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Abstract
In curriculum learning the order of concepts is determined by the teacher but not the exam-
ples for each concept, while in machine teaching it is the examples that are chosen by the 
teacher to minimise the learning effort, though the concepts are taught in isolation. Cur-
riculum teaching is the natural combination of both, where both concept order and the set 
of examples can be chosen to minimise the size of the whole teaching session. Yet, this 
simultaneous minimisation of teaching sets and concept order is computationally challeng-
ing, facing issues such as the “interposition” phenomenon: previous knowledge may be 
counter-productive. We build on a machine-teaching framework based on simplicity priors 
that can achieve short teaching sizes for large classes of languages. Given a set of con-
cepts, we identify an inequality relating the sizes of example sets and concept descriptions. 
This leverages the definition of admissible heuristics for A* search to spot the optimal cur-
ricula by avoiding interposition, being able to find the shortest teaching sessions in a more 
efficient way than an exhaustive search and with the guarantees we do not have with a 
greedy algorithm. We illustrate these theoretical findings through case studies in a drawing 
domain, polygonal strokes on a grid described by a simple language implementing compo-
sitionality and recursion.
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1  Introduction

Humans are able to learn a new concept from very little information. However, a large 
majority of machine learning algorithms needs a substantial amount of data to perform 
similarly. In particular, successful models such as deep learning are among the most 
data-hungry (Marcus, 2018). Additionally, humans are able to identify more complex 
object categories than machines by composing simpler objects, but the best deep learn-
ing techniques usually struggle in compositional settings (Shrestha & Mahmood, 2019). 
How is it possible that humans perform such a rich learning from so scarce information? 
(Lake et al., 2015)

In essence, education in humans is organised through curricula, starting with simple 
concepts and gradually increasing the complexity. Bengio et al. (2009) initiated the for-
malisation of curriculum learning (CL) in the context of machine learning. It inspired 
new applications in machine learning to an extensive variety of tasks (Tang et al., 2018; 
Wang et al., 2018, 2019). The empirical results showed advantages of CL over random 
training. Nevertheless, CL is still limited by two issues: (1) the need to find a way of 
ordering the examples according to their difficulty and (2) the correct order of the con-
cepts involved (Soviany et al., 2022).

Machine teaching (MT) is the area of AI that looks for optimal examples that a 
teacher should utilise to make a student identify a concept (Zhu et  al., 2018). It is of 
extreme importance in applications such as digital assistants, where we would like to 
teach them new concepts or procedures with limited data, in the same way humans teach 
or communicate with other humans (Degen et al., 2020).

MT is often understood as an inverse problem to machine learning (Zhu, 2015). For 
one single concept machine teaching works as follows: the teacher generates a train-
ing—or witness—set of examples, either positive or negative, from which the learner 
identifies a concept. For instance, consider a teacher who wants a student to acquire the 
concept “red ball”; the teacher knows the student’s learning algorithm and may provide 
it with the following witness set: a red tennis ball picture labelled as positive and a blue 
one labelled as negative.

For humans and many other animals it is assumed that once a concept has been cap-
tured it is possible to reuse it to learn another one. Previous work (Zhou & Bilmes, 
2018) has tried to optimise the teaching of one concept, e.g., through a partial minimax 
approach. However, not only do we want to consider the sequence of training sets for 
a concept, but also the best order to teach a given set of concepts. MT for several con-
cepts was restricted to sequences where every acquired concept becomes background 
knowledge (Clayton & Abbass, 2019; Wang et al., 2021). Pentina et al. (2015), who had 
studied CL from an experimental approach, proposed that future work should identify 
a valid theoretical framework that would allow for a more generic distribution of tasks 
and the realisation of the advantages of forgetting or using independent sessions. This is 
in line with neurological studies such as Richards and Frankland (2017) and recent ani-
mal cognition research (Dong et al., 2016; Epp et al., 2016; Shuai et al., 2010), showing 
“evidence that forgetting is necessary for flexible behavior in dynamic environments”.

The first full theoretical framework of CL in MT was introduced in Garcia-Piqueras 
and Hernández-Orallo (2021). Using simplicity priors it identifies the optimal tree-dis-
tribution of concepts by means of the �-search algorithm (Garcia-Piqueras & Hernán-
dez-Orallo, 2021). The framework defines an instructional curriculum as the set of 
alternative partial sequences, such as the upper and lower branch of Fig. 1.
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The order between the branches is irrelevant, but the order of the concepts in each 
branch is crucial. The MT framework implementing CL proposed in Garcia-Piqueras and 
Hernández-Orallo (2021) not only meets the specifications in Pentina et al. (2015), but is 
also consistent with Richards and Frankland (2017) by handling a new phenomenon called 
interposition: previous knowledge is not always useful. This issue increases the difficulty of 
finding optimal curricula.

Under general conditions, �-search is able to overcome interposition, but it is computa-
tionally intractable in general. The computational cost is one of the reasons why CL is not 
sufficiently used in AI (Forestier et al., 2022), despite existing solutions with search algo-
rithms like A∗ (Pearl, 1984). Heuristic estimates enhance those procedures by making less 
node expansion in the graph search, which drastically reduces computational costs (Rios & 
Chaimowicz, 2010). To our knowledge, there are no such estimators for CL.

Here we introduce new theoretical results, such as Inequality (2): a relation between the 
sizes of the examples and concept descriptions with and without background knowledge. 
Such inequality is key to define a new family of heuristics to effectively identify mini-
mal curricula. The heuristics are elegantly defined using a “ratio of similarity” between 
the sizes of the sets of examples with and without previous knowledge. Such ratio is the 
quotient of the lengths of the descriptions of a concept with and without background 
knowledge.

Theoretical results are illustrated on a drawing domain, where curricula can exploit that 
some drawings built on substructures previously learnt (e.g., a flag is depicted as a rectan-
gle and a straight pole). Experiments show the effect of interposition in CL and how it is 
overcome through our novel approach. This contribution, based on compositional simplic-
ity priors and exemplified using a drawing domain, follows the direction of other important 
efforts in compositional AI (Lake et al., 2015; Wu et al., 2016; Tenenbaum et al., 2000; 
Wong et al., 2021).

2 � The machine teaching framework

In this section we give more details about the interaction between the teacher and the 
learner as distinct entities. The teacher-learner protocol (Telle et al., 2019) is based on the 
following statements. Let Σ∗ be the set of all possible strings formed from combinations of 
symbols of an alphabet Σ . We label such strings as positive or negative. An example is an 
input–output pair where the input is a string of Σ∗ and the output is + or − (outputs might 
be strings in the most general case of the framework).

Definition 1  The example (or instance) space is defined as the infinite set

Fig. 1   Instructional curriculum 
for a set of concepts, where 
concept − is taught before ∠ and 
these two before △ , in one ses-
sion, and concept ≀ is taught in 
an independent session or lesson
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There is a total order ⋖ in X and there is a metric � that gives the size of any set of 
examples.

Definition 2  We define the infinite concept class C = 2X consisting of concepts that are a 
subset of X.

The objective is that for any concept c ∈ C the teacher must find a small witness set of 
examples from which the learner is able to uniquely identify the concept. The learner tries 
to describe concepts through a language L.

Definition 3  A program p in language L satisfies the example ⟨�, �⟩ , denoted by p(�) = � , 
when p outputs � on input �1 . We say that a program p is compatible with the set of exam-
ples S ⊂ X , if p satisfies every example of S and we denote p ⊨ S.

Two programs are equivalent if they compute the same function mapping strings of Σ∗ 
to {+,−} . There is a total order ≺ defined over the programs in L. For any program p in L 
there is a metric � that calculates its length.

We say that c is an L-concept if it is a total or partial function c ∶ Σ∗
→{+,−} computed 

by at least a program in L. Let CL be the set of concepts that are described by L. Given 
c ∈ CL , we denote [c]L as the equivalence class of programs in L that compute the function 
defined by c.

Definition 4  We define the first program, in order ≺ , returned by the learner Φ for the 
example set S as

We say that w is a witness set of concept c ∈ CL for learner Φ , if w is a finite example set 
such that p = Φ�(w) and p ∈ [c]L.

The teacher Ω has a concept c ∈ CL in mind and knows how the learner works. With this 
information, the teacher provides the learner with the witness set w.

Definition 5  We define the simplest witness set that allows the learner to identify a con-
cept c as

 We define the teaching size of a concept c as TS�(c) = �(Ω�(c)).

We exemplify our discourse with a drawing domain: polygonal strokes on a grid. The 
details about the definition of a language L and a example space X are given in Section A. 
In short, we deal with an example space generated by commands North, South, East and 

X =
�
⟨�, �⟩ ∶ ⟨�, �⟩ ∈ Σ∗ × {+,−}

�

Φ�(S) = argmin
p

≺{�(p) ∶ p⊨S}

Ω𝓁(c) = argmin
S

⋖
{
�(S) ∶ Φ𝓁(S) ∈ [c]L

}

1  The general framework also considers when the program does not halt by means of complexity functions.
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West, for the four possible axis-parallel directions in a plane. In Fig. 2, starting at the black 
dot, the frieze is described by ��������… Examples are labelled positive or negative, 
e.g., ��+ or �−.

The learner is able to capture concepts using a language L with the following instruc-
tions: � p, �own, �ight and �eft, ) and @ . The symbol ) refers to a non-deterministic 
choice between going to the beginning of the program or continue with the next instruc-
tion. For instance, the concept a defined by the frieze in Fig. 2, could be expressed in L as 
����) . The instruction @ stands for library calls to implement background knowledge; for 
instance, ��@ is equivalent to ����) when the library points to subroutine ��).

For example, the teacher receives or thinks about such concept a. The teacher selects 
the witness set, w = {������+} and provides the learner with it. At that point, the learner 
outputs the first program that satisfies w, i.e., Φ�(w) = ����) ∈ [a]L (see Fig. 3). We usu-
ally drop the index � if it is clear from the context. The teaching size of concept a is the 
size of the witness set, i.e., TS(a) = �({������+}) = 21 (3 bits per symbol as it is stated 
in Section A).

As we have seen, the teacher-learner protocol makes it possible to define the teaching 
size of a concept. The MT framework was adapted to implement background knowledge 
through the notion of conditional teaching size (Garcia-Piqueras & Hernández-Orallo, 
2021). We discuss this approach in the following section, along with a phenomenon called 
interposition.

3 � Conditional teaching size and interposition

Let a library be a possibly empty ordered set of programs. We denote B = ⟨p1,… , pk⟩ , 
where each pi identifies concept ci and |B| denotes the number of primitives k. We use 
|B| = 0 to indicate that B is empty. A program p, identified by the learner, might be 
included in a library B as a primitive for later use.

Fig. 2   Polygonal on a grid

Fig. 3   The teacher-learner proto-
col for a given concept a 
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In order to avoid old references when the library is expanded, we replace every instruc-
tion @ of a program identified by the learner by the corresponding primitive. For example, 
if B = ⟨�)⟩ and the learner identifies ��@ , then the library is extended as B = ⟨�),���)⟩.

We define the conditional teaching size of concept c, using library B (background 
knowledge), as the size in bits of the first witness set w such that Φ�(w|B) = p ∈ [c]L . Let 
us see an example.

Example 1  Let us consider Q = {a, b, c} , where programs ����) ∈ [a]L , �����) ∈ [b]L 
and �)���) ∈ [c]L (polygonal chains as shown in the 2nd, 3rd and 4th rows of Fig.  6, 
respectively in Section A). These programs are placed first in their equivalent classes 
regarding the total order ≺.

Graphical instances of a and b are, for example, the polygonal chains of the 2nd and 3rd 
rows of Fig. 6, respectively. We get TS(b|a) = 12 as the teaching size, in bits, of concept b 
using a as prior knowledge, i.e., the learner employs library B = ⟨����)⟩ as background 
knowledge. In our particular case, the learner outputs Φ({���+}|B) = �@ when using 
library B = ⟨����)⟩.

In such case, there is a reduction of the teaching size of concept b using a as prior 
knowledge: TS(b|a) = 12 < 24 = TS(b) (see Table 1). However, it may happen that back-
ground knowledge increases the teaching size of an object. This phenomenon is what we 
call interposition: some prior knowledge causes interposition to a given concept.

For instance, let us consider �)���) ∈ [c]L , with graphical instances such as 
the chain of the fourth row of Fig.  6. Using library B = ⟨�)���)⟩ , we get that 
Φ({������+,��−}|B) = ����) (see Table 1), so that:

TS(a|c) = 30 > 21 = TS(a)

Table 1   Conditional teaching 
sizes for concepts of Example 1

TS (bits) Teacher-Learner identification

TS(a) = 21 Φ({������+}) = ����)

TS(b) = 24 Φ({�������+}) = �����)

TS(c) = 24 Φ({�������+}) = �)���)

TS(a|b) = 21 Φ({������+}|B) = ����)

TS(b|a) = 12 Φ({���+}|B) = �@

TS(c|a) = 24 Φ({�������+}|B) = �)���)

TS(a|c) = 30 Φ({������+
,��−}|B) = ����)

TS(b|c) = 36 Φ({�������+
,���−}|B) = �����)

TS(c|b) = 24 Φ({�������+}|B) = �)���)

TS(a|b, c) = 30 Φ({������+
,��−}|B) = ����)

TS(b|a, c) = 21 Φ({���+,��−}|B) = �@0

TS(c|a, b) = 24 Φ({�������+}|B) = �)���)

TS(a|c, b) = 30 Φ({������+
,��−}|B) = ����)

TS(b|c, a) = 24 Φ({���+,���−}|B) = �@1

TS(c|b, a) = 24 Φ({�������+}|B) = �)���)
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In other words, concept c causes interposition to concept a. This phenomenon increases the 
difficulty of finding the curriculum with minimum overall teaching size for a given set of 
concepts. We must take this issue into account in the following sections.

4 � An optimisation problem: minimal curricula

In this section, we will deal with the following problem: if we want to teach a given set 
of concepts, which curriculum minimises the overall teaching size?

In our approach, given a set of concepts, a curriculum is a set of disjoint sequences 
covering all the concepts. Our view of curricula is more general than just simple 
sequences. Our choice is motivated by the interposition phenomenon seen in the pre-
vious section, since some concepts may increase the teaching size of some other con-
cepts coming after those previous ones. If some branches are disconnected, a curricu-
lum should not specify which branch comes first, since they are considered independent 
lessons. We will show below how the algorithms that find optimal curricula manage this 
flexibility.

For instance, Fig. 4 shows how a set of concepts {x, y, r, s, t,w, z} is partitioned into 
three branches: {x→y→r→s, t→w, z} , where x→y means that y must come after x in 
the curriculum. For each branch, there is no background knowledge or library at the 
beginning. The library grows as the teacher-learner protocol progresses in each branch.

Let Q = {ci}
n
i=1

 be a set of labelled concepts, a curriculum � = {�1,⋯ , �m} is a full 
partition of Q, where each of the m subsets 𝜎j ⊂ Q has a total order, being a sequence.

Definition 6  Let Q be a set of concepts. Let � = {�1, �2,⋯ , �m} a curricu-
lum in Q. We define the teaching size of each sequence � = {c1, c2, ..., ck} as 
TS�(�) = TS�(c1) +

∑k

j=2
TS�(cj�c1,… , cj−1) . The overall teaching size of � is just 

TS�(�) =
∑m

i=1
TS�(�i).

We denote Q as the set of all the possible curricula with Q. The order in which the 
subsets are chosen does not matter, but the order each subset is threaded does. For 
example, the curriculum � = {x→y→r→s, t→w, z} has many paths, such as xyrstwz or 
zxyrstw. But note that � is different from �� = {y→x→r→s,w→ t, z}.

The number of possible curricula given a number of concepts grows fast and this will 
motivate the heuristic we will introduce later on. In particular, the number of distinct 
curricula is given by the following calculation:

Proposition 1  For any Q with n concepts, the number of different curricula is

Fig. 4   Curriculum 
{x→y→r→s, t→w, z} for a set 
of concepts {x, y, r, s, t,w, z}
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Proof  For any set Q = {c1,… , cn} of n concepts, there are n! permutations of n labelled 
elements. For each permutation, there are n − 1 possibilities of starting a branch. Conse-
quently, we can choose k positions out of n − 1 . This implies that there will be k + 1 subsets 
which can change its order, i.e., (k + 1)! different permutations of the subsets express the 
same case.

Therefore, there are n! ⋅
(
n − 1

k

)
⋅

1

(k+1)!
 cases. Since k ∈ {0, 1,… , n − 1} , Eq.  (1) 

gives the total number of distinct curricula.
	�  ◻

Once that we know how many different curricula there are, we can try to identify which 
ones have lowest overall teaching size, denoted by TS∗

Q
 . A curriculum � is hence minimal if 

TS(�) = TS∗
Q
≤ TS(��) , ∀�� ∈ Q.

Regarding Example 1, there are thirteen distinct curricula in Q according to Proposition 
1. Using Table 1, we can build Table 2, showing the overall teaching size for each curricu-
lum in Q.

Concerning all the teaching sizes taken as a whole and the descriptions measured in 
bits, Fig. 5 compares some relevant curricula from Table 2.

In terms of overall teaching size, there is a tie between �1 and �7 , both being minimal 
(Fig.  5). However, we observe that there are big differences when considering overall 
teaching size for other curricula. For example, if we choose option �4 instead of �1 (or �7 ), 
we get ≈ 63.3% extra cost, even though there are just three concepts.

Further examples with more concepts and slightly different situations can be found in 
Section B.

From these examples, we ask ourselves whether it is necessary to calculate all the teach-
ing sizes, as we have already done in Table 1 (or Tables 9 and 11 of Section B), to find 

(1)|Q| = n! ⋅

(n−1∑

k=0

(
n − 1

k

)
⋅

1

(k + 1)!

)

Table 2   Curricula for Example 1

Curriculum Overall Teaching Size (bits)

�0 = {a, b, c} TS(�0) = TS(a) + TS(b) + TS(c) = 21 + 24 + 24 = 69

�1 = {a→b→c} TS(�1) = TS(a) + TS(b|a) + TS(c|a, b) = 21 + 12 + 24 = 57

�2 = {b→a→c} TS(�2) = TS(b) + TS(a|b) + TS(c|b, a) = 24 + 21 + 24 = 69

�3 = {c→a→b} TS(�3) = TS(c) + TS(a|c) + TS(b|c, a) = 24 + 30 + 24 = 78

�4 = {c→b→a} TS(�4) = TS(c) + TS(b|c) + TS(a|c, b) = 24 + 36 + 30 = 90

�5 = {a→c→b} TS(�5) = TS(a) + TS(c|a) + TS(b|a, c) = 21 + 24 + 21 = 66

�6 = {b→c→a} TS(�6) = TS(b) + TS(c|b) + TS(a|b, c) = 24 + 24 + 30 = 78

�7 = {a→b, c} TS(�7) = TS(a) + TS(b|a) + TS(c) = 21 + 12 + 24 = 57

�8 = {b→a, c} TS(�8) = TS(b) + TS(a|b) + TS(c) = 24 + 21 + 24 = 69

�9 = {a→c, b} TS(�9) = TS(a) + TS(c|a) + TS(b) = 21 + 24 + 24 = 69

�10 = {c→a, b} TS(�10) = TS(c) + TS(a|c) + TS(b) = 24 + 30 + 24 = 78

�11 = {b→c, a} TS(�11) = TS(b) + TS(c|b) + TS(a) = 24 + 24 + 21 = 69

�12 = {c→b, a} TS(�12) = TS(c) + TS(b|c) + TS(a) = 24 + 36 + 21 = 81



4057Machine Learning (2023) 112:4049–4080	

1 3

minimal curricula. The answer is negative, as we will see, but how can such a reduction of 
calculations be achieved? Moreover, is there a less costly procedure that could provide a 
close-to-optimal solution? We will deal with these issues in the following section.

5 � Sufficient conditions to infer conditional teaching size

We first ask the question of whether it is possible to approximate the conditional teach-
ing size of a concept c if the learner is given a new primitive for the library. Namely, 
given that Φ(wc|B) = pc ∈ [c]L , could it be possible to approximate TS(c�⟨B, p⟩) , where p 
is a new primitive? It is also very important not only to identify a good approximation, 
but not to overestimate the real conditional teaching size. We will employ this conserva-
tive property (in Sect. 6) to define an algorithm that outputs minimal curricula.

Firstly, we give a sufficient condition, valid for any kind of language, either universal 
or not, that provides an underestimation of conditional teaching size. Secondly, we iden-
tify when such sufficient condition applies for our particular drawing domain.

The following corollary provides that sufficient condition. It is proved in Section D 
as a consequence of Lemma 4.

Corollary 2  Let wc , w′
c
⊂ X such that pc = Φ�(wc|B) and p�

c
= Φ�(w

�
c
|B�) , where B′ is a 

library that extends, with a new primitive, the library B. Let us suppose that the following 
conditions are met: 

	 I	 ∃k1, k2 ∈ ℕ such that �(wc) = �(pc) + k1 and �(w�
c
) = �(p�

c
) + k2

	 II	 �(wc) − �(w�
c
) ≤ �(pc) − �(p�

c
)

	 III	 �(p�
c
) ≤ �(pc)

Fig. 5   Comparison of some relevant curricula of Example 1 (Table 1)
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Then,

It is important to note that Inequality (2) does not overstimate �(w�
c
) ; this fact will be key 

in Sect. 6 to define an algorithm that ouputs optimal curricula.
With respect to our drawing domain, Condition I (Corollary 2) is always true, since the 

language L has equivalent instructions for every command in Σ . Also, the concepts of the 
drawing domain meet Condition II (Corollary 2), as a result of Theorem 3 (Section C), 
when wc has no negative examples. Otherwise, let us suppose that wc = {e+, (e−

i
)} , such 

that ∃pi in LB with pi⊨e+i  and pi ∉ [c]L . In general, we could not assure that adding a new 
primitive to B′ would make Φ(w�

c
|B�) ≺ pi , ∀i . If so, it would be unnecessary to include 

negative examples in w′
c
 , and Condition II would not be met. However, if concepts can be 

taught initially in language L ( |B| = 0 ) without negative examples, then we can always esti-
mate successively the teaching size of such concepts. In other words, we will consider 
𝓁(p�

c
)

𝓁(pc)
⋅ TS(c) ≤ TS(c|B�) (instead of TS(c|B) on the left side of the inequality).

Finally, we assumed in Condition III (Corollary 2) that the length in bits of a library 
call, @� , is the same as the new call @�

′ . But there exist cases such as 
Φ({������+}�⟨��)⟩) = �)�@ ∈ [c]L and 
Φ({������+}�⟨��),����)⟩) = �)�@0 ∈ [c]L . In such cases, 

�(p∗
c|B� )

�(p∗
c|B)

> 1 and Inequality 

(2) is not ensured, where p∗
c|B is the first expression in language L enhanced with library B, 

using order ≺ , that identifies concept c2 (we denote �(p∗
c|B) = �(p∗

c
) when |B| = 0).

However, in those situations ( �(p∗
c|B� ) > �(p∗

c|B) ), we consider �(wc) = �(w�
c
) , since �(w�

c
) 

cannot reduce �(wc).
These considerations lead us to the definition of a valid family of heuristics that always 

output optimal curricula without calculating all the teaching sizes.

6 � Heuristic search for optimal curricula

In our case, the search space is given by all the curricula, Q , and we need to find at least 
one � such that TS(�) = TS∗

Q
 . Each internal node in the search graph is a partial curriculum 

(not covering all concepts), while each leaf (node with no children at the bottom level) is 
a full curriculum belonging to Q , and an edge means adding a new concept to a branch 
of the curriculum (remember a curriculum is actually a tree). For instance, for two con-
cepts a and b, the root n1 would be the empty curriculum. The children at level 2 would be 
n1,1 = {a} and n1,2 = {b} . Finally, at level 3, the children of n1,1 would be n1,1,1 = {a→b} , 
n1,1,2 = {a, b} and the children of n1,2 would be n1,2,1 = {b→a} , n1,2,2 = {b, a} , which 
means that we have two nodes that would be equal, and we see that the search space is a 
directed acyclic graph.

Let us start with a simple graph traversal algorithm and then evolve it into more sophis-
ticated procedures. The standard A∗ search is a baseline graph traversal algorithm Russell 
and Norvig (2020). A∗ is based on a node evaluation function

(2)
𝓁(p�

c
)

𝓁(pc)
⋅ �(wc) ≤ �(w�

c
)

2  The conditional Kolmogorov complexity of concept c given the library B is defined as KL(c|B) = �(p∗
c|B).
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where g(n) is the overall cost of getting to node n from the beginning and h(n) is the heu-
ristic function, i.e., the estimated cost of getting to a target node (leaf node) from node n. 
A∗ search guarantees an optimal solution when the heuristic function meets the following 
conditions: 

1.	 h(n) ≥ 0 , for every node n.
2.	 h(n) = 0 , if n is a target node.
3.	 h(n) is admissible, i.e., h(n) never overestimates.

A popular variant of A∗ is Weighted A∗
�
 ( WA∗ ), another graph traversal algorithm that 

guides the search with h�(n) = � ⋅ h(n) , where � is a parameter. Remember that if h(n) is 
admissible then WA∗ guarantees the optimal solution when 0 < 𝛼 ≤ 1 . Sometimes, it is 
useful to employ WA∗ , because it often gives a close-to-optimal solution with less node 
expansions (Hansen & Zhou, 2007).

Let us look for admissible heuristics not only because they guarantee success for algo-
rithm A∗ , but also because they help to assess other close-to-optimal solutions (Hansen & 
Zhou, 2007).

Definition 7  (Node cost) Let Q be a set of concepts and n be a node of the search space Q . 
We define the teaching size cost of node n, which we denote by g(n), as the overall teaching 
size of the curriculum, either partial or complete, that represents node n.

Note that any path of the search graph uniquely generates a library B as background 
knowledge. For instance, the path (a→b→c) generates library B = ⟨p∗

a
, p∗

b�⟨pa⟩
⟩ when 

reaching concept c, while the path (a→b, c) generates no prior knowledge, i.e., |B| = 0 , 
when getting to concept c.

We now proceed with the theoretical results that will allow us to define an admissible 
heuristic. But, firstly, we need to define the cost of crossing an edge of the search graph.

Definition 8  (Estimated edge cost) Let Q be a set of concepts and n be a node of the search 
space Q ; the last edge of node n is � . Let concepts a and b be the vertices of edge � , either 
𝖾 = [a→b] or � = [a, b] . Let B be the library employed to reach concept b through the edge 
� , where 0 ≤ |B| . We define the estimated cost of crossing � as

If |B| = 0 then �(p∗
b|B) = �(p∗

b
) and hB(�) = TS(b).

We note that it would also be possible to define the estimated edge cost using the 
new primitive employed between one node and its child. That is to say, if B is the library 
employed to reach a, and B′ is the library used to get to b, then we could define

(3)f (n) = g(n) + h(n),

hB(�) =
𝓁(p∗

b|B)

𝓁(p∗
b
)
⋅ TS(b)

hB�⧵B(�) =

{ 𝓁(p∗
b|B� )

𝓁(p∗
b|B)

⋅ TS(b), if 𝓁(p∗
b|B� ) ≤ 𝓁(p∗

b|B)

TS(b), otherwise
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Note that hB(�) ≤ hB�⧵B(�),∀� . Consequently, hB(�) is less dominant than hB�⧵B(�) . Accord-
ingly, if the former reduces the computational cost to identify optimal curricula, the latter 
will perform even better.

We now extend Definition 8 to a path of the search graph.

Definition 9  Let n, m be nodes of the search space Q , where m is a child of n that might be 
several levels after n. Let {�i} be a path from node n to node m; as a special notation case 
we use {�i} = {�} when there is no path between n and m throughout the search space. Let 
Bi , with 0 ≤ |Bi|,∀i , be the library employed to cross the edge �i . We define the estimated 
cost of getting from node n to node m as

We now employ Definition 9 to define the estimated cost of a node.

Definition 10  (Estimated cost of node n) Let n be a node of Q , we define the estimated 
cost of node n as

The leaf nodes considered in Definition 10 are any leaf node of the search graph, not only 
the ones that are descendants of a given node n. The following Examples 2 and 3 illustrate 
how to calculate estimated costs in particular situations.

Example 2  Let a and b be the concepts of Example 1; where p∗
a
= ����) and 

p∗
b
= �����) . We consider the node {a} in the search space whose leaf nodes are {a, b} , 

{b→a} and {a→b} . We want to calculate H({a}) ; since we are already in node {a} the 
calculations are

Therefore, H({a}) = min{24,∞, 8} = 8.

Example 3  Let a, b and c be the concepts of Example 1, where p∗
c
= �)���) . The leaf 

nodes with bounded estimation cost from node {a} are {a, b, c} , {a→b, c} , {a→c, b} , 
{a→b→c} and {a→c→b} . For instance, the estimated cost of node {a→b, c} from node 
{a} is

Similarly, H{a}({a→c, b}) = h⟨p∗a⟩([a→c]) + h�([c, b]) =
𝓁(p∗

c�⟨p∗a⟩
)

𝓁(p∗c )
⋅ TS(c) + TS(b) = 1 ⋅ 24 + 24 = 48,

Hn(m) =

�
∞, if {�i} = {�}∑

i hBi
(�i), otherwise

H(n) = min{Hn(m) ∶ m is a leaf node of the search graph}

H{a}({a, b}) = TS(b) = 24,

H{a}({b→a}) = ∞ and

H{a}({a→b}) = h⟨pa⟩([a→b]) =
𝓁(p∗

b�⟨p∗
a
⟩)

𝓁(p∗
b
)

⋅ TS(b) =
𝓁(𝖱@)

𝓁(𝖱𝖱𝖴𝖱𝖣))
⋅ 24 = 8.

H{a}({a→b, c}) = h⟨p∗
a
⟩([a→b]) + h�([b, c]) =

𝓁(p∗
b�⟨p∗

a
⟩)

𝓁(p∗
b
)

⋅ TS(b) + TS(c) = 8 + 24 = 32.
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Therefore, H({a}) = min{∞, 69, 48, 32, 33.3̇} = 32.

The heuristic of Definition 10 never overstimates the teaching size of a node if condi-
tions expressed in Theorem 3 apply. As a result, A∗ will output minimal curricula if we 
define the heuristic h(n) = H(n) . Let us show some experiments.

7 � Empirical results

We experimented with three sets of concepts: Q = {a, b, c} (Example 1 in Sect.  3), 
Q� = {a�, b�, c} and Q�� = {a, b, c, d} (Examples 4 and 5, respectively, in Section B). We 
studied all the possible different curricula for each set of concepts. Thus, we had to calcu-
late all the teaching sizes of Tables 1, 9 and 11. Calculations took a long time even that we 
utilised a HPCx cluster3. It was a server shared with other users, but there were reserved 
three cores for every teaching size calculation. Namely, it took approximately nine days to 
compute TS(c|a) (Table 1) and when the library had more primitives then the calculations 
increased explosively. For instance, it took more than two months to calculate TS(c|a, b, d) 
(Table 11).

As we mentioned before, the admissible heuristic h(n) = H(n) is valid for every set of 
concepts Q of our drawing domain, when each concept c ∈ Q can be taught in L ( |B| = 0 ) 
without negative examples. We implemented the A∗ search using such heuristic and applied 
it to the examples.

In Example 1 the algorithm finds a minimal curriculum �7 in 4 steps, through 8 effec-
tive calculations of teaching size against the overall 15 edges. Regarding Example 4, A∗ 
finds the minimal curriculum in 4 steps, effectively calculating 7 teaching sizes against 15 
overall.

Considering Example 5 (Section B), there are two curricula that maximise the teach-
ing size with, approximately, 66% more effort than the optimal. The A∗ search showed 
�∗ = {d→a→b→c} as minimal curriculum in 6 steps, through 13 teaching size calcu-
lations against 64 (20% teaching size calculations). Experiments show that there is only 
one optimal curriculum ( TS(�∗) = 63) , and it coincides with the one that identifies the A∗ 
search.

Tables 3, 4 and 5 summarise the experimental results obtained for Examples 1, 4 and 5, 
respectively, using the following distinct algorithms:

H{a}({a→b→c}) =h⟨p∗
a
⟩([a→b]) + h⟨p∗

a
,p∗

b
⟩([b→c])

=
𝓁(p∗

b�⟨p∗
a
⟩)

𝓁(p∗
b
)

⋅ TS(b) +
𝓁(p∗

c�⟨p∗
a
,p∗

b
⟩)

𝓁(p∗
c
)

⋅ TS(c) =
𝓁(𝖱@)

𝓁(𝖱𝖱𝖴𝖱𝖣))
⋅ 24 + 1 ⋅ 24 = 32,

H{a}({a→c→b}) =h⟨p∗
a
⟩([a→c]) + h⟨p∗

a
,p∗

c
⟩([c→b])

=
𝓁(p∗

c�⟨p∗
a
⟩)

𝓁(p∗
c
)

⋅ TS(c) +
𝓁(p∗

b�⟨p∗
a
,p∗

c
⟩)

𝓁(p∗
b
)

⋅ TS(b)

=1 ⋅ 24 +
𝓁(𝖱@0)

𝓁(𝖱)𝖴𝖱𝖣))
⋅ 24 = 33.3̇ and H{a}({a, b, c}) = 69.

3  https://​www.​uclm.​es/​Areas/​AreaT​IC/​Servi​cios/​Inves​tigac​ion/​SSC.

https://www.uclm.es/Areas/AreaTIC/Servicios/Investigacion/SSC
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•	 Dijkstra’s algorithm (D) Dijkstra (1959). It always identifies an optimal curriculum, 
since teaching sizes are positive Barbehenn (1998).

•	 Dijkstra’s modified algorithm ( D′ ): it stops when it goes through all the concepts. It 
does not necessarily get an optimal curriculum, but the computational cost is lower 
than Dijkstra’s algorithm in terms of teaching size calculations.

•	 Greedy algorithm (G): from any given state, it always chooses the bifurcation that 
involves the least teaching size. In general, it does not identify an optimal curriculum.

•	 A∗ search algorithm Hart et al. (1968). The heuristic given in Definition 10, H , guar-
antees an optimal curriculum.

Table 3   Curricula obtained for Example 1 through different algorithms and whether they are optimal (in 
boldface when it has to be optimal), the % of TS operations that need to be calculated (the lower the better) 
and the % of extra cost when it is not optimal

Q = {a, b, c} D D′ G A∗
�=1

A∗
�=0.8

A∗
�=1.5

� a→b, c a→b, c a→b, c a→b, c a→b,c

a→b→c
a→c→b

Optimal? Yes Yes Yes Yes Yes No
% TS calcul 93.3% 66.6% 40% 53.3% 60% 40%
% Extra TS 0% 0% 0% 0% 0% 15.8%

Table 4   Curricula obtained for Example 4 through different algorithms and whether they are optimal (in 
boldface when it has to be optimal), and the % of TS operations that need to be calculated (the lower the 
better)

Q� = {a�, b�, c} D D′ G A∗
�=1

A∗
�=0.8

A∗
�=1.5

� a′→b′, c a′→b′, c a′→b′, c a′→b′, c a′→b′, c a′→b′, c

Optimal? Yes Yes Yes Yes Yes Yes
% TS calcul 93.3% 66.6% 40% 46.6% 53.3% 40%

Table 5   Curricula obtained for Example 5 through different algorithms and whether they are optimal (in 
boldface when it has to be optimal), the % of TS operations that need to be calculated (the lower the better) 
and the % of extra cost when it is not optimal

Q�� = {a, b, c, d} D D′ G A∗
�=1

A∗
�=0.8

A∗
�=1.5

� d→a→

b→c
d→a→b, c d→a→

b→c

d→a→

b→c

d→a→

b→c
d→a→b, c

Optimal? Yes No Yes Yes Yes No
% T.S. calc 84.4% 46.9% 15.6% 23.4% 39.1% 15.6%
% Extra TS 0% 4.8% 0% 0% 0% 4.8%
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•	 A∗
� search, i.e., WA∗ algorithm with parameter � : since the heuristic H(n) is admissible, 

it will identify optimal solutions when 0 ≤ � ≤ 14.

As we can see in Tables  3, 4 and 5, there are big differences in terms of computa-
tional costs when using procedures ensuring optimal teaching curricula as an output. For 
instance, in Example 1, the computational cost of D performs an extra 40% with regard to 
A∗
�=1

 ( 33.3% when � = 0.8 ); in Example 4 the comparative between D and A∗
�=1

 shows a 
46.7% extra cost for D ( 40% when � = 0.8 ). Furthermore, when we increase the number of 
concepts involved, as in Example 5, A∗

�=1
 makes 61% less computing than D. It is reason-

able to think that the tendency might double the computational reduction of A∗ with respect 
to A∗ when we add a new concept.

It is true that the greedy algorithm G identifies an optimal curriculum in all the Exam-
ples (1, 4 and 5), with even less computational effort. However, such procedure is risky, 
since an optimality is not guaranteed then and the difference in TS-calculations % is 13.3% 
in Example 1, 6.6% in Example 4 and 7.8% in Example 5, which is not so high with respect 
to the option ensuring optimal teaching curricula A∗

�=1
.

8 � Discussion

In this paper, we provided sufficient conditions to define a procedure that effectively identi-
fies optimal curricula. This is used in an A∗ search enhanced by the heuristic given in Defi-
nition 10, for a given set of concepts.

Inequality (2) can be applied to similar machine-teaching settings using different lan-
guages L, either universal or not. It is sufficient to consider a similar machine-teaching 
scenario and a set of concepts that meet the conditions.

Thus, we may introduce new instructions such as ‘ | ’ (logical OR operator), and even 
discard instructions like ‘ ) ’. In particular, the previous results, dedicated to obtaining a 
heuristic, can be applied to any language L′ that meets these statements: 

	 (i)	 L′ should contain equivalent instructions for every command of Σ.
	 (ii)	 The size in bits of the equivalent instructions in L′ should be less or equal than their 

counterpart commands in Σ.
	 (iii)	 There is an instruction, similar to @ , that is able to retrieve primitives in language 

L′ and is the last instruction considering the lexicographical order.

We have shown that it is possible to apply a heuristic search to those MT scenarios that 
satisfy the above conditions (i), (ii) and (iii), having the following properties: 

1.	 For all the cases studies shown, it provides a reduction of the computational effort 
involved.

4  Note that A∗ search is useful when we do know a heuristic, which is one reason why identifying a good 
heuristic is so important. Whether we use WA

∗ or A∗ , it is key to know an admissible heuristic. Anytime A∗ , 
a version of WA

∗ algorithm with weight � gradually reducing until � = 1 , can use non-admissible heuristics, 
but knowing h(n), together with an upper bound on the optimal solution, helps pruning the search space and 
detects convergence to an optimal solution Hansen and Zhou (2007).
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2.	 The identification of optimal curricula is guaranteed.

Our approach is defined for compositional languages of discrete character and, correspond-
ingly, a discrete optimisation process over a discrete space. As a result, it is not straight-
forward to adapt the setting to continuous representations, including neural networks. 
However, the general framework may adapt to a language L that might be based on con-
tinuous principles: instructions in L might be given different weights, so that the total order 
≺ might be defined through a distribution of probabilities. However, our MT framework is 
more indicated in situations where we want to understand –and explain– how each concept 
builds on previous concepts compositionally. For instance, given an observation, what is 
the best explanation for that information? In fact, programs in the language L of our par-
ticular 2D drawing domain (Section A) can be described in terms of automata, which have 
also been utilised recently in AI to spot patterns describing data sets in 2D too (Das et al., 
2023). We can see the discrete character of our approach and the language we have used as 
a limitation, but it can also be seen as an opportunity for other researchers to investigate the 
performance of our heuristic search in other MT settings (even continuous) and domains.

Overall, our starting point was the realisation that curriculum learning for a given set of 
compositional concepts is underdeveloped mainly because of computational costs. Thanks 
to the new heuristics introduced in this paper, we are now able to effectively implement CL 
in MT, not only at the level of improving a sequence of training examples for a given task, 
but also considering the combinatorial explosion of interlocking concepts.

Appendix A: The drawing domain

In this section we establish the setting used by the teacher to generate examples and the 
language employed by the learner to interpret them.

A.1. The space of examples: polygonal chains

Given a point, consider that we draw a polygonal chain, using 2D axis-parallel unit seg-
ments from that initial point, such that the end of a segment coincides with the beginning 
of another segment (hence the term chain). We use the unit strokes North, South, East and 
West as commands (Sect. 2), to define a quaternary alphabet Σ4 = {�, �,�,�} . Note that 
different chains may lead to the same shape.

We consider Σ∗
4
 , which is formed by all possible concatenations of zero or more symbols 

in Σ4 ; note that it also includes the empty string, which is denoted by � . We define an order 
⋖ over Σ∗

4
 by first considering the size and, for ties, the lexicographical order: N, S, E and 

W.
For example, in Fig. 6, starting at the black dot, the square in the upper left corner can 

be described by the chains ENWS, NESW or even NESWNE. The only condition is that 
such sequences must be built with a single drawing, i.e., the pen cannot be lifted from the 
paper until the end. For instance, to draw a T-shape (second drawing on the top of Fig. 6), 
we need four strokes at least, NWEE or NEWW, even though the shape only has three 
segments.

We label such examples as positive ( + ) and negative (−).
There are six symbols to produce examples: N, S, E, W, + and −; the last two indi-

cate whether the example is positive or negative. We will use ⌈log2(6)⌉ = 3 binary digits 
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to express each symbol.5 Note that + and − are useful for the teacher and the learner when 
exchanging sets of examples, not only to express which ones are positive or negative, but 
also to identify when an example terminates and a new one begins. The size in bits of an 
example, denoted by �(x) , either positive or negative, is the length in bits of its representa-
tion. For example, �(����+) = 15 bits.

We can also extend the total order ⋖ to X by first considering the size and, for ties, the 
lexicographical order: N, S, E, W, + and −.

The infinite concept class C is the set of all subsets of X. For any concept c ∈ C the 
teacher’s objective is to find the shortest set of examples from which the learner will pre-
cisely distinguish the concept.

A.2. Language syntax (instructions) and semantics (automata)

We now define a language that is employed by the learner to identify concepts from 
a set of examples provided by the teacher. Let us consider the instruction alphabet 
L6 = {�,�,�,�, ),@} to define the syntax of the programs of the language L = L∗

6
 as the 

set of programs that the teacher and the learner use to think of and identify concepts. The 
meaning of the symbols is already given in Sect. 2.

We denote the number of bits of p in language L as �(p) ; �̇(p) denotes its number of 
instructions. Since the alphabet size |L6| = 6 , we will have a total of 6 symbols that will 
need 3 bits for each instruction. For instance, in our setting, �(�����) = 15 bits.

Regarding the implementation of prior knowledge, we consider that the language works 
with a library of primitives, which is simply a possibly empty ordered set of programs 
B = ⟨p1, p2, ...⟩ , with pj in L. The instruction @ represents a call for the library B, when 

Fig. 6   Different shapes derived from polygonal chains

5  There are more efficient codings, but by using + and − as extra symbols, we can also use them as delimit-
ers. We use 3 bits for each character instead of log2(6) , as this only affects size by a multiplicative factor.
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there is just one primitive. The expression @� calls the primitive indexed with a binary 
string � representing natural number j − 1 , where j is the position in the library. For exam-
ple, �@ , is equivalent to ��) when B = ⟨�)⟩ . For instance, the library B = ⟨�,��,���⟩ 
makes the expressions �@10� and ����� as it is calling the third primitive (indexed by 
10). Since the dimension of the library is already known by the learner and all the instruc-
tions can be translated into binary strings, we consider that it is not necessary to explicitly 
add the two binary digits for composing binary strings to index library calls. In the end, 
any expression in language L is uniquely translated into a binary string. We denote LB as 
the language L that employs library B.

The size in bits of a call to the library is �(@�) = �(@) + ⌈log2(�B�)⌉ bits. In this way, 
�(�@01�) = 11 bits, i.e., four bits less than the equivalent program ����� when using 
library B = ⟨�,��,���⟩ . Note that binary representations utilise trailing zeros, e.g., 00 or 
01. We observe that, every chain in language L can be uniquely translated into L∗

5
 , where 

L5 = L6⧵{@} , by substituting the corresponding primitive for its corresponding library 
call.

There is a total order, ≺ , over the language LB defined by two criteria: (i) length and 
(ii) lexicographic order, � ≺ � ≺ � ≺ � ≺ ) ≺ @ , only applied when two expressions 
have equal size; when considering library calls, 0 is lexicographically previous to 1, e.g., 
�@00� ≺ �@01�.

We will consider that a command of Σ4 is equivalent to a single instruction of the visual 
language when they represent the same phenomenon. For instance, the unit stroke � of X is 
equivalent to instruction � of L, since both represent equal moves on the grid.

In our particular setting, we will employ the function � ∶ L6→Σ4 , such that �(�) = � , 
�(�) = � , �(�) = � and �(�) = � to identify stroke-instruction equivalences.

To complete the representation mapping between L6 and Σ4 , i.e., the semantics of L, 
we will uniquely associate a deterministic finite automaton, DFA (McCulloch & Pitts, 

Fig. 7   Automaton built from expression ��

Fig. 8   Automaton identified by the expression ��)

Fig. 9   Automaton identified by the expression ���)�
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1943), for each program p in language L. In our particular setting, an automaton rep-
resents the semantics of a program p in L. In other words, the set of examples S the 
program covers (or can generate) is equal to the set of strings that the corresponding 
automaton can accept.

For example, the program �� in language L uniquely represents the automaton of 
Fig.  7. Such automaton recognises the concept {�+,��+} . �� also recognises {�+} , a 
behaviour similar to some spellcheckers. Among other tools, automata are employed in 
AI to capture latent patterns (Das et al., 2023).

Regarding the instruction ) , for instance, Figs.  8 and 9 represent the automata ��) 
and ���)� , respectively. Note that the automaton ��) accepts ��� , since we can employ 
the empty string � to follow ) , i.e., 𝖤𝖭𝖤.

Specifically, we give the following procedure to uniquely associate an automaton to a 
program in L. But firstly, we will restrict such association to L∗

5
 , where L5 = L6⧵{@} . As 

we already mentioned, every program in language L can be translated into L∗
5
 by replac-

ing the library calls. Also, for simplification purposes, we will not consider ) redundan-
cies, i.e., we substitute any )) occurrences by ).

For instance, let us consider the expression �@) in the visual language L, when 
B = ⟨�)⟩ . If we eliminate )) redundancies, then �@) is uniquely translated into L∗

5
 as 

��) . Thus, we get the DFA expressed by the transition diagram of Table 6, where all the 
states are of acceptance.

However, there can be more complex programs. For example, let us consider another 
program like �))���) . Firstly, we eliminate redundancies for instruction ) , so that we 
get �)���) . Then we parse the latter expression to distinguish instructions equivalent to 
commands in Σ4:

•	 We denote �1 = �1 = � as the first �-equivalent instruction.
•	 We denote �2 = �1 = ) , as the first instruction ) . Since there is only one previous �

-equivalent instruction, we use the subindex 1 for �.
•	 Similarly, we continue parsing the program as �3 = �2 = � , �4 = �3 = � , �5 = �4 = � 

and �6 = �4 = ).

Table 6   Transition table for ��) Entry states � � �

q0 q1 ∅ ∅

q1 ∅ q2 ∅

q2 ∅ ∅ q0

Table 7   First stage of the 
translation of �)���) into an 
automaton

Instructions �1 �1 �2 �3 �4 �4

q0 q1 ∅ ∅ ∅ ∅ ∅

q1 ∅ q0 q2 ∅ ∅ ∅

q2 ∅ ∅ ∅ q3 ∅ ∅

q3 ∅ ∅ ∅ ∅ q4 ∅

q4 ∅ ∅ ∅ ∅ ∅ q0
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Note that there are m = 4 �-equivalent instructions in p and n − m = 2 instructions ) . 
Now we are able to build the DFA automaton M = (Θ,Ξ, s,F, �) where:

•	 Θ = {q0, q1, q2, q3, q4} is the set of states.
•	 Ξ = {�(�1) = �,�(�1) = �,�(�2) = �,�(�3) = �,�(�4) = �,�(�4) = �} is the set of 

input symbols.
•	 The start state is s = q0.
•	 The set of accept states is F = Θ.
•	 We now consider the function �� ∶ Θ × {�i}

n
i=1

→Θ , given by Table 7.
•	 Using �′ , we define the transition function through the translation of {�i}ni=1 into Ξ , 

using � ∶ L5→Σ4 ∪ {�} , as 

 , which is expressed in Table 8.

Now, we are able to draw the graph associated to the program �)���) , represented in 
Fig. 10.

We can generalise the process that uniquely identifies the semantics of a program as 
an automaton through Definition 11.

Definition 11  Let p = �1 ⋯ �n ∈ L∗
5
 be a program such that:

–	 ∄i ∈ {1,… , n − 1} with �i = �i+1 = ).
–	 We parse p from beginning to end and with �j we denote every �i such that �i ≠ ) , 

where j increases succesively from 0 to m, with m ≤ n being the number of instruc-
tions of p different from ).

–	 Such parsing of p also makes �k denote every �i such that �i = ) , where k is the num-
ber of instructions previous to �i different from ).

�(q,�(�i)) = ��(q, �i),∀q ∈ Θ,∀i

Table 8   Transition table for 
�)���)

Entry states � � � �

q0 q1 ∅ ∅ ∅

q1 ∅ q0 q2 ∅

q2 q3 ∅ ∅ ∅

q3 ∅ ∅ ∅ q4

q4 ∅ q0 ∅ ∅

Fig. 10   Automaton identified by the expression �)���)
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–	 We will extend � ∶ L5→Σ4 ∪ {�} by considering �()) = � . Thus, we associate p with 
the DFA denoted as M = (Q,Ξ, s,F, �) , where:

1.	 The set of states is Θ = {q0,… , qm}

2.	 The set of input symbols is Ξ = {�(�i)}
n
i=1

3.	 The start state is s = q0
4.	 The set of accept states is F = Θ

5.	 The transition function is � ∶ Θ × Ξ→Θ , with

5.1) �(qr,�(�r+1)) = qr+1 , ∀r ∈ {1,… ,m − 1} (and ∅ otherwise)
5.2) �(qr,�(�r)) = q0 , ∀r ∈ {0,… ,m} (and ∅ otherwise)

As a result, we identify a program p in language L with the DFA that it defines. Now, 
we say that program p in L identifies a concept c ∈ 2X , and we denote p ∈ [c]L , if the 
DFA defined by p recognises c. For example, �� ∈ [{�+,��+}]L.

We denote [c]L , or simply [c] when L is clear from the context, as the equivalence 
class of programs in language L that identify the same concept c. For example, ��)� 
and ��) identify the same concept, so they are equivalent.

We say that the program p in the visual language L satisfies a positive example, e+ , if 
the DFA defined by p accepts the word e ∈ Σ∗

4
 . For instance, ��) satisfies ���+ . Regard-

ing negative examples, a program satisfies a negative example, e− , if it does not satisfy 
its positive counterpart, e+ . For instance, since ��) does not satisfy ��+ , then it satisfies 
��

− . Conversely, �) satisfies ���+ , but it does not satisfy ���−.
Given a set of examples w ⊂ X , a program satisfies w if it satisfies each example of 

w. For instance, ����) satisfies the example set {�−,������+}.
Given an example e+ with n unit strokes, we can restrict the search for the autom-

aton that satisfies e+ , by generating up to n + 1 states maximum. In other words, we 
use the complexity function � (n) = n + 1 as an upper bound of the necessary states. For 
instance, the example ���+ , with n = 3 unit strokes, is satisfied by a DFA represented 
by the program ��� using four states ( 4 ≤ � (3) ), or even �)� , with just three states. 
However, given the example ���+ , we will not consider automata like ���� or ����� , 
because their number of states are higher than the bound given by the complexity func-
tion �.

We can see that in general the maximum number of states considered to test whether an 
automaton p satisfies a given positive example e+ with n unit strokes is given by a complex-
ity function � (n) , such that n ≤ � (n) , ∀n . Thus, we say that p is �−compatible with example 
e+ , and we denote p ⊨

�
e+ (otherwise, p ⊭

�
e+ ). Regarding such bounds for positive exam-

ples, we can similarly extend them to negative examples and sets of examples.
In this domain, we guarantee complete calculations just taking � (n) = n + 1 , and 

p ⊨ S denotes that p satisfies every example of S ⊂ X (in the general framework, p ⊨
�
S 

Fig. 11   The visual language L 
does not allow to build the edges 
q0q1 and q0q2 simultaneously



4070	 Machine Learning (2023) 112:4049–4080

1 3

denotes that p satisfies every example of S ⊂ X within a common maximum value of 
time steps that depends on �).

Also, it is important to note that even employing large enough complexity func-
tions, language L is not universal in the sense that it cannot identify every concept 
c ∈ C . For instance, given the concept c = {��+,�+} , then [c]L = {�} , i.e., there are 
no programs in language L that satisfies both ��+ and �+ . This is because the initial 
state, q0 , can connect with just one different state q1 . In other words, you cannot choose 
moving to q1 or q2 from state q0 in just one edge crossing (see Fig. 11).

Appendix B: Examples

In this section we will analyse other examples with more situations and concepts 
slightly different than in Example 1.

Let us consider another set of concepts where there is just one minimal curriculum: 
there is no draw between the overall teaching sizes of optimal curricula (as it happens 
in Example 1).

Example 4  Let us consider the set of concepts Q� = {a�, b�, c} , where ���� ∈ [a�]L , 
����� ∈ [b�]L and �)���) ∈ [c]L , are the first programs in their equivalent classes with 
respect to ≺.

Regarding the overall teaching sizes and the descriptions measured in bits (Table 9), 
Fig. 12 compares some relevant curricula registered in Table 10 for Q� = {a�, b�, c}.

As we can see in Table 10 (and Fig.  12), there is only one minimal teaching size 
curriculum (with no ties). Such minimal curriculum, �′

7
 , minimises the overall teaching 

size, placing concept c in a separate branch. If we choose curriculum �′
4
 , instead of �′

7
 , 

we get ≈ 53.3% extra cost.
We observe that for this particular set of concepts Q′ , if the learner identifies con-

cept c, it should not implement such concept to identify the rest of the concepts for the 
purpose of minimising the overall teaching size.

As before, we utilise Table 9, containing the teaching sizes associated to Example 
4, to build another Table  10 showing the overall teaching size for all the curricula 
associated.

Finally, we examine another set of concepts, but now with four elements.

Example 5  Let Q�� = {a, b, c, d} be the set of concepts where ����) ∈ [a]L , 
�����) ∈ [b]L , �)���) ∈ [c]L and ��) ∈ [d]L are the first programs in their equivalent 
classes with respect to ≺.

Now, there are 73 different curricula (according to Proposition 1) and 64 teaching 
size values associated to Example 5.

Regarding the overall teaching sizes and the descriptions measured in bits, Fig. 13 
compares some relevant curricula registered in Table 12 for Example 5. If we choose 
�′′
22

 or �′′
26

 , instead of the optimal curriculum �′′
10

 , we get ≈ 66.6% extra cost.
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Appendix C Some requirements for our drawing domain

This section aims to identify the conditions for our drawing domain to verify Corollary 2. 
This section relies in Section A to deal with the notation and the settings of our drawing 
domain.

Firstly, it is important to know how many commands are necessary to identify a given 
program. In order to do so, we will consider some kind of paths, as short as possible, 
on the graph defined by the DFA corresponding to a given program. Those paths would 
be denoted as sequences of commands that represent the successive edges included. For 

Table 9   Conditional teaching 
sizes for Example 4

TS (bits) Teacher-Learner identification

TS(a�) = 15 Φ({����+}) = ����

TS(b�) = 18 Φ({�����+}) = �����

TS(c) = 24 Φ({�������+}) = �)���)

TS(a�|b�) = 15 Φ({����+}|B) = ����

TS(b�|a�) = 12 Φ({���+}|B) = �@

TS(c|a�) = 30 Φ({���������+}|B) = �)���)

TS(a�|c) = 24 Φ({����+,��−}|B) = ����

TS(b�|c) = 30 Φ({�����+,���−}|B) = �����

TS(c|b�) = 27 Φ({��������+}|B) = �)���)

TS(a�|b�, c) = 24 Φ({����+,��−}|B) = ����

TS(b�|a�, c) = 21 Φ({���+,��−}|B) = �@0

TS(c|a�, b�) = 33 Φ({����������+}|B) = �)���)

TS(a�|c, b�) = 24 Φ({����+,��−}|B) = ����

TS(b�|c, a�) = 24 Φ({���+,���−}|B) = �@1

TS(c|b�, a�) = 33 Φ({����������+}|B) = �)���)

Table 10   Curricula for Example 4

Curriculum Overall Teaching Size (bits)

��
0
= {a�, b�, c} TS(��

0
) = TS(a�) + TS(b�) + TS(c) = 15 + 18 + 24 = 57

��
1
= {a� → b� → c} TS(��

1
) = TS(a�) + TS(b�|a�) + TS(c|a�, b�) = 15 + 12 + 33 = 60

��
2
= {b� → a� → c} TS(��

2
) = TS(b�) + TS(a�|b�) + TS(c|b�, a�) = 18 + 15 + 33 = 66

��
3
= {c → a� → b�} TS(��

3
) = TS(c) + TS(a�|c) + TS(b�|c, a�) = 24 + 24 + 24 = 72

��
4
= {c → b� → a�} TS(��

4
) = TS(c) + TS(b�|c) + TS(a�|c, b�) = 24 + 30 + 24 = 78

��
5
= {a� → c → b�} TS(��

5
) = TS(a�) + TS(c|a�) + TS(b�|a�, c) = 15 + 30 + 21 = 66

��
6
= {b� → c → a�} TS(��

6
) = TS(b�) + TS(c|b�) + TS(a�|b�, c) = 18 + 27 + 24 = 69

��
7
= {a� → b�, c} TS(��

7
) = TS(a�) + TS(b�|a�) + TS(c) = 15 + 12 + 24 = 51

��
8
= {b → a, c} TS(��

8
) = TS(b�) + TS(a�|b�) + TS(c) = 18 + 15 + 24 = 57

��
9
= {a� → c, b�} TS(��

9
) = TS(a�) + TS(c|a�) + TS(b�) = 15 + 30 + 18 = 63

��
10

= {c → a�, b�} TS(��
10
) = TS(c) + TS(a�|c) + TS(b�) = 24 + 24 + 18 = 66

��
11

= {b� → c, a�} TS(��
11
) = TS(b�) + TS(c|b�) + TS(a�) = 18 + 27 + 15 = 60

��
12

= {c → b�, a�} TS(��
12
) = TS(c) + TS(b�|c) + TS(a�) = 24 + 30 + 15 = 69
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instance, the DFA of Fig. 7, given by the program �� ∈ L , starting at q0 has just one 
path that includes all its edges: �� ( i.e., �������⃗q0q1 and �������⃗q1q2 in that order).

If the program has non-equivalent instructions, like ����) , the learner needs not 
only ����� , i.e., a path that includes every edge of the DFA, starting at q0 , but also, 
crossing the edge labelled as � implies going through �������⃗q0q1 too. For instance, if we pro-
vide the learner with �����+ , the learner does not output ����) , but ����� , because 
of lexicographical order; that is why we need to add one more command ������+ to 
make ����) elegible by the learner.

These kind of paths define a polygonal chain s ∈ Σ∗
4
 and we denote its length as 𝛿̇(s) . 

We extend such notation to any set S ⊂ X , as 𝛿̇(S) , by considering the number of com-
mands included in S. For instance, 𝛿̇({���+,��−}) = 5.

Fig. 12   Some relevant curricula comparison in Example 4 (Table 10)

Fig. 13   Some relevant curricula comparison in Example 5 (Table 12)
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Note that every time we go through an �-edge of the DFA, it is compulsory to sub-
sequently include the edge starting at q0 labelled with a command. As a result, the 
learner needs at least seven commands to identify program �)���) (Fig.  10). In short, 
Φ(w) = �)���) implies 𝛿̇(w) ≥ 7 ; in fact, Φ({�������+}) = �)���) (see Table 1).

There are some programs that show even more differences between its number of 
instructions and the length of examples accepted. For instance, the program ����)���� 
defines the DFA of Fig. 14 with nine instructions, but the learner needs at least a sequence 
of thirteen commands labelled as a positive example to identify such program.

Apart from that, it is useful to know the number of instructions of a program when its 
library calls are unfolded, i.e., given a program p and a library B, we use ◦(p) to denote 
the program that is equivalent to p, where each primitive call @ has been replaced by the 
instructions of the primitive in B. We suppose that ◦(p) works exactly equal in L as p in LB , 
i.e., the language L using library B.

Let us suppose now that we use library B = ⟨����⟩ . In such particular case, 
����)���� in L is expressed as ����)@ in LB , by removing 4 − 1 = 3 instructions, i.e., 
𝓁̇(����)����) = 𝓁̇(◦(����)@))+3.

With respect to the minimum length of the paths associated to ����)@ , in LB we reduce 
such minimum length in 4 − 2 = 2 units; so that the learner needs at least a sequence of 

Table 11   Teaching sizes for concepts of Example 5 (missing entries are in Table 1)

TS (bits) Teacher-Learner identification TS(b|d, c) = 30 Φ({�����+,���−}|B) = ���@0

TS(d) = 15 Φ({����+}) = ��) TS(d|a, b, c) = 15 Φ({����+}|B) = ��)

TS(a|d) = 15 Φ({����+}|B) = ��@ TS(c|a, b, d) = 21 Φ({������+}|B) = �)�@10

TS(b|d) = 18 Φ({�����+}|B) = ���@ TS(d|a, c, b) = 15 Φ({����+}|B) = ��)

TS(c|d) = 21 Φ({������+}|B) = �)�@ TS(b|a, c, d) = 24 Φ({����+,��−}|B) = �@00

TS(d|a) = 15 Φ({����+}|B) = ��) TS(b|a, d, c) = 24 Φ({����+,��−}|B) = �@00

TS(d|b) = 15 Φ({����+}|B) = ��) TS(d|b, a, c) = 15 Φ({����+}|B) = ��)

TS(d|c) = 15 Φ({����+}|B) = ��) TS(c|b, a, d) = 21 Φ({������+}|B) = �)�@10

TS(d|a, b) = 15 Φ({����+}|B) = ��) TS(d|c, a, b) = 15 Φ({����+}|B) = ��)

TS(b|a, d) = 12 Φ({���+}|B) = �@0 TS(b|c, a, d) = 27 Φ({����+,���−}|B) = �@01

TS(d|b, a) = 15 Φ({����+}|B) = ��) TS(c|d, a, b) = 21 Φ({������+}|B) = �)�@00

TS(a|b, d) = 15 Φ({����+}|B) = ��@1 TS(b|d, a, c) = 24 Φ({����+,��−}|B) = �@01

TS(b|d, a) = 15 Φ({���+}|B) = �@1 TS(d|b, c, a) = 15 Φ({����+}|B) = ��)

TS(a|d, b) = 15 Φ({����+}|B) = ��@0 TS(c|b, d, a) = 21 Φ({������+}|B) = �)�@01

TS(d|a, c) = 15 Φ({����+}|B) = ��) TS(d|c, b, a) = 15 Φ({����+}|B) = ��)

TS(c|a, d) = 21 Φ({������+}|B) = �)�@1 TS(b|c, d, a) = 27 Φ({����+,���−}|B) = �@10

TS(d|c, a) = 15 Φ({����+}|B) = ��) TS(c|d, b, a) = 21 Φ({������+}|B) = �)�@00

TS(a|c, d) = 24 Φ({����+,��−}|B) = ��@1 TS(b|d, c, a) = 27 Φ({����+,���−}|B) = �@10

TS(c|d, a) = 21 Φ({������+}|B) = �)�@0 TS(a|b, c, d) = 27 Φ({�����+
,��−}|B) = ��@10

TS(a|d, c) = 24 Φ({����+,��−}|B) = ��@0 TS(a|b, d, c) = 27 Φ({�����+
,��−}|B) = ��@01

TS(d|b, c) = 15 Φ({����+}|B) = ��) TS(a|c, b, d) = 27 Φ({�����+
,��−}|B) = ��@10

TS(c|b, d) = 21 Φ({������+}|B) = �)�@1 TS(a|c, d, b) = 27 Φ({�����+
,��−}|B) = ��@01

TS(d|c, b) = 15 Φ({����+}|B) = ��) TS(a|d, b, c) = 27 Φ({�����+
,��−}|B) = ��@00

TS(b|c, d) = 30 Φ({�����+,���−}|B) = ���@1 TS(a|d, c, b) = 27 Φ({�����+
,��−}|B) = ��@00

TS(c|d, b) = 21 Φ({������+}|B) = �)�@0 TS(c|a, d, b) = 21 Φ({������+}|B) = �)�@01
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Table 12   Curricula for Example 5

Curriculum Overall bits �36 = {b→c→a, d} TS(���
36
) = 93

���
0
= {a, b, c, d} TS(���

0
) = 84 ���

37
= {a→b→d, c} TS(���

37
) = 72

���
1
= {a→d, b, c} TS(���

1
) = 84 ���

38
= {a→d→b, c} TS(���

38
) = 72

���
2
= {a, b→d, c} TS(���

2
) = 84 ���

39
= {d→a→b, c} TS(���

39
) = 66

���
3
= {a, b, c→d} TS(���

3
) = 84 ���

40
= {a→b, c→d} TS(�40) = 72

���
4
= {d→a, b, c} TS(���

4
) = 78 ���

41
= {a→b, d→c} TS(���

41
) = 69

���
5
= {a, d→b, c} TS(���

5
) = 78 ���

42
= {a→b, c, d} TS(���

42
) = 72

���
6
= {a, b, d→c} TS(���

6
) = 81 ���

43
= {b→a→d, c} TS(���

43
) = 84

���
7
= {a→b→c→d} TS(���

7
) = 72 ���

44
= {b→d→a, c} TS(���

44
) = 78

���
8
= {a→b→d→c} TS(���

8
) = 69 ���

45
= {d→b→a, c} TS(���

45
) = 72

���
9
= {a→d→b→c} TS(���

9
) = 69 ���

46
= {b→a, c→d} TS(���

46
) = 84

���
10

= {d→a→b→c} TS(���
10
) = 63 ���

47
= {b→a, d→c} TS(���

47
) = 81

���
11

= {a→b→c, d} TS(���
11
) = 72 ���

48
= {b→a, c, d} TS(���

48
) = 84

���
12

= {b→a→c→d} TS(���
12
) = 84 ���

49
= {a→c→d, b} TS(���

49
) = 84

���
13

= {b→a→d→c} TS(���
13
) = 81 ���

50
= {a→d→c, b} TS(���

50
) = 81

���
14

= {b→d→a→c} TS(���
14
) = 75 ���

51
= {d→a→c, b} TS(���

51
) = 75

���
15

= {d→b→a→c} TS(���
15
) = 69 ���

52
= {a→c, b→d} TS(���

52
) = 84

���
16

= {b→a→c, d} TS(���
16
) = 84 ���

53
= {a→c, d→b} TS(���

53
) = 78

���
17

= {c→a→b→d} TS(���
17
) = 93 ���

54
= {a→c, b, d} TS(���

54
) = 84

���
18

= {c→a→d→b} TS(���
18
) = 96 ���

55
= {c→a→d, b} TS(���

55
) = 93

���
19

= {c→d→a→b} TS(���
19
) = 90 �56 = {c→d→a, b} TS(���

56
) = 87

���
20

= {d→c→a→b} TS(���
20
) = 87 ���

57
= {d→c→a, b} TS(���

57
) = 84

���
21

= {c→a→b, d} TS(���
21
) = 93 ���

58
= {c→a, b→d} TS(���

58
) = 93

���
22

= {c→b→a→d} TS(���
22
) = 105 ���

59
= {c→a, d→b} TS(���

59
) = 87

���
23

= {c→b→d→a} TS(���
23
) = 102 ���

60
= {c→a, b→d} TS(���

60
) = 93

���
24

= {c→d→b→a} TS(���
24
) = 96 ���

61
= {b→c→d, a} TS(���

61
) = 84

���
25

= {d→c→b→a} TS(���
25
) = 93 ���

62
= {b→d→c, a} TS(���

62
) = 81

���
26

= {c→b→a, d} TS(���
26
) = 105 ���

63
= {d→b→c, a} TS(�63) = 75

���
27

= {a→c→b→d} TS(���
27
) = 81 ���

64
= {b→c, a→d} TS(���

64
) = 84

���
28

= {a→c→d→b} TS(���
28
) = 84 ���

65
= {b→c, d→a} TS(���

65
) = 78

���
29

= {a→d→c→b} TS(���
12
) = 84 ���

66
= {b→c, a→d} TS(���

66
) = 84

���
30

= {d→a→c→b} TS(���
30
) = 75 ���

67
= {c→b→d, a} TS(���

67
) = 96

���
31

= {a→c→b, d} TS(���
31
) = 81 ���

68
= {c→d→b, a} TS(���

68
) = 90

���
32

= {b→c→a→d} TS(���
32
) = 93 ���

69
= {d→c→b, a} TS(���

69
) = 87

���
33

= {b→c→d→a} TS(���
33
) = 90 ���

70
= {c→b, a→d} TS(���

70
) = 96

���
34

= {b→d→c→a} TS(���
34
) = 87 ���

71
= {c→b, d→a} TS(���

71
) = 90

���
35

= {d→b→c→a} TS(���
35
) = 81 ���

72
= {c→b, a, d} TS(���

72
) = 96

Fig. 14   Automaton identified by the expression ����)����
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eleven succesive commands to identify ����)@ . This is because when a library call is the 
last instruction, it only needs to be fed twice, i.e., it needs two commands. For instance, in 
our case we just feed instruction @ in ����)@ with �� , i.e., two commands correspond-
ing to the first two instructions of primitive ����.

It can happen that the primitive referred by @ , as a final instruction, might include non-
equivalent instructions ( )-instructions). For instance, if @ points to �)��� , we could skip 
instruction ) , if possible; that is to say, if there are sufficient equivalent instructions in 
the primitive. For example, we should feed @ with �� , corresponding to the 1st and 3rd 
instructions of primitive �)��� . Of course, if the primitive were to be �) , we could not 
skip the 2nd instruction.

In the event that the library call is not the last instruction, we just need to feed all 
the equivalent instructions of the primitive. For instance, if we employ B = ⟨����)⟩ as 
library, ����)���� in L is expressed as @���� in LB , whose shortest path, elegible by 
the learner is at least nine units length.

We do not consider programs with consecutive ocurrences of )-instructions, like )) or 
))) . Then a program with n instructions, without library calls, has ⌊ n

2
⌋ equivalent instruc-

tions minimum and ⌈ n

2
⌉ maximum.

Once that we have shown some particular examples, we are able to give a definition of 
minimum eligible path.

We will consider programs without library calls in this definition. If we get a program 
p with library calls, we will consider ◦(p) instead but with the following exception: if the 
last instruction of p is a library call, we will only consider two instructions of the primitive 
referred by strict order of appearance and skipping instructions ) , if the length of the primi-
tive facilitates it.

Definition 12  Let p be a program in language L without library calls. We say that a path 
on the DFA corresponding to p is minimum eligible when satisfies the following properties: 
(1) The path goes through every edge of the graph, (2) If the path crosses an edge labelled 
as � , it is subsequently followed by the edge �������⃗q0q1 and 3) If there is any edge labelled as � , 
then any path according to previous conditions, 1 ) and 2 ), increases its length one more 
unit.

We now aim to identify sufficient conditions that, in language L, guarantee Inequality 
(2).

We consider language LB where 0 ≤ |B| ; @� denote library calls when |B| > 1 (@ if 
|B| = 1 ). We hold that the value of the instructions of language L, except instructions @� , 
have the same value in bits as commands of Σ4.

We also take the extension for LB′ with B� = ⟨B, p⟩ , where p is a primitive without 
library calls. Though it is not true in general, we assume that the size in bits of a library 
call, @� in LB is equal to a call, @�

′ in LB′.

Theorem 3  Let c ∈ CL and B, B′ libraries such that �(@�) = �(@�
�) , where @� and @�

′ are 
in language LB and LB′ , respectively. Let wc,w

′
c
⊂ X be witness sets with p∗

c|B = Φ�(wc|B) 
and p∗

c|B� = Φ�(w
�
c
|B�) . If wc has no negative examples, then:

(C1)�(wc) − �(w�
c
) ≤ �(p∗

c|B) − �(p∗
c|B� )
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Proof  Since c ∈ CL , we can take a large enough complexity function � . Also, we consider 
that there is just one positive example in wc , since the learner is always given the shortest 
witness set. Moreover, such positive example defines a minimum eligible path, otherwise 
the learner would not be given the simplest witness set. In other words, we can assume the 
following statements: 

1.	 ∃wc,w
�
c
⊂ X such that p∗

c|B = Φ�(wc|B) , p∗c|B� = Φ�(w
�
c
|B�)

2.	 The witness set is wc = {e+} , and e+ is a minimum eligible path on the DFA defined by 
p∗
c|B

The number of steps in such minimum path defined by e+ is given by 𝛿̇(wc) , while the num-
ber of instructions of p∗

c|B is �̇(p∗
c|B) . Then,

Let us suppose that �̇(p∗
c|B� ) = �̇(p∗

c|B) , i.e., language LB′ does not reduce the number of 
instructions of p∗

c|B , then p∗
c|B� = p∗

c|B . So that, w�
c
= wc , and the conclusion (C1) is 

guaranteed.
Let us suppose that �̇(p∗

c|B� ) < �̇(p∗
c|B) . Worst-case scenario implies just one new 

library call, denoted by @�
′ , to reduce p∗

c|B to p∗
c|B� . So that, �̇(p∗

c|B� ) decreases �̇(p∗
c|B) in 

𝓁̇(◦(@�
�)) − 1 units. We observe that, if there were more library calls @�

′ in p∗
c|B� , the reduc-

tion would be larger. Hence,

We now distinguish three sub-cases according to its position and the number of instruc-
tions of the new primitive, @�

� , included in B′.
Case 1: We suppose that 𝛿̇(◦(@�

�)) > 2 and @�
′ is the last instruction in p∗

c|B� . In this 
case, we can feed @�

′ with just two commands.
Hence, considering the library call, the path expressed by the positive example included 

in w′
c
 will verify at the very least:

Substituting (C3) and (C4) in (C2) we obtain

Therefore:

Using equalities (C2) and (C5), we get

Now, we consider that p∗
c|B� has the same number of library calls @� (except @�

′ ). Oth-
erwise, the difference �(p∗

c|B) − �(p∗
c|B� ) would be even greater, since the learner always 

retrieves the shortest option.
So that, we can express in bits (C6) as the following inequality

(C2)𝛿̇(wc) = �̇(p∗
c|B) + n, with n ∈ ℕ(n ≥ 0)

(C3)𝓁̇(p∗
c|B� ) = 𝓁̇(p∗

c|B) − (𝓁̇(◦(@�
�)) − 1)

(C4)𝛿̇(w�
c
) = 𝛿̇(wc) − (𝓁̇(◦(@�

�)) − 2)

𝛿̇(w�
c
) + 𝓁̇(◦(@�

�)) − 2 = 𝓁̇(p∗
c|B� ) + 𝓁̇(◦(@�

�)) − 1 + n, with n ∈ ℕ

(C5)𝛿̇(w�
c
) = �̇(p∗

c|B� ) + (n + 1)

(C6)𝛿̇(wc) − 𝛿̇(w�
c
) = �̇(p∗

c|B) − �̇(p∗
c|B� ) − 1



4077Machine Learning (2023) 112:4049–4080	

1 3

which is the conclusion (C1).
Case 2: Now, we suppose that 𝛿̇(◦(@�

�)) = 2 and @�
′ is the last instruction of p∗

c|B� . 
Then, we need to feed @�

′ with two commands: one to feed the call and another to avoid the 
substitution of such call by an instruction equivalent to a command; otherwise, the learner 
would have chosen a program previous to p∗

c|B� , which is not possible.
Hence, 𝛿̇(w�

c
) = 𝛿̇(wc) , i.e., we can not reduce the teaching size and we get that 

�(wc) − �(w�
c
) = 0 . Since �(p∗

c|B) − �(p∗
c|B� ) ≥ 0 , then we get the conclusion (C1).

Case 3: In this case, the library call @�
′ is not the last instruction. At most, we could 

skip the )-instructions included in ◦(@�
�) , but we should feed its equivalent instructions. So 

that, at the very least, there must be m = ⌊ 𝓁̇(◦(@�
�))

2
⌋ instructions equivalent to commands in 

@�
′ , with m ≥ 1.
Therefore, at the very least we have 𝛿̇(w�

c
) = 𝛿̇(wc) − (𝓁̇(◦(@�

�)) − m).
Also, we can remove 𝓁̇(p∗

c|B� ) = 𝓁̇(p∗
c|B) − (𝓁̇(◦(@�

�) − 1)) . Using (C2) we get that

Then, we obtain 𝛿̇(w�
c
) = �̇(p∗

c|B� ) + n + (m − 1) , which together with (C2) provides:

Since m ≥ 1 and making a translation into bits, similar to the one already done in Case 1, 
we get the conclusion (C1).	�  ◻

Appendix D: Some proofs

In this section we will include the proofs of two theoretical statements. The following 
result is useful to prove Corollary 2.

Lemma 4  Let x, x′ , y, y� ∈ ℕ
∗ verify the following conditions: 

1.	 ∃k1, k2 ∈ ℕ such that x = y + k1 and x� = y� + k2
2.	 x − x� ≤ y − y�

3.	 y′ ≤ y

Then, y
′

y
≤

x′

x
.

Proof  Using Condition 1, we know that

Condition 2 provides that ∃� ≥ 0 such that

From (D8) and (D9), we get that

�(wc) − �(w�
c
) ≤ �(p∗

c|B) − �(p∗
c|B� ),

𝛿̇(w�
c
) + 𝓁̇(◦(@�

�) − m = 𝓁̇(p∗
c|B� ) + 𝓁̇(◦(@�

�) − 1 + n

(C7)𝛿̇(wc) − 𝛿̇(w�
c
) = �̇(p∗

c|B) − �̇(p∗
c|B� ) − (m − 1)

(D8)x + x� = y + k1 + y� + k2

(D9)x − x� + � = y − y�
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Now, the first part of Condition 1 assures that

If we substitute (D11) in (D10), we get that

In other words: ∃� ≥ 0 such that k2 = k1 + � . Therefore:

Utilising Condition 3 we observe that

Also, since k2 ≥ k1 (D12) we can state that

As a consequence of (D13) and (D14) we get y
′

y
≤

x′

x
 , which completes the proof.	�  ◻

We now provide the proof of Corollary 2 (Sect. 5).

Proof  Lemma 4 can be applied to those situations where x = �(wc) , x� = �(w�
c
) , y = �(pc) 

and y� = �(p�
c
) . In such state, it provides a sufficient condition to obtain a lower bound of 

the unknown conditional teaching size using a new primitive. Thus, �(p
�
c
)

�(pc)
≤

�(w�
c
)

�(wc)
 implies the 

conclusion of Corollary 2. 	�  ◻
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=
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