as LDanD. Secondly, we define fOR(A;B) = [B ∩ A ≠ �] , that
is, the induced edges need to have one common label with B. Then, we denote the cor-
responding problem as LDor. In other words, LDanD is the problem of finding dense
conjunctive-induced subgraphs, and LDor is the problem of finding disjunctive-induced
subgraphs.

In addition, we consider an alternative measure to the density d(G) of a graph by
instead measuring the �-density of the graph g(G;�) as the number of edges minus �
times the number of vertices: g(G;�) = |E| − �|V| . This measure is closely related to
finding the densest subgraph: Goldberg et al. (1984) finds a series of �-densest sub-
graphs when searching for the densest subgraph. However, this measure has been also
studied on its own as it can be used to decompose graphs (Tatti, 2019; Danisch et al.,
2017). Our optimization problem is as follows.

Problem 2 (LD-�) Let G = (V ,E, lab) be an edge-labeled graph over a set of labels L with
multiple labels being possible for each edge. Assume an inducing function f and a constant
� ∈ ℝ . Find a set of labels L∗ such that the �-density g(H;�) of the label-induced subgraph
H = G(f , L∗) is maximized.

3 Finding dense conjunctive‑induced graphs

In this section, we focus on LDanD, that is, finding conjunctive-induced graphs that are
dense. We will first prove that LDanD is NP-hard.

Theorem 1 LDanD is NP-hard.

Proof The proof is given in Appendix 1. ◻

The NP-hardness forces us to resort to heuristics. Here, we use the algorithm for
2-approximating dense subgraphs (Charikar, 2000) as a starting point. The algorithm
iteratively removes a node with the smallest degree, and returns the best solution among
the observed subgraphs. We propose a similar greedy algorithm, where we greedily add
the best possible label, and repeat until the induced subgraph is empty. We then select
the best observed labels as the output.

To avoid enumerating over the edges every time we look for a new label, we main-
tain several counters. Let A be the current set of labels. For each label, we maintain the
number of nodes nk and edges mk of the candidate graph, that is, nk = |V(A ∪ {k})| and
mk = |E(A ∪ {k})| . We store the densities mk∕nk in a balanced search tree (for example,
a red-black tree), which allows us to obtain the largest element quickly. Once we update
set A, we also update the counters and update the search tree. Maintaining the node
counts nk requires us to maintain the counters rv,k , number of edges labeled as k adjacent
to v: once the counter reduces to 0, we reduce nk by 1. The pseudo-code of the algorithm
is given in Algorithm 1.

1971Machine Learning (2024) 113:1967–1987

1 3

We conclude with an analysis of the computational complexity of GreeDyanD.

Theorem 2 GreeDyanD runs in O(p log |L| + |V| + |E|) time, where p is the number of
edge-label pairs p = |{(e, k) ∣ e ∈ E, k ∈ lab(e)}|.

Proof Initializing counters in GreeDyanD can be done in O(|V| + |E| + |L|) time while ini-
tializing the tree can be done in O(|L| log |L|) time.

Let us consider the inner for-loop. Since an edge is deleted once it is processed, the
inner for-loop is executed at most p times during the search. Since this is the only way the
counters get updated, the tree T is updated p times, each update requiring O(log |L|) time.

The outer loop is executed at most |L| times. During each round, selecting and removing
the label requires O(log |L|) time.

In summary, the algorithm requires

time, completing the proof. ◻

4 Finding dense disjunctive‑induced graphs

In this section, we focus on LDor, that is, finding disjunctive-induced graphs that are
dense. We will first prove that LDor is NP-hard.

O(|V| + |E| + |L| + |L| log |L| + p log |L|) ⊆ O(|V| + |E| + p log |L|)

1972 Machine Learning (2024) 113:1967–1987

1 3

Theorem 3 LDor is NP-hard.

Proof The proof is given in Appendix 1. ◻

Similar to LDanD, we resort to a greedy search to find good subgraphs: We start with an
empty label set, and iteratively add the best possible label. Once done, we return the best
observed label set.

However, we maintain a different set of counters as compared to GreeDyanD. The rea-
son for having different counters is to avoid a significantly higher number of updates: the
inner loop would need to go over the edge-label pairs that are not present in the graph.
More formally, we maintain values n and m representing the number of nodes and edges in
the subgraph induced by the current set of labels, say A. We also maintain nk and mk , the
number of additional nodes and edges if k is added to A. At each iteration, we select the
label optimizing m+mk

n+nk
 . We will discuss the selection process later. Once the label is

selected, we update the counters mk and nk . To maintain nk properly, we keep track of what
nodes are already in V(A), using an indicator rv with rv = 1 if v ∈ V(A) . The pseudo-code
for the algorithm is given in Algorithm 2.

During each iteration, we need to select the label maximizing m+mk

n+nk
 . We cannot use pri-

ority queues any longer since n and m change every iteration. However, we can speed up

1973Machine Learning (2024) 113:1967–1987

1 3

the selection using a convex hull, a classic concept from computational geometry, see for
example, (Li & Klette, 2011). First, let us formally define a lower-right convex hull.

Definition 1 Given a set of points X =
{

(xi, yi)
}

 in a plane, we define a lower-right con-
vex hull H = hull(H) to be a subset of X such that q = (xq, yq) ∈ X is not in X if and only
if there is a point r = (xr, yr) ∈ H such that xq ≤ xr and yq ≥ yr , or if there are two points
p, r ∈ H such that q is above or at the segment joining q and r.

If we were to plot X on a plane, then hull(X) is the lower-right portion of the complete
convex hull, that is, a set of points in X that form a convex polygon containing X. For nota-
tional simplicity, we will refer to hull(X) as the convex hull. Note that if we order the points
in hull(X) by their x-coordinates, then the y-coordinates and the slopes of the intermediate
segments are also increasing.

We will first argue that we only need to search the convex hull when looking for the
optimal label.

Theorem 4 Let X be a set of positive points (mi, ni) , and let H = hull(X) be the convex hull.
Select m, n ≥ 0 . Then maxp∈X

m+mi

n+ni
= maxp∈H

m+mi

n+ni
.

Proof Let k = (mk, nk) be the optimal point in X. Assume that k ∉ H . Assume that there is
a point q = (mq, nq) in H such that mq ≥ mk and nq ≤ nk . Then m+mk

n+nk
≤

m+mq

n+nq
 , so the point q

is also optimal.
Assume there is no such point q. Then, the x-coordinate of point k falls between two

consecutive points p and q in H, that is, mp < mk < mq . Then k must be above the segment
between p and q as otherwise, k would also be a part H. Therefore, the slope for the seg-
ment between p and k must be greater than the slope of the segment between p and q, and
the slope for the segment between k and q must be smaller,

Furthermore, since k ∉ H , we must have nk > np . By assumption, we also have nk < nq . In
summary, we have np < nk < nq and mp < mk < mq , which means that the slopes in Eq. 1
are all positive. By taking the reciprocals this then gives,

Denote then the objective value at point k by c = m+mk

n+nk
 . Let x1 = c(n + np) − m . Then, the

optimality of k implies m+x1
n+np

= c ≥
m+mp

n+np
 , which means x1 ≥ mp . The definition of c leads to

m = c(n + nk) − mk , which in turns leads to x1 = c(np − nk) + mk . Solving for c we get
c =

mk−x1

nk−np
 . Substituting x1 ≥ mp yields c ≤ mk−mp

nk−np
 , using Eq. 2 then yields c ≤ mq−mk

nq−nk
.

(1)
nq − nk

mq − mk

≤
nq − np

mq − mp

≤
nk − np

mk − mp

.

(2)
mq − mk

nq − nk
≥

mq − mp

nq − np
≥

mk − mp

nk − np
.

1974 Machine Learning (2024) 113:1967–1987

1 3

Next, let x2 = c(nq − nk) + mk which means that c = x2−mk

nq−nk
 . Now since c ≤ mq−mk

nq−nk
 we

must have x2 ≤ mq . Since mk = c(n + nk) − m , we also have x2 = c(nq + n) − m , yielding
c =

m+x2
n+nq

≤
m+mq

n+nq
 , thus q is also optimal. ◻

Theorem 4 states that we need to only consider the convex hull H of the set
{

(mi, ni)
}

when searching for the optimal new label. Note that H does not depend on n or m. More-
over, we can use the algorithm by Overmars and Van Leeuwen (1981) to maintain H as
nk and mk are updated in O

(

log2 |L|
)

 time per update. We will see that the number of
needed updates is bounded by the number of edge-label pairs.

However, the convex hull can be as large as the original set, so our goal is to avoid
enumerating over the whole set. To this end, we design a binary search strategy over the
hull. We will first introduce two quantities used in our search.

Definition 2 Given two points p, q ∈ hull(X) , we define the inverse slope as s(p, q) = mq−mp

nq−np

and the bias term as b(p, q) = mqnp−mpnq

nq−np
.

First, let us prove that both s and b are monotonically decreasing.

Lemma 1 Let p, q, and r be three consecutive points in hull(X) . Then we have
n × s(q, r) + b(q, r) ≤ n × s(p, q) + b(p, q) , for any n ≥ 0.

Proof The slope for the segment between p and q is less than or equal to the slope for the
segment between q and r. Inversing the slopes leads to

By cross-multiplying, adding mqnq − mqnp − mqnr +
mqnpnr

nq
 to both sides, multiplying by

nq

(nr−nq)(nq−np)
 , and simplifying, we get

Combining the two equations proves the claim. ◻

Next, we show the key necessary condition for the optimal point.

Lemma 2 Let p, q, and r be 3 consecutive points in hull(X) . Select n,m ≥ 0 . If q optimizes
mq+m

nq+n
 , then n × s(q, r) + b(q, r) ≤ m ≤ n × s(p, q) + b(p, q).

Proof Since q is optimal, we have m+mp

n+np
≤

m+mq

n+nq
 . Solving for m gives us

m ≤ n
mq−mp

nq−np
+

mqnp−mpnq

nq−np
= n × s(p, q) + b(p, q) . Similarly, due to optimality, m+mr

n+nr
≤

m+mq

n+nq
 ,

and solving for m leads to m ≥ n × s(p, q) + b(p, q) , proving the claim. ◻

The two lemmas allow us to use binary search as follows. Given two consecutive
points p and q we test whether m ≤ n × s(p, q) + b(p, q) . If true, then the optimal label

s(q, r) =
mr − mq

nr − nq
≤

mq − mp

nq − np
= s(p, q).

b(q, r) =
mrnq − mqnr

nr − nq
≤

mqnp − mpnq

nq − np
= b(p, q).

1975Machine Learning (2024) 113:1967–1987

1 3

is q or to the right of q, if false, the optimal point is to the left of q. To perform the
binary search, we can use directly the structure maintained by the algorithm by Over-
mars and Van Leeuwen (1981) since it stores the current convex hull in a balanced
search tree. Moreover, the algorithm allows evaluating any function based on the
neighboring points. Specifically, we can maintain s and b. In summary, we can find the
optimal label in O(log |L|) time.

Our next result formalizes the above discussion.

Theorem 5 GreeDyor runs in O
(

p log2 |L| + |V| + |E|
)

 time, where p is the number of
edge-label pairs p = |{(e, k) ∣ e ∈ E, k ∈ lab(e)}|.

Proof The proof is similar to the proof of Theorem 2, except we have replaced a search
tree with the convex hull structure by Overmars and Van Leeuwen (1981). The inner for-
loops are evaluated at most O(p) times since an edge or a node is visited only once, and
∑

v
�

�

Sv
�

�

∈ O(p) . Maintaining the hull requires O
(

log2 |L|
)

 time, and there are at most O(p)
such updates. Searching for an optimal label requires O(log |L|) time, and there are at most
|L| such searches. ◻

We should point out that a faster algorithm by Brodal and Jacob (2002) maintains
the convex hull in O(log |L|) time. However, this algorithm does not provide a search
tree structure that we can use to search for the optimal addition.

5 Finding subgraphs with high ̨ ‑density

In this section, we focus on the problem LD-� of finding subgraphs with high �-density.
The following classic result in fractional programming (Dinkelbach, 1967) shows how

the problem of finding the maximum density subgraph reduces to maximizing the �-den-
sity of a subgraph for a large enough value of � . An immediate consequence of this result is
that solving LD-� is NP-hard.

Theorem 6 write H
�
 to be the solution to LD-� . There is � such that H

�
 also solves LD.

Moreover, for any 𝛼 > 𝜏 , the graph H
�
 either solves LD or is empty.

Proof Let H∗ be a solution to LD with � = d(H∗) . Since there are a finite number of sub-
graphs, there is 𝜏 < 𝜎 such that any graph H with d(H) ≥ � has d(H) = �.

Since g(H∗;𝜏) > 0 , we have g(H
𝜏
;𝜏) > 0 , or |

|

E(H
𝜏
)|
|

− 𝜏
|

|

V(H
𝜏
)|
|

> 0 which implies
d(H

𝜏
) > 𝜏 . By definition of � , the subgraph H

�
 solves LD.

Similarly, for any 𝛼 > 𝜏 , we have g(H
�
;�) ≥ 0 . Consequently, either H

�
 is empty or

d(H
𝛼
) ≥ 𝛼 > 𝜏 , that is, H

�
 solves LD. ◻

Corollary 1 LD-� is NP-hard for both fOR and fAND . Moreover, both problems are inap-
proximable unless P = NP.

Proof The proof is given in Appendix 1. ◻

To find solutions to LD-� in practice, we adapt the previous greedy algorithms to find
subgraphs with high �-density. In the conjunctive case, we get the GreeDyanD-� algorithm

1976 Machine Learning (2024) 113:1967–1987

1 3

by simply changing the density on line 4 of Algorithm 1 from m�

n
�

 to m
�
− �n

�
 . This leads to

the same computational complexity as for GreeDyanD.
In the disjunctive case, we again keep track of the counters to find the number of addi-

tional nodes and edges when a label is added to the current set of labels. However, the �
-density to maximize now becomes (m + mk) − �(n + nk) . As m − �n does not depend on
the label, we only need to find the label k that maximizes mk − �nk . We may thus use a bal-
anced search tree as in the conjunctive case. The pseudo-code for this algorithm is given in
Algorithm 3.

As GreeDyor-� does not need to use a convex hull but uses a balanced search tree
instead, the running time becomes the same as for the conjunctive case.

Theorem 7 GreeDyanD-� and GreeDyor-� run in O(p log |L| + |V| + |E|) time, where p is
the number of edge-label pairs p = |{(e, k) ∣ e ∈ E, k ∈ lab(e)}|.

Proof The proofs for both cases are virtually the same as the proof of Theorem 2. ◻

1977Machine Learning (2024) 113:1967–1987

1 3

We conclude this section by considering the (lack of the) hierarchy property of �-den-
sity. Tatti (2019) showed that the subgraphs (without label constraints) optimizing g(⋅, �)
form a nested structure, that is, if we write H

�
 to be the optimal solution, then H

𝛽
⊆ H

𝛼
 for

any 𝛽 > 𝛼 . Such a decomposition may be useful as it partitions the nodes into increasingly
dense regions. Unfortunately, this is not the case for us as shown in Fig. 2.

Interestingly enough, if we allow more flexible queries, we can show that we too obtain
a nested structure. More formally, given a Boolean formula B we define G(B) to be the
subgraph consisting of edges whose labels satisfy B, and the incident vertices. Then the
optimization problem would be to find the Boolean formula B maximizing g(G(B);�) . We
then have the following proposition.

Proposition 1 Let H
�
 be a subgraph induced by a Boolean formula B

�
 that optimizes g(⋅;�) .

Then H
𝛼
⊆ H

𝛽
 for any 𝛼 > 𝛽.

Proof Assume otherwise. Write X = H
�
∪ H

�
 and Y = H

�
∩ H

�
 . Note that X is induced by

B
�
∨ B

�
 and Y is induced by B

�
∧ B

�
 . Then

where the last inequality is due to the optimality of H
�
 . Thus, g(X;𝛽) > g(H

𝛽
;𝛽) violating

the optimality of H
�
 . ◻

6 Related work

A closely related work to our method is an approach proposed by Galbrun et al. (2014).
Here the authors search for multiple dense subgraphs that can be explained by conjunction
on (or the majority of) the node labels. The authors propose a greedy algorithm for finding
such subgraphs. Interestingly enough, the authors do not show that the underlying problem
is NP-hard—although we conjecture that this is indeed the case—instead, they show that
the subproblem arising from the greedy approach is an NP-hard problem.

Another closely related work is an approach proposed by Pool et al. (2014), where the
authors search for dense subgraphs that can be explained by queries on the nodes. The
quality of the subgraphs is a ratio S/C, where S measures the goodness of a subgraph using
the edges within the subgraph as well as the cross-edges, and C measures the complexity
of the query.

The major difference between our work and the aforementioned work is that our method
uses labels on the edges. While conceptually a small difference, this distinction leads to
different algorithms and different analyses of those algorithms. Moreover, we cannot apply
directly the previously discussed methods to networks that only have labels on edges.

An appealing property of finding subgraphs that maximize |E(W)|∕|W| , or equivalently
an average degree, is that we can find the optimal solution in polynomial time (Goldberg
et al., 1984). Furthermore, we can 2-approximate the graph with a simple linear algo-
rithm (Charikar, 2000). The algorithm iteratively removes the node with the smallest
degree and then selects the best available graph. This algorithm is essentially the same as
the algorithm used to discover k-cores, subgraphs that have the minimum degree of at least
k. The connection between the k-cores and dense subgraphs is further explored by Tatti

g(X;𝛽) − g(H
𝛽
;𝛽) > g(X;𝛼) − g(H

𝛽
;𝛼) = g(H

𝛼
;𝛼) − g(Y;𝛼) ≥ 0,

1978 Machine Learning (2024) 113:1967–1987

1 3

(2019), where the dense subgraphs are extended to create an increasingly dense structure.
A variant of a quality measure was proposed by Tsourakakis (2015), where the quality of
the subgraph is the ratio of triangles over the vertices. In another variant by Bonchi et al.
(2019), the edges were replaced with paths of at most length k. Finding such structures in
labeled graphs poses an interesting line of future work.

While finding dense subgraphs is polynomial, finding cliques is an NP-hard problem
with a very strong inapproximability bound (Håstad, 1996). Finding cliques may be
impractical as they do not allow any absent edges. To relax the requirement, Abello et al.
(2002) and Uno (2010) proposed searching for quasi-cliques, that is subgraphs with a high

proportion of edges, |E(W)|∕

(

|W|

2

)

 . Another relaxation of cliques is k-plex where k

absent edges are allowed for a vertex (Seidman, 1983). Finding k-plexes remain an NP-
hard problem (Balasundaram et al., 2011). Alternatively, we can relax the definition by
considering n-cliques, where vertices must be connected with an n-path (Bron & Kerbosch,
1973), or n-clans where we also require that the diameter of the graph is n (Mokken, 1979).
Since 1-clique (and 1-clan) is a clique, these problems remain computationally intractable.

7 Experimental evaluation

In this section, we describe our experimental evaluation of the GreeDyanD and GreeDyor
algorithms. First, we observe how the algorithms behave on synthetic data with increasing
randomness. Then we apply the algorithms to real-world datasets and analyze the results.

We implement our algorithms in Python and the source code is available online.1 Since
the number of labels in our experiments was not exceedingly large, we did not use the
speed up using convex hulls when implementing disjunctive-induced graphs. Instead, we
search for the optimal label from scratch leading to a running time of O(p|L|).

Experiments with synthetic data: We evaluate the greedy algorithms on synthetic
graphs of 200 vertices and 50 labels. We select 5 of the labels as target labels and construct
graphs for the conjunctive and disjunctive cases such that selecting the subgraph induced
by these 5 labels gives the best density. We then add random noise to the network by intro-
ducing a noise parameter � , which controls the probability of randomly adding and remov-
ing edges as well as adding new labels to the edges.

For the conjunctive case, we create five disjoint cliques of 10 vertices such that all edges
on the kth clique have all except the kth of the target labels. Finally, we add one more 20
vertex clique that has all of the target labels. Since each of the smaller cliques is missing
one of the target labels, selecting the conjunction of all of them yields the densest subgraph
as the clique of 20 vertices.

= �1
= �2

= �1
= �2

Fig. 2 Subgraphs with optimal �-density are not nested. Left figure: �
1
 is optimal for � = 3∕4 and �

2
 is

optimal for � = 1∕4 when using fAND . Right figure: �
1
 is optimal for � = 2.25 and �

2
 is optimal for � = 1.75

when using fOR

1 https:// versi on. helsi nki. fi/ dacs.

https://version.helsinki.fi/dacs

1979Machine Learning (2024) 113:1967–1987

1 3

Given the noise parameter � , we then add noise by having each of the edges in the
cliques removed with probability � , as well as having any other edges added between any
pair of vertices with probability � . Finally, for each of the edges in the cliques, we add any
of the other labels with probability � each, except for adding the remaining target labels to
edges in the cliques.

For the disjunctive case, we have created one clique with 40 vertices. The edges in
the clique are split into five sets, such that each set of edges gets one of the target labels.
Now, selecting the disjunction of the five target labels induces the clique as the sub-
graph and results in the highest density.

We then add noise by removing edges from the clique and adding new edges between
any other pair of vertices with probability � . In addition, each edge gains any of the
other labels also with probability �.

We repeat the experiments with increasing values of � and compare the density of
the subgraph induced by the target labels to the density of the subgraph induced by the
labels of the greedy algorithms. For each � , we run the experiment 10 times and com-
pute the mean and standard deviation of the runs. The results are shown in Fig. 3.

In both cases, the greedy algorithms correctly find the target labels for small values
of � . After 𝜖 > 0.25 for GreeDyanD and after 𝜖 > 0.35 for GreeDyor, the algorithms
start to find other sets of labels, which yield higher densities than the target labels as
many of the edges in the target clique have been removed and other edges have been
added. However, at � = 0.30 , the GreeDyor returns a suboptimal solution that yields a
slightly lower density than the target labels.

We confirm the theoretical running times of the algorithms by setting � = 0.2 and
performing experiments with increasingly large graphs, where the number of total ver-
tices goes from 10000 up to 100000 while other aspects of the experiments remain
constant. Similarly, we test how the running times of the algorithms scale as the num-
ber of total labels in our synthetic graph increases from 1000 to 10000. The results for
GreeDyanD are shown in Fig. 4 and results for GreeDyor in Fig. 5.

As expected, the running times of both algorithms scale linearly with the number
of vertices in the graph. Furthermore, the running time of our naive implementation
of GreeDyor appears to scale quadratically with the number of labels, while the scal-
ing for GreeDyanD is close to linear. These results confirm our theoretical analysis and
show that our algorithms can be applied to large graphs in practice.

Experiments with real-world datasets: We test the greedy algorithms by running
experiments on four real-world datasets. The first dataset is the Enron Email Dataset,2
which consists of publicly available emails from employees of a former company called
Enron Corporation. We collect the emails in sent mail folders and construct a graph where
new edges are added between the sender and the recipients of each email. Each edge has
labels consisting of the stemmed words in the email’s title, with stop words and words
including numbers removed.

The second dataset consists of high energy physics theory publications (HEP-TH)
from the years 1992 to 2003. The data was originally released in KDD Cup3 but we use
a preprocessed version of the data available in GitHub4 We create the network by adding
authors as vertices, and edges between any two authors are added if they share at least

2 https:// www. cs. cmu. edu/ ~./ enron/.
3 https:// www. cs. corne ll. edu/ proje cts/ kddcup/ datas ets. html.
4 https:// github. com/ chris kal96/ physi cs- theory- citat ion- netwo rk.

https://www.cs.cmu.edu/%7e./enron/
https://www.cs.cornell.edu/projects/kddcup/datasets.html.
https://github.com/chriskal96/physics-theory-citation-network.

1980 Machine Learning (2024) 113:1967–1987

1 3

two publications. The edges between authors are then given labels which consist of the
stemmed words in the titles of the shared articles between the two authors. We exclude stop
words and words including numbers from the titles the same way as for the Enron dataset.

The third dataset consists of publications from the DBLP5 dataset (Tang et al., 2008).
From this dataset, we chose publications from ECMLPKDD, ICDM, KDD, NIPS, SDM,
and WWW conferences. The network is constructed in the same way as for the HEP-TH
data, with authors as vertices, two or more shared publications as edges, and stemmed and
filtered words from the titles as labels.

The fourth and final dataset consists of the latest 10000 tweets collected from Twitter
API6 with the hashtag #metoo by the 27th of May, 23:59 UTC. We create the network by
having users as vertices with an edge between a pair of users if one of them has retweeted
or responded to one of the other’s tweets. The labels on the edge are then any hashtags in
the retweets or response tweets between the two users.

We construct the networks by filtering out labels that appear in less than 0.1% of the
edges in the Enron and Twitter datasets, or labels that occur in less than 0.5% of the papers
in the case of the HEP-TH and DBLP datasets. The sizes, label counts, and densities of the
resulting graphs are shown in Table 1.

We run the greedy algorithms on each of these graphs, and compare the results against
the densest subgraph ignoring the labels (Dense). We report the statistics for the label-
induced subgraphs and the densest subgraphs in Table 2.

For each of the datasets, both algorithms find label-induced subgraphs with higher
densities than in the original graphs. In most cases, the restriction of constructing label-
induced subgraphs results in clearly lower densities compared to the densest label-igno-
rant subgraphs. Interestingly, for the DBLP dataset GreeDyanD finds a label-induced
subgraph with a very high density that is close to the density of the densest subgraph
ignoring the labels. The running times are practical: the algorithm processes networks
with 100 000 edge-label pairs in seconds.

For Enron and HEP-TH datasets, the GreeDyor returns large sets of labels resulting
in large subgraphs, whereas the GreeDyanD algorithm selects only a few labels with
smaller induced subgraphs in each case. For the Twitter dataset, both greedy algorithms

Fig. 3 Density of the subgraph induced by the target labels and the subgraph induced by the labels chosen
by the greedy algorithms as a function of noise � in the network. The line shows the mean density of 10
runs for each � , and the vertical error bars show their standard deviation. The results for GreeDyanD algo-
rithm are on the left and for GreeDyor on the right

6 https:// devel oper. twitt er. com/ en/ docs/ twitt er- api.

5 https:// www. aminer. org/ citat ion.

https://developer.twitter.com/en/docs/twitter-ap.i
https://www.aminer.org/citation.

1981Machine Learning (2024) 113:1967–1987

1 3

select only one label, which induces a small subgraph with a notably higher density than
the original graph.

Experiments with �-density: Next we consider finding �-dense subgraphs by run-
ning the GreeDyanD-� and GreeDyor-� algorithms on the same datasets. The results
are shown in Tables 3 and 4, respectively.

As pointed out by Theorem 6, the optimal �-dense subgraph is also the densest for
sufficiently large � . We use a binary search to find the maximum � for which the greedy
algorithm yields a non-empty graph. The values of � in these tables are chosen by the
binary search process while searching for the maximum. Additionally, we experiment
with using a smaller � value of 0.25 times the maximum. For clarity, we exclude dupli-
cated results where different values of � yield the same subgraph.

We see that the greedy algorithms for the two problems often find the same solu-
tion, as suggested by Theorem 6. However, this is not always the case due to the heu-
ristic nature of these algorithms. Interestingly, with � = 2.5 for the HEP-TH dataset,
the GreeDyanD-� finds a denser subgraph than the one found by GreeDyanD, while an
additional manual experiment with � = 1.4 results in the greedy algorithm suboptimally
returning an empty graph. For the DBLP dataset using � = 3.6 leads to the same solu-
tion as GreeDyanD, but larger values of � lead the greedy algorithm to choose a sub-
optimal first label resulting in less dense subgraphs. For Enron and HEP-TH datasets,

Fig. 4 Running time of the GreeDyanD algorithm as a function of the number of vertices (left) and the
number of labels (right) in our synthetic graphs

Fig. 5 Running time of the GreeDyor algorithm as a function of the number of vertices (left) and the num-
ber of labels (right) in our synthetic graphs.

1982 Machine Learning (2024) 113:1967–1987

1 3

GreeDyor-� only finds subgraphs with a slightly lower density than the ones found by
GreeDyor.

In general, we observe that using smaller values of � results in subgraphs with more
vertices and edges in both the disjunctive and conjunctive cases. Thus having � as a
parameter gives us more control over the size of the resulting subgraph and allows us to
look for both smaller and larger groups of densely connected nodes.

Case study: We analyze the label-induced dense subgraphs for the Twitter and
DBLP datasets by repeatedly running the GreeDyanD algorithm for these graphs. After
running the algorithm, we exclude the edges from the output edge-induced subgraph
and run the algorithm again on the remaining graph. The first 8 resulting sets of labels,
as well as densities and sizes for the induced subgraphs, are shown in Table 5.

For the DBLP graph, the algorithm finds a group of 25 authors that have each writ-
ten at least two papers together with a shared topic, as well as other relatively large
groups of authors whose edges form almost perfect cliques. The labels representing
stemmed words can be used to interpret the topics of publications for these groups of
authors having tight collaboration.

For the Twitter data of #metoo tweets, the densest label-induced subgraphs are
formed by mostly looking at individual hashtags. This detects groups of people tweet-
ing about #MeTooASE referring to the French Me Too movement for foster children,
as well as groups closely discussing other topics in the context of the Me Too move-
ment such as live streaming or the recent trial between Johnny Depp and Amber Heard.

We see that the same labels also appear when searching for �-dense subgraphs. For
example, by looking at the labels for � = 1.548 for the Twitter dataset in Table 4 and

Table 1 Basic characteristics of
the networks: number or vertices
|V| , number or edges |E| , number
of labels |L| , number of edge-
label pairs p, and the density
d(G) = |E|∕|V|

Dataset |V| |E| |L| p d(G)

Enron 11 024 18 072 2 604 361 000 1.64
HEP − TH 4 738 7 767 240 78 078 1.64
DBLP 10 550 16 811 268 160 850 1.59
Twitter 7 973 9 314 248 19 849 1.17

Table 2 Statistics for the resulting subgraphs for the greedy algorithms and the label-ignorant densest sub-
graph algorithm. For the label-induced subgraphs, we have the number of vertices n, the number of edges
m, the size of the best set of labels |A| , density d, and running time t in seconds. For the densest subgraph,
we show the number of vertices n and density d = m∕n

GreedyAnd GreedyOr Dense

Dataset n m |A| d t n m |A| d t n d

Enron 18 31 2 1.72 10.43 1 233 2 711 193 2.2 25.02 85 11.35
HEP − TH 7 14 4 2 1.96 3 284 5 588 40 1.7 5.74 58 3.81
DBLP 25 300 3 12 4.06 243 538 1 2.21 1.74 44 12.52
Twitter 12 31 1 2.58 0.77 12 31 1 2.58 1.89 19 3.37

1983Machine Learning (2024) 113:1967–1987

1 3

comparing them with the labels in Table 5, we can see that this subgraph found by the
GreeDyor-� algorithm in fact consists of multiple smaller groups of people discussing
a variety of topics that we previously discovered.

Table 3 Results for running
GreeDyanD-� on the four
datasets with the different values
of � . For each resulting subgraph,
we have the density d = m∕n ,
the chosen labels, the number
of nodes n, and the number of
edges m.
For each resulting subgraph, we
have the density d = m∕n , the
chosen labels or their amount,
the number of nodes n, and the
number of edges m. Results
matching the densest subgraph
found by GreeDyor are shown
in bold

Bold rows show when the value of � leads the GreeDyanD-� to find
the same result as the one found by the GreeDyanD algorithm
Results matching the densest subgraph found by GreeDyanD are
shown in bold

Dataset � d Labels n m

Enron 1.032 1.5088 Meet 1875 2829
1.548 1.5971 Legal 479 765
1.7218 1.7222 Mopa, action 18 31

HEP-TH 0.6249 1.3656 Theori 2410 3291
2.4998 2.5 Casimir, light 6 15

DBLP 1.0927 1.3005 Learn 3780 4916
3.6 12 Novel, rate, techniqu 25 300
4.3708 6.2 Forecast, experi, use 15 93

Twitter 0.6457 1.1381 Metoo 8297 7290
2.5828 2.5833 Metooase 12 31

Table 4 Results for running GreeDyor-� on the four datasets with the different values of � .
For each resulting subgraph, we have the density d = m∕n , the chosen labels or their amount, the number of
nodes n, and the number of edges m. Results matching the densest subgraph found by GreeDyor are shown
in bold

Bold rows show when the value of � leads the GreeDyanD-� to find the same result as the one found by the
GreeDyanD algorithm

Dataset � d Labels n m

Enron 1.32 1.8497 (553 labels) 7982 14765
1.98 2.1715 (964 labels) 3633 7889
2.145 2.1810 (577 labels) 2497 5446
2.1656 2.1798 (547 labels) 2364 5153
2.1798 2.1799 (582 labels) 2329 5077

HEP-TH 0.4255 1.6393 (75 labels) 4738 7767
1.02 1.6557 (68 labels) 4650 7699
1.53 1.6938 (76 labels) 4063 6882
1.6575 1.7011 (52 labels) 3567 6068
1.7013 1.7023 (50 labels) 3426 5832

DBLP 0.5534 1.5953 (93 labels) 10532 16802
1.326 1.6098 (83 labels) 10295 16573
2.2137 2.2140 Novel 243 538

Twitter 0.6457 1.1685 (49 labels) 7969 9312
1.548 1.8857 Metooase, streamer, anubhavmohanty, vic-

timservices, causette, istandwithjohnny
70 132

2.5828 2.5833 Metooase 12 31

1984 Machine Learning (2024) 113:1967–1987

1 3

8 Concluding remarks

In this paper, we considered the problem of finding dense subgraphs that are induced by
labels on the edges. More specifically, we considered two cases: conjunctive-induced
dense subgraphs, where the edges need to contain the given label set, and disjunctive-
induced dense subgraphs, where the edges need to have only one label in common.
As a measure of quality, we used the average degree of a subgraph. We showed that
both problems are NP-hard, and we proposed a greedy heuristic to find dense induced
subgraphs. By maintaining suitable counters we were able to find subgraphs in quasi-
linear time: O(p log |L|) for conjunctive-induced graphs and O

(

p log2 |L|
)

 for disjunc-
tive-induced graphs. In addition, we analyzed the related problem of maximizing the
number of edges minus � times the number of vertices and showed how the optimal
solutions to these problems are connected. We proved that the problem of maximizing
this �-density is NP-hard and inapproximable unless P = NP . We adopted the greedy
algorithms for the conjunctive and disjunctive cases of this problem resulting in a run-
ning time of O(p log |L|) for the disjunctive case as well. We then demonstrated that
the algorithms are practical, they can find ground truth in synthetic datasets, and find
interpretable results from real-world networks.

Table 5 Label sets with corresponding subgraph densities and sizes selected by running the GreeDyanD
algorithm repeatedly on the graphs for DBLP and Twitter datasets.

The labels are stemmed words from publication titles for DBLP, and tweet hashtags for Twitter data. The
densities are not monotonically decreasing as the greedy algorithm does not always find the optimal solu-
tion

d DBLP
Labels n m

12.0 Novel, rate, techniqu 25 300
10.74 Identif, combin, process 23 247
6.2 Forecast, experi, use 15 93
6.0 Heterogen, manag, stream, use 13 78
2.0 Heterogen, segment 5 10
3.13 Heterogen, manag, use, dynam 8 25
2.5 Heterogen, sourc, toward 6 15
2.5 Heterogen, construct, dimension, network 6 15

Twitter
d Labels n m

2.58 Metooase 12 31
1.88 Streamer 16 30
1.75 Anubhavmohanty 16 28
1.71 Victimservices 7 12
1.83 Causette, lfi 6 11
1.63 Istandwithjohnny 8 13
1.43 Rupertmurdock 7 10
1.25 Marilynmanson 8 10

1985Machine Learning (2024) 113:1967–1987

1 3

While this paper focused on the conjunctive and disjunctive cases, future work
could explore other ways to induce graphs from a label set and design efficient algo-
rithms for such tasks. Another direction for future work is to relax the requirement that
every edge/node must be induced from labels. Instead, we can allow some deviation
from this requirement but then penalize the deviations appropriately when assessing
the quality of the subgraph.

A Computational complexity proofs

Proof of Theorem 1 We will prove the claim by reducing 3exactcover to the densest sub-
graph problem. In 3exactcover we are given a set X and a family C of subsets of size 3
over X and asked if there is a disjoint subset of C whose union is X.

Assume that we are given a set X and a family C =
{

C1,… ,CN

}

 of N subsets. We set
labels to be L = {1,… ,N} . The vertices V contain N vertices y1,… , yN , and an additional
vertex z. We connect each yi to z, labeled with L ⧵ {i} . For each overlapping Ci and Cj , we
introduce 4N additional vertices and 2N edges, each edge connecting two unique nodes,
and labeled as L⧵{i, j}.

We claim that for |X| ≥ 5 , 3exactcover has a solution if and only if there is an induced
graph H with d(H) ≥ |X|∕(|X| + 3).

Assume that we are given a set of labels A ⊂ L . Let B = L⧵A . Let k be the number of set
pairs in B that are overlapping, that is,

Then the density of the corresponding graph H = G(fAND,A) is equal to

Assume that k > 0 . Since |B| ≤ N , we can bound the density with

Assume that k = 0 . Then the density is equal to |B|∕(|B| + 1) . Let U =
{

Ci ∣ i ∈ B
}

 . Since
U is disjoint, 3|B| ≤ |X| and the equality holds if and only if U covers X.

Assume that there is a subgraph H = G(fAND,A) with d(H) ≥ |X|∕(|X| + 3) . Since we
assume that |X| ≥ 5 , we have d(H) ≥ 5∕8 > 3∕5 , and the preceding discussion shows that
the sets corresponding to A form an exact cover of X.

On the other hand, if there is an exact cover in C , then d(G(fAND,A)) = |X|∕(|X| + 3) ,
where A is the set of labels corresponding to the cover. This shows that maximizing the
density of the label-induced subgraph is an NP-hard problem. ◻

Proof of Theorem 3 We will prove the claim by reducing 3exactcover to the densest sub-
graph problem. In 3exactcover we are given a set X and a family C of subsets of size 3
over X and asked if there is a disjoint subset of C whose union is X.

Assume that we are given a set X and a family C =
{

C1,… ,CN

}

 of N subsets. The ver-
tices V consists of the set X, N additional vertices y1,… , yN , and 2 more vertices Z = z1, z2 .
We have N labels, L = {1,… ,N}.

k =
|

|

|

{

{i, j} ∣ i, j ∈ B,Ci ∩ Cj ≠ �
}

|

|

|

.

d(H) =
|B| + 2Nk

|B| + 1 + 4Nk
.

d(H) =
|B| + 2Nk

|B| + 1 + 4Nk
≤

N + 2Nk

N + 1 + 4Nk
<

N + 2Nk

N + 4Nk
≤

3

5
.

1986 Machine Learning (2024) 113:1967–1987

1 3

Next, we define the edges E. Connect each x ∈ X to Z, and label the edges with labels
{

i ∣ x ∈ Ci

}

 . Then for each Ci , we connect z1 to yi , labeled with i.
We claim that 3exactcover has a solution if and only if the optimal label-induced

graph has the density of 7|X|∕(6 + 4|X|).
Given a non-empty set of labels A ⊆ L , the density of the corresponding graph H is

equal to g(k, |A|) , where g(s, t) = 2 s+t

2+s+t
 , and k is the size of the union of sets in C corre-

sponding to A.
Note that since k ≥ 3 , we have 2k > 2 + k . Thus,

𝜕 log g∕𝜕t = 1∕(2k + t) − 1∕(2 + k + t) < 0 , and consequently g(k, t) > g(k, t�) when t < t′.
Since each set in C is of size 3, we have |A| ≥ k∕3 . Thus,

where the equalities hold if and only if k = |X| and 3|A| = k , that is, A corresponds to an
exact cover of X. ◻

Proof of Corollary 1 Let us adopt the notation of the proof of Theorem 3. The proof
shows that 3exactcover has a solution if and only if there is an induced graph H
with 7d(H) ≥ |X|∕(4|X| + 6) . Moreover, there are N + 2 nodes in the graph, so
a difference between two densities is at least (N + 2)−2 . Consequently, if we set
� = 7d(H) ≥ |X|∕(4|X| + 6) − 0.5(N + 2)−2 , then Theorem 6 implies that 3exactcover
has a solution if and only if there is H with g(H, 𝜏) > 0 . This proves the hardness and the
inapproximability since any algorithm with a multiplicative guarantee will find the optimal
solution. The proof for fAND is similar. ◻

Author contributions NT formulated the problems. IK implemented the algorithms and conducted the
experiments. Both authors wrote the manuscript.

Funding Open Access funding provided by University of Helsinki including Helsinki University Central
Hospital. This research is supported by the Academy of Finland projects MALSOME (343045).

Data availability Publicly available datasets were used. See Sect. 7 for the links.

Code availability https:// versi on. helsi nki. fi/ dacs/

Declarations

Conflict of interest Not applicable

Ethical approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

g(k, |A|) ≤ g(k, k∕3) =
7k

6 + 4k
≤

7|X|

6 + 4|X|
,

https://version.helsinki.fi/dacs/

1987Machine Learning (2024) 113:1967–1987

1 3

material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abello, J., Resende, GC., & Sudarsky S. (2002). Massive quasi-clique detection. In LATIN 2002: Theoreti-
cal Informatics, pp 598–612.

Angel, A., Koudas, N., Sarkas, N., Srivastava, D., Svendsen, M., & Tirthapura, S. (2014). Dense subgraph
maintenance under streaming edge weight updates for real-time story identification. The VLDB Jour-
nal, 23(2), 175–199.

Balasundaram, B., Butenko, S., & Hicks, Illya V. (2011). Clique relaxations in social network analysis: The
maximum k-plex problem. Operations Research, 59(1), 133–142.

Bonchi, F., Khan, A., & Severini, L. (2019). Distance-generalized core decomposition. In SIGMOD, pp
1006–1023.

Brodal, GS., Jacob, R. (2002). Dynamic planar convex hull. In FOCS, pp 617–626.
Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communica-

tions of the ACM, 16(9), 575–577.
Charikar, M. (2000). Greedy approximation algorithms for finding dense components in a graph. APPROX.
Danisch, M., Chan, T-HH., & Sozio, M. 2017). Large scale density-friendly graph decomposition via con-

vex programming. In Proceedings of the 26th International Conference on World Wide Web, pp 233–
242. International World Wide Web Conferences Steering Committee.

Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.
Du, X., Jin, R., Ding, L., Lee, VE., & Thornton Jr, John H. (2009). Migration motif: a spatial-temporal pat-

tern mining approach for financial markets. In KDD, pp 1135–1144.
Fratkin, E., Naughton, BT., Brutlag, DL., & Batzoglou, S. (2006). Motifcut: regulatory motifs finding with

maximum density subgraphs. Bioinformatics, 22(14), e150–e157.
Galbrun, E., Gionis, A., & Tatti, N. (2014). Overlapping community detection in labeled graphs. DMKD,

28(5), 1586–1610.
Goldberg, AV. (1984). Finding a maximum density subgraph. University of California Berkeley Technical report.
Håstad, J. (1996). Clique is hard to approximate within n1−� . In FOCS, pp 627–636.
Kumpulainen, I., & Tatti, N. (2022). Community detection in edge-labeled graphs. In Discovery Science:

25th International Conference, DS 2022, Montpellier, France, October 10–12, 2022, Proceedings, pp
460–475.

Langston, MA., Lin, L., Peng, X., Baldwin, NE., Symons, CT., Zhang, B., & Snoddy, JR. (2005). A combi-
natorial approach to the analysis of differential gene expression data. In Methods of Microarray Data
Analysis, pp 223–238. Springer.

Li, F., & Klette, R. (2011). Euclidean Shortest Paths: Exact or Approximate Algorithms, chapter Convex
Hulls in the Plane, pp 93–125. Springer .

Mokken, RJ. (1979). Cliques clubs and clans. Quality & Quantity, 13(2), 161–173.
Overmars, MH., & Van Leeuwen, J. (1981). Maintenance of configurations in the plane. Journal of com-

puter and System Sciences, 23(2), 166–204.
Pool, S., Bonchi, F., & van Leeuwen, M. (2014). Description-driven community detection. TIST, 5(2), 1–28.
Seidman, SB. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). Arnetminer: Extraction and mining of aca-

demic social networks. In KDD, pp 990–998.
Tatti, N. (2019). Density-friendly graph decomposition. TKDD, 13(5), 1–29.
Tsourakakis, CE. (2015). The k-clique densest subgraph problem. In WWW , pp 1122–1132.
Uno, T. (2010). An efficient algorithm for solving pseudo clique enumeration problem. Algorithmica, 56(1), 3–16.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Dense subgraphs induced by edge labels
	Abstract
	1 Introduction
	2 Preliminary notation and problem definition
	3 Finding dense conjunctive-induced graphs
	4 Finding dense disjunctive-induced graphs
	5 Finding subgraphs with high -density
	6 Related work
	7 Experimental evaluation
	8 Concluding remarks
	A Computational complexity proofs
	References

