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Abstract
This paper provides both an introduction to and a detailed overview of the principles and 
practice of classifier calibration. A well-calibrated classifier correctly quantifies the level of 
uncertainty or confidence associated with its instance-wise predictions. This is essential for 
critical applications, optimal decision making, cost-sensitive classification, and for some 
types of context change. Calibration research has a rich history which predates the birth of 
machine learning as an academic field by decades. However, a recent increase in the inter-
est on calibration has led to new methods and the extension from binary to the multiclass 
setting. The space of options and issues to consider is large, and navigating it requires the 
right set of concepts and tools. We provide both introductory material and up-to-date tech-
nical details of the main concepts and methods, including proper scoring rules and other 
evaluation metrics, visualisation approaches, a comprehensive account of post-hoc calibra-
tion methods for binary and multiclass classification, and several advanced topics.
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1  Introduction and motivation

A K-class probabilistic classifier is well-calibrated if among test instances receiving a pre-
dicted K-dimensional probability vector s , the class distribution is (approximately) distrib-
uted as s . This property is of fundamental importance when using a classifier for cost-
sensitive classification, for human decision making, or within an autonomous system. It 
means that the classifier correctly quantifies the level of uncertainty or confidence associ-
ated with its predictions. In a binary setting, scores given by a sufficiently calibrated classi-
fier can be simply thresholded to minimise expected misclassification cost. Thresholds can 
also be derived to optimally adapt to a change in class prior, or to a combination of both. In 
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contrast, for a poorly calibrated classifier the optimal thresholds cannot be obtained with-
out optimisation.

Many machine learning algorithms are known to produce over-confident models, unless 
dedicated procedures are applied during training. The goal of (post-hoc) calibration meth-
ods is to use hold-out validation data to learn a calibration map for a previously trained 
model that transforms the model’s predictions to be better calibrated. Many calibration 
methods for binary classifiers have been introduced, including logistic calibration (also 
known as ‘Platt scaling’), various binning methods including isotonic calibration (also 
known as the ROC convex hull method), as well as more recent methods including beta 
calibration and Bayesian methods.

When we have more than two classes, calibration is generally more involved, as is often 
the case with multiclass classification. Multiclass calibration has mostly been approached 
by decomposing the problem into K one-vs-rest binary calibration tasks, one for each class. 
The predictions of these K calibration models form unnormalised probability vectors, 
which, after normalisation, may not be calibrated in a multiclass sense. Native multiclass 
calibration methods were introduced recently focusing on neural networks. These methods 
constitute various multiclass extensions of Platt scaling, adding a calibration layer between 
the logits of the neural network and the softmax layer.

The literature on post-hoc classifier calibration in machine learning is now sufficiently 
rich that it is no longer straightforward to obtain or maintain a good overview of the area, 
which was the main motivation for writing this survey. It grew out of a tutorial we pre-
sented at the 2020 European Conference on Machine Learning and Principles and Practice 
of Knowledge Discovery in Databases (see https:// class ifier- calib ration. github. io). Our aim 
then and now is to provide both introductory material and up-to-date technical details of 
the main concepts and methods. Our focus is on the classical setup where the classifier is 
deployed in the same setting where it was calibrated, except for potential changes in class 
prior or misclassification costs. We do not cover methods to achieve robustness under con-
ditions of other distributional shifts or out-of-distribution inputs (Ovadia et al., 2019). We 
try to do justice to historical developments and pay attention to important topics that are 
not as widely known as they deserve to be, such as proper scoring rules.

We also try to identify and clarify possible sources for confusion. The multiclass set-
ting in particular introduces numerous subtleties that have not always been recognised or 
correctly dealt with in previous work. For example, some authors use the weaker notion of 
confidence calibration, which requires only that the classifier’s predicted probability for 
what it considers the most likely class is calibrated. While this is perfectly valid in its own 
right, it isn’t always appreciated by subsequent authors that this is a much weaker notion 
of calibration than the one defined informally in the first sentence of this survey. One can 
also observe variations in the evaluation metric used and in the way calibrated probabilities 
are visualised. Our main aim in this survey is hence to provide a unified perspective on the 
different methods and metrics for binary and multiclass calibration, giving each variation 
its proper place.

For the purpose of this survey we have developed a Python library which includes 
most of the functionalities presented in the following sections. PyCalib 1 implements sev-
eral calibration metrics (eg. confidence and classwise ECE, and their MCE counterparts), 

1 https:// class ifier- calib ration. github. io/ PyCal ib/.

https://classifier-calibration.github.io
https://classifier-calibration.github.io/PyCalib/
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common calibration methods (eg. Isotonic Calibration, Platt’s Scaling, Binning calibra-
tion), a method to combine arbitrary classifiers and calibrators into a unified training and 
deployment pipeline, a one-vs-the-rest implementation to adapt any binary calibration 
method to the multiclass setting, and multiple visualisation tools to inspect visually the 
calibration quality as well as tools to get better insights about the learned calibration maps. 
As an illustration of the library’s capabilities, most of the figures and results reported in 
this paper have been generated using PyCalib.

The survey is structured as follows. The next section will cover important notions and 
intuitions related to calibration. It aims to be at a more introductory level, leaving techni-
cal detail for later sections. Section 3 discusses proper scoring rules, an important general 
framework for evaluation of probability estimates. In Sect. 4 we present systematic over-
view of visualisation approaches and evaluation metrics for classifier calibration. Section 5 
is devoted to a comprehensive account of post-hoc calibration methods for both the binary 
and multiclass scenarios. Section 6 covers hypothesis tests for calibration, and Sect. 7 con-
cludes with a summary and outlook.

2  A brief introduction to classifier calibration

The origins of classifier calibration can be traced back to weather forecasting and meteorol-
ogy. Here is what the UK Met Office website used to say about what their forecast prob-
abilities mean:

“[S]uppose the Met Office says that the probability of rain tomorrow in your region 
is 80%. They aren’t saying that it will rain in 80% of the land area of your region, 
and not rain in the other 20%. Nor are they saying it will rain for 80% of the time. 
What they are saying is there is an 80% chance of rain occurring at any one place 
in the region, such as in your garden. [...] [A] forecast of 80% chance of rain in your 
region should broadly mean that, on about 80% of days when the weather conditions 
are like tomorrow’s, you will experience rain where you are. [...] If it doesn’t rain in 
your garden tomorrow, then the 80% forecast wasn’t wrong, because it didn’t say rain 
was certain. But if you look at a long run of days, on which the Met Office said the 
probability of rain was 80%, you’d expect it to have rained on about 80% of them. ” 
(https:// web. archi ve. org/ web/ 20210 92823 5732/ https:// www. metoffi ce. gov. uk/ about- 
us/ what/ accur acy- and- trust/ proba bility)

Note the phrase “a long run of days”: determining the degree to which a forecaster is 
well-calibrated cannot be done on a per-forecast basis, but rather requires looking at a suf-
ficiently large and diverse set of forecasts.

Table  1, reproduced from Hallenbeck (1920), groups 123 weather forecasts in 10 
equal-width bins, and compares each bin with the actual empirical percentage of rain 
events. Figure  1 shows two possibilities of displaying this information graphically, 
comparing the predicted probabilities on the x-axis to empirical probabilities on the 
y-axis. A variety of such graphical representations can be found in the literature; they 
are generally known as reliability diagrams, ‘reliability’ being one of many terms used 
to denote goodness of calibration (Murphy & Winkler, 1977). We can see that most of 
the forecasts are slight under-estimates: for example, of the 15 forecasts in the 40–49% 
bin, 8∕15 = 53% were actual rain events. In the left graph this is shown by the vertical 
red line, which indicates how much the top of the blue bar extends above the diagonal 

https://web.archive.org/web/20210928235732/https://www.metoffice.gov.uk/about-us/what/accuracy-and-trust/probability
https://web.archive.org/web/20210928235732/https://www.metoffice.gov.uk/about-us/what/accuracy-and-trust/probability
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(meaning that the actual proportion of rain events was higher than estimated). On the 
right graph this can be seen directly from how much the respective point is higher than 
the diagonal. Similarly, we see that two of the bins (20–29% and 30–39%) are very 
slight over-estimates: on the left graph the top of the blue bar is below the diagonal, 
which means that the actual proportion of rain events was lower than estimated.

The choice of ten equal-width bins is somewhat arbitrary, and it is informative to 
consider different choices. Merging pairs of adjacent bins results in five equal-width 
bins, as depicted in Fig.  2 (left). We see that all but the right-most bin averages are 
now slightly off-centre (we assumed that within each original bin all forecast probabili-
ties are the same and equal to the bin centre: e.g., 25% in the 20–29% bin). Again, the 
pattern is that the higher forecast probabilities are about 10% too low. Figure 2 (right) 
shows what we get with only two bins. We have lost a bit too much information here, so 
bins shouldn’t be taken too wide. On the other hand they shouldn’t be taken too narrow 

Table 1  Reproduced from 
Hallenbeck (1920)

Forecasted probability Number of 
forecasts

Number of 
rains

Actual 
percent-
age

Precent
Above 90 1 1 100
80 to 89 1 1 100
70 to 79 7 6 86
60 to 69 15 11 75
50 to 59 13 8 62
40 to 49 15 8 53
30 to 39 18 6 33
20 to 29 31 7 23
10 to 19 22 4 18
0 to 9 0 – –

Fig. 1  Two different graphical representations of the forecasts in Table 1. (Left) The bottom graph gives a 
histogram of the probability forecasts. The top graph compares the forecast probabilities with the propor-
tion of actual rain events in that bin. The red bars indicate to what extent these proportions are higher or 
lower than predicted. (Right) A simplified visualisation, only showing the proportion of rain events in a bin 
(y-axis) against the average prediction in the bin (x-axis)
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either, in order to be able to measure the true proportion of rain events with sufficient 
resolution.

Taking the forecast event as a binary variable means that the calibration concept is 
directly applicable to binary classification. Here is an example from the typical machine 
learning task of learning a classifier for distinguishing ‘junk’ or ‘spam’ emails from regular 
ones:

A prediction ‘70% chance of spam’ should be spam 70% of the time.

And a generalisation to categorical variables with more than two values is equally 
straightforward, as this example from Fisher’s famous Iris dataset shows:

A prediction ‘70% chance of setosa, 10% chance of versicolor and 20% chance of 
virginica’ should be setosa/versicolor/virginica 70/10/20% of the time.

So, to sum up: A predicted probability (vector) should match empirical (observed) 
probabilities. In the language of predictive machine learning, given an instance space � , 
a binary target space � = {+,−} , and a binary probabilistic classifier 𝖿 ∶ � → [0, 1] , the 
binary classifier is calibrated if ∀s ∈ [0, 1]:

2.1  Why calibration matters

What are the benefits of using well-defined calibrated scales in general, and well-calibrated 
probabilities in particular? One obvious benefit of calibrated scales is that we can easily 
combine measurements that are expressed on the same scale without comparing apples and 
oranges. Another is that we can use standardised decision rules, e.g., defining a fever as a 
body temperature exceeding 100 degrees Fahrenheit. These benefits directly carry over to 
the class probability scenario, justifying decision rules such as predicting the class whose 
estimated probability exceeds 0.5 in binary classification, or the class with the highest pre-
dicted probability for multiclass classification. Importantly, there is a further benefit to 
using calibrated probabilities as it means we can adjust these decision rules in a straightfor-
ward way to account for different class priors or misclassification costs, as we will briefly 
discuss presently.

�(Y = + | � (X) = s) = s

Fig. 2  Dividing the forecasts in Table 1 in five (left figure) and two (right figure) equal-width bins
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Let c = �(+|−)
�(+|−)+�(−|+) be the cost of a false positive in proportion to the combined cost of 

one false positive and one false negative. With these cost parameters the Bayes-optimal 
decision rule is to set the decision threshold to c. For instance, if false positives are 4 times 
as costly as false negatives then we set the decision threshold to 4∕(4 + 1) = 0.8 in order to 
only make positive predictions if we are sufficiently certain. Similar reasoning applies to 
changes in class priors:

• If we trained on balanced classes but want to deploy with 4 times as many positives 
compared to negatives, we lower the decision threshold to 0.2;

• More generally, if we trained for class ratio r and deploy for class ratio r′ we set the 
decision threshold to r∕(r + r�).

Cost and class prior changes can be combined in the obvious way; see Flach (2014) for 
details.

In summary, an important reason to be interested in calibrating our classifiers is that 
default decision rules such as predicting the class with the highest predicted probability are 
fully justified from a decision-theoretic point of view, and can easily be adapted to changes 
in class and cost distributions. In contrast, poorly calibrated classifiers such as naive Bayes 
will often perform sub-optimally with default decision rules. It is possible to learn a better 
decision rule for a given cost and class skew using, e.g., ROC analysis (Lachiche & Flach, 
2003) but this would have to be repeated each time the skew changes. The great advantage 
of post-calibration is that it only needs to be done once – in a sense, it optimises all pos-
sible decision rules in one go.

2.2  Common forms of miscalibration, and how to fix them

There are many reasons why a probabilistic classifier might produce miscalibrated scores, 
and hence many ways in which miscalibration manifests itself, but two main types stand 

Fig. 3  Examples of under- and overconfident classifiers. The axes are the same as for the previous figures: 
x-axis shows predicted probabilities and y-axis shows empirical probabilities. The dots represent the reli-
ability diagram, and the lines show the best-fit logistic curve and beta curve. Note that the logistic sig-
moid is a good fit for underconfident scores but not for overconfidence. The figure has been adapted from 
Niculescu-Mizil and Caruana (2005), and the beta curves have been added
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out: underconfidence and overconfidence. In this section we look at some examples and 
introduce two mitigation techniques.

Figure 3, taken from Niculescu-Mizil and Caruana (2005), shows two typical exam-
ples. In both cases the points in the reliability diagram are far from the diagonal, 
although the effect is smaller in the figure on the right.

What do we see in the left figure? It is quite natural to give precedence to vertical 
information in such graphs, so you might be inclined to say “The points on the left are 
too low, and the points on the right are too high”. But keeping in mind that the predicted 
probabilities on the x-axis are under our control but not the empirical probabilities on 
the y-axis, a more ‘actionable’ way to express this is

The lower points are too far to the right, and the higher points are too far to the 
left. In other words, the points have a tendency to sit too close to the midpoint on 
the x-axis.

This is the typical pattern displayed by an underconfident classifier, which thinks it’s 
worse at separating classes than it actually is.

Hence, to mitigate this, we need to pull predicted probabilities away from the cen-
tre. As the left plot in Fig. 3 shows, this can be neatly modelled by a sigmoidal logistic 
curve, which can be defined in parametric form as

Here, s is the uncalibrated score produced by the classifier and � gives the logistically 
calibrated score. m and w are the two parameters of the logistic family, which determine 
the point where �(s) = 0.5 and the slope at that point, respectively. They can be estimated 
from the points in the reliability diagram in order to find the best fit. In this case they can 
be obtained analytically as the mean of the classwise average scores, and the difference 
between those two means in proportion to the score variance (Flach, 2012).

The fitted logistic curve thus establishes a calibration map which transforms uncali-
brated scores s into calibrated scores �(s) . Even though the calibration map doesn’t map 
to empirical probabilities, plotting it over the reliability diagram allows us to see clearly 
that if we project each point in the reliability diagram vertically onto the calibration 
map, and replace its x-value with the corresponding y-value of the projection, we end up 

�(s;w,m) =
1

1 + exp(−w(s − m))

Fig. 4  Graphical illustration of how a well-fitted calibration map leads to near-perfect calibration. From left 
to right, the dotted arrows show (1) using a point’s uncalibrated score s on the x-axis as input to the calibra-
tion map, (2) mapping the resulting output �(s) back to the diagonal, and (3) combine with the empirical 
probability of the point we started from. The closer the original point is to the fitted calibration map, the 
closer the calibrated point (in red) will be to the diagonal
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with points on or very close to the diagonal, and hence near-perfectly calibrated scores 
(Fig. 4).

The logistic curve is widely used as a ‘squashing function’, compressing values on a 
possibly unbounded scale into the [0, 1] interval. Following Platt (2000) it is often used as 
a way to convert scores from a Support Vector Machine into probabilities. Technically this 
isn’t calibration as SVM scores are not probabilities but (signed) geometric distances from 
the decision boundary – this is also called scaling to emphasise the difference (hence the 
popular name ‘Platt scaling‘). The parametric form of the logistic map can be derived from 
first principles by assuming that within each class the uncalibrated scores are normally dis-
tributed with the same variance.

The other common form of miscalibration is overconfidence, as exemplified in Fig. 3b, 
c. An overconfident classifier thinks it’s better at separating classes than it actually is. 
Hence we need to make predicted probabilities less extreme by pushing them toward the 
centre. The paper we took this figure from Niculescu-Mizil and Caruana (2005) also fit-
ted a logistic curve to this reliability diagram Fig. 3b, because they were investigating the 
effect of Platt scaling in a wide range of scenarios. But we see clearly that the fit is rather 
poor, and using this logistic curve as a calibration map is likely to make matters worse. In 
this particular case we would be looking for something that can produce an inverse sigmoi-
dal curve. What would be a principled way to achieve this?

One approach that works well is to model the classwise scores with Beta distributions 
(Kull et  al., 2017a, 2017b). These assume random variables bounded in [0,  1] which is 
exactly what we need for post-hoc calibration. Beta distributions can easily model the 
skewed distributions resulting from overconfident classifiers, as demonstrated in Fig. 3b. 
Mathematically, these curves have three parameters:

This additional degree of freedom allows Beta calibration to produce both sigmoidal and 
inverse-sigmoidal calibration maps. It can even fit the identity map ( a = b = 1 , c = 0 ), 
which means that Beta calibration can recognise that scores are already calibrated. In con-
trast, applying logistic calibration to a calibrated classifier will decalibrate it. While Beta 
calibration can achieve many shapes of calibration maps, it is still a limited parametric 
family. Methods to fit richer calibration map families will be discussed in Sect. 5.

2.3  Multiclass calibration

The examples we have seen so far all relate to binary classification. Is it straightforward 
to generalise calibration concepts and methods to more than two classes? The answer to 
this question is somewhat involved. Some ideas do generalise quite easily: for example, 
we can model per-class scores by multivariate distributions such as Dirichlet distributions 
(Kull et al., 2019). Some other ideas don’t generalise easily at all: for example, a multiclass 
generalisation of isotonic regression is not straightforward because rankings are inherently 
bipartite. Such approaches therefore need to be approximated by considering classes in a 
pairwise or one-versus-rest manner.

�(s;a, b, c) =
1

1 + exp(−a ln s + b ln(1 − s) − c)
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This helps to explain why there is divergence even at a definitional level. There are at 
least three different ways of defining what it means to be calibrated in a multiclass setting. 
They are equivalent for binary classification but increasingly stronger for more than two 
classes,2 and can be summarised as follows:

• Confidence calibration: only consider the highest predicted probability.
• Classwise calibration: only consider marginal probabilities.
• Multiclass calibration: consider the entire vector of predicted probabilities.

We will use this terminology throughout the paper to avoid confusion.
Confidence calibration was proposed by Guo et  al. (2017), although not under that 

name. It requires that among all instances where the probability of the most likely class is 
predicted to be � , the expected accuracy is � . Let � denote the instance space and ℙ

𝕐
 the 

probability K-simplex, then a probabilistic classifier 𝖿 ∶ 𝕏 → ℙ
𝕐
 is confidence-calibrated, 

if for any confidence level � ∈ [0, 1] , the actual proportion of the predicted class, among all 
possible instances x being predicted this class with confidence � , is equal to �:

Here, Sj denotes the j-th dimension of � (X).
Classwise calibration, proposed by Zadrozny and Elkan (2002), requires that all one-

vs-rest probability estimators obtained from the original multiclass model are calibrated. 
Formally, a probabilistic classifier 𝖿 ∶ 𝕏 → ℙ

𝕐
 is classwise-calibrated, if for any class 

i ∈ {1,… ,K} and any predicted probability value s ∈ [0, 1] for this class, the actual pro-
portion of class i, among all possible instances on the random variable X getting the same 
prediction on class i, is equal to s:

Multiclass calibration, also called calibration in the strong sense (Widmann et al., 2019), 
is the strongest form of calibration for more than two classes, subsuming the previous two 
definitions. A probabilistic classifier 𝖿 ∶ 𝕏 → ℙ

𝕐
 is multiclass-calibrated if for any predic-

tion vector s = [s1,… , sK] ∈ ℙ
𝕐
 , the proportions of classes among all possible instances 

on the random variable X getting the same prediction � (X) = s are equal to the prediction 
vector s:

For practical purposes, the conditions in these definitions need to be relaxed. This is where 
binning comes in. Once we define the bins, we can draw a reliability diagram as in the 

�(Y = Ŷ | SŶ = 𝛼) = 𝛼 where Ŷ = argmax
j

Sj.

�(Y = i ∣ Si = s) = s

�(Y = i ∣ � (X) = s) = si for i = 1,… ,K.

2 In rare cases it is possible for a multiclass classifier to be classwise calibrated but not confidence cali-
brated. Here is an example with 40 instances in four groups: 10 instances with predicted probabilities 
(0.3,0.3,0.4) and actual class distribution (4,2,4); another 10 with probabilities (0.4,0.3,0.3) and classes 
(3,4,3); another 10 with probabilities (0.4,0.6,0.0) and classes (5,5,0); and the remaining 10 instances with 
probabilities (0.3,0.6,0.1) and classes (2,7,1). This classifier is classwise-calibrated but not confidence-cal-
ibrated. There are 20 instances with confidence level 0.6 and accuracy 0.6 (5+7=12 out of 20), but the 
remaining 20 instances have confidence 0.4 and accuracy 0.35 (4+3=7 out of 20). The key idea of this 
construction is that classwise calibration considers the instances with 0.4 predicted for class 1 as a single 
group, but confidence calibration looks among them only at those instances for which 0.4 is the highest 
probability – e.g., it does consider (0.4,0.3,0.3) but not (0.4,0.6,0.0).
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two-class case. For classwise calibration, we can show per-class reliability diagrams or a 
single averaged one. One way to assess the degree of calibration is by means of the gaps in 
the reliability diagram. These topics will be explored in Sect. 4. We will first take a closer 
look at the important concept of proper scoring rules in the next section. Proper scoring 
rules are instance-wise evaluation measures for probability estimates that avoid the need 
for score binning. As a result they cannot measure the degree of calibration directly, but 
through decomposition results, we will show how the scores can be decomposed into vari-
ous components, including the calibration loss.

3  From proper scoring rules to calibration

As early as 1950 researchers were interested in scoring functions that would evaluate prob-
abilistic forecasts without influencing the forecaster into making undesirable predictions 
(Brier, 1950), thus keeping the forecaster “honest” while encouraging useful forecasts. In 
the late 1960s the term proper scoring rule was already in use for score functions whose 
computation was based on a forecaster’s probabilities and the actual occurrence or not of 
the corresponding events (Winkler, 1969). Informally, a scoring rule is said to be proper if 
optimal values are obtained by the forecaster predicting the true probabilities of the events. 
Proper scoring rules and their ability to induce useful and accurate forecasts also lend 
themselves to game-theoretic interpretations, as discussed in the seminal work of Savage 
(1971).

Before diving into details, let us introduce the notation. In a multiclass classification 
task with K classes, let the true class of an instance be a vector ẏ = [y1,… , yK] , where 
yj = 1 when the true class is j, otherwise yj = 0 . Additionally, let s = [s1,… , sK] be a 
class probability vector obtained from a classification model for an instance, i.e. sj ≥ 0 , 
j = 1,… ,K and 

∑K

j=1
sj = 1 . A scoring rule 𝜙(s, ẏ) is a non-negative measure of how well 

the estimated probability vector s matches the true class vector ẏ . We assume that lower 
values of 𝜙(s, ẏ) are better.3

Popular scoring rules include Brier score �BS and log-loss �LL , which are defined as 
follows:

Our Brier score definition ranges between 0 and 2, agreeing with Brier’s original definition 
(Brier, 1950), although it is now common for half this quantity to be called Brier score. 
While scoring rules evaluate the loss incurred by the class probability estimates for a single 
instance, we are usually interested in evaluating the performance of a model on test data. 

(1)𝜙BS(s, ẏ) =

K∑

j=1

(sj − yj)
2.

(2)𝜙LL(s, ẏ) = −

K∑

j=1

yj log sj.

3 Some authors (Winkler, 1969; Gneiting & Raftery, 2007) use scoring rules in the opposite way, i.e. 
higher is better, sometimes calling them utility or payoff functions, in the sense that a forecaster is rewarded 
for giving better predictions. If a scoring rule was proposed as a payoff function, we can typically negate its 
values such that lower values are better.
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Thus, given a test dataset, we can calculate the empirical loss as the average instance-wise 
loss across the data.

Suppose the class labels ẏ are drawn from the true distribution q over classes. A scor-
ing rule � is proper if its expected value on probability vector s and ẏ is higher than (i.e., 
worse) or the same as its expected value on q and ẏ , that is if

and it is strictly proper if and only if both sides of the expression being equal implies s = q . 
Both Brier score and log-loss are strictly proper scoring rules.

Among proper scoring rules, log-loss in particular is frequently used as the training 
loss of machine learning methods such as neural networks, often under the name of cross-
entropy. It is also the loss function used by most of the calibration methods discussed in 
Sect. 5, including Platt scaling, temperature scaling and its variations (vector and matrix), 
beta calibration and Dirichlet calibration. A notable exception is isotonic calibration, which 
optimised Brier score.

At the instance level, log-loss only depends on the predicted class probability for the 
true class (as all other classes yj are zero) and it might not be obvious why it is a proper 
scoring function. For example, one could argue that it does not matter whether the model 
predicts [0.8,  0.2,  0.0] or [0.8,  0.1,  0.1] on an instance of class 1, as log-loss would be 
− ln(0.8) in both cases. However, one needs to keep in mind that properness is defined 
as an expectation over a population. For instance, suppose that, for a population of 
instances, the true probability is [0.8, 0.2, 0.0]. In this case, the expected log-loss will be 
−(0.8 log(s1) + 0.2 log(s2)) , which can only be minimised by predicting the probability 
vector [0.8, 0.2, 0.0], satisfying the properness condition. Note that log-loss can be domi-
nated by cases where the true class is predicted with low probability: in the extreme case of 
a single instance with zero probability for the true class the loss is infinite.

3.1  Decompositions of proper scoring rules

When proposing the forecast evaluation that would later be known as Brier score, Brier 
mentioned that it could not be “gamed”, i.e. in order to obtain low scores, the forecaster has 
to produce honest, useful and correct predictions. Later research focused on why this was 
true for Brier score and other proper scoring rules.

Sanders (1963) showed that Brier score corresponds to the sum of two aspects of prob-
ability evaluation: validity and sharpness, terms introduced by Miller (1962) and Bross 
(1954), respectively. Validity, later known as reliability (Murphy & Winkler, 1977), is now 
often called calibration loss (Kull & Flach, 2015). It refers to the fit between the forecasts 
and the frequency of occurrence of the event, which means that it is a joint property of the 
predictions and the events. Sharpness, which is now commonly called refinement loss and 
was also known as resolution (Murphy & Winkler, 1977), is the loss due to predicting the 
same probability for instances from different classes. DeGroot and Fienberg (1983) showed 
that these two terms make up proper scoring rules in general, and that probabilistic predic-
tions should minimise refinement loss subject to calibration.

We now formally introduce such proper scoring rule decompositions. Let X and 
Ẏ = [Y1,… , YK] be multivariate random variables, respectively corresponding to the fea-
tures and the class of a randomly picked instance, where Yj = 1 if the instance is of class j, 

�ẏ∼q

[
𝜙
(
s, ẏ

)]
≥ �ẏ∼q

[
𝜙
(
q, ẏ

)]
,
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otherwise Yj = 0 , for j = 1, 2,… , k . Given a scoring classifier, class probability estimator 
or probability forecaster � , we denote by S = [S1, S2, ..., Sk] = � (X) the vector output of � for 
random feature X , where S is a random vector due to its dependence on X . The expected 
value of proper scoring rule � with respect to S and Ẏ is then �

[
𝜙
(
S, Ẏ

)]
.

Consider a classification test set of 10 instances belonging to three classes ( K = 3 ) and 
described by 3 features, as shown in column X(i) of Table 2. Suppose instances 1, 2, 3 and 
5 belong to class 1, i.e. Y1 = 1 , instances 4, 6, 7, 8 belong to class 2 and the rest belong to 
class 3. Note that in this example, the optimal class posteriors Q(i) are given, however this 
is not generally the case. Additionally, the sample is representative by design, with average 
Y(i) , among instances with the same feature values, exactly agreeing with Q(i) . Given col-
umns S(i) and Y(i) from Table 2, and using Equations (1) and (2), by averaging over the 10 
instances, we get a mean Brier score of 0.71 and mean log-loss of 1.12.

Now let C = [C1,C2,… ,CK] be yet another random vector, where Cj = �[Yj|S] , i.e. Cj 
represents the actual proportion of class j given all instances which received the same esti-
mate S from model � . The decomposition of proper scoring rule � into calibration loss 
and refinement loss is then the sum of expected loss between S and C and expected loss 
between C and Y (Bröcker & Smith, 2007; Kull & Flach, 2015):

where 𝖽 ∶ ℙ
𝕐
× ℙ

𝕐
→ ℝ is the divergence associated to proper scoring rule � . For log-loss 

and Brier score, � has been shown to correspond to the Kullback-Leibler divergence and 
the mean squared difference, respectively (Kull & Flach, 2015).

The definition above is given based on expected population loss. In practice, we would 
be calculating these quantities on test data, as we generally do not have access to the whole 
population. Thus, we actually calculate an empirical loss. But assuming that test data is 
representative of the whole population and that there is a uniform distribution over the test 
instances and zero probability elsewhere, empirical loss can be interpreted as a special case 
of expected loss and all decompositions derived for expected loss also apply to empirical 
loss (Kull & Flach, 2015).

�
[
�
(
S, Ẏ

)]
= �

[
�
(
S,C

)]
+ �

[
�
(
C, Ẏ

)]
,

Table 2  Example dataset with three classes and three features. Column Q(i) shows class posteriors given by 
the optimal model with Q

1
= 0.25X

1
 , Q

2
= 0.25X

2
 and Q

3
= 1 − (Q

1
+ Q

2
) . Column S(i) corresponds to esti-

mated class posteriors S = f (X) , which are given by S
1
= 0.3X

3
 , S

2
= 0.1X

2
 and S

3
= 1 − (S

1
+ S

2
) . Finally, 

column C represents calibrated probabilities

i X
(i)

Y
(i)

Q
(i)

S
(i)

C
(i)

1 (3, 1, 3) (1, 0, 0) (0.75, 0.25, 0.0) (0.9, 0.1, 0.0) (0.75, 0.25, 0.0)
2 (3, 1, 3) (1, 0, 0) (0.75, 0.25, 0.0) (0.9, 0.1, 0.0) (0.75, 0.25, 0.0)
3 (3, 1, 3) (1, 0, 0) (0.75, 0.25, 0.0) (0.9, 0.1, 0.0) (0.75, 0.25, 0.0)
4 (3, 1, 3) (0, 1, 0) (0.75, 0.25, 0.0) (0.9, 0.1, 0.0) (0.75, 0.25, 0.0)
5 (2, 2, 2) (1, 0, 0) (0.50, 0.50, 0.0) (0.6, 0.2, 0.2) (0.17, 0.50, 0.33)
6 (2, 2, 2) (0, 1, 0) (0.50, 0.50, 0.0) (0.6, 0.2, 0.2) (0.17, 0.50, 0.33)
7 (0, 2, 2) (0, 1, 0) (0.0, 0.50, 0.50) (0.6, 0.2, 0.2) (0.17, 0.50, 0.33)
8 (0, 2, 2) (0, 1, 0) (0.0, 0.50, 0.50) (0.6, 0.2, 0.2) (0.17, 0.50, 0.33)
9 (0, 2, 2) (0, 0, 1) (0.0, 0.50, 0.50) (0.6, 0.2, 0.2) (0.17, 0.50, 0.33)
10 (0, 2, 2) (0, 0, 1) (0.0, 0.50, 0.50) (0.6, 0.2, 0.2) (0.17, 0.50, 0.33)
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In our example in Table  2, the first four instances share the same model scores 
S = [0.9, 0.1, 0.0] , with the first three instances belonging to class 1 and the fourth 
to class 2. Thus, for these instances, C = [0.75, 0.25, 0.0] . The other six instances 
also share a score vector, with 1 instance from class 1, three from class 2 and 2 
instances from class 3. As a result, they share the same calibrated probabilities 
C = [1∕6, 3∕6, 2∕6] . Given these values and considering Brier score, calibration loss is 
0.19 and refinement loss is 0.52, which sum up to the Brier score of 0.71, as expected. 
For log-loss the decomposition is 1.12 = 0.29 + 0.83.

It is easy to see that a function that maps S to C , known as a calibrator in Sect. 5, 
could potentially reduce calibration loss to 0, consequently decreasing proper scoring 
rule loss. Refinement loss, on the other hand, is only zero if there are no ties between 
instances of different classes, i.e. they do not share the same value for S . If that is the 
case, it is possible to map S to C such that it is perfectly confident and correct, i.e. 
Cj = Yj.

Now suppose we knew the optimal model that outputs the true posterior class prob-
abilities Q = [Q1,Q2,… ,QK] , where Qj = �[Yj|X] , i.e. Qj is the true proportion of class 
j among instances with feature values X . Then the expected loss according to proper 
scoring rule � can be decomposed into the sum of expected divergences between S and 
Q and Q and Y:

The first term in the sum is called epistemic loss (Senge et al., 2014) and is the loss due 
to our model � (X) not being optimal. The second term is called irreducible or aleatoric 
loss (Senge et al., 2014) and is the loss of the optimal model. Going back to the example 
in Table 2, for Brier score, epistemic loss is 0.26 and irreducible loss is 0.45. For log-loss 
the decomposition is 1.12 = 0.48 + 0.64 . The irreducible loss is only zero if the attributes 
of every instance X carry enough information to uniquely define the label Ẏ . It is thus not 
possible to come up with a procedure to reduce the overall loss based on it. Additionally it 
would be unrealistic to do so based on epistemic loss. We are then naturally drawn to cali-
bration loss as it is simple to interpret (we want our predicted probabilities of occurrence 
of an event to match the actual frequencies of occurrence) and also because we can easily 
estimate it with enough data. Thus, as discussed in the following section, visualisation and 
estimation of miscalibration have received considerable attention in the literature of prob-
ability evaluation and machine learning.

4  Evaluation and visualisation of classifier calibration

In this section we present a range of approaches to evaluate and visualise calibration, 
and discuss the advantages and disadvantages of each. In Sect. 4.1 we explore the first 
steps towards measuring miscalibration, starting from the early work on weather fore-
cast calibration, and discuss various approaches to visually inspect miscalibration. 
Some of those early approaches have been later adapted and proposed as new calibra-
tion metrics which are discussed in the following sections. We start with binary cali-
bration in Sect. 4.2 which will serve as a building block for the two multiclass calibra-
tion measures discussed in Sects. 4.3 and 4.4.

�
[
�
(
S, Ẏ

)]
= �

[
�
(
S,Q

)]
+ �

[
�
(
Q, Ẏ

)]
,
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4.1  Visualising calibration

Several visualisation techniques have been proposed for easier inspection of the reliability 
of predictions at different score ranges. In this section we summarise a range of approaches 
that have been proposed in the literature, from simple tabular inspection to the more recent 
reliability diagrams (see Bröcker and Smith (2007) for an extended discussion of reliability 
diagrams).

Starting from the binary case, the basic idea has been to show the relation between a 
particular predicted score ŝ ∈ [0, 1] for the positive class of a probabilistic classifier and 
the respective observed proportion of positives, which we denote by �̄(ŝ) . In order to com-
pute a observed proportion of positives we require multiple samples with the same score ŝ . 
However, given that the scores are continuous variables, the probability of getting multiple 
samples with the same score is almost zero. For that reason, the score space is commonly 
discretised into M bins {�1,… ,�M} , thus increasing the probability of having multiple 

Fig. 5  Different graphical representations of calibration-related information found in the literature
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samples per estimation range (perhaps by forcing each bin to have a minimum number of 
samples). Then, we can obtain M observed proportions of positives �̄(�m) instead of one 
per score value ŝ . See Table 1 for an early use of observed proportions of positives using 
equal-width bins of predicted probabilities.

Later work showed line plots instead of tabular data, with markers at the centre of each 
bin (Sanders, 1963; Lichtenstein et al., 1977, 1982; Murphy & Winkler, 1977); occasion-
ally including the number of samples in each bin next to the markers (See Fig. 5a). Other 
authors showed the markers with size relative to the sample size (Hagedorn et al., 2005), or 
as a separate histogram next to the reliability diagram (Niculescu-Mizil & Caruana, 2005). 
Line plots facilitate visual inspection of the discrepancy of the observed proportions of 
positives against a perfectly calibrated model, which corresponds to the diagonal. However, 
positioning the markers at the centre of the bins can be misleading, as even perfectly cali-
brated scores may result in a visually non-calibrated reliability diagram with a deviation 
of up to half the bin width from the diagonal (Bröcker & Smith, 2007) (See Fig. 6 for an 
example). This may happen in cases in which the scores are not evenly distributed in each 
bin.

In order to alleviate this problem, later work centred the markers on the average pre-
dicted scores �̄(�m) in each bin instead.

There are two main methods to group the predicted scores into bins to build reliability 
diagrams. The first one, commonly called width binning, distributes scores into a number of 
bins of the same width, choosing bin edges accordingly (e.g., 10 bins [0, 0.1], (0.1, 0.2],… , 
(0.9, 1.0]). Another method, called frequency binning (also equal size or equal mass bin-
ning) groups the scores by keeping the same number of samples in each bin. Frequency 
binning can and will normally result in bins with different widths, but it ensures that all 
bins have the same “weight” when assessing the model’s miscalibration.

Fig. 6  Simple example showing the maximum discrepancy in calibration error when using the centre of the 
bin for the marker instead of the average score of the bin. Both examples show only two bins [0, 0.5) and 
[0.5, 1]. a shows a model not calibrated, but using the centre of the bin (green dashed line) visually seems 
calibrated. The gap between the centre of the bin and the average score is maximum, which corresponds 
to half of the bin size with respect to the average score (red line). b shows a calibrated model which seems 
uncalibrated if using the centre of the bin. The gap is again half of the bin size
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Bin estimations have varying reliability, e.g., depending on the number of samples in 
the bin. One way to show this visually is by incorporating confidence intervals. One of the 
simplest methods is to assume that each bin is sampled from a binomial distribution, and 
compute the corresponding confidence intervals of the observed proportion of positives 
(see Fig. 7b). However, making the assumption of fixed bins, score averages and propor-
tion of positives is unrealistic; unless the score distribution is uniform (see Bröcker and 
Smith (2007) for a detailed discussion). More accurate intervals can be obtained by using 
the consistency resampling method proposed by Bröcker and Smith (2007), which consists 
on sampling the scores with replacement several times in order to obtain multiple surrogate 
forecasts and observations and their respective quantiles.

More recently, binary reliability diagrams have been extended to the multiclass setting. 
One method to show multiclass scores in a binary fashion consists in plotting only the con-
fidence of the model for each sample (the highest score among all possible classes). This 

Fig. 7  Examples of reliability diagrams using the Python library PyCalib
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approach was already used for binary classification by Lichtenstein et  al. (1977), repro-
duced here as Fig.  5b. The figure shows a binary reliability diagram with scores in the 
range [0.5, 1] (with K classes the confidence is never lower than 1/K). Another example 
of the use of confidences in multiclass problems is the recent work of Guo et al. (2017), 
which shows the confidence for multiclass problems in the form of bar plots and the ECE 
and MCE metrics discussed below. Finally, instead of collapsing all classes into a single 
diagram one could construct one reliability diagram per class as line plots or bars in a one-
vs-rest manner (Kull et al., 2019) (see Fig. 7c).

4.2  Evaluating calibration error: the binary case

We now proceed with discussing how to measure calibration error. We will use the 
three-class toy problem in Table  3 throughout. In this section we convert it to a binary 

Table 3  Class probabilities given 
by a classifier to 30 instances 
belonging to three different 
classes

id ŝ
1

ŝ
2

ŝ
3

y

1 1.0 0.0 0.0 1
2 0.9 0.1 0.0 1
3 0.8 0.1 0.1 1
4 0.7 0.1 0.2 1
5 0.6 0.3 0.1 1
6 0.4 0.1 0.5 1
7 1/3 1/3 1/3 1
8 1/3 1/3 1/3 1
9 0.2 0.4 0.4 1
10 0.1 0.5 0.4 1
11 0.8 0.2 0.0 2
12 0.7 0.0 0.3 2
13 0.5 0.2 0.3 2
14 0.4 0.4 0.2 2
15 0.4 0.2 0.4 2
16 0.3 0.4 0.3 2
17 0.2 0.3 0.5 2
18 0.1 0.6 0.3 2
19 0.1 0.3 0.6 2
20 0.0 0.2 0.8 2
21 0.8 0.2 0.0 3
22 0.8 0.1 0.1 3
23 0.8 0.0 0.2 3
24 0.6 0.0 0.4 3
25 0.3 0.0 0.7 3
26 0.2 0.6 0.2 3
27 0.2 0.4 0.4 3
28 0.0 0.4 0.6 3
29 0.0 0.3 0.7 3
30 0.0 0.3 0.7 3
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classification problem by taking class 1 as positive and classes 2 and 3 as negative. We 
then apply equal-width binning to the class 1 probabilities. Table 4 shows the resulting bins 
�m , m ∈ {1,… , 5} , from which we calculate the number of instances in the bin denoted as 
|�m| , the average probability �̄(�m) , the proportion of positives �̄(�m) , and the absolute gap 
between them |�̄(�m) − �̄(�m)|.

The values of �̄(�m) , �̄(�m) and |�̄(�m) − �̄(�m)| in Table 4 can be used to draw the reli-
ability diagram shown in Fig. 8, where we can see the red bars representing the calibration 
error at each bin.

Given the information about the bins in Table 4 we could calculate an average of the 
bin-wise calibration error, which leads us to binary estimated calibration error, as defined 
in Definition 1.

Definition 1 (Binary-ECE) Binary estimated calibration error (Roelofs et  al., 2021), or 
binary-ECE (Naeini et al., 2015), is the average gap across all bins in a reliability diagram, 
weighted by the number of instances in each bin:

where M and N are the number of bins and instances, respectively. Binary-ECE is also 
commonly called binary expected calibration error, however this quantity is empirically 

���binary =

M∑

m=1

|�m|
N

|�̄(�m) − �̄(�m)|,

Table 4  Positive probabilities and corresponding instance labels separated into 5 bins. The probabilities 
were obtained by taking class 1 as the positive class in the multiclass problem in Table 3. To reduce the 
width of the table, a number followed by a superscript parenthesis X(Y) indicates a list of number X repeated 
Y times

�
m

|�
m
| �(�

m
) �̄(�

m
) �(�

m
) �̄(�

m
) |�̄(�

m
) − �̄(�

m
)|

�
1

11 0.0(4) , 0.1(3) , 0.2(4) 0.10 0(9) , 1(2) 0.18 0.08
�
2

7 0.3(2) , 1∕3(2) , 0.4(3) 0.35 0(4) , 1(3) 0.43 0.08
�
3

3 0.5, 0.6, 0.6 0.57 0, 0, 1 0.33 0.24
�
4

7 0.7(2) , 0.8(5) 0.77 0(5) , 1(2) 0.29 0.48
�
5

2 0.9, 1.0 0.95 1, 1 1.00 0.05

Fig. 8  Reliability diagram corre-
sponding to the 5 bins presented 
in Table 4
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estimated on a validation or test sample, which is why we prefer to call it binary estimated 
calibration error.

Binary-ECE aggregates part of the visual information about calibration error in Fig. 8 
by taking the weighted mean of the sizes of these gaps. In this example, ���binary = 0.1873

.
Binary-ECE ranges from 0 to 1, with particular values including ���binary = �1 (propor-

tion of positives) for a classifier that randomly outputs probability 1 for one of the classes, 
���binary = 0 for a perfect classifier that always predicts probability 1 for the correct class 
or for a classifier that constantly outputs positive probability equal to �1 , and ���binary = 1 
for a classifier that always assigns probability 1 to the wrong class.

Instead of measuring how miscalibrated the model is on average, one might be inter-
ested in the worst case, in other words “how maximally miscalibrated is the model”? In this 
case, one might use the binary maximum calibration error (Naeini et al., 2015).

Definition 2 (Binary-MCE) Binary maximum calibration error (binary-MCE) is the maxi-
mum gap across all bins in a reliability diagram:

In our example, Table 4 and Fig. 8 show that the fourth bin has the largest gap, with its 
size corresponding to ���binary = 0.48.

Binary-MCE can be very sensitive to bins with few instances, where the values of �̄(�m) 
and �̄(�m) are calculated based on very little information. In extreme cases with only a sin-
gle instance in a bin, �̄(�m) will be the instance’s actual label (1 or 0), potentially resulting 
in a large gap that would have a small weight in binary-ECE, while being the whole value 
of binary-MCE, meaning that the model would be evaluated based on its performance for a 
single instance.

4.3  Classwise calibration error

We now proceed to settings with more than two classes and start by defining the estimated 
calibration error corresponding to a single class j in a multiclass task.

Definition 3 (Class-j-ECE) Given a multiclass task with K classes, class-j-ECE cor-
responds to the binary-ECE calculated by taking class j as positive and the other K − 1 
classes together as a new negative class:

where �m,j is the m-th bin of class j.

Once again we turn to our example in Table 3. Following Definition 3, we have already 
calculated class-1-ECE (0.1873) in our binary-ECE example. Now we need to calculate 
class-2-ECE and class-3-ECE. Tables 5 and 6 show the binary bins for classes 2 and 3, 
respectively, while the binary reliability diagrams of the three classes can be seen in Fig. 9.

���binary = max
m∈{1,…,M}

|�̄(�m) − �̄(�m)|.

���j =

M∑

m=1

|�m,j|
N

|�̄j(�m,j) − �̄j(�m,j)|,
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From the values in Tables  5 and 6 and following Definition 3, we get 
class-2-ECE = 0.147 and class-3-ECE = 0.2017.

We can now define classwise-ECE (Kull et al., 2019).

Definition 4 (Classwise-ECE) The estimated classwise calibration error (classwise-ECE) 
is the average class-j-ECE across all classes:

���classwise =
1

K

K∑

j=1

���j.

Table 5  Positive probabilities and corresponding instance labels separated into 5 bins. The probabilities 
were obtained by taking class 2 as the positive class in the multiclass problem in Table 3

�
m,2

|�
m,2

| �(�
m,2

) �̄(�
m,2

) �(�
m,2

) �̄(�
m,2

) |�̄(�
m
) − �̄(�

m
)|

�
1,2

15 0(5) , 0.1(5) , 0.2(5) 0.10 0(10) , 1(5) 0.33 0.23
�
2,2

12 0.3(5) , 1∕3(2) , 0.4(5) 0.35 0(8) , 1(4) 0.33 0.02
�
3,2

3 0.5, 0.6, 0.6 0.57 0, 0, 1 0.33 0.24
�
4,2

0
�
5,2

0

Table 6  Positive probabilities and corresponding instance labels separated into 5 bins. The probabilities 
were obtained by taking class 3 as the positive class in the multiclass problem in Table 3

�
m,3

|�
m,3

| �(�
m,3

) �̄(�
m,3

) �(�
m,3

) �̄(�
m,3

) |ȳ(�
m
) − p̄(�

m
)|

�
1,3

11 0.0(4) , 0.1(3) , 0.2(4) 0.10 0(7) , 1(4) 0.36 0.26
�
2,3

11 0.3(4) , 1∕3(2) , 0.4(5) 0.35 0(9) , 1(2) 0.18 0.17
�
3,3

4 0.5, 0.5, 0.6, 0.6 0.55 0, 0, 0, 1 0.25 0.3
�
4,3

4 0.7, 0.7, 0.7, 0.8 0.72 0, 1, 1, 1 0.75 0.03
�
5,3

0

Fig. 9  Binary reliability diagram of each class in our running example. Note the empty bins in the second 
and third reliability diagrams, showing that the classifier never outputs high probabilities for these classes
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According to Definition 4, in our example classwise-ECE = (0.1873 + 0.147 + 0.2017)∕3

= 0.1787.

Definition 5 (Classwise-MCE) The maximum classwise calibration error (classwise-
MCE) (Kull et al., 2019) is defined as the maximum gap across all bins and all classwise-
reliability diagrams:

In our running example, ���classwise = 0.48.
Note that this is not the only way to define classwise-MCE. For example, one could be 

interested in the average maximum gap across classes, i.e. an average class-j-MCE, which 
in our example would be (0.48 + 0.24 + 0.3)∕3 = 0.34 . As another variation, one could 
take the maximum class-j-ECE, which would then indicate the most miscalibrated class on 
average. In our example, this variation corresponds to class-3-ECE (0.2017).

Although classwise-ECE and MCE measure calibration error over all classes, they 
do not take into account the miscalibration that arises from every possible relationship 
between classes. For a true multiclass-ECE, we could bin the probability vectors in simplex 
space and then calculate the gaps between the average probability vector and the vector of 
class proportions in each bin. Although this seems like the right thing to do when evaluat-
ing multiclass calibration, it might not be efficiently computable with large numbers of 
classes, as the number of bins can be prohibitively high and most bins would likely be 
empty.

Similarly to binary-ECE, a value of classwise-ECE = 0 can be obtained by a classifier 
that constantly outputs the class proportions. For example, if a classifier always predicts 
1/3 setosa, 1/3 versicolor and 1/3 virginica for Fisher’s Iris dataset, the resulting classwise-
ECE will be 0.

4.4  Confidence calibration error

As already mentioned, some calibration measures only consider a model’s confidence, 
defined as the maximum value in the predicted probability vector, i.e. the probability given 
to the winning class. Prediction confidence is not a new idea and has been around since at 
least the 1970s. Lichtenstein et al. (1977) called it the half-range method in the binary case 
(referred to as “two alternatives” in the paper) and it was also mentioned as one of the vari-
ations of the multiclass task, which the authors called “three or more alternatives”. More 
recently it has been popularised by Guo et al. (2017).

���classwise = max
j∈{1,…,K}m∈{1,…,M}

|�̄j(Bm,j) − �̄j(Bm,j)|.

Table 7  Confidence bins 
corresponding to the toy example 
from Table 3. The binary values 
in the fifth column indicate if the 
classifier correctly classified each 
instance

�
m

|�
m
| �(�

m
) �̄(�

m
) �(�

m
) ���(�

m
) |���(�m)

− �̄(�m)|

�
1

0
�
2

7 1∕3(2) , 0.4(5) 0.38 0(4) , 1(3) 0.43 0.05
�
3

10 0.5(4) , 0.6(6) 0.56 0(7) , 1(3) 0.30 0.26
�
4

11 0.7(5) , 0.8(6) 0.75 0(6) , 1(5) 0.45 0.3
�
5

2 0.9, 1.0 0.95 1, 1 1.00 0.05
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To calculate confidence-ECE, we first bin the confidence values and, for each 
instance of each bin, we produce a binary value indicating if the classifier predicted 
correctly or not. Recalling the example from Table 3, the resulting confidence bins are 
presented in Table 7, where �̄(�m) and ���(�m) are respectively the average confidence 
and prediction accuracy in bin �m , with the corresponding reliability diagram in Fig. 10. 
Note that bin �1 is empty, which demonstrates that confidence-ECE and confidence reli-
ability diagrams are different from binary-ECE even on two-class problems.

Definition 6 (Confidence-ECE) Confidence-ECE is the average difference between accu-
racy and average confidence across all bins in a confidence reliability diagram, weighted by 
the number of instances in each bin:

We then calculate confidence-ECE as the weighted mean of the gaps between aver-
age confidence and prediction accuracy at each bin, thus ���confidence = 0.2117 , while 
the maximum confidence calibration error (confidence-MCE) corresponds to the largest 
gap, i.e. ���confidence = 0.3 . As with binary-ECE and for the same reasons, confidence-
MCE is very sensitive to small bins, but in this particular example, its value corresponds 
to the gap of the largest bin.

As we show in Sect. 5, there is a wide range of post-hoc calibration techniques in the 
literature, each one capable of handling different miscalibration patterns. Thus, it can be 
useful to first analyse a model’s reliability diagram, as it allows us to diagnose model 
miscalibration, i.e. in what probability ranges it is underconfident or overconfident, and 
this can help choose an appropriate calibration method. In addition, any of the ECE 
measures discussed in this Section can be used to decide if a classifier actually needs to 
be calibrated, by testing the hypothesis that the model is already calibrated, as shown 
in Sect. 6. Finally, it is important to consider that all ECE/MCE measures can provide 
very different values given different number of bins, as shown in Figs. 1 and 2, and they 
can be minimised by predicting the overall class distribution, regardless of the given 
instance. Thus, it is good practice to use them together with the proper scoring rules 
presented in Sect. 3, to get a full evaluation of the probabilities produced by a model.

���confidence =

M∑

m=1

|�m|
N

|���(�m) − �̄(�m)|.

Fig. 10  Confidence reliability 
diagram corresponding to the 
bins in Table 7
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5  Calibration methods

In this section we provide a systematic review of standard approaches to calibrating clas-
sifiers through the construction of calibration maps. In particular, we focus on post-hoc 
calibration methods for classification, which can be used to adjust probability outputs sepa-
rately from the initial training process. For each method, we cover the mathematical formu-
lation, the objective function for learning the map, and the predictive function to calculate 
the class probabilities for a new instance. We include a few test cases to empirically ana-
lyse each method, and discuss their advantages and disadvantages. General guidance on 
each method’s implementation is also discussed, addressing issues such as overfitting and 
computational effort. At the end of the section, we briefly describe some related work to 
classifier calibration, such as methods that can improve the calibration level during training 
time, methods that are designed for getting well-calibrated probability for other predictive 
tasks, and approaches that are designed for specific tasks in areas such as computer vision 
and natural language processing.

5.1  Preliminaries

We denote a calibration map as a function 𝗀 ∶ 𝕊
𝕐
→ ℙ

𝕐
 . Here � = {1,… ,K} is the dis-

crete space with K classes of the target variable. ℙ
𝕐
 denotes the probability vector space on 

�  , that is: ℙ
𝕐
= {[s1,… , sK] ∣ sj ≥ 0,

∑K

j=1
sj = 1} . �

�
 represents the original output space 

of the (uncalibrated) classifier, which can take various forms depending on the formalisa-
tion of the classifier. For instance, for a typical probabilistic classifier, we have 𝕊

𝕐
= ℙ

𝕐
 . 

A one-vs-rest SVM might produce K-dimensional vectors in 𝕊
𝕐
= ℝ

K . Deep neural net-
works can also provide unnormalised vector outputs before the softmax is performed at the 
final layer. Calibration maps that work with such vector spaces are referred to as scaling 
approaches. The name suggests these approaches are used to scale the vector output into 
a probability output, which is quite useful for models like SVMs, as the hinge loss does 
not optimise probability estimates by default. However, other than the name and historical 
motivation, in modern applications, probability calibrators and scaling approaches can be 
used interchangeably, as the probability space and vector space can be transformed into 
each other by using the link function (e.g. softmax) and inverse link function (e.g. logit 
transform ).

In general, to obtain a calibration map, we will have a calibration set with uncalibrated 
probabilities and labels, denoted as ℂ = {(s1, y1),… , (sN , yN)} , and an objective function 
�(ℂ) to optimise. Typically, the objective function is constructed using proper scoring 
rules, that is, �(ℂ) =

∑N

i=1
�(si, yi) , and it can be optimised via various gradient descent 

algorithms.
Training Schemes: While the above notation suggested that the calibration map can be 

obtained by fitting a calibrator on a given hold-out calibration set, in practice a small train-
ing set and calibration set might lead to over-fitting thus limiting the performance of the 
calibrated model. A typical solution here is to introduce multi-fold dataset splits as intro-
duced in Platt (1999). The author proposes to divide the training sets into three different 
folds and fit the model and calibration map in cross-validation. Two folds are used to train 
the uncalibrated model, and the model predictions on the last fold are collected and used 
to fit the calibration map. This training process thus ends up with three pairs of models 
and calibration maps. At test time each instance will be predicted with all three pairs, and 
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resulting probabilities are averaged to give the final estimate. Alternatively, people have 
also used applied label smoothing (Müller et al., 2019) to reduce the level of overfitting 
and over-confidence. The idea is to have a weighted average between the original prob-
ability vector (either from the uncalibrated model or after a calibration method has been 
applied) and a uniform probability vector. Therefore, the final probability vector will be 
pushed somewhat towards the uniform probability vector, which avoids overly high confi-
dence for unsuitable cases.

5.2  Two‑class test cases

We designed some test cases to illustrate each calibration map’s characteristics empirically. 
These test cases are designed with a known distribution and allow us to directly sample 
the instances. For ease of understanding, we consider a scenario with a univariate feature 
( x ∈ ℝ ), so that we can inspect the fitted functions and reliability diagrams by means of x-y 
plots.

Figure 11 depicts the probability density functions for the synthetic two-class dataset, 
as well as the posterior class probabilities when predicting any new instances. The genera-
tive model is equally likely to produce a positive and a negative, and the distribution of 
the feature values are mixtures of two normal distributions within each class. Denoting the 
mixture components as H = 1 and H = 2 , our generative model can be formally written 
down as:

This generative assumption allows us to approximate the ‘true’ reliability diagram 
closely for every test case and provides better insights into each calibration map. Specifi-
cally, we generate a large number of random samples and use small bin sizes to approxi-
mate a smooth reliability diagram.

Y ∼ Bernoulli(0.5)

H ∼ Bernoulli(0.5)

X ∣ Y = 1,H = 1 ∼ Gaussian(−4, 960)

X ∣ Y = 1,H = 2 ∼ Gaussian(64, 1280)

X ∣ Y = 2,H = 1 ∼ Gaussian(4, 980)

X ∣ Y = 2,H = 2 ∼ Gaussian(−72, 1024)

Fig. 11  The synthetic dataset used in the test cases. The left two figures shows the data distribution for each 
class respectively. The figure on the right gives the Bayes-optimal posterior probability for class 1
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We consider three cases for binary classification, each of which may occur in practice. 
The first two cases are hypothetical over/under-confident scenarios using a logistic regres-
sion model of the form �̂ (x) = (1 + exp(−a ⋅ x))−1 . Such a model puts the decision bound-
ary at x = 0 , which is nearly Bayes-optimal for the synthetic data. The model confidence 
can be moderated with the parameter a, and we will use the following two cases:

The third case is obtained with an MLP classifier as implemented by the scikit-learn 
Python package. The model is specified with a two layer structure with 128 hidden units 
per layer. The activation is selected as the ReLU function. The remaining settings are left at 
their default values. 10, 000 instances are sampled to train the model.

The smoothed reliability diagrams for these three cases are shown in Fig.  12. In the 
under-confident case the output probabilities barely reach the outside of the interval 
[0.1, 0.9]. The reliability diagram shows a higher slope compared with the perfectly cali-
brated one (the diagonal). In contrast, the over-confident case has a shallower slope around 
the middle compared with the diagonal. It further causes the reliability diagram to have 
sharp transitions while approaching the extremes. For the MLP case, we can observe both 
under-confident and over-confident regions throughout the reliability diagram. This spe-
cific MLP classifier tends to be under-confident around s ∈ [0, 0.1] and s ∈ [0.65, 1] , and 
mostly over-confident elsewhere.

5.3  Calibration for binary classification

We start with methods that can learn calibration maps for binary problems. In binary clas-
sification, probability estimates are scalars, so the calibration maps are functions mapping 
from [0, 1] to [0, 1]. Here we describe four widely applied methods in detail: empirical bin-
ning, isotonic regression, logistic calibration and Beta calibration. Other approaches will 
be be briefly mentioned at the end of this section.

�̂under(x) =
1

1 + exp(−0.01 ⋅ x)

�̂over(x) =
1

1 + exp(−0.05 ⋅ x)

Fig. 12  The reliability diagrams of the three uncalibrated classifiers. The left figure shows the �̂
under

 case, 
where the classifier predicts a probability closer to 0.5 compared with the Bayes-optimal case (Fig.  11, 
right), resulting in a reliability diagram with steeper slope. The middle figure shows the �̂

over
 case, where 

the predicted probabilities are pushed towards 0 and 1 respectively, resulting in a shallower reliability curve. 
The right figure is obtained with a MLP classifier ( ̂�

MLP
 ), where the reliability diagram shows over-confi-

dent and under-confident predictions around different regions
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5.3.1  Empirical binning

Empirical binning (Zadrozny & Elkan, 2001; Naeini et  al., 2015) is one of the simplest 
methods to build a calibration map. It directly connects to the previously introduced ECE 
measure, which evaluates the calibration level by calculating the empirical frequencies 
within a set of score intervals. Therefore, binning approaches can directly optimise a vari-
ant of ECE depending on how the binning scheme is selected.

For a typical setting, the empirical binning approach comes with the following param-
eters. (1) Bins: {�1,… ,�M} , where each bin �m ⊂ [0, 1] is an interval of probability 
range, and ∪M

m=1
�m = [0, 1] . (2) Probability estimates in the bins: a = {a1,… , aM} , where 

am ∈ [0, 1] specifies the calibrated probability value in each bin. We usually assume that 
these bins do not overlap with each other. To make a prediction based on an uncalibrated 
probability s, empirical binning uses the following functional form:

Here s ∈ �m means that the uncalibrated probability s falls within �m.
Fitting a binning calibration map can be done by optimising a using ECE as a loss 

function:

Here �̄(�m) represents the empirical frequency within �m as defined in the previous section. 
The equation hence indicates that we want to assign each am according to the empirical fre-
quency of the labels within each bin �m.

We empirically analyse the binning approach with a simple setting of M = 10 equal-
width bins. The results with the three test cases are shown in Fig. 13. The binning approach 
performs well on most points, as the reliability diagram are close to the diagonal after cali-
bration. However, it should be noted that the output probabilities can only take M different 
values. Therefore, while the final probabilities are calibrated, we can no longer distinguish 
instances that receive different predictions from the uncalibrated model. In other words, 
binning approaches can reduce the calibration loss at the cost of a higher grouping loss 
(Kull & Flach, 2015).

While here we illustrated the binning approach with equal-width bins, it is possible to 
use other binning schemes such as equal-frequency binning. For example, (Naeini et al., 
2015) propose a Bayesian binning approach.

To summarise, the main advantages of binning approaches are as follows: (1) They can 
be used to directly minimise a specific variant of ECE, hence are useful when calibration 
loss is of primary concern. (2) Training is reasonably fast and straightforward. (3) Given 
its non-parametric nature, it does not have any constraint on the form of the calibration 

(3)�(s;�1,… ,�M , a) = am if s ∈ �m

(4)a∗ = argmin
a

�(a)

(5)�(a) = ���(a) =

M∑

m=1

|||�̄(�m) − am
|||

Fig. 13  Examples of empirical binning calibration with 10 equal-width bins. As the binning approach can 
only give discrete outputs, we can observe the probabilities after calibration are no longer continuous and 
are only presented with 10 values or less (the under-confidence case has fewer values as there are no obser-
vations in bins closer to the extremes. The reliability diagrams show that the calibration method works well 
with all three test case, with most points being close to the calibrated diagonal

▸
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maps and therefore can capture arbitrary shapes according to the given bins. In addition, 
other binning strategies can also be applied to deal with different datasets and uncalibrated 
models.

5.3.2  Isotonic calibration

Calibration by means of isotonic regression is another widely used non-parametric 
approach (Barlow & Brunk, 1972; Niculescu-Mizil & Caruana, 2005; Naeini & Cooper, 
2016). The isotonic approach was originally proposed to solve univariate regression tasks 
where the function were required to be monotonic. In the case of probability calibration, 
if we assume the uncalibrated model has a monotonic reliability diagram, then isotonic 
regression is a suitable approach to achieve a better level of calibration.

Isotonic regression achieves a monotonic fit by estimating a set of non-decreasing con-
stant segments, corresponding to a set of bins of varying width. Isotonic regression can 
therefore be described with the following parameters: (1) Bin boundaries: b = (b1,… , bM) , 
bj ∈ [0, 1], bj < bj+1 , and (2) Edge values: v = (v1,… , vM) , vj ∈ [0, 1], vj ≤ vj+1 . As indi-
cated by the parameters, isotonic regression is quite close to an empirical binning approach. 
The main difference is that instead of having a pre-defined set of bin edges, isotonic regres-
sion learns these bin boundaries from the data. As a result, isotonic regression can have an 
variable number of bins depending on the training set. To calibrate a probability s, isotonic 
regression uses the following predictive function:

The three test cases on istonic regression are shown in Fig. 14. To compare with the 
empirical binning approach again, while in the empirical case we have a constant predic-
tion within each bin, we can see the prediction of the isotonic approach depends on the two 
values on the bin edges. In the case where the two bin edges do not share the same value, 
isotonic regression performs linear interpolation to calculate the predicted value. This 
behaviour is due to the way that the isotonic approach is estimated. To ensure the estimated 
function is monotonically increasing, the learning algorithm starts with the first bin edge as 
the minimal feature value (0 in the case of an isotonic calibration) and extends the follow-
ing bin edges until it sees a higher target value (this is also referred to as ‘pooling adjacent 
violators’ (Fawcett & Niculescu-Mizil, 2007)). It can be proven that, with monotonic sets 
of b and s , the learning algorithm is equivalent to optimising the following loss (Ayer et al., 
1955):

(6)�(s;b, v) =

M−1∑

m=1

�(s ≥ bm) ⋅ �(s < bm+1) ⋅ mj

(7)�(b, v) =
1

N

N∑

i=1

(
�(si;b, v) − yi

)2

Fig. 14  Examples of isotonic calibration trained with 10,000 samples. Compared with empirical binning, 
we can see the isotonic approach can provide a larger variety of outputs in the continuous interval of [0, 1], 
and different bins can be automatically learnt according to the observations. The calibration method works 
reasonably well on all three test cases. The over-confidence case still has some errors around around the 
middle-left and middle-right boundaries, due to the lack of training points within these areas

▸
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Therefore, when used as a probability calibration map, isotonic regression minimises the 
Brier score on the training set. Instead of applying isotonic regression directly, (Naeini & 
Cooper, 2016) also consider building an ensemble calibration map by combining a set of 
near-isotonic functions. Recently, (Allikivi & Kull, 2019) propose a Bayesian approach to 
improve isotonic regression, with demonstrated improvements on binary tasks.

Isotonic regression is a compelling approach for probability calibration, with the follow-
ing advantages: (1) When the monotonic assumption is suitable, isotonic regression can 
find the optimal bin edges for Brier score on the training sets, which is also known to give 
the convex hull in ROC analysis. (2) The non-parametric nature avoids catastrophic model 
misfit. On the other hand, isotonic regression has some drawbacks also: (1) By predict-
ing constant values within bins, it inevitably increases grouping loss. (2) When the uncali-
brated model has a non-monotonic reliability diagram, isotonic regression can only give 
sub-optimal results (i.e. large grouping loss). (3) While it performs well on large datasets, 
isotonic regression’s training time and memory consumption are also high on large data-
sets. (4) Isotonic regression can result in the first and last bins having full confidence (0 and 
1), which can be problematic for certain datasets and evaluation metrics (e.g. log-loss). It 
is therefore common to clip the outputs from isotonic regression with a small � (i.e., 0 to � 
and 1 to 1 − �).

5.3.3  Platt scaling

Platt scaling is probably one of the most widely known approaches for probability calibra-
tion, partly due to the popularity of SVMs around the year 2000 (Platt, 2000). As SVMs 
are optimised with hinge loss, they can only output scores on the samples based on the esti-
mated margins. Given that the margins are real scalars by definition, John Platt proposed 
to transform the scores into probability estimates with logistic regression. Platt scaling 
hence has the same parameters as a univariate logistic regression model: a shape parameter 
w ∈ ℝ , and a location parameter b ∈ ℝ . The predictive function is then:

The parameters can be estimated by optimising the log-likelihood on the training set, so 
Platt scaling can be seen as optimising log-loss in the calibration context:

Platt also included a technique to prevent overfitting and improve the generalisation of 
calibration, which is introduced as one of the training schemes at the beginning of this sec-
tion. The test results are shown in Fig. 15.

In general, Platt scaling is a practical calibration approach with the following advan-
tages: (1) As it is based on logistic regression, implementation is straightforward. (2) The 

(8)�(s;w, b) =
1

1 + exp(−w ⋅ s − b)

(9)�(w, b) =
1

N

N∑

i=1

ln
( 2∑

j=1

−�(yi = j) ⋅ �(s;w, b)
)

Fig. 15  Examples of the Platt scaling approach. While it improves the under-confidence case well, it fails 
to do much with the over-confidence case. This is due to the fact that the sigmoid shape can not push the 
probabilities towards the middle hence can not fix over-confidence. Such result can also be observed with 
the MLP test case, where Platt scaling actually makes the level of calibration worse around several regions

▸
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standard logistic regression has a convex loss. The overall training process can, therefore 
be quite fast. On the negative side, Platt scaling has two main drawbacks: (1) The calibra-
tion map is restricted to a sigmoid shape, which effectively pushes probabilities away from 
the centre and may lead to over-confidence. (2) By definition, the logistic regression model 
considers the input space to be a real scalar space. While such an assumption is suitable for 
the margins obtained from an SVM, it is less appropriate for probabilistic classifiers, as the 
input is bounded by the interval [0, 1]. Hence, certain transformations are required when 
applying Platt scaling to calibrate probabilistic classifiers, such as the logit transform.

5.3.4  Beta calibration

Beta calibration is specifically designed for probabilistic classifiers and alleviates both 
drawbacks of Platt scaling (Kull et al., 2017a, b). While the latter can be derived from first 
principles by assuming that within each class the scores are normally distributed with the 
same variance, Beta calibration instead assumes two Beta distributions. This gives a richer 
family of calibration functions with three parameters: two shape parameters a, b ∈ ℝ , and a 
location parameter c ∈ ℝ . The calibration function is then given as:

In comparison with Platt scaling, Beta calibration is a bivariate logistic regression model, 
where the two features are ln s and ln(1 − s) respectively. Similar cross-validation training 
is also adopted as proposed in Kull et al. (2017a).

Given its close relationship to logistic regression, Beta calibration also optimises the 
log-loss and the objective function can be given with the log-likelihood:

Figure 16 demonstrates Beta calibration on the three test cases. The advantages of Beta 
calibration include: (1) Compared with Platt scaling, it allows a richer family of calibra-
tion maps including inverse sigmoids and the identity map. The latter is particularly useful 
to prevent over-calibration and apply unnecessary adjustments to already calibrated prob-
abilities. (2) Like with Platt scaling, implementation is straightforward. (3) With the Beta 
assumption, the calibration map supports any two-class probabilistic classifiers, and the 
calibration map is learnt from a set of functions that map from [0, 1] to [0, 1]. However, 

(10)�(s;a, b, c) =
1

1 + exp
(
− a ⋅ ln s + b ⋅ ln(1 − s) − c

)

(11)�(a, b, c) =
1

N

N∑

i=1

ln
( 2∑

j=1

−�(yi = j) ⋅ �(s;a, b, c)
)

Fig. 16  Examples of Beta calibration. The Beta approach deals with the under-confident case fairly well, 
as the reliability diagram follows the diagonal closely after calibration. Regarding the over-confident case, 
Beta calibration manages to put more corrections than the Platt scaling around the [0,  0.5] region, as it 
pushes the reliability diagram towards the diagonal. However, it doesn’t help much in [0.5, 1.0] region. On 
the MLP case, Beta provides some improvements around the [0.6, 1.0] region, and matches the reliability 
diagram to the diagonal. Here we can see that the reliability diagrams after calibration are almost identical 
for the over-confidence and under-confidence test cases. This observation is because the Beta calibration 
method fits the map on the logarithm of the uncalibrated probabilities, and therefore reverts the sigmoid 
functions of the pseudo-models in both test cases. The calibration method then finds similar solutions as 
the pre-sigmoid parts are both linear models on the feature. This result suggests that the Beta calibration 
method can effectively fix the over/under-confidence caused by a sub-optimal linear-sigmoid operation

▸
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Beta calibration’s main drawback is that it can only model specific calibration maps, so if 
the original classifier is severely uncalibrated and requires a complicated calibration map, 
it might be preferable to choose non-parametric methods instead.

5.4  Calibration for multi‑class classification

We now proceed with calibration maps that can work natively with a multi-class classifica-
tion task, without the need for binarisation. We define a three-class test case for the purpose 
of examining multi-class calibration with a multi-layer perceptron (MLP). We modify the 
previous synthetic dataset to add an additional class, such that all classes are equi-probable 
and the distribution of the feature for the instances of class 3 is Gaussian also:

We visualise the calibration maps in the probability simplex (one for each class). An exam-
ple can be seen in the top row of Fig.  17, where the heat maps indicate the change of 

Y ∼ Categorical
([

1

3
,
1

3
,
1

3

])

H ∼ Categorical(0.5)

X ∣ Y = 1,H = 1 ∼ Gaussian(−4, 960)

X ∣ Y = 1,H = 2 ∼ Gaussian(64, 1280)

X ∣ Y = 2,H = 1 ∼ Gaussian(4, 980)

X ∣ Y = 2,H = 2 ∼ Gaussian(−72, 1024)

X ∣ Y = 3 ∼ Gaussian(0, 8)

Fig. 17  MLP classifier with Temperature scaling (top: class-wise calibration map, bottom: class-wise relia-
bility diagram). While Temperature scaling manages to improve the reliability diagram around the [0.1, 0.4] 
region for classes 1 and 2, we can see it actually makes things worse elsewhere. As the calibration maps 
show, Temperature scaling applies the same calibration map to all three classes despite them having differ-
ent class-wise reliability diagrams, which is the main reason for the sub-optimal results
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probability for each class after calibration. For the figure on the left, each point within the 
simplex represents an uncalibrated probability vector, a positive value (i.e., red colour) on 
that point indicates that the calibration map increases the probability value of class 1 in the 
vector and a negative value (i.e., blue colour) shows that the probability value on class 1 is 
reduced. The white line indicates where the probability values for class 1 remain (almost) 
unchanged. Class 2 and class 3 calibration maps are also depicted. The bottom row of each 
figure shows the class-wise reliability diagrams.

5.4.1  Temperature scaling

Temperature scaling has become one of the default approaches to provide better-calibrated 
probabilities, particularly in deep learning research (Hinton et al., 2015; Guo et al., 2017). 
Instead of simply applying the softmax operation at the last layer to obtain a probability 
vector on the classes, Temperature scaling assumes a single temperature parameter t ∈ ℝ 
and applies a linear operation before the softmax. Denoting z = [z1,… , zK] ∈ ℝ

K as the 
K-dimensional real vector before softmax, the probability output after Temperature scaling 
is given as:

Therefore, conventional softmax can be seen as the case of scaling with a fixed temperature 
of t = 1.

If we want to apply Temperature scaling to a generic probabilistic model where z is not 
accessible, we can also use the ����� transform on the uncalibrated probability vector to 
obtain a real vector:

Here, K is selected as the reference class to compute the probability ratio with other 
classes. The parameter is also normally estimated with the log-loss, and the objective func-
tion is given as:

Figure  17 gives the results on the MLP test case. The most distinctive characteristic of 
Temperature scaling is that it only has a single parameter, which can be seen as both an 
advantage and a disadvantage. On the positive side, a single parameter restricts the space 
of calibration maps and can prevent overfitting for small datasets with many classes. On 
the negative side, Temperature scaling can be sub-optimal when the function space of the 
calibration maps does not include the right reliability diagram.

5.4.2  Vector scaling

Where Temperature scaling only has a single parameter across all classes, it is natural to 
extend the parameters to support a richer form of calibration maps. Vector scaling (Guo 
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et al., 2017) allows a different temperature for each class, denoted as w ∈ ℝ
K , as well as 

adding a set of intercept parameters b ∈ ℝ
K for the K classes. The predictive function is 

given as ( z can also be obtained with the logit transform for generic probability classifier, 
as in Temperature scaling):

And the objective function to optimise log-likelihood is similar to the one for Temperature 
scaling, but with more parameters:

The test result is given in Fig. 18. Vector scaling can be seen as a middle point between the 
quite restrictive Temperature scaling and the general approach of Matrix scaling discussed 
below. Hence it balances the risk of overfitting and the richness of available calibration 
maps.

5.4.3  Matrix scaling

Matrix scaling (Guo et  al., 2017) removes all the parameter constraints on Tempera-
ture scaling and Vector scaling. Similar to a fully connected layer, it has a matrix 

(14)�j(z;w) =
exp

�
− wj ⋅ zj − bj

�

∑K

j=1
exp

�
− wj ⋅ zj − bj

�

(15)�(w, b) =
1

N

N∑

i=1

ln
( K∑

j=1

−�(yi = j) ⋅ �j(zi;w, b)
)

Fig. 18  Class-wise calibration maps and reliability diagrams for the MLP classifier with Vector scaling. 
The most obvious change from Temperature scaling is that now the calibration maps are different for each 
class. However, the calibration maps still have a circular shape as Vector scaling only adjusts one dimen-
sion of the logit vector for each class. As a result, the reliability diagram is close to the ones of Temperature 
scaling. Some minor improvements can be seen with class 3, where Vector scaling does not make it quite as 
bad as for Temperature scaling
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parameter (w1,⋯ ,wK),wj ∈ ℝ
K together with the intercept parameter b ∈ ℝ

K . The pre-
dictive function is ( z can also be obtained with the logit transform, as in Temperature 
scaling):

and the objective function is:

As indicated in Fig. 19, Matrix scaling can support a broader family of calibration maps 
than Vector scaling and Temperature scaling, but may be vulnerable to overfitting as it can 
be seen as another fully connected layer.

5.4.4  Dirichlet calibration

Dirichlet calibration is the multi-class extension of Beta calibration (Kull et al., 2019). 
Assuming Dirichlet distributions for the predicted probability vectors within each class, 
Dirichlet calibration is determined by a set of coefficient vectors (w1,⋯ ,wK),wj ∈ ℝ

K , 
and a set of intercepts b ∈ ℝ

K . The calibrated probability on the j-th class is obtained 
as:
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�
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1
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Fig. 19  Class-wise calibration maps and reliability diagrams for the MLP classifier with Matrix scaling. As 
Matrix scaling is capable of providing fully linear adjustments on the logits for each class, we can see the 
class-wise calibration map no longer has the circular shape. While there are still minor improvements on 
the reliability diagram of class 1 and class 2, class 3 has gained a significant improvement
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This function can be seen as a K-dimensional logistic regression on the log-probabilities 
(i.e., the sufficient statistics of the Dirichlet distribution). Therefore, to apply Dirichlet cali-
bration to a deep neural network, one can first obtain a probability vector using the softmax 
function, then apply Dirichlet calibration as with other probabilistic classifiers. The objec-
tive function is:

The test results are given in Fig. 20. Similar to Beta calibration, one of the advantages of 
Dirichlet calibration is that it also supports the identity map, so it can also prevent over-
adjusting calibrated results. As the number of parameters is similar to that of Matrix scal-
ing, the Dirichlet calibration can also overfit on small datasets. The authors propose the 
ODIR (Off-Diagonal and Intercept Regularisation) approach to address this issue further 
and report various performance improvements in their experiments.

(18)�j(s;w1,… ,wK , b) =
exp(−bj − wT

j
ln s)
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Fig. 20  Class-wise calibration maps and reliability diagrams for the MLP classifier with Dirichlet calibra-
tion. The overall results on the class-wise reliability diagrams are close to those obtained with Matrix scal-
ing. The major differences are seen in the calibration maps, where we can clearly observe a local region for 
the changes on class 3. Importantly, this region for the Dirichlet calibration approach doesn’t cover the area 
where the predicted probability of class 3 is close to 1. This is more reasonable compared with Matrix scal-
ing, as both the Bayes-optimal predictions and the MLP predictions for class 3 are capped around 0.8
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5.5  Extended methods for post‑hoc classifier calibration

In this section we discuss more recent work extending the standard calibration methods 
discussed above.

Leathart et al. (2017) aim to build calibration maps locally instead of a global calibra-
tion map and proposes using modified logistic model trees to build an ensemble calibra-
tion method. A decision tree is learnt to separate the original feature space into multiple 
regions, where a local calibrator can then be estimated using the corresponding outputs and 
labels. Kumar et al. (2019) propose a combined approach of scaling and binning methods to 
achieve better calibration with smaller calibration sets. Instead of calculating the label fre-
quency in binning methods, the authors show that using the average value of a pre-fit con-
tinuous calibration map gives better calibration. The authors also indicate that a debiased 
estimator can provide better calibration error in sample complexity. Wang et al. (2019) dis-
cuss how to build flexible univariate non-decreasing calibration maps from shape-restricted 
polynomial regression models. The resulting method provides a useful alternative when 
methods like Plat scaling and Beta calibration cannot approximate the actual reliability dia-
gram. Wenger et al. (2020) investigate non-parametric post-hoc approaches that can sup-
port richer forms of calibration map for a multi-class setting. The idea is to employ the 
framework of Gaussian processes and model the calibration map as latent distribution of 
functions. The family of calibration maps can thus be richer with the selection of suitable 
kernels. Zhang et  al. (2020) propose an approach to build an ensemble of base calibra-
tors, which can improve the capacity of the calibration maps while preserving the accuracy. 
The authors also adapt kernel density estimation as an alternative approach to evaluating 
calibration error. Ma and Blaschko (2021) consider the confidence calibration setting and 
propose to improve a calibration map with a ranking model. The authors demonstrate that 
the ranking model can be used to maintain the performance of the uncalibrated classifier 
in terms of precision and false positive rate. Patel et al. (2021) tackle the issue of applying 
class-wise binning calibrators to a multi-class setting. An iterative update method is pro-
vided to adjust the bin edges to better calibration, and a sample-sharing approach among 
similar classes is also introduced for better sample efficiency.

5.6  Methods that can improve calibration during training time

While post-hoc calibration can be applied to most existing classifiers, it is of practical 
interest to train well-calibrated models in the first place. Here we briefly mention some 
training-time calibration methods.

Kumar et al. (2018) consider a regularisation approach with kernel mean embedding. 
The idea is to add a differentiable regularisation term concerning the goodness of calibra-
tion, where the kernel mean of the scores is calculated as an approximation of the cali-
bration error. The overall objective function allows the model to achieve better calibra-
tion during the training phase. Thulasidasan et  al. (2019) show that the Mixup strategy 
can improve the calibration level when introduced during the training phase. Vicinal points 
are created by combining existing data points and labels, and then added to the training 
set. The authors suggest that the improvement in calibration is due to the augmentation 
effect and label smoothing effect, both from the mixup process and act as a form of regu-
larisation. Kristiadi et al. (2020) consider a Bayesian approach where a Gaussian approx-
imation distribution is fitted to the last layer’s weights of a ReLu network. The authors 
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demonstrated that the method could reduce the over-confidence problem in a classification 
setting, particularly on data points not commonly seen in the original training set. Wen 
et al. (2020) propose an efficient ensemble approach that can train multiple deep networks 
with lower computational and memory costs. The authors show that the obtained ensemble 
achieves better calibration on out-of-distribution samples at test time.

Other than deep networks, some recent work achieves better calibration on Bayes-
ian nonparametric methods. Milios et al. (2018) propose an alternative approach to train 
Gaussian Processes for classification tasks. While the traditional GP classifier relies on 
sigmoid or probit link functions and requires suitable approximated inference schemes to 
ensure good performance, the authors propose a modified Dirichlet link function to ensure 
the level of calibration as well as scalability. Tran et al. (2019) demonstrate that convolu-
tion Gaussian process classifiers can be miscalibrated, and propose a solution to mitigate 
the issue.

5.7  Methods for probability calibration for other predictive settings

The concept of calibration can be naturally generalised to predictive settings other than 
classification. The most straightforward extension is the calibration of regression outputs. 
As in the classification scenario, there are multiple definitions of calibration for regres-
sion models. The standard definition of calibration comes from the field of quantile regres-
sion Koenker and Hallock (2001), where being calibrated means that the predicted quantile 
matches the marginal distribution of the target variable. As in the case of classification, 
there are methods designed for training calibrated quantile regression as well as post-hoc 
approaches that calibrate pre-trained models. Fasiolo et al. (2020) provide an approach to 
train generalised additive regression models with calibrated quantiles. Cui et  al. (2020) 
propose an approach to train deep regression models with better-calibrated quantiles, 
where the model parameter is first fit with log-loss and then updated with a loss based on 
the maximal mean discrepancy Gretton et  al. (2012). For the post-hoc setting, Kuleshov 
et al. (2018) point out that deep regression models’ quantiles can be calibrated with binary 
calibrators such as isotonic regression and yield better performance on downstream tasks 
such as reinforcement learning. Chung et al. (2021) introduce some modified loss functions 
to train quantile calibrators with specific emphases, such as balancing between calibration 
and sharpness.

Regarding the definition of calibration, Song et al. (2019) propose a stronger notion of 
calibration in regression, where the local conditional distribution is required to be cali-
brated instead of the global quantile. The authors show that being distribution-calibrated 
in this sense implies being quantile-calibrated. A post-hoc approach based on the Gaussian 
process is also introduced, where the GP models a distribution of Beta calibrators con-
ditioning on the original regression outputs. Kuleshov and Deshpande (2022) consider 
achieving post-hoc distribution calibration by learning a lower dimensional representation 
of the (uncalibrated) local distributions, and the post-hoc calibrators can then be built with 
density estimators on these representations and the target values, which avoids the costs of 
distributional kernels and sparse variational inference. Sahoo et al. (2021) propose the defi-
nition of threshold calibration for regression models, which is a stronger notion of calibra-
tion than being quantile-calibrated and weaker than the distribution-calibrated definition. 
Instead of asking for calibration on a marginal quantile or local distribution level, the pro-
posed definition requires the model to be calibrated on a group of distributions that satisfy 
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a given threshold condition, which ensures optimal decision-making when a threshold is 
put on the regression outputs.

Calibration of structured outputs, such as sequential outputs, is also of interest for appli-
cation domains such as natural language processing and time-series modelling. Kuleshov 
and Liang (2015) propose approaches to simplify the structured output to a two-class prob-
lem and employ a well-calibrated binary classifier to improve the calibration level. On the 
information-retrieval side, the traditional precision-recall curve is not sufficiently similar to 
a ROC curve to allow a similar calibration property. In contrast, the precision-recall-gain 
curve proposed by Flach and Kull (2015) can be seen as a proper generalisation of ROC 
curve obtained by replacing weighted accuracy with F-score.

Conformal prediction (Vovk et al., 2005; Romano et al., 2019; Angelopoulos & Bates, 
2021) is another area closely related to the topic of probability calibration. For classifica-
tion, conformal prediction aims to predict a set of labels that has a probability of 1 − � that 
includes the true label, where � is a user-defined significance level. Therefore, we can see 
the conformal prediction for classifiers as an alternative definition of calibration to label 
probability calibration. That is, instead of requiring the probability to be accurate on the 
label distributions, conformal prediction wants to ensure the calibration on a variable set of 
labels that are exactly calibrated on the given significance level. One of the approaches to 
construct a conformal classifier is to use a Venn predictor (Vovk et al., 2003; Vovk & Petej, 
2012; Johansson et al., 2018). The framework makes use of the Venn taxonomy to define 
subsets of the original label space, and requires a classifier to make predictions about each 
element in the subset. The final conformal prediction can then be calculated using these 
predictions.

5.8  Methods designed for other research fields and applications

The notion of calibration can also be generalised to other areas where uncertainty quantifi-
cation is of interest. rRecent work has started to explore other topics in statistics, machine 
learning and artificial intelligence related to calibration. Here we briefly introduce some of 
them. A comprehensive analysis of these works is left as future work. Pleiss et al. (2017) 
draw a link between the level of calibration and the evaluation of classifier fairness. Cobb 
et  al. (2018) propose an approach to modify the lower bound of approximate Bayesian 
inference so that the final objective function can be calibrated according to a given deci-
sion loss. Liu et  al. (2018) adopt calibrated deep models to improve zero-shot learning. 
Menon and Williamson (2018) consider the calibration problem for an anomaly detec-
tion setup. Ghandeharioun et  al. (2019) consider uncertainty and calibration as a tool to 
improve explainability for computer vision tasks. And Liu et al. (2019) adopt a calibration 
procedure to achieve better posterior distributions for a Bayesian non-parametric ensemble 
model. Ding et al. (2021) consider the problem of improving calibration for semantic seg-
mentation. Guillory et al. (2021); Jiang et al. (2021) show that calibrated classifier can be 
used to estimate the model performance on OOD test sets.

6  Hypothesis tests for calibration

Even if a classifier is perfectly calibrated, it almost always slightly deviates from calibra-
tion on any finite dataset due to sampling effects. Here we consider a method of testing 
whether the dataset provides sufficient evidence that the classifier is uncalibrated.
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A common way to test for calibration is to apply goodness-of-fit tests that were origi-
nally proposed for logistic regression models, but can be extended to any model that pre-
dicts probabilities. For example, one could apply the Pearson chi-squared goodness-of-fit 
test, which works by grouping instances sharing the same value of the independent variable 
X and then applying a chi-squared test under the null hypothesis that the observed number 
of positives in the target variable is equal to the predicted number of positives for each 
unique value of X.

The issue with this approach is that the higher the number of unique values of X or the 
higher the number of combinations of values of multiple independent variables, the lower 
the probability that each group of instances will be well-represented enough for the calcu-
lation of the Pearson chi-squared statistic to be reliable. A possible solution to this problem 
is to group instances into M bins based on percentiles of the predicted probabilities for the 
positive class (equal-frequency binning) and then apply the Hosmer-Lemeshow (HL) test, 
which involves calculating the statistic H given by Equation (20) (Hosmer & Lemeshow, 
2003).

where Om+ and Om− are the observed counts of positives and negatives in bin �m and Em+ 
and Em− are the expected counts of positives and negatives in bin �m , calculated as the 
sums of positive and negative probabilities in the bin, respectively.

The HL test was later extended to evaluate the goodness-of-fit of multinomial logistic 
regression models, by binning instances based on the percentiles of 

∑K

j=2
sij = 1 − si1 , i.e. 

the complement of the probabilities assigned to the reference class (Fagerland et al., 2008). 
Then, similarly to the binary case, once the instances are binned, we calculate Omj and 
Emj , respectively the observed and expected counts for each class j and bin m. Finally we 
calculate the C statistic, given by Equation (21), which is expected to follow a chi-squared 
distribution with (M − 2)(K − 1) degrees of freedom.

Table 8 shows M = 5 bins based on the toy example of Table 3. By applying Equation (21) 
to these values, we get C = 25.3 . Finally, to complete the HL test under the null hypothesis 
that the observed and expected proportions are the same, we compare C to a chi-squared 
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Table 8  Instances grouped into 5 bins using equal-frequency binning on the complement of the probabili-
ties predicted for class 1. Column �(�

m
) shows the probability intervals corresponding to each bin. The 

probabilities were obtained by considering the multiclass toy problem in Table 3
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(0.2, 0.56] 2.0 3.1 2.0 0.6 1.0 1.3
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distribution with (M − 2)(K − 1) = 6 degrees of freedom, obtaining a p-value of 0.0003, 
rejecting the null hypothesis with � = 0.05.

This example is of course simply illustrative, as the HL test is not recommended for 
such small samples, as experiments have shown that it has satisfactory power for sam-
ples of over 400 instances (Fagerland et al., 2008). There are several other goodness-of-
fit tests, most of them using some sort of binning to calculate a statistic that is assumed 
to follow a chi-squared distribution. Additionally, as the multiclass HL test, they usually 
test for classwise calibration. Testing for multiclass calibration is a more complex task 
and has recently been investigated by Widmann et  al. (2019), by using kernel-based 
measures. These measures were later adapted for regression calibration (Widmann 
et al., 2022). For details on how these measures can be interpreted as test statistics, we 
refer the reader to their original papers.

Another approach, proposed by Vaicenavicius et al. (2019), is to test the classifier’s 
probabilities according to an arbitrary measure of calibration. Given a classifier � , we 
can check if its predictions for a test set {(x1, y1),… , (xN , yN)} are calibrated according 
to a chosen calibration measure 𝜙(� (Xtest), Ẏtest) , such as ECE, log-loss or Brier score. 
We discuss a simple resampling-based hypothesis test under the null hypothesis that the 
classifier’s outputs are calibrated (Vaicenavicius et  al., 2019). Algorithm 1 details the 
steps of the hypothesis test procedure.

Fig. 21  Distribution of 
���

classwise
 values �

1
,… ,�

L
 cal-

culated for every resampled label 
set Ẏ

l
 with l ∈ {1,… ,L} , fol-

lowing the procedure described 
in Algorithm 1. The red bars 
represent the region where 
𝜙
l
> 0.1787
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Let us return to our toy example (Table  3). If we follow Algorithm  1 and choose 
���classwise as the calibration measure and L = 1, 000 , we obtain a distribution such as the 
one in Fig. 21.

Recall that in our example ���classwise = 0.1787 . The p-value for this test is then 
�
(
𝜙l > 0.1787

)
≈ 0.016 , which means we can reject the null hypothesis that the classifier 

is calibrated according to ���classwise . Note that we keep the scores fixed and only resample 
the labels to perform this test. This means that instances will stay in the same bins and 
small bins will have low weights for all L resampled ���classwise values.

7  Concluding remarks

In this survey we have given a detailed overview of the principles and practice of classi-
fier calibration. We discussed the motivation, definition, evaluation and related approaches 
for the calibration of probabilistic classifiers, and touched upon topics beyond the stand-
ard classification setting. With the recent proliferation of predictive machine learning, it 
is becoming more and more important that models are carefully evaluated and if possibly 
improved on multiple criteria to ensure the overall system robustness. Classifier calibration 
relates to the criterion of uncertainty quantification, investigating the statistical relation-
ships between model predictions and observed target variables. There are other levels of 
uncertainty in the overall modelling procedure, including uncertainty pertaining to model 
parameters when the training set is limited, uncertainty brought about by model mismatch, 
or uncertainty regarding whether the model should abstain when there might be novel tar-
get values that were not seen in the training set – see (Hüllermeier & Waegeman, 2021) for 
a recent survey on uncertainty in machine learning.

As we hopefully have made clear in this survey, calibration research has a rich history 
which predates the birth of machine learning as an academic field by decades. It is impor-
tant to take full advantage of that history, which perhaps isn’t always fully acknowledged 
in recent literature on classifier calibration (e.g., of deep neural networks, which are often 
over-confident). Recent proposals such as confidence calibration, temperature scaling and 
expected calibration error have value but are far from the only options and may not be 
suitable for a particular application. As is often the case in machine learning, the space of 
options and things to consider is large, and navigating this space requires the right set of 
concepts and tools, many of which we have discussed in detail in this survey.

It is perhaps useful to point out that, naturally, there are also concepts that are less than 
helpful when thinking about classifier calibration. One of the most prominent of these is 
the concept of a decision boundary, which is like describing Mount Everest with a single 
contour line, halfway up. To faithfully characterise the mountain – which is what is needed 
for optimal decision making – one needs many contour lines at different elevations. The 
only case in which the decision boundary is useful is when the class prior (and misclassifi-
cation costs, if any) won’t change after training, in which case only the decision threshold 
needs calibrating. In all other cases context change is expected and needs to be anticipated 
with a proper calibration analysis.

If a trained classifier f is going to be used for a task for which it is good enough to be 
accurate, precise or to perform well according to any contingency matrix-based measure, 
then there is no particular need to consider calibration in the model’s development pipe-
line. However, if calibrated probabilities are important for any decisions supported by f, the 
following steps can be taken to implement what was discussed in this paper: 
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1. If possible, any classifiers considered for a task should be trained using a proper scoring 
rule as loss function;

• The resulting models are likely to produce better probabilities than if a non-proper 
loss function is used, as probability refinement and calibration will be encouraged 
during training (recall Sect. 3);

• An alternative is to use a method that encourages calibration during training time, as 
discussed in Sect. 5.6;

2. With the trained classifiers and, preferably a held-out calibration dataset, the calibration 
of the probabilities produced by the models can be evaluated using classwise reliabil-
ity diagrams, to understand the miscalibration patterns, and/or ECE measures (recall 
Sect. 4);

3. To help define which models are uncalibrated, a hypothesis test for calibration can be 
applied (recall Sect. 6);

4. If any models produce uncalibrated probabilities, post-hoc calibrators should be used 
to fix them;

• The resulting calibrators should also be evaluated using reliability diagrams, ECE 
measures and hypothesis tests to find out which ones work best for the particular 
miscalibration patterns found during step 2.

In order to help with the aforementioned steps, we have developed an open-source Python 
library called PyCalib (Perello-Nieto et al., 2021).4 This library provides tools to measure 
the calibration quality of a classifier, multiple visualisation functions to better understand 
how calibrated is a model, and some calibration methods and pipelines to directly train 
arbitrary calibrated classifiers.

We close this survey with some open problems. First, although binning is such an 
important concept in calibration, there is no standard method to decide which type of bin-
ning, e.g. equal frequency or equal width, or what number of bins to use. Recent work 
(Kängsepp et al., 2022) has investigated cross-validation to tune the number of bins used 
to evaluate a model on a calibration set. Second, a recurrent topic of interest is the fact 
that post-hoc calibration does not improve robustness against out-of-distribution inputs and 
what can be done to improve calibration in this context (Ovadia et al., 2019). Finally, and 
somewhat related to the previous point, even though calibrated probabilities provide esti-
mations of the uncertainty regarding an instance’s class given its feature values (aleato-
ric or first-order uncertainty), classifiers could also be made to predict their uncertainty 
about the predicted probabilities, which comes from not knowing the true probabilities 
(epistemic uncertainty). This type of prediction, a distribution of distributions, also called 
second-order uncertainty (Hüllermeier et al., 2022; Bengs et al., 2022), has been recently 
treated using inference based on Bayesian methods and credal sets, which are convex sets 
of probability distributions (Shaker & Hüllermeier, 2021).
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