
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06359-0

1 3

Consolidated learning: a domain‑specific model‑free 
optimization strategy with validation on metaMIMIC 
benchmarks

Katarzyna Woźnica1  · Mateusz Grzyb1 · Zuzanna Trafas2 · Przemysław Biecek1,3

Received: 30 January 2022 / Revised: 2 March 2023 / Accepted: 9 June 2023 
© The Author(s) 2023

Abstract
For many machine learning models, a choice of hyperparameters is a crucial step towards 
achieving high performance. Prevalent meta-learning approaches focus on obtaining good 
hyperparameter configurations with a limited computational budget for a completely new 
task based on the results obtained from the prior tasks. This paper proposes a new formu-
lation of the tuning problem, called consolidated learning, more suited to practical chal-
lenges faced by model developers, in which a large number of predictive models are cre-
ated on similar datasets. In such settings, we are interested in the total optimization time 
rather than tuning for a  single task. We show that a carefully selected static portfolio of 
hyperparameter configurations yields good results for anytime optimization, while main-
taining the ease of use and implementation. Moreover, we point out how to construct such 
a portfolio for specific domains. The improvement in the optimization is possible due to the 
more efficient transfer of hyperparameter configurations between similar tasks. We demon-
strate the effectiveness of this approach through an empirical study for the XGBoost algo-
rithm and the newly created metaMIMIC benchmarks of predictive tasks extracted from 
the MIMIC-IV medical database. In the paper, we show that the potential of consolidated 
learning is considerably greater due to its compatibility with many machine learning appli-
cation scenarios.

Keywords Meta-learning · Hyperparameter optimization · Consolidated learning · 
Portfolio of hyperparameters

1 Introduction

In order to effectively use the full capabilities of available machine learning algorithms, we 
have to pay great attention to the hyperparameter values. On the one hand, hyperparameter 
tuning may be costly due to the dimensionality of the search space. On the other hand, it 
is necessary because the default settings of hyperparameters do not guarantee good model 
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quality (Lavesson & Davidsson, 2006; Probst et al., 2019). Therefore, automatic hyperpa-
rameter optimization methods are being developed to avoid a manual, trial-and-error-based 
search for the optimal set and thereby support users in building effective predictive models. 
They have become a part of AutoML frameworks  (Thornton et al., 2013; Bergstra et al., 
2015; Olson & Moore, 2019; Feurer et al., 2019) and resulted in increased attention to the 
proposed methods’ ease of use, implementation, parallelization, and computational com-
plexity. It is essential to adapt to the considered prediction problem and provide anytime 
performance, i.e., to propose a good configuration of hyperparameters even if only a few 
evaluations have been performed.

So far, two main groups of hyperparameter optimization techniques have been rec-
ommended and are used as baselines in papers proposing new solutions. The most basic 
class of methods are grid search and random search  (Bergstra & Bengio, 2012). They are 
entirely independent of the dataset; for each case, optimization must be started from scratch 
for a pre-specified hyperparameter grid. Many optimization evaluations are needed to find 
near to optimal solutions. In addition, these methods do not use the information obtained 
in the earlier iterations, namely which algorithm settings resulted in good performance 
model. The second class, Bayesian Optimization-based methods, addresses that problem. It 
automatically extracts knowledge from the response surface. Then the surrogate model pro-
poses a new hyperparameter configuration weighing the benefits of exploring new, unseen 
regions against sampling from the known regions with good performance  (Hutter et  al., 
2011; Bergstra et al., 2011; Snoek et al., 2012). This is an example of online hyperparame-
ter optimization adapting to the dataset response function and updating the expected model 
performance as a function of its hyperparameter values. Nevertheless, these methods still 
do not provide anytime performance and require independent optimization for every new 
prediction problem. Population-based evolution strategies (Escalante et al., 2010; Alibra-
him & Ludwig, 2021) or reinforcement learning optimization (Li & Malik, 2017) are other 
examples of online hyperparameter optimization methods. Both are quite complex, require 
a different definition of the optimization problem and they are less popular in real-world 
applications (Bouthillier & Varoquaux, 2020).

In addition to the techniques that require performing a complete optimization for each 
new task, there is an increasing need for an offline approach that involves building a port-
folio of several hyperparameter configurations  (Wistuba et al., 2016; Winkelmolen et al., 
2020; Feurer et  al., 2019, 2022; Pfisterer et  al., 2021; Mantovani et  al., 2020). Further-
more, the hyperparameter portfolio is a particular case of meta-learning since at least one 
portfolio configuration should parameterize a good-quality model for previously performed 
experiments and should transfer this good performance to a new dataset. We assume that 
at least one configuration will be promising for new, unknown data. The data repository, 
based on which we determine the portfolio is called a meta-train set, and new target predic-
tion problems are called a meta-test.

A predefined, limited set of hyperparameter configurations optimized for a wide range 
of datasets has been shown to give comparable results to Bayesian optimization (Wistuba 
et al., 2016; Pfisterer et al., 2021) and proves to be even better when considering anytime 
performance. Moreover, the portfolio approach may be seen as an extension of the default 
hyperparameter values that is easy to share and parallelize. In the first studies introduc-
ing this method, all meta-train datasets have the same relevance for the portfolio composi-
tion due to their independent weighting. Therefore, to enhance the impact of meta-learning, 
Feurer et al. (2019) use meta-features, (i.e. vectors of dataset characteristics) to evaluate 
the dataset similarity. Subsequently, during portfolio development, a higher weight is given 
to a good configuration of hyperparameters from meta-train sets more similar to the new 
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data under consideration. This approach combines the online and offline procedures since 
a static portfolio leverages the most effective configuration for similar datasets, assum-
ing their optimized functions have similar learning curves. The use of meta-train datasets 
reduces the time for the early iterations in Bayesian methods.

Techniques employing portfolios built on meta-features and assessing dataset similar-
ity are intuitive to humans and resemble an expert’s use of domain knowledge. The dif-
ficulty of this approach is the use of meta-features. Firstly, computing meta-features may 
be expensive and generate errors (Feurer et  al., 2022). Secondly, we do not know how 
to describe prediction problems and datasets using meta-features in an effective and dis-
criminative way. Namely, whether they should be predefined, based on statistical defini-
tions  (Vanschoren, 2019; Rivolli et  al., 2022), landmarkers   (Pfahringer et  al., 2000), or 
perhaps automatically trained extractors based on neural networks  (Edwards & Storkey, 
2017; Hewitt et al., 2018; Jomaa et al., 2021). Due to its availability, a set of meta-features 
based on statistical definitions is most often used, but their correlation with model perfor-
mance is questionable (Woznica & Biecek, 2021). Likewise, the definition of distance and 
similarity between datasets is underdetermined (Wistuba et al., 2015; Feurer et al., 2015).

In addition to meta-features, the choice of meta-train is crucial for the effectiveness of 
the portfolio. The standard choice of dataset repositories is OpenML (Bischl et al., 2017). 
It includes prediction problems from diverse domains and may be a satisfying source to 
build a portfolio that speeds up the optimization for general, random data. Nonetheless, 
we may have some external knowledge about specific characteristics in many applications, 
e.g. high target imbalance in insurance claims frequency models or interactions between 
specific blood tests in medical data. Domain-specific AutoML frameworks (Alaa & Schaar, 
2018; Guyon et al., 2019; Vakhrushev et al., 2021; Olier et al., 2018) already exploit these 
unique properties. This work shows that instead of searching for meta-features describing 
these relevant attributes we can appropriately select the meta-train, limiting it to the rep-
resentative datasets from a specific domain. We call this refined meta-train a consolidated 
meta-train and we denote the subsequent creation of a portfolio to transfer hyperparameter 
configurations from that meta-train as consolidated learning.

Our contributions are as follows. (1) We purposefully restrict the meta-train distribu-
tion, taking into account only domain-specific characterizations of considered tasks. Defin-
ing a consolidated meta-train, we highlight the importance of design decision in the selec-
tion of meta-train. (2) We leverage a consolidated collection of the prior experiments to 
determine the portfolio of hyperparameters transferred from the meta-train to meta-test 
tasks. We employ two model-free portfolio selection strategy methods: greedy search 
and average ranking. (3) To mimic a real case and validate consolidated learning, we cre-
ate a metaMIMIC repository extracted from the medical MIMIC-IV database  (Johnson 
et  al., 2020). Our experiments reflect various levels of consolidation between the meta-
train and the meta-test (see Fig. 1) based on the definition of the input and output space 
for every task. The metaMIMIC repository is the first benchmark to verify the utility of 
consolidated learning. (4)  In our experimental setup, we empirically show an improve-
ment of consolidated learning over the baseline methods (random search and Bayesian 
optimization) as well as predefined portfolios extracted from the OpenML repository. We 
confirm the hypothesis that consolidated learning for MIMIC-IV enhances the transfer of 
XGBoost  (Chen & Guestrin, 2016) hyperparameters in the early stage of optimization. 
The consolidated portfolio combines the advantages of the two approaches used so far: 
it extends the idea of the defaults, and it is easy to share such a ranking of subsequent 
algorithms. What is more, at the same time, we take into account the specifics of a given 
dataset using the best configurations of hyperparameters for similar data. The proposed 
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method does not require any additional optimization, is parallelizable, and has strong any-
time model performance. This property is significant when aiming to achieve good results 
with a limited time budget. In this way, consolidated learning becomes a support for data 
scientists preparing entire collections of models for similar prediction problems or other 
subsamples of observations. In the long run, applying consolidated learning to model 
deployment can significantly reduce optimization budgets.

2  Related work

Until now, it has been common for individuals to use the defaults implemented in the soft-
ware or to use simple tuning methods. With the development of machine learning, more 
advanced hyperparameter optimization methods have been proposed. However, their usage 
requires additional expertise in the configuration itself, which is why some data scientists 
find them deterrent and why they often neglect to tune. Random search methods were 
conducive to automatic hyperparameter optimization gaining in popularity. Previously, it 
was known that the configurations for many algorithms are crucial for the performance of 
trained models, but effective tuning of the settings was lacking. Random search facilitates 
the determination of a low dimensional effective subspace of hyperparameters faster than 
a grid search or manual tuning, but it is still susceptible to the dimensionality of the search 
space. To eliminate low-efficiency configurations, faster multi-armed bandit methods such 
as Successive Halving  (Jamieson & Talwalkar, 2016) or Hyperband  (Li et al., 2017) are 
used. However, these more advanced methods work only for iterative algorithms and are 
far less common than simple random search or defaults.

Bayesian-based optimization methods are a class of techniques that particularly 
require expert knowledge in implementation. Their great advantage is using the knowl-
edge acquired from the previous evaluations and adjusting the optimization process to the 

Fig. 1  Relationship between the similarity of tasks and consolidated learning. Correspondence between the 
space of prediction problems allows the meta-feature-free technique of hyperparameter tuning to incorpo-
rate the advantages of meta-learning. The greater the similarity in task design, the more consolidated learn-
ing increases
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characteristics of the considered dataset. However, the selection of a surrogate model is 
crucial for optimization effectiveness. The most popular are variants of Sequential Model-
Based Optimization (SMBO) (Jones et al., 1998) such as Sequential Model-Based Algo-
rithm Configuration (SMAC)  (Hutter et  al., 2011), Tree-structured Parzen Estimator 
(TPE) (Bergstra et al., 2011) or Spearmint (Snoek et al., 2012). However, all of them are 
computationally demanding, difficult to parallelize and depend on the choice of a start-
ing point (Wistuba et al., 2015). What is more, straightforward Bayesian-based optimiza-
tion methods do not provide anytime good solutions. To eliminate this problem, adaptive 
resource allocation and early-stopping of unpromising configurations are combined with 
Bayesian optimization (Falkner et al., 2018). Despite these modifications, we still do not 
leverage the information gathered so far in the previous experiments for other datasets; the 
only way to provide additional information is the prior distributions of the hyperparam-
eters (Oh et al., 2018; Souza et al., 2021; Perrone et al., 2019).

In addition to the predefined portfolio of hyperparameters employed in this article, there 
are different attempts to combine the strengths of online and offline approaches. The most 
common is the injection of the portfolio information into Bayesian optimization. The main 
goal is to exploit the adaptability of online methods while leveraging offline portfolios to 
quickly propose a good, though perhaps not the best, configuration of hyperparameters. 
The most common approach is to define the starting points in Bayesian optimization not 
as random ones but considering their model performance in the prior experiments (Feurer 
et al., 2015, 2019; Wistuba et al., 2018). These methods emphasize the adaptation of the 
surrogate model to the new considered dataset, and the portfolio is used only for the ini-
tialization. An alternative is to use the results from the previous experiments and build a 
black-box surrogate model that predicts the performance for a selected dataset and hyper-
parameter configuration. Then, based on the data collected offline, we can predict the 
response surface for the new dataset (Vilalta et al., 2004; Reif et al., 2014; Davis & Giraud-
Carrier, 2018; Probst et al., 2019).

3  Problem definition

3.1  Hyperparameter optimization

Most machine learning algorithms are dependent on the user-specified hyperparameters. 
An algorithm is trained, i.e., values of internal model parameters are updated iteratively, 
in accordance with the chosen algorithm and the data provided. So most machine learn-
ing algorithms A can be parametrized with dataset D and hyperparameter configura-
tion 𝜆 ∈ Λ ⊂ ℝ

d . Dataset D is a finite sample from joint distribution D = (X,Y) , where 
X ⊂ ℝ

p is the p-dimensional feature space and Y is the target variable space, categorical 
or numerical. To evaluate the quality of the trained model A(D, �) we use the quality func-
tion F ∶ 𝔻 × Λ → ℝ , mapping a dataset and hypeparameters to model performance, for 
instance, accuracy or area under curve (AUC). For every hyperparameter, we attempt to 
estimate the expected value of the performance for a random sample of observations given 
as

Since we observe only a finite sample from D , we estimate Eq. 1 using cross-validation or a 
holdout subset of data. The main objective of hyperparameter optimization for a prediction 

(1)G(D, �) = �D∼D F(D, �).
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problem D , is to find �∗ configuration, optimal with respect to the expected value of model 
performance

We consider different hyperparameter tuning strategies, such as the previously mentioned 
random search or Bayesian optimization to find this configuration. However, these cannot 
guarantee that we will find the global maximum and the configuration providing this, so we 
are interested in finding a configuration that gives a decent model performance, preferably 
after only a few iterations.

Most optimization strategies are based on a trial consisting of a finite sequence of hyper-
parameter values ΛT = (�1,… , �T ) , where T the number of iterations depending on the 
available budget. In random search, the set ΛT is predefined and independent of the prior 
experiments, and every component �i is sampled independently of each other. In Bayesian-
based optimization methods ΛT is selected at runtime and �i is determined by a surrogate 
model which is based on the model performance for the preceding values �1,… , �i−1.

3.2  Meta‑learning in hyperparameter optimization

One of the applications of meta-learning in hyperparameter optimization is transferring a 
hyperparameter portfolio from a set of previously performed experiments to a new dataset. 
Similar to random search, a predefined meta-learning portfolio is actually a finite sequence 
of configurations completely defined before tuning for the considered new dataset. How-
ever, configurations �i are not sampled independently but selected considering the model 
performance from the previously collected experiments, optimized for these experiments, 
and possibly extended to the randomly chosen new task. Herein lies the primary assump-
tion of meta-learning and hyperparameter transfer; we assume that configurations that 
worked for a set of previous tasks will also give a decent performance for new, unknown 
data. The algorithm by which the portfolio is composed can vary, the most commonly used 
is greedy search (Wistuba et al., 2015), but average ranking (Brazdil & Soares, 2000) can 
also be applied.

In this article, the main contribution is the method of determining the family of datasets 
for which the optimization is performed, not the procedure of completing the transferred 
portfolio of hyperparameters. That is why we have to highlight two sets of tasks. Firstly, we 
determine a repository of the already tuned N tasks and call it the meta-train set Dmeta−train . 
Every dataset is associated with the distribution Di

meta−train
= (Xi

meta−train
,Yi

meta−train
) for 

i = 1,… ,N , where Xi
meta−train

⊂ ℝ
pi is a pi dimensional feature space. Using Dmeta−train 

we will define the meta-learned portfolio ΛT . Next to the meta-train, we get a meta-test 
task,the dataset not known before for which we want to solve the Eq. 2. The meta-test task 
is sampled from the distribution Dmeta−test = (Xmeta−test,Ymeta−test) , which differs from the 
meta-train distribution. Let P(Xi

meta−train
),P(Xmeta−test) be marginal probability distributions 

for i-th meta-train prediction problem and meta-test, respectively. Generally, every meta-
train distribution Xi

meta−train
 and Xmeta−test is defined independently, and we do not assume 

any relationship between them.
As OpenML is a major source of prediction tasks, various unrelated datasets are used. 

For instance, one of the meta-train tasks was wdbc describing the prediction of breast can-
cer. It consists of numerical features extracted from imaging diagnostics, and the meta-test 
is spambase which uses word frequency statistics to assess whether a mail belongs to 

(2)�
∗ = argmax

�∈Λ

G(D, �).
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spam. Every feature may come from markedly different sources and distributions. How-
ever, even this kind of meta-train selection ensures an improvement in the optimization 
strategy, especially in terms of anytime performance. To benefit from the advantages of 
such a guided portfolio of hyperparameters, in this work, we focus more on the relation-
ships between meta-train and meta-test.

3.3  Consolidated learning

We define a technique of transferring the hyperparameters from the consolidated design 
meta-train set to the meta-test task as consolidated learning. The motivation behind this 
modification comes from a practical perspective on building predictive models.

3.3.1  Motivation

When we look at the applications of predictive models in various fields of science and 
business, it can be seen very quickly that the expectations of machine learning are signifi-
cantly different from those applied in AutoML. Experts in the relevant fields consider prob-
lems with complex structures and ambiguous characteristics, so they often analyse various 
approaches to building predictive models. That results in multiple analyses not for just one 
dataset but for a whole collection of related problems by definition. This multiplicity of 
approaches gives a great deal of potential for enhancing machine learning models using 
meta-learning for a new prediction problem. We examine the previous research to point out 
the potential amplification of meta-learning coming from a composition of meta-data.

• Shared variables. In real-world use cases, prediction tasks for specific domains often 
include standard explanatory variables shared between many datasets so that the mod-
els can exploit analogous dataset characteristics. In medical research, clinical patient 
data are often collected according to a set protocol. The introduction of Electronic 
Health Records (EHRs) has increased the consistency of reported predictive variables 
and support for the multi-center research (Selby, 1997; Hibbard et al., 2010; Moorman 
et al., 2013; Roth et al., 2014; Casey et al., 2016). In addition to the unification of data 
collection, the reason for the existence of similar datasets is that in the diagnosis of rare 
diseases, the testing of specific predictive factors is required. Without them, the study is 
considered incomplete, and any predictive model is not deemed reliable so most exami-
nations use these features. For example, according to Kumar et al. (2021), 75% of ana-
lyzed articles concerning the prediction of Alzheimer’s disease dementia progression 
use cognitive assessments as features. In the treatment of cancer, on the other hand, 
TNM staging is key—its inclusion in the study is essential for a proper assessment of 
treatment effects and disease progression  (Brierley et  al., 2019). This schema of the 
similar structure of descriptive variables is also common in experimental sciences such 
as chemistry, physics, or biology. In biochemistry, a great deal of attention is paid to 
Quantitative structure-activity relationship (QSAR) studies  (Karelson et  al., 1996); 
based on the encoded structural features of individual molecules, the models are sup-
posed to predict the activity of a given compound in, for example, drug development. 
In the CheMBL database (Gaulton et al., 2012), we can find collections of diverse tasks 
used in the meta-learning approach in Olier et al. (2018). On the other hand, in high-
energy physics, machine learning is used in particle detection from collected data at the 
Large Hadron Collider (LHC) (Carleo et al., 2019).
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• Related targets. Many prediction problems do not have a clearly defined endpoint, and 
several different correlated target definitions are examined. In Simonov et al. (2019), in 
addition to the occurrence of acute kidney injury (AKI) within 24 h of admission, the 
occurrence of AKI at certain stages of progression and the risk of death are extracted 
as the target variable. The same is true for mortality prediction, as endpoints are often 
considered with differently defined short- and long-term mortality (Purushotham et al., 
2018; Sadeghi et al., 2018). From a logistical point of view, predicting the length of 
stay in hospital is also an important issue (Purushotham et al., 2018; Turgeman et al., 
2017). If, in addition, the explanatory variables have a similar structure, then the pre-
dictive algorithms should capture similar relationships across the tasks.

• Out-of-time data. Data scientists working for a specific entity often have one large data-
base and build multiple models for different data samples extracted, such as Koyner 
et al. (2018) building a sequence of machine learning models to predict an acute kidney 
injury. Another case is the need to update the model for samples from different periods. 
In that case, updating the set of observations and training the model anew is common. 
Such models use the same set of variables, so the models should have close properties 
to the previous versions. The question remains on optimizing the new model, but the 
retraining of the algorithm with the same hyperparameters turns out to be an effective 
approach  (Celik & Vanschoren, 2021).

These dependencies and shared definitions of features between meta-datasets are a differ-
ent scenario from what has been considered in research papers on meta-learning so far. 
To capture these circumstances, from the design of the sets used for training, we assume a 
similarity between the prediction problems. We expect that if machine learning algorithms 
can use similarly or identically distributed features, then they should detect similar feature 
interactions or treat the same shared variable similarly. Since the only parameterizations of 
the model that we know of are hyperparameters we assume that such relationships between 
prediction tasks will positively affect the transfer of hyperparameters.

3.3.2  Formalization

We formalize the consolidated meta-train and consolidated learning using the terminol-
ogy from Sect. 3.2. Restricting meta-train tasks to the representative for specific domain 
results in dependency between Xi

meta−train
 and Xmeta−test for some i = 1,… ,N . In particu-

lar, explanatory features with the same marginal distribution may occur in two different 
meta-train and meta-test distributions. In other words, some of the explanatory variables 
may be shared between the two prediction problems under consideration. We denote this 
situation as P(Xi

meta−train
) ∩ P(X

j

meta−train
) ≠ � for i ≠ j or P(Xi

meta−train
) ∩ P(Xmeta−test) ≠ � . 

If the features set is identical we denote this by P(Xi
meta−train

) ≡ P(Xmeta−test) . We define this 
constrained meta-train as a consolidated set in which common explanatory variables occur 
between the sets contained in the meta-train set and the meta-test set. Based on consoli-
dated meta-training, a portfolio is composed (according to any strategy) and this process is 
called consolidated learning.

Correspondence between consolidated meta-train and meta-test is significantly higher 
than between unrelated tasks within the OpenML repository. The assumption about shared 
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variables allows us to propose a meta-feature-free strategy of consolidated learning, 
namely hyperparameter transfer which provides anytime solutions.

4  MetaMIMIC repository

This section describes the methodology for creating a meta-dataset to imitate the con-
solidated learning environment. Therefore, based on the MIMIC-IV database (Johnson 
et al., 2020) we create a collection of binary classification tasks of varying similarity. 
We weigh three scenarios of similarity between the extracted tasks. In the real world, 
such repositories are naturally collected during model development. However, to our 
knowledge, such a repository is not publically available for research purposes. Behind 
the choice of the MIMIC database as a source for the collection of prediction problems 
is its wide use in the research for machine learning applications in medical diagnosis 
(Nemati et al., 2018; Zhang et al., 2019; Meng et al., 2022; Liu et al., 2021). We employ 
this collection as a benchmark for evaluating hyperparameter transfer in consolidated 
learning and assessing the improvement in tuning.

4.1  MIMIC‑IV database

MIMIC-IV (Medical Information Mart for Intensive Care) is an extensive, freely avail-
able database comprising de-identified health-related data from patients admitted to 
the intensive care unit (ICU) of the Beth Israel Deaconess Medical Center. It contains 
data of over 380,000 patients admitted to the ICU in the years 2008–2019. We include 
patient tracking data, demographics, laboratory measurements sourced from patient-
derived specimens, and information collected from the clinical information system used 
during the ICU stay.

To determine the cohort selection, we have to define the patient inclusion criteria taking 
into account machine learning principles (Johnson et al., 2017; Meng et al., 2022; Purush-
otham et al., 2018). We consider only the first admission of every patient to preserve the 
independence of all observations. Every patient must be at least 15 years old at the time 
of hospitalization and their admission must correspond to at least one chart event, one lab 
event, and one diagnosis recorded in the database. The hospital stay length must be shorter 
than 60 days. In total, 34,925 unique patients met all the above conditions.

4.2  Prediction tasks

To determine multiple predictive problems, we decided to predict the occurrence of a 
specific disease. We examined the 50 most commonly appearing conditions and hand-
picked groups of diseases that have a representation in both ICD-9 and ICD-10 codes (see 
Table 1). It resulted in 12 targets for binary classification. We also considered whether the 
selected targets can be successfully predicted with the data available in the MIMIC-IV 
database (at least 0.7 mean ROC AUC in 4-fold cross-validation after tuning).

We selected 58 features, hand-picking ones with the lowest number of missing 
values. Besides gender and age, we included only numerical variables related to the 
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purposeful medical examination. Most features were recorded several times, so we 
aggregated them to minimum, average, and maximum values. In total, this resulted in 
172 variables. The missing values are imputed with a mean of all observations for each 
task independently to avoid data leakage.

4.3  Task correspondence

In addition to specifying the response variables and the explanatory variable space, we 
also considered various assumptions for choosing the subset of observations and avail-
able variables. Generally, in applications such choices are forced by the available data, 
such as the size of the sample of observations that can be used, or how model validation 
is defined.

Table 1  Selected targets with corresponding ICD codes and frequency in the considered cohort

Condition ICD-9 ICD-10 Frequency (%)

Hypertensive diseases 401–405 I10–I16 59.8
Disorders of lipoid metabolism 272 E78 40.3
Anemia 280–285 D60–D64 35.9
Ischematic heart disease 410–414 I20–I25 32.8
Diabetes 249–250 E08–E13 25.3
Chronic lower respiratory diseases 466, 490–496 J40–J47 19.5
Heart failure 428 I50 19.4
Hypotension 458 I95 14.5
Purpura and other hemorrhagic conditions 287 D69 11.9
Atrial fibrillation and flutter 427.3 I48 10.5
Overweight, obesity and other hyperalimentation 278 E65–E68 10.5
Alcohol dependence 303 F10 7.7
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Fig. 2  Schemas of design decision in creating scenarios of similarity between meta-train and meta-test. In 
S1-S3 from MIMIC-IV we extracted feature space, a sample of observations, and target disease. In S1 mod-
els for meta-train and meta-test use all predictors and observations but targets vary. Scenario S2 contains 
models built for the same predictors but disjoint sample of observations. In S3 we consider different subsets 
of predictors. In S4 meta-train is composed of the OpenML datasets unrelated to MIMIC
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We mimic different selection scenarios that affect the intuitive perception of similar-
ity between the obtained tasks in this work. The process of task design always consists 
of three choices – which predictors to use, which observations to consider, and which 
target to predict (see Fig. 2), giving us three scenarios of task correspondence. To verify 
the impact of similarity between the tasks on the consolidated learning, we compare 
them with baseline transfer from a wide range of OpenML datasets.

1. In the first scenario (S1), we predict different targets considering the same observa-
tions and using the same variables. Using formal notation feature space are identical 
Xi

meta−train
≡ Xmeta−test for every i = 1,… ,N . Therefore, the only real choice to make is 

to select which target to predict (Fig. 2 S1). This setup reflects a situation where these 
targets are determined by historical data of the hospital’s patients comprising basic 
diagnostic tests and diagnoses. The only difference between the tasks is the diagnosis 
we want to predict, so there are 12 prediction sets.

2. In the second scenario (S2), various targets are predicted considering different sam-
ples observations but using the same set of variables. To avoid leakage of information 
occurring in S1, we consider two random, disjoint samples of observations (Fig. 2 S2) 
but the models are provided with the same 172 variables. This experimental setting 
corresponds to the situation where we consider models built on out-of-time samples of 
patients but from the same distribution. When considering any two prediction problems, 
we can examine models built on independent sets of observations. In this setup, we get 
2 × 12 = 24 prediction tasks.

3. In the third scenario (S3), we manipulate not only observations samples but also a set 
of variables to predict defined tasks. We select a different number of the most important 
predictors for each task (Fig. 2 S3). The choice of predictor set was realized by select-
ing top n variables with the highest permutation variable importance value (Breiman, 
2001; Fisher et al., 2019), calculated using the XGBoost model with default settings. We 
determine n = 10, 20, 50, 100 out of 172 features. This scenario imitates the transfer of 
knowledge between models built upon different targets, but now the scenario takes into 
account not identical feature space. Many prediction problems are based on a core set 
of variables and these are available in many tasks. An example is blood tests performed 
and used in the diagnosis of most diseases. So when considering a broad class of medical 
problems, many of the tasks contain variables describing such measurements. But there 
are also more specific tests for example cognitive testing is the primary diagnostic of 
Alzheimer’s or ECG for heart diseases. If we are considering sets of models that predict 
these diseases then the datasets will have corresponding variables. In this setup we get 
4 × 2 × 12 = 96 prediction tasks.

4. As a baseline meta-set and meta-learning approach (S4), we use 22 datasets from the 
OpenML repository. Using this collection for meta-learning, even in an online approach, 
has proven better than using random search or uninformed Bayesian optimization.

5  Experiment methodology

The proposed method of model tuning for the MIMIC-IV database is based on hyperpa-
rameter transfer within a collection of medical prediction problems. We validate the effec-
tiveness of using a MIMIC family of prediction problems by comparing analogous tuning 
strategies determined for an unrelated family of datasets with OpenML.
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We decided on the XGBoost algorithm because it is a very flexible algorithm, and 
for many prediction problems expressed as tabular data, it achieves the best results by 
far (Shwartz-Ziv & Armon, 2022). On the other hand, XGBoost depends on more than a 
dozen hyperparameters, both continuous and discrete. These parameters interact with each 
other, and often their structure is hierarchical. Since XGBoost is widely considered to be 
a very tunable algorithm  (Probst et  al., 2019), we validate the potential of consolidated 
learning for this algorithm.

5.1  Hyperparameter grid

As the hyperparameter search space, we use the grid from the MementoML study (Kretow-
icz & Biecek, 2020) to validate the consolidated learning with the results obtained from 22 
machine learning tasks from the OpenML repository. The designed grid comprises 1000 sets 
of 8 different XGBoost hyperparameters sampled independently from the predefined distri-
butions. The considered hyperparameters and the distributions they are sampled from are pre-
sented in Table 2. If gblinear is selected as a booster, not all hyperparameters are active.

The predefined grid of hyperparameters exemplifies the discretization of the searched 
space. However, the predefined grid approach has been used in several works on optimiza-
tion (Wistuba et al., 2015, 2016) so we decided to create a fixed random grid. It uses the 
advantages of random search and allows efficient space search while ensuring the repro-
ducibility of results.

For each task in scenarios S1- S3, we train XGBoost models for a given grid of hyper-
parameters using 4-fold cross-validation (CV). In scenario S4 we use results from Memen-
toML. ROC AUC is used as the model performance measure. Due to the incomparability 
of AUC values between the tasks, mean 4-CV ROC AUC is scaled to interval [0, 1] for 
each task individually.

5.2  Tuning strategies

We test four hyperparameter tuning methods for the XBGoost algorithm. Two of them are 
meta-learning based, so they use the model performance results for other meta-train sets. 

Table 2  Hyperparameters and their underlying distributions

U stands for a random variable sampled from a uniform distribution with corresponding lower and upper 
bounds. Booster can be either gblinear or gbtree with equal probability. With * we indicate the active 
hyperparameters when booster = gblinear

Hyperparameter Type Lower Upper Distribution

* n_estimators Integer 1 1000 U
* learning_rate Float 0.031 1 2

U

* booster Discrete – – {gblinear, gbtree}
subsample Float 0.5 1 U
max_depth Integer 6 15 U
min_child_weight Float 1 8 2

U

colsample_bytree Float 0.2 1 U
colsample_bylevel Float 0.2 1 U
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For each scenario, the following strategies are tested: the transfer is performed with meta-
MIMIC (S1-S3) and OpenML (S4) independently. In the hyperparameter transfer within 
the metaMIMIC, we used one-task-out validation. For scenario S4, we studied the transfer 
of hyperparameters configuration into the optimization for metaMIMIC tasks from sce-
nario S2. As a meta-learning strategy of formation portfolio we considered:

• Average Sequential Model Free Optimization (A-SMFO) (Wistuba et al., 2016) using 
the greedy algorithm to determine a sequence of hyperparameters to test on the new 
task. The order in the hyperparameter portfolio is initially optimized for the meta-train 
set and the best configurations for each meta-train dataset are included. In the consecu-
tive iterations, we add configurations among the feasible candidates, not considering 
the previously chosen ones. This offline algorithm aims to create a diverse configura-
tion portfolio covering a wide range of prediction problems.

• Average Ranks Ranking Method (AR) (Brazdil & Soares, 2000) determining the order 
of hyperparameters according to the average ranking obtained by configurations for 
every meta-train dataset. This method is elementary and does not require additional 
computations.

Both meta-learning methods are limited to hyperparameter configuration derived from the 
grid defined in Sect. 5.1. As a baseline tuning strategy, we tested random search and Bayes-
ian optimization as two strategies not exploiting results from other datasets.

• Random search (RS) is simulated as a random walk within a defined hyperparameter 
grid. Due to this, we did not perform a random search several times to estimate the 
expected learning curve and its variance; we could calculate the theoretically expected 
model performance after t iterations determined by the expected value of the beta dis-
tribution with the relevant parameters and empirical parameters quantiles.

• Bayesian optimization (BO) is performed using the implementation available in the 
scikit-optimize package based on uniform distributions of hyperparameters, 
with bounds corresponding to the MementoML grid. Since Bayesian optimization may 
propose different configurations of hyperparameters from our given grid of hyperpa-
rameters, it also validates the quality of the proposed search space.

Since A-SMFO, AR, and RS use evaluation from the same hyperparameter grid for every 
task, the observed maximum of AUC measure is the same for all the three tuning strate-
gies. They only vary in the sequence of proposed configurations. Bayesian optimization 
is not limited to this grid only and can find better or worse optimal AUC than the other 
optimizations.

5.3  Evaluation of tuning strategies

The objective of the experiment is to see if we can improve hyperparameter tuning for 
one dataset from metaMIMIC using meta-learning for scenarios S1–S3 relative to S4. Let 
us recall that we use a one-task-out schema for scenarios S1-S3 to build the meta-train 
set. Furthermore, to avoid information leakage for scenarios S2 and S3, we always exclude 
the target for which we optimize from the meta-learning-based optimization strategy. For 
example, let us consider scenario S2 and diabetes target variable with the first subsam-
ple of observations in meta-train. We include only the tasks for the second subsample 
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of observations but exclude the tasks for diabetes. For scenario S4, the OpenML dataset 
repository is independent of the metaMIMIC, so we do not address this problem.

We compare the optimization strategies for all scenarios and each dataset individually. 
For every iteration of optimization of a given strategy, we consider the best performance 
obtained so far. That is why we are interested in reaching the maximal value as soon as 
possible and in finding out which strategy achieves this. To aggregate this information for 
the entire collection of datasets, we recorded the development of the average rank among 
different hyperparameter tuning strategies. Furthermore, to assess the speed of conver-
gence to the observed optimum, we use the average distance to maximum AUC (ADTM) 
value (Wistuba et al., 2015).

Let Dmeta−test be the collection of meta-test datasets for which tuning strategy is evalu-
ated, and fi be AUC measure for i-th dataset from Dmeta−test . The portfolio of hyperparam-
eter configuration proposed by strategy in iteration T is ΛT . Then ADTM is defined as

where |Dmeta−test| is the cardinality of meta-test set. In our experiment setup as meta-test we 
consider all MIMIC-based tasks available in examined scenario S1-S4. For each meta-test 
task the portfolio is determined by the orresponding meta-train, according to one-dataset-
out validation.

6  Effectiveness of consolidated learning

To assess the improvement in transferability of hyperparameters brought by consolidated 
learning we perform optimization for every metaMIMIC task from Scenario S2. We build 
portfolios upon the meta-train in Scenarios S2 and S4. For S2, we consider the meta-train 
including the same sample of observations and a disjoint sample of observations as in the 
meta-test task. We also test two strategies for creating a static portfolio, A-SMFO, and AR. 
The baseline collates meta-learning results with random search, Bayesian optimization, 
and the default XGBoost algorithm.

Figure 3 shows the results for four selected meta-test targets. Looking at the model per-
formance during hyperparameter tuning, we see that methods based on meta-learning pro-
vide configurations close to the observed maximum already in the first iteration. The dis-
tance between the learning curves for scenarios S2, S4, and the baselines is evident for the 
first few iterations. These results are significantly better than for the model without tuning. 
Despite being able to go beyond the specified grid, Bayesian optimization obtains better 
results for only two targets, so we may assume that the predefined grid covers the space of 
good configurations.

Let us take a closer look at the meta-learning-based methods. The differences in model 
performance between the transfer for consolidated learning in scenario S2 and the transfer 
based on OpenML are of the order of 10−3 , but in most cases, domain-based strategies reach 
maximum AUC before OpenML-based methods. Furthermore, the difference between the 
transfer in scenario S2 regarding the identical and disjoint sample of observations is negli-
gible, so the effect of the subset of observations is not significant. A-SMFO and AR strate-
gies of building a portfolio give close learning curves even in the first iteration.

To further summarize the impact of strategy selection between different tasks and sce-
narios, we examine the change in average rankings for each strategy (Fig. 4). We see that 

(3)ADTM(Dmeta−test,ΛT ) =
1

|Dmeta−test|
∑

i∈Dmeta−test

min
�∈ΛT

f max
i

− fi(�)

f max
i

− f min
i

,
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Fig. 3  Hyperparameter tuning velocity of different methods and multiple tasks. Purpura is the only task for 
which OpenML initially outperforms MIMIC-IV among the 12 tasks considered

Fig. 4  Comparison of the aggregated performance development with the increasing number of iterations for 
different optimization strategies. In the left plot, changes in the average rank of strategy are used to summa-
rize overall efficiency. In the right, ADTM is applied. As meta-test tasks always are used MIMIC-based task 
from scenario S2. For meta-train, we use tasks from S2 for the disjoint subset of observations (S2 A-SMFO, 
S2 AR), the same subset of observations (S2 A-SMFO H2, S2 AR H2). As baseline strategies, we use meta-
train from scenario S4 (S4 A-SMFO, S4 AR), random search (S2 RANDOM), and Bayesian optimization 
(S2 BO)
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in the earlier iterations, portfolios from S2 consolidated learning get a better rank than 
the configurations extracted from OpenML, especially in the early iterations. All strate-
gies based on consolidated learning have a similar average rank, regardless of a subsample 
of observations and a method of creating a portfolio algorithm. Only Bayesian optimiza-
tion exceeds the consolidated optimization but requires about 30 iterations to approach 
the S2 strategies. In Fig. 4 we see how fast the tuning strategies converge against the best 
hyperparameter configuration on average. Similarly, we observe the learning curves for 
consolidated learning converge considerably faster than the other strategies. Again, this 
marked difference is more substantial in the OpenML meta-data set. As the rank of each 
strategy changes with time, we see that all lines associated with S2 scenario converge to 
the observed maximum the fastest. OpenML-based strategies achieve slightly worse AUC 
but reach the maximum after about 10 iterations. Bayesian optimization goes beyond the 
fixed-parameter grid, and to see if it finds better hyperparameters than those included in the 
grid, ADTM for this optimization is computed assuming that the maximum observed value 
is equal to the maximum observed on the predefined grid. Hence, negative ADTM values 
for BO over 75 iterations.

Thus, we can conclude that meta-learning is effective and even using unrelated datasets 
allows us to reject unsatisfactory configurations and provide a decent model performance 
for several trials in tuning. We can accelerate the tuning by employing consolidated learn-
ing. Random search and Bayesian optimization need to go through several iterations to 
achieve comparable results as methods based on a static portfolio created from the previous 
experiments.

6.1  Size of meta‑train

To better understand how to build a consolidated learning scenario, we investigate the 
impact of the size of the meta-train set on the hyperparameters’ transferability. For each of 
the 12 tasks from metaMIMIC, we change the size of the meta-train set (between 1 and 11 
for S2-metaMIMIC and between 1 and 20 for S4-OpenML) sequentially adding one dataset 
at a time and then build a ranking of the hyperparameter configurations. For every compo-
sition of meta-train we build the hyperparameter portfiolio using A-SMFO strategy. Then 
we calculate the ADTM after 10 iterations of optimization. Since the order in which sets 
are added to the meta-train is not fixed, we repeat this operation for 20 different permuta-
tions of the order of extension of the meta-train.

In Fig. 5, we show the distribution of ADTM values depending on the size of the meta-
train set and whether it was built on metaMIMIC or OpenML. Here we present the results 
for 3 selected datasets as a meta-test. For data from S2 we include results from 1 to 11 
because this is the maximum size of the available meta-train set; over 11 we only have 
ADTM values for S4. Boxplots reflect the variability of ADTM values. For the consoli-
dated learning scenario, we get significantly better results even for a small meta-train set; 
very quickly, the ADTM values converge to 0. For all meta-test datasets, by using the Wil-
coxon test, we can reject the hypothesis that both methods have the same mean ADTM val-
ues in favor of the hypothesis that the meta-train based on metaMIMIC has a lower ADTM 
than the one based on OpenML. For 2–4 sets in the meta-train the model performance in 
10 iterations reaches similar values as for the whole 11-element meta-train set. Thus, in 
this experiment, 4 datasets from the metaMIMIC repository are enough to make the trans-
fer of hyperparameters faster than with selected datasets from OpenML.
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7  Robustness of transferability

In Sect.  6, we saw that meta-learning-based methods find the optimum observed on the 
defined grid after only 10 iterations. In this section, we explore the similarity between 
hyperparameter spaces in model performance terms. We also investigate the effect of task 
correspondence on the strength of hyperparameter transfer. This is especially important in 
order to provide anytime solution for optimization.

To analyze the consistency of the hyperparameter model performance between any pair 
of tasks, we examine the percentage of overlap in the top 10 best configurations (Fig. 6). We 
decide on a threshold of 1% because 10 iterations in tuning is sufficient for strategies S2 and 
S4. Nevertheless, choosing another threshold value from a reasonable range of 10–100 results 
in analogous relationships between the distributions of values in the matrices. This fact is 
also reflected in the mean of Spearman rank correlation coefficients calculated for individual 
pairs of full rankings (0.165 ± 0.469 for S4, 0.885 ± 0.072 for S1, and 0.849 ± 0.078 for S2).

Comparing the distributions of values in the presented matrices shows that the number 
of shared best hyperparameter sets is significantly higher for the S1 than for the S4 sce-
nario representing a meta-learning from unrelated problems. In addition, with the right-
most matrix, it is apparent that considering disjoint subsets of observations (which is often 
closer to actual use cases) results in only a slight decrease in the average number of shared 
hyperparameter sets.

purpura_diagnosed (p.value < 0.001)

hypertensive_diagnosed (p.value < 0.001)

atrial_diagnosed (p.value < 0.001)
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Fig. 5  Transferability of hyperparameters changes with the number of available datasets in meta-train. For 
every task we modify the size of meta-train in Scenarios S2 and S4 and check the distribution of the ADTM 
values after 10 optimization iterations. Grey headings indicate target from metaMIMIC treated as meta-
test. In brackets, the p-values of the Wilcoxon test are reported. The alternative hypothesis is that the mean 
ADTM value for hyperparameter transfer from the metaMIMIC portfolio is less than the mean ADTM 
value for hyperparameter transfer from the OpenML portfolio for the 4 datasets in the meta-train set. A cor-
rection for multiple testing is applied. We obtain similar results for other meta-train cardinalities
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The analysis of the results scenario S3 required a partial aggregation of the calculated 
statistics because without this operation, the number of possible combinations would 
become too large for clear representation in a graph. We decided to perform this aggrega-
tion by grouping the tasks based on their source and, for MIMIC-IV, also on the number 
of predictors and the considered subset of observations (Fig. 7). Therefore, a single cell 
corresponds to the average value of a matrix created in the same way as the previous graph.

As the number of predictors decreases, their diversity between the tasks increases, 
which is due to the procedure of selecting them described in Sect. 4.3. Despite this, the 
average number of shared hyperparameter sets for tasks based on a similar number of 
predictors is consistently high. This suggests that consolidated learning is related to the 
transferability of hyperparameters. Nonetheless, even in the worst case, the average number 
of shared hyperparameter sets is higher between the pairs of MIMIC-IV-based tasks than 
when intersecting the MIMIC-IV-based tasks with the tasks derived from the OpenML.

8  Conclusions

The results presented in this work highlight the importance of selecting meta-train reposito-
ries. To our knowledge, this is the first work analyzing the impact of meta-train sets on the 
optimization power of predefined hyperparameter portfolios. We show that purposefully 

Fig. 6  Numbers of the best 10 hyperparameter sets (regarding the mean 4-CV ROC AUC measure) shared 
between tasks from S4, S1, and S2. An individual cell of the matrix corresponds to the number of hyperpa-
rameter sets shared between a given pair of tasks. Histograms summarize the distribution of the values of 
each matrix. White color on the diagonal means that the value is not considered
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accumulating results from the prior prediction problems described by similar sets of vari-
ables strengthens the optimization strategies. We demonstrate empirically that leveraging 
datasets from the MIMIC database produces better model performance than using a port-
folio determined for a diverse repository. We observe a positive effect of the application of 
consolidated learning both in tuning speed and the consistency of the best hyperparam-
eters. We also analyze the weakening of assumptions in simulated consolidated learning—
despite smaller constraints in individual consolidated learning scenarios, we still show a 
more significant transfer than for the OpenML datasets.

Using the MIMIC-IV database, we demonstrate how consolidated meta-train reposito-
ries can be constructed in practice. To our knowledge, this is the first approach to creating 
a domain-specific repository for meta-learning. Therefore, we consider metaMIMIC as a 
benchmark for evaluating the quality of the hyperparameters optimization in consolidated 
learning scenario. Creating and sharing a reproducible, unique database corresponding to 

Fig. 7  Summary of mean numbers of the best ten hyperparameter sets (regarding the mean 4-CV ROC 
AUC measure) shared between tasks from S3. A single matrix cell represents the average value for tasks 
with a given number of columns and is based on a given subset of observations. Additionally, the vectors on 
the right correspond to the same operation for the intersection of MIMIC-IV-based tasks with tasks derived 
from OpenML
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a consolidated learning scenario is a significant resource for future use. It is worth noting 
that the defined data dependency problem captures the real use of metaMIMIC in both aca-
demic work and practical model deployment. What is more, the conducted research uses 
non-synthetic data from a real-world source but allows us to simulate the different relation-
ships between meta-train and meta-test. Since metaMIMIC is the first benchmark of its 
kind, conclusions about, for example, similarities between datasets or the number of data-
sets in the meta-train necessary for hyperparameter transfer are not universal guidelines but 
hold valid for this particular experiment.

Our approach enhances the meta-learning effect in hyperparameter optimization while 
avoiding the problem of defining a representative set of meta-features. This approach 
attempts to answer whether hyperparameter transfer occurs and whether it can be corre-
lated with some definitions of meta-features. Many papers have posed the question of how 
to define effective meta-features and whether we can define them a priori   (Jomaa et al., 
2021). In our study, we were limited to very similar prediction problems in terms of defini-
tions of the described variables, their interactions, and in the context of variable distribu-
tions. If there were no transfer of hyperparameters in consolidated learning constrained 
experiment, there would be a serious argument that defining meta-features that affect trans-
fer is impossible. Based on this study, the transfer is more evident within MIMIC-IV-based 
tasks.

In this study, in the consolidated learning scenario, we focus on the situation where the 
set of explanatory variables has a non-empty intersection between the sets in the meta-train 
and the meta-test set. This is possible because the problems were extracted from the same 
MIMIC-IV database. In real-world applications, meeting these conditions is not trivial. It is 
possible for a whole series of experiments, e.g., for the QSAR prediction mentioned above, 
or for unified data from a single source. For other data, determining the similarity of vari-
ables and, thus datasets is ambiguous. For data for which we do not have additional domain 
knowledge, this is a significant limitation of consolidated learning, as it requires inputting 
information about the semantic meaning of variables. With a non-unified definition of vari-
ables, different definitions of the similarity of datasets can be considered. A possible solu-
tion to explore these relationships is to use domain ontologies such as SNOMED (Wang 
et al., 2002).

In future work, we plan to verify the hypothesis that the consolidated portfolios created 
for the experiments extracted from MIMIC-IV give better performance for disease predic-
tion problems based on the history collected during hospital admission. This may be the 
first step leading to domain-specific portfolios for a broader class of problems than defined 
in this work and transferring hyperparameters between different problems without requir-
ing the datasets to share the same variable definitions partially.

The code needed to reproduce the metaMIMIC and the whole study can be found in this 
repository: https:// github. com/ Model Orien ted/ metaM IMIC.
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