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Abstract
Molecular property prediction is a fundamental task in the field of drug discovery. Several 
works use graph neural networks to leverage molecular graph representations. Although 
they have been successfully applied in a variety of applications, their decision process is 
not transparent. In this work, we adapt concept whitening to graph neural networks. This 
approach is an explainability method used to build an inherently interpretable model, which 
allows identifying the concepts and consequently the structural parts of the molecules 
that are relevant for the output predictions. We test popular models on several benchmark 
datasets from MoleculeNet. Starting from previous work, we identify the most significant 
molecular properties to be used as concepts to perform classification. We show that the 
addition of concept whitening layers brings an improvement in both classification perfor-
mance and interpretability. Finally, we provide several structural and conceptual explana-
tions for the predictions.

Keywords Concept whitening · Drug discovery · Explainable artificial intelligence · Graph 
neural networks · QSAR

1 Introduction

Drug discovery (DD) is a process that consists in the identification of a new candidate 
drug that could be therapeutically useful in treating a pathological condition. An impor-
tant step in the DD process is the development of quantitative structure-activity relation-
ships (QSAR) models. These models allow understanding which structural properties of 
the tested molecules can be quantitatively correlated to the associated bioactivity, in order 
to eventually design more potent molecules as lead compounds to be developed as clinical 
candidates.
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Because of the complexity of this task, researchers have shown interest in the use of 
deep learning (DL) methods in DD, as they can provide accurate predictions while making 
the overall process less expensive and time-consuming. Moreover, several DL models are 
able to equal or also exceed the results of previously existing methods for drug discovery 
based on machine learning or classical QSAR (Lenselink et al., 2017). In particular, graph 
neural networks (GNNs) (Scarselli et  al., 2009b) are widely used in DD (Wieder et  al., 
2020) because they exploit molecular graph representations, without requiring to repre-
sent molecules in other machine-readable formats, and make structure interpretation easier. 
Their ability to outperform traditional machine learning methods in the prediction of sev-
eral molecular properties, such as hydrophobicity (Shang et al., 2021; Wang et al., 2019) 
and toxicity (Withnall et al., 2020; Xu et al., 2017) is mostly owed to their approximation 
capabilities (Scarselli et al., 2009a). Despite these promising results, it is in general diffi-
cult to understand the reasoning which leads to the models’ output predictions.

This problem is addressed by explainable AI (XAI), which focuses on the development 
of interpretable AI systems. This crucial aspect needs to be investigated to bring machine 
learning closer to other scientific disciplines and increase the models’ reliability. In general, 
explainability methods for GNNs are categorized as instance-based or model-based (Yuan 
et al., 2020). While the former provides example-specific explanations by identifying input 
features that are important for the output predictions, the latter tries to capture high-level 
insights into GNNs functioning. In this work, we focus on instance-level explanations. 
Many of the recently developed XAI approaches for GNNs propose post-hoc solutions, i.e., 
they provide explanations for already trained models. These methods often come from the 
generalization of techniques for convolutional neural networks (CNNs) (Pope et al., 2019; 
Schwarzenberg et al., 2019; Schnake et al., 2022), such as class activation mapping (Zhou 
et al., 2016), gradient-weighted class activation mapping (Selvaraju et al., 2019), and exci-
tation backpropagation (Zhang et  al., 2017). However, there is not much prior work on 
self-interpretable GNNs (Dai & Wang, 2021; Gui et al., 2022; Ragno et al., 2022), and in 
particular concept-based explanations for GNNs represent an unexplored research path.

In this work, we propose an adaptation of a widely used XAI approach for CNNs, called 
concept whitening (CW) (Chen et al., 2020), to graph data, in order to develop self-inter-
pretable QSAR models for DD. In particular, we focus on spatial convolutional GNNs 
(Conv-GNNs) (Kipf & Welling, 2017), which can be seen as the CNNs’ counterpart in the 
graph domain. Basically, CW consists of a module that can be added to a CNN to align the 
axes of the latent space with known concepts of interest. Its main application is in image 
recognition tasks, where Chen et al. (2020) show that CW increases the networks’ inter-
pretability while maintaining the same performance. Our idea is to use molecular descrip-
tors as concepts in the CW module, in order to predict a specific molecular property. In 
this way, CW can benefit the task of QSAR by identifying how each concept contributes 
to the output prediction and consequently how a given property in a certain part of the 
molecule mostly contributes to modulating its biological behavior. To this aim, we analyze 
the importance of the concepts in each of the CW layers. As well as showing how inserting 
CW layers affects the models’ performances, we also compare the results obtained using 
three different architectures: spatial Conv-GNNs (GCNs) (Kipf & Welling, 2017), graph 
attention networks (GATs) Veličković (2018), and graph isomorphism networks (GINs) 
(Xu et al., 2019). Moreover, as Chen et al. (2020) substitute CW layers to the batch nor-
malization (BatchNorm) layers (Ioffe & Szegedy, 2015) of a pre-trained model, we addi-
tionally test whether using different types of normalization in the black-boxes then leads 
to higher performances after their substitution with CW layers. Specifically, we compare 
the results obtained using BatchNorm (Ioffe & Szegedy, 2015), instance normalization 
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(InstanceNorm) (Ulyanov et al., 2016), layer normalization (LayerNorm) (Ba et al., 2016) 
and graph normalization (GraphNorm) (Cai et al., 2021), respectively. We also introduce 
two new activation modes to be used within the CW layers in GNNs, which leverage top-k 
pooling (Knyazev et al., 2019). We perform experiments using several benchmark datasets 
from MoleculeNet (Wu et al., 2018). Finally, to understand which structural properties of 
the molecules are the most relevant for a given concept, we use the post-hoc explainability 
method GNNExplainer (Ying et al., 2019) on the concepts’ activations.

In summary, the specific contributions of our work are the following:

• Adaptation of CW to Conv-GNNs, in order to obtain concept-based explanations for 
this type of networks, and analysis of the performances obtained using different archi-
tectures;

• Definition of two novel activation modes leveraging top-k pooling;
• Design of a way of interpreting QSAR models, by understanding which concepts, i.e., 

which properties of interest, mostly contribute to a specific type of activity of a given 
molecule and to which part of the molecules themselves to directly drive the chemical 
modifications.

• Comparisons between the performances obtained after the addition of the CW layers 
when using different types of normalization in the black-box models.

The code of this project is available at the following link https:// github. com/ KRLGr oup/ 
Molec ular- CW and it is implemented in the www. 3d- qsar. com portal (Ragno, 2019).

2  Related work

2.1  Graph neural networks

Graph neural networks (GNNs) (Scarselli et al., 2009b) represent a particular type of neu-
ral network developed to operate on graph-structured data. As highlighted by Scarselli 
et al. (2009a), GNNs can approximate up to any degree of precision any function preserv-
ing the unfolding equivalence, and most useful maps on graphs belong to this class of func-
tions. Thanks to their approximation properties and due to the large availability of graph 
data coming from different scientific areas, GNNs are popular and used to solve several 
tasks in a wide variety of applications (Zhou et al., 2020).

GNNs core building blocks are the message passing layers, which are responsible for 
combining the node and edge information into the node embeddings. This is done by itera-
tively aggregating the information of each node with its neighbors’ one, thus obtaining 
a new embedding that is used to update the representation of each node. Overall, GNNs 
can be divided in convolutional (Conv-GNNs) and recurrent. In this work, we just focus 
on the former. Conv-GNNs are in turn categorized in spectral (Bruna et  al., 2014; Def-
ferrard et al., 2016) and spatial (Kipf & Welling, 2017). In this work, we focus on spatial 
Conv-GNNs, and more specifically on the graph convolutional network proposed by Kipf 
and Welling (2017), to which we refer as GCN, and on graph attention networks (GATs) 
Veličković (2018), and graph isomorphism networks (GINs) (Xu et al., 2019), which differ 
in the aggregate and update functions. GCNs are characterized by the propagation rule, first 
proposed by Kipf and Welling (2017), that expresses the spatial convolution for a node. 
Differently from GCNs, where all neighboring nodes are assumed to contribute equally 
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to the update of a given node i, GATs (Veličković, 2018) exploit graph attentional layers 
to produce attention scores that represent the importance of the features of each neighbor-
ing node j to node i. Finally, Xu et al. (2019) design GIN to maximize the representational 
power. In fact, they show that the proposed network has the same discriminative power as 
the Weisfeiler–Lehman graph isomorphism test, which is used to evaluate the non-isomor-
phicity of two graphs. In GIN, node embeddings are aggregated through a sum operator, 
with the neighboring nodes contributing equally to the update of the central node. How-
ever, the latter is weighted by a learnable parameter � , and a multi-layer perceptron (MLP) 
is added after the aggregation of the neighbors’ features has been performed.

2.2  GNNs in drug discovery

DL methods and, in particular, GNN-based methods are promising for addressing several 
tasks in DD (Kim et al., 2021).

Many works use such approaches to predict drug-target interactions, in order to identify 
lead compounds with a higher potency starting from hit compounds. For instance, Gilmer 
et  al. (2017) specifically develop message passing neural networks (MPNNs) to achieve 
state-of-the-art performance on molecular property prediction. Similarly, Hamilton et  al. 
(2017) propose GraphSAGE, a novel framework that generates node embeddings by aggre-
gating information from local neighborhoods, and demonstrate its ability to generalize to 
unseen graphs in protein-protein interaction prediction. In particular, the use of GCNs, 
GATs and GINs in this work is motivated by their success in the prediction of different 
molecular properties (Wieder et al., 2020), such as toxicity (Chen et al., 2021; Hu et al., 
2020; Peng et al., 2020; Wieder et al., 2020), hydrophobicity, blood-brain barrier perme-
ability (Hu et al., 2020), and solvation free energy (Hu et al., 2020; Wang et al., 2019).

Another important application of GNNs in DD is the prediction of drug side effects 
(Bongini et al., 2022), which are generally caused by complex biological processes related 
to many factors, including drug structure and protein-protein interactions. Similarly, GNNs 
are used to predict polypharmacy effects (Deac et  al., 2019; Zitnik et  al., 2018) arising 
from the combined use of different drugs. The use of DL models is crucial in this case, as it 
allows drugs screening before the clinical trials and potentially leads to the identification of 
undesired effects that could still be unknown when the drug is on the market.

Finally, GNNs are widely used in de novo drug design in order to generate novel mol-
ecules with desired properties (Bongini et al., 2021; Li et al., 2018; Lim et al., 2019).

2.3  Drug discovery with XAI

In general, XAI methods can be categorized into post-hoc approaches, which produce 
explanations for trained neural networks by looking at their outputs and parameters, and 
self-explaining approaches, which consist in defining inherently interpretable models 
(Jiménez-Luna et al., 2020).

Feature attribution methods are post-hoc explanation approaches that determine the rel-
evance of every input feature for the final prediction and they have been widely used in DD. 
For example, McCloskey et al. (2019) employ gradient-based attribution (Sundararajan et al., 
2017) to detect fragment pharmacophores relevant for ligand binding. However, the study also 
shows that the models can still learn spurious correlations. Pope et al. (2019) adapt gradient-
based feature attribution, more specifically gradient-weighted class activation mapping (Sel-
varaju et al., 2019) and excitation backpropagation (Zhang et al., 2017), to identify relevant 
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functional groups in adverse effect predictions. Ishida et al. (2019) use gradient-based feature 
attribution methods, such as integrated gradients (Sundararajan et  al., 2017), together with 
GCNs for retrosynthetic reaction predictions and identify the atoms involved in each reaction 
step. Additionally, (Rodríguez-Pérez & Bajorath, 2019, 2020) use Shapley additive explana-
tions (SHAP) (Lundberg & Lee, 2017) to interpret relevant features for compound potency 
and multitarget activity prediction. Among the post-hoc approaches specifically developed 
for GNNs, GNNExplainer (Ying et al., 2019) learns soft masks for edges and nodes features 
to find the crucial subgraphs and features to explain the predictions. Tested on a dataset for 
the classification of the molecules’ mutagenic effect on Salmonella typhimurium (Debnath 
et al., 1992), GNNExplainer is able to identify several known mutagenic functional groups as 
relevant.

Since post-hoc explanations are not directly linked to the decision flow of GNNs, they 
can be biased and misrepresent the true explanations (Dai & Wang, 2021). For this reason, 
some studies focus on the development of self-explaining models. For instance, Dai and Wang 
(2021) propose a new framework to achieve explainable node classification by finding the 
K-nearest labeled nodes for each unlabeled node. While most current methods aim at explain-
ing graph nodes, edges, or features, Gui et al. (2022) identify and exploit the most important 
message flows to provide explanations. None of these methods has ever been adopted in DD.

Finally, in the context of CNNs, there are several works studying how a predefined con-
cept influences the internal representation of the hidden units of the networks. For instance, 
Kim et al. (2018) have introduced a method, called testing with concept activation vectors, 
that uses directional gradients to measure to what extent a user-defined concept influences a 
certain classification outcome. In a successive work, Ghorbani et al. (2019) propose a novel 
technique, called automated concept-based explanation, that aggregates related local image 
segments across diverse data to automatically extract visual concepts and is able to identify 
human-friendly concepts relevant to the network’s output predictions. However, both these 
methods consider specific concepts for each class, ignoring the fact that some of them may be 
shared by different categories. In this way, the same concept might be represented differently 
across classes, and this could negatively affect the concept’s importance for classification. To 
address this issue, Fang et al. (2020) present a novel visual concept mining algorithm. This 
approach comprises two main components: a potential concept generator to discover concepts 
by automatically searching and grouping important pixels via saliency map calculation; a 
visual concept extractor to learn the similarity and diversity of the concepts among different 
classes and quantify their correlation and unique contribution to each class.

Although they are useful, these post-hoc concept-based methods are based on the assump-
tion that the representatives of different concepts lie in separate portions of the latent space, 
and this property may not hold (Chen et al., 2020). This difficulty is mitigated with CW, since 
it directly forces the network to produce latent representations (in the case of graphs, node, 
edge, and consequently graph embeddings) that allow discriminating samples based on their 
belonging to certain concept classes.

3  Methods

In this section, we first highlight the main similarities and differences between GCNs, 
GATs and GINs, and between the normalization types we use. Successively, we pre-
sent CW and the strategy we adopt to adapt it to GNNs, introducing two new activa-
tion modes for updating the gradients within the CW layer. Finally, we illustrate the 
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method for identifying the structural parts of the molecules that are relevant to a certain 
concept.

3.1  Graph neural networks

Graph neural networks are based on the functional mechanism of message passing, 
which is responsible for the generation of new node embeddings through the iterative 
aggregation and update of the nodes and edges information. In this section, we describe 
in more detail the architectures used in this work, namely GCNs, GATs, and GINs. A 
hidden layer of a GCN can be written as a nonlinear function f:

that takes as input the graph’s adjacency matrix A and the latent node features H for some 
layer l. A simple layer-wise propagation rule for a GCN can therefore be written as:

where W is a weight matrix for the l-th neural network layer and � is a nonlinear activa-
tion function. By multiplying the weight matrix with the adjacency matrix, all the feature 
vectors of the immediate neighbours are aggregated for every node, but self-loops are not 
included, which means that the feature vector of the node itself is not considered. This 
issue is solved by Kipf and Welling (2017), who define a generic l-th layer of a GCN as:

where H(l) are the hidden features of the l-th layer, W (l) are its learnable parameters, and 
D̃−1∕2ÃD̃−1∕2 is the symmetrically-normalized adjacency matrix with Ã = A + I being the 
adjacency matrix taking into account also the presence of self-loops, so that each node 
in the graph also includes its own features in the next representation, and D̃ is the degree 
matrix of Ã . By writing Eq. (3) in vector form, we get:

where j is the index of the neighboring node of node i and cij is a normalization constant for 
the edge connecting nodes i and j, which is obtained using the symmetrically normalized 
adjacency matrix D−

1

2A
−

1

2 . At this point, by choosing an appropriate non-linearity and ini-
tializing the weight matrix such that it is orthogonal, this update rule becomes stable, also 
thanks to the normalization with cij.

In GATs, self-attention is performed by applying an attention function, a which pro-
duces attention scores:

that represents the importance of the features of node j to node i. Successively, the coeffi-
cients are normalized for every choice of j with the softmax function to facilitate compari-
sons between coefficients of different nodes, thus obtaining:

(1)H(l+1) = f (H(l),A)

(2)f (H(l),A) = �(AH(l)W (l))

(3)H(l+1) = 𝜎(D̃−1∕2ÃD̃−1∕2H(l)W (l))

(4)h
(l+1)

i
= �

(
∑

j

1

cij
h
(l)

j
W (l)

)

(5)eij = a(Whi,Whj)
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These normalized attention coefficients are used to compute a linear combination of the 
nodes features, to obtain the new embedding for each node. A non-linearity is also usually 
applied, thus getting the following update rule:

Finally, in GINs the aggregation of the features of neighbouring nodes and the update of 
each node’s embedding is implemented as follows:

where �(l+1) is a learnable parameter and MLP is a multi-layer perceptron with non-linearity.
Since molecules that are tested as potential candidate drugs are usually small, GNNs 

that are adopted in drug discovery are generally made up of just a few convolutional layers, 
that are used to generate the latent representation of the nodes. GNNs can provide node-, 
edge-, and graph-level predictions, but in this work we will just focus on graph classifica-
tion. To this aim, a readout layer is needed to obtain a representation for the whole graph 
and it is followed by a final classification layer to obtain predictions.

3.1.1  Normalization layers for GNNs

Cai et al. (2021) analyzes the effectiveness of different types of normalization for GNNs, 
by adapting some existing methods, including BatchNorm, LayerNorm, and InstanceNorm, 
to the graph domain, and proposing a novel one, called GraphNorm.

Given a set of samples x1,… , xn , a normalization operation shifts each xi by the mean 
� , and scales them down by the standard deviation � : xi → �

xi−�

�
+ � , with � and � being 

learnable parameters. What differs among the various normalization methods is the set of 
feature values the normalization is applied to. BatchNorm normalizes all values in a given 
feature dimension across the nodes of all graphs in the batch. LayerNorm, instead, nor-
malizes values across different dimensions of each node. InstanceNorm normalizes values 
across all nodes for each individual graph. Finally, GraphNorm adds a learnable parameter 
� , multiplying � , to automatically control which proportion of the mean should be kept in 
the shift operation.

3.2  Concept whitening

CW is a module inserted into a neural network that aligns the axes of the latent space with 
known concepts of interest and facilitates their extraction. Thus, CW allows learning an inher-
ently interpretable model, since it can show how a concept is represented at a given layer of 
the network. CW works similarly to batch whitening (Huang et al., 2018b), as it decorrelates 
and normalizes each axis of the latent space, thus transforming the post-convolution latent 
space so that the covariance matrix between channels is the identity. However, CW also pro-
vides an extra step involving a rotation matrix used to match the concepts to the axes of the 

(6)�ij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(7)h
(l+1)

i
= �

(
∑

j∈Ni

�ijh
(l)

j
W (l)

)

(8)h
(l+1)

i
= MLP(l+1)

(
(1 + �(l+1)) ⋅ h

(l)

i
+
∑

j∈Ni

h
(l)

j

)
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latent space. This matrix is optimized using Cayley-transform-based curvilinear search algo-
rithms (Wen & Yin, 2013).

More formally, suppose that x1, x2,… , xn ∈ X  are dataset samples and y1, y2,… , yn ∈ Y 
are the corresponding labels. A deep neural network classifier f ∶ X → Y can be split into 
two parts, namely a feature extractor Φ ∶ X → Z with parameters � , and a classifier 
g ∶ Z → Y with parameters � . Then, z = Φ(x;�) is the latent representation of x , and 
f (x) = g(Φ(x;�);�) is the predicted label. For each k ∈ [1,K] , with K being the number of 
concepts, we need to define an auxiliary dataset Xck

 . Exploiting CW, we want to simultane-
ously learn Φ and g, such that the classifier gives accurate predictions and the jth dimension zj 
of the latent representation z aligns with concept cj . By doing this, samples in Xcj

 should have 
larger values of zj than other samples.

Now, let Zd×n be the latent representation matrix of n samples, where each column zi ∈ ℝ
d 

contains the latent features of the ith samples. The CW module consists of two parts, a whiten-
ing and an orthogonal transformation. The whitening transformation decorrelates and stand-
ardizes the data, and it is defined as:

where � =
1

n

∑n

i=1
zi is the sample mean and Wd×d is the whitening matrix such that 

WTW = Σ−1 , with Σ d×d =
1

n
(Z − �1T )(Z − �1T )T being the covariance matrix. The whiten-

ing matrix is computed as in zero-phase component analysis (ZCA) (Huang et al., 2018a):

where Λd×d and Dd×d are respectively the eigenvalue diagonal matrix and the eigenvector 
matrix given by the eigenvalue decomposition of the covariance matrix, Σ = DΛDT.

Once the latent space has been mean-centered and decorrelated, samples are rotated in 
their latent space so that those that are related to concept cj , Xcj

 , are highly activated on the jth 
axis. In particular, the orthogonal matrix Qd×d , whose column qj is the jth axis, is obtained by 
optimizing the following objective:

where Zcj
 is a d × nj matrix denoting the latent representation of Xcj

 . During training, two 
different objectives are optimized alternately. The main objective is the one related to the 
classification accuracy:

where Φ and � are the layers before and after the CW module, parametrized by � and � 
respectively. The actual CW module is represented by QT

� , while l is any differentiable 
loss, e.g., cross-entropy loss. The second objective is the concept alignment loss:

(9)�(Z) = W(Z − �1T
n×1

)

(10)Z = DΛ−
1

2DT

(11)max
q1,q2,…,qk

k∑

j=1

1

nj
qT
j
�(Zcj

) 1nj×1 s.t. QTQ = Id

(12)min
�,�,W,�

1

n

n∑

i=1

l(g(QT
�(Φ(xi;�);W,�);�), yi)

(13)max
q1,q2,…,qk

k∑

j=1

1

nj

∑

x
cj

i
∈Xcj

qT
j
�(Φ(x

cj

i
;�);W,�) s.t. QTQ = Id
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Q is fixed while training for the main objective, while the other parameters are fixed when 
training for Q. The second optimization problem with the orthogonality constraint is solved 
by gradient-based approaches on the Stiefel manifold. At each step t in which the second 
objective is handled, the orthogonal matrix Q is updated by the Cayley transform:

where A = G(Q(t))T −Q(t)GT is a skew-symmetric matrix, G is the gradient of the loss 
function and � is the learning rate. The optimization procedure is also accelerated by cur-
vilinear search at each step (Wen & Yin, 2013). Since in (14) the stationary points are 
reached when A = 0 , there are multiple solutions that lie in a high-dimensional space, so 
the stationary points are likely to be saddle points. To address this issue, stochastic gradient 
descent (SGD) is used, and momentum has been exploited to accelerate and stabilize the 
training.

Concerning implementation details, it is important to highlight that each channel within 
one layer is used to represent a specific concept. This is done by reshaping the output of 
each convolutional layer Zn×d×h×w into a matrix Zd×(hwn) , with d being the number of chan-
nels. In this way, after performing CW, we still have a matrix with shape d × (hwn) and, by 
reshaping it to n × d × h × w , we obtain that each feature map in the resulting tensor now 
represents whether an important concept is detected at each location in the image for the 
considered layer. Finally, an activation value for each h × w feature map is computed con-
sidering different activation modes:

• mean computes the mean of all feature map values;
• max takes the maximum over all the feature map values;
• pos_mean computes the mean of all positive feature map values;
• max_pool calculates the mean of the down-sampled feature map obtained by max pool-

ing. This is the activation mode that was used in the experiments in (Chen et al., 2020) 
since it is able to capture both high-level and low-level concepts.

3.3  Adaptation of CW to Conv‑GNNs

Concept-based explanation methods are particularly suited for interpreting QSAR models 
because they allow leveraging domain-specific knowledge by focusing on molecular prop-
erties that are known to affect bioactivity. Due to the lack of any such type of approaches 
for graph data, we adapt CW to Conv-GNNs. In particular, we follow the procedure of 
Chen et al. (2020), using the CW module to replace the BatchNorm layer straight after a 
convolutional one.

The mathematical formulation of the whitening transformation and the optimization 
problem that allows finding the orthogonal matrix described in Sect. 3.2 remains unaltered 
while applying them to GNNs. Consequently, the basic functioning of the CW module is 
identical to the case in which it is added to a CNN. However, the data is completely differ-
ent, and therefore the input shapes of the transformations, i.e., the output shapes of the con-
volutional layers, change accordingly. In fact, while the output of a 2D convolutional layer 
has shape n × d × h × w , with n, d, h, w being respectively the batch size, the dimension 
of the latent space, and the image height and width, the output of a graph convolutional 
layer has shape N × d , where N is the number of nodes and d is again the dimension of the 
latent space. These represent the shapes of the tensors that are given as input to the concept 

(14)Q(t+1) =
(
I +

�

2
A
)−1

Q(t+1) =
(
I +

�

2
A
)
Q(t)
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whitening layer. As explained in Sect. 3.2, in the case of CNNs, each feature map obtained 
from the convolution of one filter is reshaped so that, for each filter, the output of a convo-
lutional layer Zn×d×h×w is reshaped into a matrix Z(g×d)×(hwn) , where g is the number of chan-
nels used to represent each concept and hwn corresponds to the total number of features. 
Since one channel is used to represent each concept, this reduces to Zd×(hwn) . This operation 
can be easily transferred to the graph domain, by changing the dimension of the output of 
each convolutional layer from ZN×d to Zg×d×N . The subsequent computations remain exactly 
the same as before, and after the CW layer, each channel represents a specific concept. We 
clarify that the CW module necessarily needs to be inserted in place of a normalization 
layer, after a convolutional layer. The input shape to the CW module is therefore the output 
shape of the convolutional layer. Since the shape of the transformations that compose the 
CW module is inferred from the shape of the input data, the module is able to automati-
cally adapt to varying inputs in the case of Conv-GNNs. Similarly, if we change the dimen-
sion of the convolutional layer, the shape of the transformations in the CW module will 
change based on the new shape of the convolutional output.

The only aspect that cannot be directly adapted to GNNs concerns one of the activation 
modes we presented in Sect. 3.2: max_pool. In fact, this consists in performing 2D pooling 
and unpooling operations, which cannot be performed on graph data. In this work, we pro-
pose two alternative activation modes that exploit the top-k pooling operator presented by 
Gao and Ji (2019). Instead of clustering “similar” nodes, top-k pooling propagates only 
part of the input, that is not uniformly sampled from the input itself. By specifying a pool-
ing ratio, k ∈ (0, 1] , we can select just some parts of the input graph, by keeping just ⌈kN⌉ 
nodes out of the initial N. This selection is done by projecting node features onto the direc-
tion of a trainable vector, p , and keeping the nodes with the highest projection scores. In 
fact, the scalar projection of the i-th node’s feature vector, xi , on p , computed as yi =

xip

p
 , 

indicates how much information is retained after the projection onto p and we want to pre-
serve as much information as possible. To make p learnable by back-propagation, the pro-
jection scores are used as gating values to control how much information to keep from the 
retained nodes. This last property of top-k pooling was exploited to actually develop two 
different activation modes, called topk_pool and weighted_topk_pool. The first one is 
obtained by just computing the mean of the node embeddings of the down-sampled graph. 
The second one, instead, is obtained by making a weighted average of the node embed-
dings of the down-sampled graph, using as weights the projection scores returned by top-k 
pooling.

3.3.1  Structural information related to concept activations

Together with providing conceptual explanations thanks to the adaptation of the CW mod-
ule, we analyze the concept-structure relationship by combining CW with a XAI post-hoc 
method such as GNNExplainer. More generally, being the CW layer differentiable, any 
post-hoc method can be used to understand the structural motifs that modulate the concept 
activation. In this way, we can additionally obtain structural explanations. The use of a 
post-hoc method for this further step is necessary because some of the molecular properties 
that we use as concepts are “abstract”. With this adjective, we mean that it is not possible 
to directly derive the input attributions from the concept’s value. Consequently, we use 
GNNExplainer to extract the portion of the molecular graphs that most contributes to the 
concept latent value. GNNExplainer, in fact, is a perturbation based method that optimizes 
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an edge mask such that the mutual information between the GNN’s output and the distribu-
tion of possible sub-graphs is maximized.

4  Experiments

In this section, after introducing the datasets and the concepts we use, we report our experi-
mental setup to make results reproducible. Then, we start our analysis by comparing the 
classification performances obtained using GCN, GAT and GIN. In particular, we show 
how using different activation modes within the CW layers leads to different results. More-
over, we compare the performances obtained using different types of normalization in the 
black-box models. Subsequently, we study how concepts are represented within the CW 
layers and analyze the concept-structure relationships. Finally, we compute quantitative 
metrics to evaluate the improvement in interpretability.

4.1  Datasets

We train and test all the different architectures on four molecule datasets for graph clas-
sification. Molecules are represented as graphs, in which nodes and edges represent atoms 
and bonds, respectively. The first dataset we used is BBBP (Martins et al., 2012), which 
addresses blood-brain barrier penetration. This is a crucial aspect in the development of 
drugs targeting the central nervous system. The second one is BACE (Subramanian et al., 
2016), which has as target beta-secretase 1. This protein is essential for the generation of 
beta-amyloid peptide in neural tissue, a component of amyloid plaques widely believed 
to be involved in the development of Alzheimer’s disease. The third one is ClinTox (Wu 
et al., 2018), which compares drugs approved by the FDA and drugs that have failed clin-
ical trials for toxicity reasons. The last one is the HIV dataset,1 which contains 40,000 
compounds, tested for their ability to inhibit HIV replication, that are associated to binary 
labels indicating whether they are active or inactive.

4.2  Concept selection

As previously mentioned, we select the concepts by taking into account the molecular 
properties that are known to be relevant for each of the studied tasks. More specifically, 
we build each concept’s dataset by keeping all the molecules that present a value for the 
corresponding molecular property within a predefined interval. In order to select the most 
appropriate concepts, we follow the work of Sakiyama et al. (2021) and Subramanian et al. 
(2016) for BBBP and BACE, respectively. For ClinTox we select the concepts among the 
ones used for BBBP and BACE that led to the greatest improvement when used alone 
within the CW layers. For the HIV dataset, instead, we follow the work of Sirois et  al. 
(2005) and Kiralj and Ferreira (2003). Table 1 reports the concepts selected for each data-
set, together with the corresponding threshold values. For more details on the meaning of 
the concepts and the threshold selection, please refer to Appendix A.

1 AIDS Antiviral Screen Data, http:// wiki. nci. nih. gov/ displ ay/ NCIDT Pdata/ AIDS+ Antiv iral+ Screen+ 
Data, accessed 27 Sept, 2017.

http://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
http://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
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4.3  Experimental setup

All the code was developed in PyTorch (Paszke et al., 2019), using PyTorch Geometric 
library (Fey & Lenssen, 2019) (PyG). Each model used in the experiments is made up 
of three convolutional layers, which can be GCNConv, GATConv, or GINConv layers, 
with 128 units and a dense layer with 128 units. In GATConv multi-head attention lay-
ers, the number of attention heads is set to 2. Instead, the MLP in GINConv layers (see 
Eq. (8)) is designed as a single linear layer with the input and output dimensions equal 
to the number of units in the previous and following convolutional layers, respectively. 
The convolutional and dense layers have ReLU activation function. Additionally, there 
is a normalization layer after each convolutional layer, which can be a BatchNorm, Lay-
erNorm, InstanceNorm, or GraphNorm layer. The CW layers are substituted to these 
normalization layers. Finally, the readout layer is represented by a global sum pooling in 
the case of BBBP and HIV and a global max pooling in the case of BACE and ClinTox, 
and it is followed by a simple dense layer that performs the classification.

For all the black-box models, we have implemented early stopping with a patience of 
20 epochs. After the addition of CW, we found out that training the models for a maxi-
mum of 50 epochs with early stopping with patience 5 allows obtaining the best per-
formance. Each experiment was run 15 times to compare different seeds for statistical 

Table 1  Concepts selected for each tested dataset with the chosen threshold

Molecules are required to have a value for each concept that is lower than the specified threshold, with the 
exception of QED and TPSA, for which the concept datasets contain all the compounds with a value that is 
greater than the threshold

Dataset Concept Threshold

BBBP Quantitative estimate of drug-likeness (QED) > 0.6244

Topological polar surface area (TPSA) > 70.73

Logarithm of the octanol-water partition coefficient (LogP) < 5.0000

Number of N and O atoms (NOCount) < 5

Number of heteroatoms (n_heteroatoms) < 6

BACE Quantitative estimate of drug-likeness (QED) > 0.5221

Topological polar surface area (TPSA) > 95.19

Molecular weight (mol_weight) < 500

Number of H-bond acceptors (HBA) < 10

Number of H-bond donors (HBD) < 5

ClinTox Quantitative estimate of drug-likeness (QED) > 0.5335

Molecular weight (mol_weight) < 500

Number of H-bond acceptors (HBA) < 10

Logarithm of the octanol-water partition coefficient (LogP) < 5.0000

Number of heteroatoms (n_heteroatoms) < 7

HIV Number of H-bond acceptors (HBA) < 10

Number of H-bond donors (HBD) < 5

Logarithm of the octanol-water partition coefficient (LogP) < 2.9810

Number of double bonds (nDoubleBonds) < 2.41

Number of oxygen atoms (nO) < 5
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significance. In Table  2, we summarize the values of the hyperparameters that were 
used for BBBP, BACE, ClinTox, and HIV, respectively.

4.4  Hyperparameters tuning

In order to choose the number of epochs and to decide whether or not to add early stop-
ping, we have performed hyperparameters tuning. In Table 3 we report the performance of 
the network on the validation set before and after implementing early stopping on BBBP 
dataset. We also report the epoch at which on average early stopping occurs. For all the 
architectures, early stopping occurs pretty soon during training. Moreover, by training the 
models for the number of epochs specified in Table 2 without early stopping the perfor-
mances decrease, meaning that the models are overfitting. After training the black-boxes, 
we tried to fine-tune the models with CW layers for just one additional epoch. However, 
this led to very low results, both in terms of accuracy and ROC-AUC, and that is why we 
set the maximum number of epochs to 50 but, following the same procedure we have just 
described, we set early stopping patience to 5.

4.5  Classification performances

In this section, we verify how the substitution of the BatchNorm layers of a pre-trained 
model with CW layers affects its performance. In Table  4, we present the mean ROC-
AUC values obtained using GCN, GAT and GIN on BBBP, BACE, ClinTox, and HIV, 

Table 2  Hyperparameters used 
to train the models on the three 
considered datasets

aThe first value refers to the training of the black-box model, while 
the second one is used while tuning the CW layers in the pre-trained 
models
bAll the layers are global pooling layers

Hyperparameter BBBP BACE ClinTox HIV

Batch size 64 128 128 64
Learning rate 0.001 0.01 0.01 0.001
Weight decay 5 × 10−4 0.0 0.0 5 × 10−4

# Epochs 200 400 400 200
Early stopping patiencea 20/5 20/5 20/5 20/5
Conv. hidden units 128 128 128 128
Conv. activation ReLU ReLU ReLU ReLU
Dense hidden units 128 128 128 128
Dense activation ReLU ReLU ReLU ReLU
Readoutb sum max max sum

Table 3  Performance on BBBP 
over 15 runs before and after 
implementing early stopping 
(ES), together with the epoch at 
which on average early stopping 
occurs

Model ROC-AUC—No ES ROC-AUC—With ES ES epoch

GCN 0.86 ± 0.03 0.88 ± 0.03 37
GAT 0.87 ± 0.04 0.89 ± 0.04 38
GIN 0.87 ± 0.04 0.88 ± 0.03 36
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respectively. In particular, we compare the performances obtained by the black-box models 
with BatchNorm and their interpretable versions, while using different activation modes. 
For each dataset, there is at least one activation mode within the CW layers that allows to 
equal or, in most cases, improve the ROC-AUC with respect to their black-box versions 
for all the architectures, as shown in Fig. 1. In particular, max mode is the one that guar-
antees the best results for all the architectures on BBBP and HIV, and the highest accuracy 
and ROC-AUC values are obtained with GAT architecture. On the contrary, the activation 
mode that gave the worst results for both GCN and GAT on BBBP and HIV is weighted_
topk_pool, which is instead the best one in the case of GCN architecture on BACE and 
GIN architecture on ClinTox. Despite the good performance of GCN on BACE, the best 
results on this dataset were obtained with GAT and topk_pool activation mode. The best 
results on ClinTox were obtained using GCN architecture, with mean or pos_mean activa-
tion modes leading to similar performances. We impute the higher performances of the 
interpretable models to the ability of the CW layers to force the node embeddings produced 
by the models to represent relevant information in terms of the nodes’ belonging to each 
concept’s class, which attributes such representations a greater discriminative power.

Another important consideration is that the activation modes we propose, namely topk_
pool and weighted_topk_pool, allow obtaining comparable performances with respect to 
the already existing ones, even improving them in some cases.

Table 4  Mean ROC-AUC over 15 runs before and after the addition of the three concept whitening layers 
for BBBP, BACE, ClinTox, and Tox21

The results obtained using different activation modes have been reported. We write in bold the results of the 
best model for each architecture

Model BBBP BACE ClinTox HIV

Random forest 0.79 ± 0.01 0.79 ± 0.01 0.74 ± 0.01 0.65 ± 0.01

MLP 0.87 ± 0.01 0.84 ± 0.01 0.75 ± 0.05 0.84 ± 0.01

MPNN 0.88 ± 0.02 0.70 ± 0.03 0.72 ± 0.02 0.75 ± 0.01

GCN 0.88 ± 0.03 0.86 ± 0.02 0.86 ± 0.08 0.79 ± 0.03

– weighted_topk_pool 0.81 ± 0.06 0.93 ± 0.02 0.92 ± 0.10 0.69 ± 0.03

– topk_pool 0.87 ± 0.03 0.92 ± 0.01 0.92 ± 0.08 0.70 ± 0.02

– pos_mean 0.89 ± 0.03 0.92 ± 0.02 0.95 ± 0.02 0.77 ± 0.02

– max 0.91 ± 0.02 0.92 ± 0.02 0.93 ± 0.05 0.79 ± 0.02

– mean 0.88 ± 0.03 0.92 ± 0.03 0.95 ± 0.03 0.72 ± 0.02

GAT 0.89 ± 0.03 0.86 ± 0.02 0.84 ± 0.08 0.80 ± 0.03

– weighted_topk_pool 0.89 ± 0.03 0.93 ± 0.02 0.90 ± 0.04 0.74 ± 0.04

– topk_pool 0.92 ± 0.03 0.94 ± 0.02 0.90 ± 0.04 0.76 ± 0.02

– pos_mean 0.91 ± 0.02 0.91 ± 0.02 0.88 ± 0.04 0.80 ± 0.02

– max 0.97 ± 0.02 0.93 ± 0.01 0.88 ± 0.05 0.80 ± 0.02

– mean 0.92 ± 0.05 0.93 ± 0.02 0.90 ± 0.03 0.75 ± 0.02

GIN 0.89 ± 0.02 0.87 ± 0.03 0.75 ± 0.11 0.78 ± 0.03

– weighted_topk_pool 0.85 ± 0.03 0.92 ± 0.02 0.77 ± 0.08 0.71 ± 0.03

– topk_pool 0.84 ± 0.04 0.82 ± 0.02 0.73 ± 0.13 0.70 ± 0.03

– pos_mean 0.90 ± 0.02 0.92 ± 0.02 0.69 ± 0.12 0.79 ± 0.02

– max 0.91 ± 0.02 0.91 ± 0.02 0.74 ± 0.11 0.79 ± 0.02

– mean 0.88 ± 0.03 0.92 ± 0.02 0.70 ± 0.15 0.71 ± 0.02
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The table we have just described also contains the average performance of three known 
baselines: a random forest, a multi-layer perceptron (MLP) and a MPNN. Overall, the 
results obtained with these models are comparable or, in most cases, lower than those 
reached by our black-box models and always worse than those obtained with our interpret-
able models. Just in the case of the HIV dataset, MLP performs particularly well, overcom-
ing the performance of the best of our interpretable models.

In Table  5, we compare the results obtained in terms of ROC-AUC by training the 
black-box model corresponding to the best-performing architecture in the previous experi-
ments (GAT for BBBP, BACE, and HIV, and GCN for ClinTox) with different types of 
normalization. The best black-box model is the one with BatchNorm layers for all datasets. 
Moreover, BatchNorm is the type of normalization that allowed obtaining the best results 
after the addition of CW both in terms of accuracy and ROC-AUC on BBBP and ClinTox. 
However, this is not true for BACE, on which InstanceNorm and BatchNorm guaranteed 
the best performances, and HIV, on which LayerNorm and InstanceNorm gave the best 
results.

Table 5  Mean ROC-AUC over 15 runs on all tested datasets before and after the addition of the three con-
cept whitening layers using different normalization layers in the baseline models corresponding to the best-
performing interpretable models

The results obtained using different activation modes have been reported. For each normalization type, we 
write in bold the results obtained with the activation mode that leads to greatest overall improvement in 
both ROC-AUC and accuracy

Normalization type BBBP BACE ClinTox HIV

BatchNorm 0.89 ± 0.03 0.86 ± 0.02 0.86 ± 0.08 0.80 ± 0.03

– weighted_topk_pool 0.89 ± 0.03 0.93 ± 0.02 0.92 ± 0.10 0.74 ± 0.04

– topk_pool 0.92 ± 0.03 0.94 ± 0.02 0.92 ± 0.08 0.76 ± 0.02

– pos_mean 0.91 ± 0.02 0.91 ± 0.02 0.95 ± 0.02 0.80 ± 0.02

– max 0.97 ± 0.02 0.93 ± 0.01 0.93 ± 0.05 0.80 ± 0.02

– mean 0.92 ± 0.05 0.93 ± 0.02 0.95 ± 0.03 0.75 ± 0.02

LayerNorm 0.88 ± 0.03 0.88 ± 0.03 0.83 ± 0.03 0.71 ± 0.04

– weighted_topk_pool 0.88 ± 0.03 0.86 ± 0.02 0.73 ± 0.13 0.74 ± 0.02

– topk_pool 0.89 ± 0.03 0.85 ± 0.03 0.71 ± 0.09 0.75 ± 0.02

– pos_mean 0.90 ± 0.02 0.87 ± 0.02 0.76 ± 0.06 0.79 ± 0.03

– max 0.88 ± 0.03 0.86 ± 0.03 0.71 ± 0.09 0.81 ± 0.02

– mean 0.90 ± 0.03 0.86 ± 0.03 0.74 ± 0.11 0.75 ± 0.02

InstanceNorm 0.60 ± 0.12 0.69 ± 0.07 0.58 ± 0.06 0.61 ± 0.05

– weighted_topk_pool 0.87 ± 0.05 0.86 ± 0.02 0.91 ± 0.05 0.74 ± 0.03

– topk_pool 0.87 ± 0.03 0.94 ± 0.02 0.92 ± 0.02 0.77 ± 0.03

– pos_mean 0.90 ± 0.03 0.94 ± 0.03 0.92 ± 0.04 0.80 ± 0.02

– max 0.92 ± 0.03 0.94 ± 0.02 0.92 ± 0.05 0.81 ± 0.02

– mean 0.87 ± 0.04 0.94 ± 0.01 0.92 ± 0.04 0.76 ± 0.02

GraphNorm 0.59 ± 0.20 0.76 ± 0.05 0.56 ± 0.09 0.60 ± 0.05

– weighted_topk_pool 0.86 ± 0.04 0.92 ± 0.02 0.82 ± 0.08 0.73 ± 0.02

– topk_pool 0.85 ± 0.05 0.92 ± 0.02 0.71 ± 0.09 0.74 ± 0.03

– pos_mean 0.87 ± 0.05 0.91 ± 0.01 0.86 ± 0.09 0.78 ± 0.06

– max 0.89 ± 0.03 0.92 ± 0.02 0.82 ± 0.10 0.80 ± 0.02

– mean 0.87 ± 0.05 0.90 ± 0.04 0.88 ± 0.07 0.75 ± 0.02
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In Appendix B, we also report the accuracy values for all the experiments we have just 
described, both comparing different architectures in Table  8 and different normalization 
types in Table 9. In general, accuracies are in accordance with ROC-AUC values.

4.6  Concept representations

Since the main purpose of CW is to provide an easy way to understand which type of 
features are captured at a certain level of the network and to what extent each concept is 
relevant for the final prediction, it is useful to analyze the different importance of each 
concept at each layer of the network. In Fig.  2, we report the concepts importance at 
each of the CW layers for BBBP dataset. The contribution of each concept is computed 
as the sum of the positive directional derivatives of the gradients along the channel rep-
resenting that concept. There are significant differences across layers. At layer 0, all 
importance scores are below 0.5, with the exception of logP, which is slightly above the 
threshold, and they are all quite similar across concepts. At layer 1, we start to notice a 
greater differentiation among concepts, and the importance score for NOCount reaches 

Fig. 1  Comparison between the performance of each black-box model and the best corresponding inter-
pretable model. The ROC-AUC values obtained with CW are equal or higher than those obtained with the 
black-boxes
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0.6. Finally, the importance scores become well-separated at layer 2. The most relevant 
concept is QED, followed by # Heteroatoms and NOCount. On the contrary, TPSA and 
logP seem to be quite irrelevant. These results are in accordance with the observations 
made by Sakiyama et  al. (2021). In fact, QED, NOCount, and # Heteroatoms are the 
only concepts among the five we selected that appear in all the descriptor sets studied by 
Sakiyama et al. (2021) resulting in the best performance in BBBP classification using 
a DL model. Finally, it is important to notice that the importance of the last two con-
cepts, NOCount and # Heteroatoms, is usually in agreement. This is due to the fact that 
the two concepts are strongly related, since oxygen and nitrogen atoms are heteroatoms 
themselves.

To better understand what type of information is captured at different depths, 
we computed the percentile rank for the activation values for the concepts QED and 
NOCount at the three CW layers in the best-performing model on each dataset. Figure 3 
shows an example from BBBP dataset. The trajectory confirms that the network first 
learns atom-level information, thus giving a higher percentile rank for the activations on 
the concept NOCount. Going deeper in the network, larger neighborhoods are consid-
ered, and therefore it is able to encode graph-level information, giving a higher percen-
tile rank for the concept QED, which estimates the drug-likeness.

Finally, we analyze normalized intra- and inter-concept similarities, as computed in 
the paper that presents CW (Chen et al., 2020). Specifically, intra-concept similarity for 
concept i is defined as:

where n is the total number of samples belonging to concept i and xij is the representation 
for sample j of concept i. Inter-concept similarity between two concepts p and q, instead, is 
computed as:

(15)dii =
1

n2

�
n�

j=1
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k=1
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‖xij‖2 ‖xik‖2

�

Fig. 2  Concepts importance measured at the three CW layers
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where n and m are the number of samples belonging to concepts q and p, respectively. In 
the plot in Fig. 4, the value in cell (i, j) is obtained as follows:

In Fig.  4, we notice that, in the BBBP dataset, models employing CW achieve greater 
separability between dissimilar concepts, more specifically NOCount and TPSA and 
#Heteroatoms and TPSA. At the same time, with CW the network has a greater ability to 

(16)dpq =
1

nm

�
n�

j=1

m�

k=1

xpj ⋅ xqk

‖xpj‖2 ‖xqk‖2

�

(17)Qij =
dij

√
diidjj

Fig. 3  Trajectory showing how the percentile rank for the activation values on the concepts QED and 
NOCount for the molecule on the left changes when the CW layers are inserted at different depths

Fig. 4  Comparison between normalized intra-concept and inter-concept similarities, obtained using the 
best-performing interpretable model on BBBP (right) and its corresponding black-box (left). In the black-
box model, the last convolutional layer is followed by a BatchNorm layer, while in the interpretable model 
it is followed by a CW module



2031Machine Learning (2024) 113:2013–2044 

1 3

recognize the similarity between QED, TPSA, and LogP, and between NOCount and #Het-
eroatoms, which are indeed strictly related concepts.

4.7  Structural information related to concepts activations

Here, we show how to obtain a structural visualization of the concept activation using post-
hoc explainability methods. In particular, we analyze the concept-structure relationship 
highlighted by GNNExplainer for the concept # Heteroatoms (Fig. 5) in the case of BBBP 
dataset.

It is interesting to observe that the atoms that more strongly influence the concept acti-
vation are indeed heteroatoms, most of the time oxygen and nitrogen atoms. These results 
suggest that the network is correctly identifying the structural sub-parts of the molecules 
that determine their belonging to a particular concept dataset.

These findings confirm that this method allows to understand the structural relationships 
of the molecules to descriptor-based concepts. Such a relationship could be exploited for 
the optimization of the molecules’ biological activities in order to design novel drugs.

4.8  Improvement in interpretability

Since our aim is to propose self-interpretable QSAR models to be exploited in the field of 
drug discovery, we conceived interpretability as the ability to identify the structural parts of 
the molecules to which we need to drive chemical modifications to increase their potency. 
In this view, the ability to compute the importance of certain molecular properties (con-
cepts) in order to obtain a desired type of biological activity and the possibility of using 
post-hoc approaches to identify the structural properties that are relevant for each concept 
represent by themselves an improvement in the interpretability of the models. By consider-
ing the definition of each concept, we can indeed make sure that post-hoc approaches are 
correctly highlighting the right atoms.

Additionally, we quantitatively evaluate the improvement in interpretability using Fidel-
ity+ (Pope et al., 2019). This metric is computed as the difference between the originally 
predicted probabilities and those obtained after masking out the important input features 
identified through GNNExplainer. This can be written as:

where Gi is the i-th input graph and f (⋅) is the model to be evaluated. mi is the impor-
tance map in which important input features correspond to 1 and all the others to 0. 

(18)Fidelity+ =
1

N

N∑

i=1

(f (Gi)yi − f (G
1−mi

i
)yi )

Fig. 5  Analysis of the concept-structure relationship concerning the number of heteroatoms through 
GNNExplainer
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Consequently, G1−mi

i
 is the graph we obtain by masking out input features according to the 

complementary mask 1 − mi . Since QED and logP are abstract concepts, which cannot be 
directly associated to structural properties of the molecules, we need to use GNNExplainer 
to perform the input masking needed to compute fidelity scores.

For each dataset, we have computed the fidelity score for the best-performing interpretable 
GAT model and the corresponding black-box. The results are reported in Table 6. Overall, the 
greatest improvements in fidelity are registered for BBBP, HIV, and ClinTox. For the latter, we 
notice that even the interpretable model is identifying input properties whose removal brings 
an increase in the model’s performance. This may be due to the fact that the selection of the 
concepts in the case of ClinTox has been performed by an experimental evaluation of those 
used for BBBP and BACE. Although the selected concepts proved to be useful in performing 
the prediction, more relevant concepts could be identified by domain experts in order to guar-
antee a positive fidelity score. Finally, in the case of BACE CW allows a reduction in standard 
deviation among fidelity scores.

5  Conclusions

This work proposes an adaptation of CW to spatial Conv-GNNs in order to develop inherently 
interpretable QSAR models. Thanks to CW, we obtain conceptual explanations, which allow 
identifying the concepts that mostly influence the output predictions by studying the evolu-
tion of the concept importance across layers. Additionally, we also provide structural explana-
tions by combining CW with a post-hoc explanation method, namely GNNExplainer. In this 
way, we are able to identify the structural parts of the molecules that are relevant to a certain 
concept, i.e., we can retrieve input attributions. Based on them, we show an improvement in 
the fidelity score when using CW. We also report an improvement in terms of classification 
performances of the models when using CW layers. Using normalization types other than 
BatchNorm in the black-box can in some cases benefit the performance of the corresponding 
interpretable model. Finally, we propose two new activation modes, topk_pool and weighted_
topk_pool, that guarantee comparable or, in some cases, better results than those obtained with 
max, mean and pos_mean.

Future works might try to use structural properties of the molecules, such as pharmaco-
phoric points, as concepts. Additionally, it would be interesting to analyze whether changing 
small parts of the network leads to specific changes in the concepts’ representation and how 
this influences the classification performance of the model. Finally, future research might fur-
ther investigate the use of CW in multi-label classification tasks.

Table 6  Concepts selected for 
each tested dataset with the 
chosen threshold

Model BBBP BACE ClinTox HIV

Black-box 0.24 ± 0.41 0.45 ± 0.45 −0.12 ± 0.25 0.004 ± 0.009

Interpretable 0.31 ± 0.38 0.45 ± 0.41 −0.06 ± 0.12 0.02 ± 0.19
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Appendix A: Concept selection

In this section, we aim at providing a brief explanation of the meaning of each concept that 
has been tested and of how the threshold values have been selected. The molecular proper-
ties we have considered are the following:

• Quantitative estimate of drug-likeness (QED), proposed by Bickerton et  al. (2012), 
which expresses the similarity of a compound’s properties to those of oral drugs based 
on eight commonly used molecular properties, namely molecular weight, lipophilicity 
(logP), number of hydrogen bond donors, number of hydrogen bond acceptors, (total) 
polar surface area (PSA or TPSA), number of rotatable bonds, number of aromatic 
rings, and count of alerts for undesirable substructures. The QED is obtained by taking 
the geometric mean of the desirability, expressed by a number between 0 and 1, of such 
individual properties.

• TPSA, proposed by Prasanna and Doerksen (2009), which shows the correlation with 
passive molecular transport through membranes, and is therefore significantly useful 
for the BBBP prediction.

• Logarithm of the octanol-water partition coefficient (logP), one of the principal param-
eters for the estimation of the molecules’ hydro-lipophilicity balance and it is known to 
affect drugs absorption, bioavailability, hydrophobic drug-receptor interactions, metab-
olism of molecules, as well as their toxicity (Kujawski et al., 2012).

• The number of nitrogen and oxygen atoms (NOCount).
• The number of heteroatoms ( # Heteroatoms), i.e., the number of atoms that are not car-

bon nor hydrogen.
• Molecular weight (mol_weight), which is a measure of the sum of the atomic weight 

values of the atoms in a molecule.
• Number of H-bond acceptors (HBA). A hydrogen bond (H-bond) is a primarily electro-

static force of attraction between a hydrogen (H) atom which is covalently bound to a 
more electronegative donor atom or group, and another electronegative atom bearing a 
lone pair of electrons, which is the hydrogen bond acceptor.

• Number of H-bond donors (HBD).

All these molecular descriptors have been computed using RDKit,2 which is an open-
source tool for cheminformatics.

For molecular weight, logP, HBA, and HBD we use the threshold values based on the 
Lipinski’s rule of five (Lipinski et  al., 2001) for evaluating drug likeliness, according to 
which an orally active drug has no more than one violation of the following criteria:

• Molecular weight smaller than 500 daltons;
• LogP smaller than 5;
• Less than 5 H-bond donors;
• Less than 10 H-bond acceptors.

For all the other molecular properties, we have used as threshold values the average 
across each dataset. Table 7 contains the results of the experiments made to choose the 
concepts to be used with ClinTox.

2 RDKit: Open-source cheminformatics. https:// www. rdkit. org.

https://www.rdkit.org
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The baseline model used in these experiments consists of 3 GAT layers of 128 units 
followed by ReLU activation function. The readout layer is represented by a global max 
pooling. In order to perform these experiments, we have just considered max activa-
tion mode and BatchNorm, as we are only interested in understanding which concept 
determines the best improvement with respect to the same baseline model when used 
within the CW layers. All the models were trained with the batch sizes, learning rates, 
weight decay, number of epochs and early stopping patience specified in Table  2 for 
each dataset.

Table 7 shows that, considering the concepts used for BBBP and BACE, the improve-
ment in accuracy values is at most 0.01. The increase in ROC-AUC,instead, is much more 
significant. Considering the overall improvement in both accuracy and ROC-AUC, we 
decided to use as concepts QED, mol_weight, HBA, logP, and # Heteroatoms.

Appendix B: Classification performances

In Tables 8 and 9, we report the accuracy values for the experiments on BBBP, BACE, 
ClinTox and HIV. The results are generally in accordance with ROC-AUC values presented 
in Sect. 4.5

Appendix C: Multi‑label classification

In this section, we present the experiments performed using Tox21 dataset. It is a multi-
label classification problem, since we need to predict more than one class label at a time. 
In fact, Tox21 contains chemical compounds associated with 12 binary labels representing 
the outcome (active/inactive) of 12 different toxicological experiments.

Table 7  Mean accuracies and 
ROC-AUC over 15 runs on 
ClinTox before and after the 
addition of the three concept 
whitening layers, using one 
concept at a time

We write in bold the results obtained with the concepts that guaran-
teed the greatest improvement in both accuracy and ROC-AUC 

Architecture Accuracy ROC-AUC 

Baseline 0.94 ± 0.01 0.86 ± 0.08

CW–QED 0.95 ± 0.02 0.95 ± 0.04

CW–TPSA 0.94 ± 0.02 0.93 ± 0.04

CW–mol_weight 0.95 ± 0.02 0.93 ± 0.08

CW–HBA 0.95 ± 0.01 0.95 ± 0.02

CW–HBD 0.94 ± 0.01 0.93 ± 0.08

CW–logP 0.95 ± 0.01 0.93 ± 0.04

CW–NOCount 0.95 ± 0.02 0.91 ± 0.09

CW–# Heteroatoms 0.95 ± 0.02 0.95 ± 0.03
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Appendix C.1: Hyperparameters setup

To address this type of problem, we have configured our network by setting the number 
of hidden units in the output layer equal to the number of labels that need to be pre-
dicted. Then, we have used the sigmoid function for each node in the output layer to 
obtain the probability that a sample belongs to each class. Finally, we have used binary 
cross-entropy loss to perform the training.

In Table  10, we report the hyperparameters we use. As described in Sect.  4.4, all 
models are made up of 3 convolutional layers, but for Tox21 we have increased the 
number of hidden units to 256 in the case of GCN architecture. Moreover, with GAT 
and GIN we have not added any dense layer. Another difference is that we use ReLU 
function both after convolutional layers in the case of GAT and GIN, while with GCN 
we use LeakyReLU and ELU after convolutional and dense layers, respectively. The 
readout layer is a global max pooling, and as for the other datasets, it followed by a 
dense layer that performs the classification. Finally, by following the same procedure 
we have described in Sect. 4.3, we implemented early stopping with patience 20 for the 
black-box models and 5 for the interpretable ones. Each experiments was run 15 times 
to compare different seeds.

Table 8  Mean accuracies over 15 runs before and after the addition of the three concept whitening layers 
for all datasets

The results obtained using different activation modes have been reported. We write in bold the results 
obtained with the activation mode that leads to greatest overall improvement in both ROC-AUC and accu-
racy

Model BBBP BACE ClinTox HIV

RF 0.89 ± 0.01 0.79 ± 0.01 0.90 ± 0.01 0.97 ± 0.00

MLP 0.80 ± 0.02 0.73 ± 0.01 0.86 ± 0.02 0.97 ± 0.00

MPNN 0.87 ± 0.02 0.64 ± 0.03 0.51 ± 0.10 0.97 ± 0.00

GCN 0.87 ± 0.02 0.78 ± 0.02 0.94 ± 0.01 0.97 ± 0.00

– weighted_topk_pool 0.84 ± 0.03 0.85 ± 0.02 0.95 ± 0.01 0.96 ± 0.00

– topk_pool 0.86 ± 0.03 0.84 ± 0.02 0.94 ± 0.02 0.96 ± 0.01

– pos_mean 0.87 ± 0.03 0.84 ± 0.02 0.95 ± 0.02 0.96 ± 0.01

– max 0.88 ± 0.02 0.84 ± 0.03 0.95 ± 0.01 0.96 ± 0.01

– mean 0.86 ± 0.01 0.84 ± 0.04 0.95 ± 0.02 0.96 ± 0.00

GAT 0.88 ± 0.03 0.79 ± 0.02 0.94 ± 0.02 0.97 ± 0.00

– weighted_topk_pool 0.87 ± 0.02 0.85 ± 0.03 0.93 ± 0.02 0.97 ± 0.04

– topk_pool 0.89 ± 0.02 0.86 ± 0.03 0.94 ± 0.02 0.97 ± 0.03

– pos_mean 0.89 ± 0.02 0.84 ± 0.02 0.94 ± 0.02 0.97 ± 0.02

– max 0.93 ± 0.01 0.85 ± 0.03 0.94 ± 0.02 0.97 ± 0.02

– mean 0.88 ± 0.02 0.85 ± 0.03 0.94 ± 0.02 0.97 ± 0.02

GIN 0.87 ± 0.02 0.78 ± 0.03 0.93 ± 0.02 0.97 ± 0.00

– weighted_topk_pool 0.85 ± 0.03 0.84 ± 0.03 0.93 ± 0.02 0.96 ± 0.01

– topk_pool 0.84 ± 0.03 0.83 ± 0.03 0.94 ± 0.02 0.97 ± 0.00

– pos_mean 0.87 ± 0.02 0.84 ± 0.03 0.94 ± 0.02 0.97 ± 0.00

– max 0.90 ± 0.02 0.83 ± 0.03 0.94 ± 0.01 0.97 ± 0.00

– mean 0.86 ± 0.02 0.85 ± 0.02 0.93 ± 0.02 0.96 ± 0.00
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Appendix C.2: Concepts selection

We have chosen the concepts to be used for Tox21 by following the same procedure we 
described in Appendix A for ClinTox dataset. In particular, we selected the concepts that 
used alone within the CW layers lead to the greatest improvement in performance. How-
ever, together with the concepts we had used for BBBP, BACE and HIV, we also tested 
some additional molecular properties used by both Jaganathan et al. (2022) and Badri and 
Jaims (2021). The additional concepts we considered are:

• Atom-based calculation of partition coefficient based on Crippen’s approach (Wildman 
& Crippen, 1999) (CrippenLogP);

• Atom-based calculation of molar refractivity based on Crippen’s approach (Wildman & 
Crippen, 1999) (CrippenMR);

• The number of chlorine atoms (nCl);
• The number of double bonds (# DoubleBonds);

Table 9  Mean accuracies over 15 runs on all datasets before and after the addition of the three concept 
whitening layers using different normalization layers in the baseline models corresponding to the best inter-
pretable models

The results obtained using different activation modes have been reported. For each normalization type, we 
write in bold the results obtained with the activation mode that leads to greatest overall improvement in 
both ROC-AUC and accuracy

Normalization type BBBP BACE ClinTox HIV

BatchNorm 0.88 ± 0.03 0.78 ± 0.02 0.94 ± 0.01 0.97 ± 0.00

– weighted_topk_pool 0.87 ± 0.02 0.85 ± 0.02 0.95 ± 0.01 0.97 ± 0.04

– topk_pool 0.89 ± 0.02 0.84 ± 0.02 0.94 ± 0.02 0.97 ± 0.03

– pos_mean 0.89 ± 0.02 0.84 ± 0.03 0.95 ± 0.02 0.97 ± 0.02

– max 0.93 ± 0.01 0.84 ± 0.03 0.95 ± 0.01 0.97 ± 0.02

– mean 0.88 ± 0.02 0.84 ± 0.04 0.95 ± 0.02 0.97 ± 0.02

LayerNorm 0.86 ± 0.02 0.76 ± 0.03 0.94 ± 0.02 0.97 ± 0.00

– weighted_topk_pool 0.86 ± 0.02 0.77 ± 0.02 0.93 ± 0.03 0.97 ± 0.00

– topk_pool 0.87 ± 0.02 0.78 ± 0.04 0.92 ± 0.02 0.97 ± 0.00

– pos_mean 0.88 ± 0.02 0.78 ± 0.02 0.92 ± 0.02 0.97 ± 0.00

– max 0.86 ± 0.02 0.79 ± 0.04 0.93 ± 0.02 0.97 ± 0.01

– mean 0.87 ± 0.02 0.78 ± 0.03 0.93 ± 0.02 0.97 ± 0.00

InstanceNorm 0.65 ± 0.19 0.65 ± 0.04 0.86 ± 0.02 0.97 ± 0.00

– weighted_topk_pool 0.86 ± 0.02 0.88 ± 0.03 0.95 ± 0.02 0.96 ± 0.01

– topk_pool 0.85 ± 0.03 0.88 ± 0.02 0.95 ± 0.02 0.97 ± 0.00

– pos_mean 0.88 ± 0.03 0.87 ± 0.03 0.95 ± 0.02 0.97 ± 0.00

– max 0.88 ± 0.02 0.88 ± 0.03 0.95 ± 0.01 0.97 ± 0.00

– mean 0.86 ± 0.02 0.88 ± 0.02 0.95 ± 0.02 0.97 ± 0.00

GraphNorm 0.75 ± 0.08 0.67 ± 0.04 0.94 ± 0.02 0.96 ± 0.00

– weighted_topk_pool 0.85 ± 0.02 0.85 ± 0.03 0.94 ± 0.02 0.97 ± 0.00

– topk_pool 0.84 ± 0.03 0.85 ± 0.03 0.92 ± 0.02 0.97 ± 0.00

– pos_mean 0.86 ± 0.03 0.83 ± 0.02 0.95 ± 0.02 0.97 ± 0.00

– max 0.86 ± 0.02 0.84 ± 0.02 0.93 ± 0.03 0.97 ± 0.00

– mean 0.85 ± 0.03 0.83 ± 0.03 0.94 ± 0.01 0.97 ± 0.00
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• A topological index meant to quantify “complexity” of molecules proposed by Bertz 
(1981). In particular, it consists of the sum of two terms, representing the complexity of 
the bonding and the complexity of the distribution of heteroatoms, respectively;

• The number of aromatic bonds.

Table 11 shows the results of these experiments, which led to the selection of HBA, HBD, 
CrippenLogP, CrippenMR, and nCl. For HBA and HBD we use as threshold the values 

Table 10  Hyperparameters used 
to train the models on the three 
considered datasets

aThe second value refers just to GCN architecture
bAll the layers are global pooling layers
cThe first value refers to the training of the black-box model, while the 
second one is used while tuning the CW layers in the pre-trained mod-
els

Hyperparameter Tox21

Batch size 64
Learning rate 0.001
Weight decay 5 × 10−4

# Epochs 200
Early stopping patiencec 20/5
Conv. hidden units 128∕256a

Conv. activation ReLU/LeakyReLUa

Dense hidden units −∕256a

Dense activation −∕ELUa

Readoutb max

Table 11  Mean accuracies 
and ROC-AUC over 15 runs 
on Tox21 before and after the 
substitution of concept whitening 
layers to the normalization layers 
within the GAT model for Tox21, 
using one concept at a time

We write in bold the results obtained with the concepts that guaran-
teed the greatest improvement in both accuracy and ROC-AUC 

Architecture Accuracy ROC-AUC 

Baseline 0.84 ± 0.10 0.90 ± 0.10

CW–mol_weight 0.91 ± 0.01 0.96 ± 0.01

CW–QED 0.90 ± 0.01 0.97 ± 0.01

CW–TPSA 0.90 ± 0.01 0.97 ± 0.01

CW–HBA 0.91 ± 0.01 0.97 ± 0.01

CW–HBD 0.91 ± 0.01 0.98 ± 0.01

CW–logP 0.90 ± 0.02 0.97 ± 0.01

CW–NOCount 0.90 ± 0.01 0.97 ± 0.01

CW–# Heteroatoms 0.90 ± 0.01 0.97 ± 0.01

CW–CrippenLogP 0.91 ± 0.01 0.97 ± 0.01

CW–CrippenMR 0.91 ± 0.01 0.98 ± 0.00

CW–nCl 0.91 ± 0.00 0.98 ± 0.00

CW–# DoubleBonds 0.90 ± 0.01 0.97 ± 0.00

CW–complexity 0.90 ± 0.01 0.97 ± 0.01

CW–# AromaticBonds 0.90 ± 0.01 0.98 ± 0.00
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suggested by Lipinski’s rule Lipinski’s rule of five (Lipinski et al., 2001), while for Crip-
penLogP, CrippenMR, and nCl we use the mean value across the whole dataset, namely 
2.3657, 72.1641, and 0.2822.

Appendix C.3: Multi‑label classification performances

In Table 12, we report the mean values for the accuracy and ROC-AUC using GCN, GAT 
and GIN on Tox21 dataset. Again, we compare the results obtained with and without CW, 
using different activation modes.

Differently from what we have seen for the other datasets, CW does not always allow 
improving the performance of the network. Specifically, the substitution of CW modules to 
the normalization layers within the GIN black-box model makes both accuracy and ROC-
AUC values worse, independently from the adopted activation mode. However, this is not 
true for GCN and GAT, for which we obtain the best performance using max activation 
mode. In particular, in the case of GCN the accuracy increases by 0.10 and the ROC-AUC 
by 0.21, while in the case of GAT the accuracy slightly decreases by 0.01 and the ROC-
AUC improves by 0.04.

Another important dissimilarity with respect to our previous analyses is that there is 
a significant divergence among the results obtained using different activation modes. For 

Table 12  Mean accuracies over 
15 runs before and after the 
addition of the three concept 
whitening layers for the Tox21 
dataset

The results obtained using different activation modes have been 
reported. We write in bold the best results obtained with each archi-
tecture

Architecture Accuracy ROC-AUC 

RF 0.63 ± 0.004 0.62 ± 0.003

MLP 0.65 ± 0.02 0.70 ± 0.01

MPNN 0.72 ± 0.06 0.77 ± 0.01

GCN 0.63 ± 0.02 0.71 ± 0.03

– weighted_topk_pool 0.63 ± 0.02 0.69 ± 0.03

– topk_pool 0.64 ± 0.01 0.70 ± 0.03

– pos_mean 0.67 ± 0.01 0.85 ± 0.02

– max 0.73 ± 0.01 0.92 ± 0.01

– mean 0.63 ± 0.01 0.70 ± 0.03

GAT 0.84 ± 0.10 0.90 ± 0.10

– weighted_topk_pool 0.63 ± 0.01 0.66 ± 0.03

– topk_pool 0.62 ± 0.01 0.64 ± 0.01

– pos_mean 0.75 ± 0.02 0.91 ± 0.01

– max 0.83 ± 0.01 0.94 ± 0.01

– mean 0.63 ± 0.01 0.68 ± 0.02

GIN 0.82 ± 0.02 0.94 ± 0.02

– weighted_topk_pool 0.62 ± 0.01 0.63 ± 0.05

– topk_pool 0.61 ± 0.01 0.62 ± 0.03

– pos_mean 0.66 ± 0.01 0.84 ± 0.02

– max 0.68 ± 0.01 0.85 ± 0.01

– mean 0.61 ± 0.01 0.64 ± 0.02
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instance, using GAT architecture, topk_pool leads to just 0.62 of accuracy and a ROC-
AUC of 0.64, which are far lower than the values obtained using max activation mode. In 
fact, analogously to BBBP and BACE, max is the activation mode that performs best with 
all three architectures and GAT is the model that leads to the best results.

Although we could expect the models to perform worse than in the previously consid-
ered tasks, since Tox21 addresses a multi-label classification problem, the best results that 
we obtained are good, and encourage a further investigation of CW in this type of classifi-
cation tasks.

Successively, we have trained the GAT baseline model using different normalization 
types. The results we obtained are reported in Table 13. LayerNorm is the type of normali-
zation that allows having better results for the baseline model. However, none of the avail-
able activation modes allows improving such performance, even if pos_mean and max let 
us reach good accuracy and ROC-AUC values.

On the other hand, InstanceNorm and GraphNorm lead to very poor results of the 
baseline models, but the addition of CW modules allows overcoming the performance 
obtained by the baseline model with LayerNorm. In particular, the highest gap is 
reported between the ROC-AUC values of the baseline model with InstanceNorm and 

Table 13  Mean accuracies over 
15 runs before and after the 
addition of the three concept 
whitening layers using different 
normalization layers in the 
baseline models with GAT layers 
for the Tox21 dataset

The results obtained using different activation modes have been 
reported. We write in bold the best results obtained with each normali-
zation type

Normalization type Accuracy ROC-AUC 

BatchNorm 0.84 ± 0.10 0.90 ± 0.10

– weighted_topk_pool 0.63 ± 0.01 0.66 ± 0.03

– topk_pool 0.62 ± 0.01 0.64 ± 0.01

– pos_mean 0.75 ± 0.02 0.91 ± 0.01

– max 0.83 ± 0.01 0.94 ± 0.01

– mean 0.63 ± 0.01 0.68 ± 0.02

LayerNorm 0.86 ± 0.01 0.95 ± 0.00

– weighted_topk_pool 0.64 ± 0.01 0.75 ± 0.02

– topk_pool 0.65 ± 0.02 0.78 ± 0.03

– pos_mean 0.82 ± 0.01 0.93 ± 0.01

– max 0.81 ± 0.01 0.95 ± 0.01

– mean 0.65 ± 0.01 0.79 ± 0.01

InstanceNorm 0.61 ± 0.01 0.65 ± 0.03

– weighted_topk_pool 0.65 ± 0.01 0.80 ± 0.01

– topk_pool 0.64 ± 0.01 0.78 ± 0.03

– pos_mean 0.86 ± 0.01 0.94 ± 0.01

– max 0.89 ± 0.00 0.95 ± 0.00

– mean 0.67 ± 0.02 0.83 ± 0.01

GraphNorm 0.62 ± 0.01 0.75 ± 0.01

– weighted_topk_pool 0.64 ± 0.01 0.68 ± 0.04

– topk_pool 0.64 ± 0.01 0.74 ± 0.02

– pos_mean 0.84 ± 0.01 0.94 ± 0.01

– max 0.89 ± 0.01 0.95 ± 0.01

– mean 0.65 ± 0.01 0.77 ± 0.02
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the corresponding interpretable model with max activation mode, which passes from 
a value of 0.65 to 0.95. Consequently, as for BACE, the best results are obtained using 
GAT pre-trained with InstanceNorm layers. However, while for BACE the activation 
mode that leads to the best results is weighted_topk_pool, in the case of Tox21 it is max.
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