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Abstract
Evaluating the robustness of a defense model is a challenging task in adversarial robustness 
research. Obfuscated gradients have previously been found to exist in many defense meth-
ods and cause a false signal of robustness. In this paper, we identify a more subtle situa-
tion called Imbalanced Gradients that can also cause overestimated adversarial robustness. 
The phenomenon of imbalanced gradients occurs when the gradient of one term of the 
margin loss dominates and pushes the attack towards to a suboptimal direction. To exploit 
imbalanced gradients, we formulate a margin decomposition (MD) attack that decomposes 
a margin loss into individual terms and then explores the attackability of these terms sepa-
rately via a two-stage process. We also propose a multi-targeted and ensemble version of 
our MD attack. By investigating 24 defense models proposed since 2018, we find that 11 
models are susceptible to a certain degree of imbalanced gradients and our MD attack can 
decrease their robustness evaluated by the best standalone baseline attack by more than 1%. 
We also provide an in-depth investigation on the likely causes of imbalanced gradients and 
effective countermeasures.
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1 Introduction

Deep neural networks (DNNs) are vulnerable to adversarial examples, which are 
input instances crafted by adding small adversarial perturbations to natural exam-
ples. Adversarial examples can fool DNNs into making false predictions with high 
confidence, and transfer across different models (Szegedy et  al., 2014; Goodfellow 
et  al., 2015). A number of defenses have been proposed to overcome this vulner-
ability. However, a concerning fact is that many defenses have been quickly shown to 
have undergone incorrect or incomplete evaluation (Athalye et  al., 2018; Engstrom 
et  al., 2018; Carlini et  al., 2019; Tramer et  al., 2020; Croce & Hein, 2020b). One 
common pitfall in adversarial robustness evaluation is the phenomenon of gradient 
masking (Papernot et al., 2017; Tramèr et al., 2018) or obfuscated gradients (Athalye 
et al., 2018), leading to weak or unsuccessful attacks and false signals of robustness. 
To demonstrate “real" robustness, newly proposed defenses claim robustness based 
on results of white-box attacks such as Projected Gradient Decent (PGD) attack 
(Madry et  al., 2018) and AutoAttack (Croce & Hein, 2020b; Croce et  al., 2020), 
and demonstrate that they are not a result of obfuscated gradients. In this work, we 
show that the robustness may still be overestimated even when there are no obfus-
cated gradients. Specifically, we identify a subtle situation called Imbalanced Gradi-
ents that exists in several recent defense models and can cause highly overestimated 
robustness.

Imbalanced gradients is a new type of gradient masking effect where the gradient 
of one loss term dominates that of other terms. This causes the attack to move toward 
a suboptimal direction. Different from obfuscated gradients, imbalanced gradients 
are more subtle and are not detectable by the detection methods used for obfuscated 
gradients. To exploit imbalanced gradients, we propose a novel attack named margin 
decomposition (MD) attack that decomposes the margin loss into two separate terms 
and then exploits the attackability of these terms via a two-stage attacking process. We 
also derive the MultiTargeted (Gowal et al., 2019) and ensemble variants of MD attack, 
following AutoAttack. By examining the robustness of 24 adversarial training based 
defense models proposed since 2018. We find that 11 of them are susceptible to imbal-
anced gradients to a certain extent, and their robustness evaluated by the best baseline 
standalone attack drops by more than 1% against our MD attack. Our key contributions 
are:

• We identify a new type of effect called Imbalanced Gradients, which can cause 
overestimated adversarial robustness and cannot be detected by detection methods 
for obfuscated gradients. Especially, we highlight that label smoothing is one of the 
major causes of imbalanced gradients.

• We propose margin decomposition (MD) attacks to exploit imbalanced gradients. MD 
leverages the attackability of the individual terms in the margin loss in a two-stage 
attacking process. We also introduce the MultiTargeted and ensemble variants of MD.

• We conduct extensive evaluations on 24 state-of-the-art defense models and find 
that 11 of them suffer from imbalanced gradients to some extent and their robust-
ness evaluated by the best standalone attack drops by more than 1% against our MD 
attack. Our MD ensemble (MDE) attack exceeds state-of-the-art attack AutoAt-
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tack on 16/20 defense models on CIFAR-10. Our MD attack alone can outperform 
AutoAttack in evaluating the adversarial robustness of vision transformer and 
ResNet-50 models trained on ImageNet.

2  Related work

We denote a clean sample by x , its class by y ∈ {1,⋯ ,C} with C the number of classes, 
and a DNN classifier by f. The probability of x being in the i-th class is computed as 
pi(x) = ezi∕

∑C

j=1
ezj , where zi is the logits for the i-th class. The goal of an adversarial 

attack is to find an adversarial example xadv that can fool the model into making a false pre-
diction (e.g., f (xadv) ≠ y ), and is typically restricted to be within a small �-ball around the 
original sample x (e.g., ‖‖xadv − x‖‖∞ ≤ �).

Adversarial attack Adversarial examples can be crafted by maximizing a classifi-
cation loss � by one or multiple steps of adversarial perturbations. For example, the 
one-step Fast Gradient Sign Method (FGSM) (Goodfellow et  al., 2015) and the itera-
tive FGSM (I-FGSM) attack (Kurakin et al., 2017). Projected Gradient Descent (PGD) 
(Madry et  al., 2018) attack is another iterative method that projects the perturbation 
back onto the �-ball centered at x when it goes beyond. Carlini and Wagner (CW) (Car-
lini & Wagner, 2017) attack generates adversarial examples via an optimization frame-
work. There also exist other attacks such as Frank-Wolfe attack (Chen et al., 2018a), dis-
tributionally adversarial attack (Zheng et al., 2019) and elastic-net attacks (Chen et al., 
2018b). In earlier literature, the most commonly used attacks for robustness evaluations 
are FGSM, PGD, and CW attacks.

Several recent attacks have been proposed to produce more accurate robustness evalua-
tions than PGD. This includes fast adaptive boundary attack (FAB) (Croce & Hein, 2019), 
MultiTargeted (MT) attack (Gowal et  al., 2019), Output Diversified Initialization (ODI) 
(Tashiro et al., 2020), and AutoAttack (AA) (Croce & Hein, 2020b). FAB finds the mini-
mal perturbation necessary to change the class of a given input. MT (Gowal et al., 2019) 
is a PGD-based attack with multiple restarts and picks a new target class at each restart. 
ODI provides a more effective initialization strategy with diversified logits. AA attack is a 
parameter-free ensemble of four attacks: FAB, two Auto-PGD attacks, and the black-box 
Square Attack (Andriushchenko et al., 2019). AA has demonstrated to be one of the state-
of-the-art attacks to date, according to the RobustBench (Croce et al., 2020).

Adversarial loss Many attacks use cross entropy (CE) as the adversarial loss: 
�ce(x, y) = − log py . The other commonly used adversarial loss is the margin loss (Carlini 
& Wagner, 2017): �margin(x, y) = zmax − zy , with zmax = maxi≠y zi . Shown in Gowal et  al. 
(2019), CE can be written in a margin form (e.g., �ce(x, y) = log(

∑C

i=1
ezi ) − zy ), and in 

most cases, they are both effective. While FGSM and PGD attacks use the CE loss, CW 
and several recent attacks such as MT and ODI adopt the margin loss. AA has one PGD 
variant using the CE loss and the other PGD variant using the Difference of Logits Ratio 
(DLR) loss. DLR can be regarded as a “relative margin” loss. In this paper, we identify a 
new effect that causes overestimated adversarial robustness from the margin loss perspec-
tive and propose new attacks by decomposing the margin loss.
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Adversarial defense In response to the threat of adversarial attacks, many defenses 
have been proposed such as defensive distillation (Papernot et  al., 2016), feature/
subspace analysis (Xu et  al., 2017; Ma et  al., 2018), denoising techniques (Guo 
et  al., 2018; Liao et  al., 2018; Samangouei et  al., 2018), robust regularization (Gu 
& Rigazio, 2014; Tramèr et al., 2018; Ross & Doshi-Velez, 2018), model compres-
sion (Liu et  al., 2018; Das et  al., 2018; Rakin et  al., 2018) and adversarial train-
ing (Goodfellow et al., 2015; Madry et al., 2018). Among them, adversarial training 
via robust min-max optimization has been found to be the most effective approach 
(Athalye et al., 2018). The standard adversarial training (SAT) (Madry et al., 2018) 
trains models on adversarial examples generated via the PGD attack. Dynamic adver-
sarial training (Dynamic) (Wang et  al., 2019) trains on adversarial examples with 
gradually increased convergence quality. Max-Margin Adversarial training (MMA) 
(Ding et  al., 2018) trains on adversarial examples with gradually increased mar-
gin (e.g., the perturbation bound � ). Jacobian adversarially regularized networks 
(JARN) adversarially regularize the Jacobian matrices, and can be combined with 
1-step adversarial training (JARN-AT1) to gain additional robustness (Chan et  al., 
2020). Sensible adversarial training (Sense) (Kim & Wang, 2020) trains on loss-
sensible adversarial examples (perturbation stops when loss exceeds certain thresh-
old). Adversarial training with pre-training (AT-PT) (Hendrycks et  al., 2019) uses 
pre-training to improve model robustness. Adversarial training with early stopping 
(AT-ES) (Rice et  al., 2020) suggests the use of early stopping to avoid the robust 
overfitting of adversarial training. Bilateral adversarial training (Bilateral) (Wang 
& Zhang, 2019) trains on PGD adversarial examples with adversarially perturbed 
labels. Adversarial interpolation (Adv-Interp) training (Zhang & Xu, 2020) trains 
on adversarial examples generated under an adversarial interpolation scheme with 
adversarial labels. Feature scattering-based (FeaScatter) adversarial training (Zhang 
& Wang, 2019) crafts adversarial examples using latent space feature scattering, 
then trains on these examples with label smoothing. TRADES (Zhang et  al., 2019) 
replaces the CE loss of SAT by the KL divergence for a better trade-off between 
robustness and natural accuracy. Based on TRADES, RST (Carmon et al., 2019) and 
UAT (Alayrac et al., 2019) improve robustness by training with 10× more unlabeled 
data. Misclassification Aware adveRsarial Training (MART) (Wang et al., 2020) fur-
ther improves the above three methods with a misclassification aware loss function. 
Adversarial weight perturbation (AWP) (Wu et al., 2020) perturbs inputs and model 
weights alternatively during adversarial training to improve robust generalization. 
Channel-wise activation suppressing (CAS) robustifies the intermediate layers of 
DNNs via an auxiliary channel suppressing module (Bai et al., 2020). There are also 
recent works on robust neural architectures (Shao et al., 2021; Du et al., 2021; Tang 
et  al., 2021; Huang et  al., 2021) and adversarial robustness distillation (Goldblum 
et al., 2020; Zhu et al., 2021; Zi et al., 2021). We will discuss and evaluate a set of 
the above adversarial training-based defenses in Sect. 5.

Evaluation of Adversarial Robustness Adversarial robustness requires careful and 
rigorous evaluation. Many defenses that perform incomplete evaluation are quickly 
broken by new attacks. Several evaluation pitfalls have been identified as needing to be 
avoided for reliable robustness evaluation (Carlini et al., 2019). Although several gen-
eral principles have been suggested around the regular attacks such as PGD (Carlini 
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et  al., 2019), there are scenarios where these attacks may give unreliable robustness 
evaluation. Gradient masking (Tramèr et al., 2018; Papernot et al., 2017) is a common 
effect that blocks the attack by hiding useful gradient information. Obfuscated gradi-
ents (Athalye et  al., 2018), a type of gradient masking, has been exploited (uninten-
tionally) by many defense methods to cause an overly optimistic evaluation of robust-
ness. Obfuscated gradients exist in different forms such as non-differentiable gradients, 
stochastic gradients, or vanishing/exploding gradients. Such defenses have all been 
successfully circumvented by adaptive attacks in (Athalye et  al., 2018; Carlini et  al., 
2019; Tramer et  al., 2020). Gradient-free attacks such as SPSA (Spall et  al., 1992) 
have also been used to identify obscured models (Uesato et al., 2018). In this paper, we 
identify a more subtle situation called Imbalanced Gradients, which also causes over-
estimated robustness, but is different from obfuscated gradients.

3  Imbalanced gradients and robustness evaluation

We first give a toy example of imbalanced gradients and show how regular attacks can fail 
in such a situation. We then empirically verify their existence in deep neural networks, 
particularly for some adversarially-trained models. Finally, we propose the margin decom-
position attacks to exploit the imbalanced gradients. Since CE and margin loss are the two 
commonly used loss functions for adversarial attack and CE can be written in a margin 
form (Gowal et al., 2019), here we focus on the margin loss to present the phenomenon of 
imbalanced gradients.

Imbalanced gradients The gradient of the margin loss (e.g., �margin(x, y) = zmax − zy ) 
is the combination of the gradients of its two individual terms (e.g., 
∇

x
(zmax − zy) = ∇

x
zmax + ∇

x
(−zy) ). Imbalanced Gradients is the situation where the gradi-

ent of one loss term dominates that of other term(s), pushing the attack towards a subopti-
mal direction.

Toy example Consider a one-dimensional classification task and a binary classifier with 
two outputs z1 and z2 (like logits of a DNN), Fig. 1 illustrates the distributions of z1 , z2 
and z2 − z1 around x = 0 . The classifier predicts class 1 when z1 ≥ z2 , otherwise class 2. 
We consider an input at x = 0 with correct prediction y = 1 , and a maximum perturbation 
constraint � = 2 (e.g., perturbation � ∈ [−2,+2] ). The attack is successful if and only if 
z2 > z1 . In this example, imbalanced gradients occurs at x = 0 , where the gradients of the 
two terms ∇xz2 and ∇x(−z1) have opposite directions, and the attack is dominated by the 
z1 term as ∇x(−z1) is significantly larger than ∇xz2 . Thus, attacking x with the margin loss 
will converge to +2, where the sample is still correctly classified. However, for a successful 

Fig. 1  A toy illustration of 
Imbalanced Gradients at x = 0 : 
the gradient of margin loss 
( z2 − z1 ) is dominated by its −z1 
term (i.e., ∇

x
z2 will be canceled 

out by ∇
x
(−z1) ), pointing to 

a suboptimal attack direction 
towards +2, where x is still cor-
rectly classified
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attack, x should be perturbed towards -2. In this particular scenario, the gradient ∇xz2 < 0 
alone can provide the most effective attack direction. Note that this toy example was moti-
vated by the loss landscape of DNNs when imbalanced gradient occurs.

3.1  Imbalanced gradients in DNNs

The situation can be extremely complex for DNNs with high-dimensional inputs, as imbal-
anced gradients can occur at each input dimension. It thus requires a metric to quantita-
tively measure the degree of gradient imbalance. Here, we propose such a metric named 
gradient imbalance ratio (GIR) to measure the imbalance ratio for a single input x , which 
can then be averaged over multiple inputs to produce the imbalance ratio for the entire 
model.

Definition of GIR To measure the imbalance ratio, we focus on the input dimensions 
that are dominated by one loss term. An input dimension xi is dominated by a loss term 
(e.g., zmax ) means that 1) the gradients of loss terms at xi have different directions 
( ∇xi

zmax ⋅ ∇xi
(−zy) < 0 ), and 2) the gradient of the dominant term is larger (e.g., 

|∇xi
zmax| > |∇xi

(−zy)| ). According to the dominant term, we can split these dimensions 
into two subsets xs1 and xs2 where xs1 are dominated by the zmax term, while xs2 are domi-
nated by the −zy term. The overall dominance effect of each loss term can be formulated 
as r1 = ‖

‖

‖

∇xs1
(zmax − zy)

‖

‖

‖1
 and r2 = ‖

‖

‖

∇xs2
(zmax − zy)

‖

‖

‖1
 . Here, we use the L1-norms instead of L0

-norms (i.e., the number of dominated dimensions) to also take into consideration the 
gradient magnitude. To keep the ratio larger than 1, GIR is computed as:

Note that the GIR metric is not a general measure of imbalance. Rather, it is designed only 
for assessing gradient imbalance for adversarial robustness evaluation. GIR focuses spe-
cifically on the imbalanced input dimensions and uses the L1 norm to take into account the 
influence of these dimensions to model output. The ratio reflects how far away the imbal-
ance towards one direction than the other.

(1)GIR = max{
r1

r2
,
r2

r1
}.

Fig. 2  a Gradient imbalance ratio of 5 models. b Attack success rate of PGD-20 with different losses. c 
The margin loss of the advinterp defense model on points x∗ = x + � ⋅ sign (∇

x
(−z

y
)) , where x is a natural 

sample and sign (∇
x
(−z

y
)) is the signed gradient of loss term −z

y
 . All these experiments are conducted on 

test images of CIFAR-10



2307Machine Learning (2024) 113:2301–2326 

1 3

GIR of both naturally- and adversarial-trained DNNs With the GIR metric, we 
next investigate 6 DNN models including a naturally-trained (Natural) model and 5 
adversarially-trained models using standard adversarial training (Madry et al., 2018) 
(SAT), sensible adversarial training (Kim & Wang, 2020) (Sense), feature scattering-
based adversarial training (Zhang & Wang, 2019) (FeaScatter), bilateral adversarial 
training (Wang & Zhang, 2019) (Bilateral), and adversarial interpolation training 
(Zhang & Xu, 2020) (AdvInterp). We present these defense models here because 
they (except SAT) represent different levels of gradient imbalance (more results are 
provided in Fig.  5). Natural, SAT and Sense are WideResNet-34–10 models, while 
others are WideResNet-28–10 models. We train Natural and SAT following typical 
settings in Madry et  al. (2018), while others use their officially released models. 
We compute the GIR scores of the 6 models based on 1000 randomly selected test 
samples and show them in Fig. 2a. One quick observation is that some defense mod-
els have a much higher imbalance ratio than either naturally-trained or SAT mod-
els. This confirms that gradient imbalance does exist in DNNs, and some defenses 
tend to train the model to have highly imbalanced gradients. We will show in Sect. 5 
that this situation of imbalanced gradients may cause overestimated robustness when 
evaluated by the commonly used PGD attack.

3.2  Imbalanced gradients reduce attack effectiveness

When there are imbalanced gradients, the attack can be pushed by the dominant term 
to produce weak attacks, and the non-dominant term alone can lead to more success-
ful attacks. To illustrate this, in Fig. 2b, we show the success rates of PGD attack on 
the above 5 defense models (Natural has zero robustness against PGD) with differ-
ent losses: CE loss, margin loss, and the two individual margin terms. We consider 
20-step PGD (PGD-20) attacks with step size �∕4 and � = 8∕255 on all CIFAR-10 
test images. One may expect the two margin terms to produce less effective attacks, 
as they only provide partial information about the margin loss. This is indeed the 
case for the low gradient imbalance model SAT. However, for highly imbalanced 
models Sense, FeaScatter, Bilateral and AdvInterp, attacking the zmax term produces 
even more powerful attacks than attacking the margin loss. This implies that the 
gradient of the margin loss is shifted by the dominant term (e.g., −zy in this case) 

Fig. 3  Changes in gradient imbalance ratio when apply PGD-20 ( � = 8∕255 ) attack with a the margin loss, 
b) only the z

max
 term, or c only the −z

y
 term, on the AdvInterp model for 5 CIFAR-10 test images. The 

imbalance ratio is effectively reduced by attacking a single z
max

 term
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towards a less optimal direction, which inevitably causes less powerful attacks. Com-
pared between attacking CE loss and attacking −zy , they achieve a very close perfor-
mance on imbalanced models. This shows a stronger dominant effect of −zy in CE 
loss ( �ce(x, y) = log(

∑C

i=1
ezi ) − zy ). It is worth mentioning that, while both GIR and 

this individual term-based test can be used to check whether there are significantly 
imbalanced gradients in a defense model, GIR alone cannot predict the amount of 
overestimated robustness. Figure 2c shows an example of how the −zy term leads the 
attack to a suboptimal direction: the margin loss is flat at the ∇

x
(−zy) direction, yet 

increases drastically at an opposite direction. In this example, the attack can actually 
succeed if it increases (rather than decreases) zy.

Gradients can be balanced by attacking individual loss terms Here, we show that, 
interestingly, imbalanced gradients can be balanced by attacking the non-dominant 
term. Consider the AdvInterp model tested above as an example, the dominant term is 
−zy . Figure 3 illustrates the GIR values of 5 randomly selected CIFAR-10 test images 
by attacking them using PGD-20 with different margin terms or the full margin loss. As 
can be observed, for all three losses, the GIRs are effectively reduced after the first few 
steps. However, only the non-dominant term zmax manages to steadily reduce the imbal-
ance ratio towards 1. This indicates that optimizing the individual terms separately can 
help avoid the situation of imbalanced gradients and the attack can indeed benefit from 
more balanced gradients (see the higher success rate of zmax in Fig. 2b).

4  Proposed margin decomposition attacks

Margin decomposition attack The above observations motivate us to exploit the individual 
terms in the margin loss so that the imbalanced gradients situation can be circumvented. 
Specifically, we propose margin decomposition (MD) attack that decomposes the attacking 
process with a margin loss into two stages: (1) attacking the two individual terms (e.g., zmax 
or −zy ) alternately with restarts; then (2) attacking the full margin loss. Formally, our MD 
attack and its loss functions used in each stage are defined as follows:

where, Π is the projection operation that projects the perturbation back onto the �-ball 
around x if it goes beyond, k ∈ {1,… ,K} is the perturbation step, K� ∈ [1,K] is the allo-
cated step for the first stage (i.e., ∀k ∈ [1,K�) ), r ∈ {1,… , n} is the r-th restart, mod is the 
modulo operation for alternating optimization, and �r

k
 defines the loss function used at the 

k-th step and r-th restart. The loss function switches from the individual terms back to the 
full margin loss at step K′ . The first stage exploits the two margin terms to rebalance the 
gradients, while the second stage ensures that the final objective (i.e., maximizing the clas-
sification error) is achieved. The complete algorithm of MD can be found in Algorithm 1.

(2)

xk+1 = Π
𝜖

�
xk + 𝛼 ⋅ sign (∇

x
𝓁
r
k
(xk, y))

�
,

𝓁
r
k
(xk, y) =

⎧⎪⎨⎪⎩

zmax if k < K� and r mod 2 = 0

−zy if k < K� and r mod 2 = 1

zmax − zy if K� ≤ k ≤ K,
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Note that, not all defense models have the imbalanced gradients problem. A model is 
susceptible to imbalanced gradients if there is a substantial difference between robustness 
evaluated by PGD attack and that by our MD attack. In addition, to help escape the flat loss 
landscape observed in Fig. 2c, we randomly initialize the perturbation at different restarts 
(line 6 in Algorithm 1), and use large initial perturbation size � = 2� with cosine annealing 
for both stages (lines 8–12 in Algorithm 1).

Multi-targeted MD attack We also propose a multi-targeted version of our MD attack 
and call it MD-MT. The loss terms used by MD-MT at different attacking stages are 
defined as follows:

where, zt is the logits of a target class t ≠ y . Other parameters are the same as in Eq. (2). 
Like the MT attack, MD-MT will attack each possible target class one at a time, then select 
the strongest adversarial example at the end. That is, the target class t ≠ y will be switched 
to a different target class at each restart. The complete algorithm MD-MT can be found in 
Algorithm 2.

(3)

xk+1 = Π
𝜖

�
xk + 𝛼 ⋅ sign (∇

x
𝓁
r
k
(xk, t))

�
,

𝓁
r
k
(xk, y) =

⎧⎪⎨⎪⎩

zt if k < K� and r mod 2 = 0

−zy if k < K� and r mod 2 = 1

zt − zy if K� ≤ k ≤ K,
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MD ensemble attack Following AutoAttack (Croce & Hein, 2020b), here we also pro-
pose an ensemble attack to fully exploit the strengths of both existing attacks and the gra-
dient exploration of our MD attacks. The AutoAttak ensemble consists of 4 attacks: (1) 
APGDCE , which is the Auto-PGD with the cross entropy loss; (2) DLR, which is the Auto-
PGD with the Difference of Logits Ratio (DLR) loss; (3) Fast Adaptive Boundary Attack 
(FAB) (Croce & Hein, 2019); and (4) the black-box Square Attack (Andriushchenko et al., 
2019). The MultiTargeted version of both APGDCE and DLR are used in the latest version 
of AutoAttack. We first replace the MultiTargeted DLR (DLR-MT), the strongest attack in 
the AutoAttack ensemble by our MD-MT attack. We then replace the Square attack by our 
MD attack as we focus on white-box robustness and gradient issues. This gives us the MD 
Ensemble (MDE) of 4 attacks including (1) MD, (2) MD-MT, (3) APGDCE and (4) FAB. 
We did not replace the APGDCE attack as we find it is better to have a cross entropy loss 
based attack in the ensemble.

Initialization perspective interpretation of MD attacks Previous works have shown 
that random or logits diversified initialization are crucial for generating strong adversarial 
attacks (Madry et al., 2018; Tashiro et al., 2020). Compared to random or logits diversified 
initialization, our MD attacks can be interpreted as a type of adversarial initialization, i.e., 
initialization at the adversarial sub-directions defined by the two margin terms. Rather than 
a single step of initialization, our MD attacks iteratively explore the optimal starting point 
during the first attacking stage.

Extending MD to complex losses with more than two terms. Our MD strategy is not 
restricted to the margin loss, it is also suitable for other margin-based losses like CW and 
DLR attacks. For more complex loss functions with more than two terms, one can group 
the individual terms into two conflicting groups that could produce opposite gradient 
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directions or investigate the two most conflicting terms (in the form of ‘A - B’). In this way, 
a complex loss could be reformulated in a margin form where our margin decomposition 
strategy can be easily applied.

5  Experiments

Defense models We apply our MD attacks to evaluate the robustness of 24 defense models 
proposed since 2018. Here, we focus on adversarial training models, which are arguably 
the strongest defense approach to date (Athalye et al., 2018; Croce & Hein, 2020b). The 
selected defense models are as follows.

The standard adversarial training (SAT) (Madry et  al., 2018) trains models on adver-
sarial examples generated by PGD attack. Dynamic adversarial training (dynamic) (Wang 
et al., 2019) trains on adversarial examples with gradually increased convergence quality. 
Max-Margin Adversarial training (MMA) (Ding et al., 2018) trains on adversarial exam-
ples with increasing margins (e.g., the perturbation bound � ). For MMA, we evaluate the 
released “MMA-32” model. Jacobian adversarially regularized networks (JARN) adver-
sarially regularize the Jacobian matrices and can be combined with 1-step adversarial 
training (JARN-AT1) to gain additional robustness (Chan et al., 2020). For JARN, we only 
evaluate the JARN-AT1 as its none adversarial training version has been completely bro-
ken in (Croce & Hein, 2020b). We implement JARN-AT1 on the basis of their released 
implementation of JARN. Sensible adversarial training (Sense) (Kim & Wang, 2020) trains 
on loss-sensible adversarial examples (perturbation stops when the loss exceeds a cer-
tain threshold). Bilateral adversarial training (Bilateral) (Wang & Zhang, 2019) trains on 
PGD adversarial examples with adversarially perturbed labels. For Bilateral, we mainly 
evaluate its released strongest model “R-MOSA-LA-8”. Adversarial Interpolation (Adv-
Interp) training (Zhang & Xu, 2020) trains on adversarial examples generated under an 
adversarial interpolation scheme with adversarial labels. Feature Scattering-based (FeaS-
catter) adversarial training (Zhang & Wang, 2019) crafts adversarial examples using latent 
space feature scattering, then trains on these examples with label smoothing. Adversarial 
Training with Hypersphere Embedding (AT-HE) (Pang et al., 2020) regularizing the fea-
tures onto compact manifolds. Adversarial Training with Pre-Training (AT-PT) (Hendry-
cks et al., 2019) uses pre-training to improve model robustness. TRADES (Zhang et al., 
2019) replaces the CE loss of SAT with the KL divergence for a better trade-off between 
robustness and natural accuracy. Based on TRADES, RST (Carmon et al., 2019) and UAT 
(Alayrac et al., 2019) improve robustness by training with 10× more unlabeled data. Mis-
classification Aware adveRsarial Training (MART) (Wang et al., 2020) further improves 
the above three methods with a misclassification aware loss function. Adversarial Training 
with Early Stopping (AT-ES) (Rice et al., 2020) improves SAT by using early stopping to 
avoid robust overfitting. Adversarial weight perturbation (AWP) (Wu et al., 2020) proposes 
a double perturbation mechanism to explicitly regularize the flatness of the weight loss 
landscape. Robust WideResNet (R-WRN) (Huang et  al., 2021) explores the most robust 
configurations of WideResNet (Zagoruyko & Komodakis, 2016) and trains the model fol-
lowing the same procedure as RST. This robust configuration can bring additional stability 
to the model and improve robustness. The 4 defenses we consider for the ImageNet dataset 
are as follows. (1) Engstrom et al. (2019) showed that robust representations obtained via 
adversarial training on ImageNet are approximately invertible. (2) Fast adversarial train-
ing (FastAT) (Wong et al., 2020) has also been found to be crucial for efficient adversarial 
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training on ImageNet. (3) Salman et al. (2020) trained adversarially robust models on Ima-
geNet to demonstrate their transferability to other tasks. (4) A recent work by Debenedetti 
et al. (2022) explored the adversarial training hyperparameters for vision transformers and 
trained robust XCiT models on ImageNet.

The architectures of the defense from CIFAR-10 models are all WideResNet variants 
(Zagoruyko & Komodakis, 2016). We also evaluated other architectures, including VGG-
19 (Simonyan & Zisserman, 2014), DenseNet-121 (Huang et al., 2017), and DARST (Liu 
et al., 2019) trained with SAT (Madry et al., 2018). The configuration for these models fol-
lows the same setting as in Huang et al. (2021). For each defense model, we either download 
their shared models or retrain the models using the official implementations, unless explic-
itly stated. For ImageNet, we consider the adversarially pre-trained ResNet-50 and vision 
transformer XCiT-S models. The defense models were trained against maximum perturba-
tion � = 8∕255 on CIFAR-10 and � = 4∕255 on ImageNet. We apply the current state-of-
the-art and our MD attacks to evaluate the robustness of these models in a white-box setting.

Baseline attacks and settings Following the current literature, we consider 4 exist-
ing untargeted attacks: (1) the L∞ version of CW attack (Madry et al., 2018; Wang et al., 
2019), (2) projected gradient descent (PGD) (Madry et al., 2018), (3) output diversified ini-
tialization (ODI) (Tashiro et al., 2020), (4) fast adaptive boundary attack (FAB) (Croce & 
Hein, 2020a), (5) auto-PGD with difference of logits ratio (DLR) (Croce & Hein, 2020b). 
We consider 3 multi-target attacks, (1) multi-targeted (MT) attack (Gowal et al., 2019), (2) 
multi-targeted FAB (FAB-MT), (3) multi-targeted DLR (DLR-MT). The evaluation was 
conducted under the same maximum perturbation � = 8∕255 and � = 4∕255 for CIFAR-10 
and ImageNet respectively. For all untargeted attacks, we use the same total perturbation 
steps K = 100 . For DLR and FAB, we use the official implementation and parameter set-
ting. For PGD and ODI, we use 5 restarts and step size set to � = 0.8∕255 . For both stages 
of our MD attack, we use a large initial step size � = 2� , then gradually decrease it to 0 via 
cosine annealing. The number of steps is set to K� = 20 for the first stage (i.e., K − K� = 80 
for the second stage). For all multi-target attacks, we use the same total perturbation steps 
K = 100 for each class. For CIFAR-10, this means a total of 900 steps for each image (as 
there are only 9 possible target classes). For DLR-MT and FAB-MT, we use the official 
implementation and parameter setting. For MT attack, we use 5 restarts and step size set to 
� = 0.8∕255 . For our MD-MT attack, we use the same parameter setting as the untargeted 
MD when attacking each target class. For fair comparison, the total number of perturbation 
steps are set to be the same for all attacks. We also compare our MD Ensemble (MDE) 
with the AutoAttack ensemble. Adversarial robustness is measured by the model’s accu-
racy on adversarial examples crafted by the attack on CIFAR-10 and ImageNet test images. 
We excluded FAB from the untargeted evaluation on ImageNet and all ImageNet models in 
targeted and ensemble evaluations due to the attack’s efficiency.

5.1  Robustness evaluation results

Table  1 reports the untargeted evaluation result, where R-WRN, AWP, and RST are the 
top 3 best defenses. The ‘Diff’ column shows that there are 11 defense models demonstrat-
ing more than 1% robustness drop against our MD attack compared to the best baseline 
attack. This implies that these models are susceptible to imbalanced gradients. Out of the 
11 models, 4 of them are ranked at the very bottom (worst robustness on CIFAR-10) of the 
list with a robustness that is much lower than SAT. In most cases, our MD attack is able to 
decrease the PGD or DLR robustness by more than 2% even on the top 5 defense models. 
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Compared to the best baseline attack, our MD attack can reduce its evaluated robustness 
by more than 2% on Sense, Bilateral, FeaScatter, and JARN-AT1. It also shows more than 
1% improvement on top-ranking defenses, including R-WRN, RST, and UAT. These results 
demonstrate the importance of addressing the imbalanced gradients problem in robustness 
evaluation. Circumventing imbalanced gradients via margin decomposition and explora-
tion makes our MD the best overall standalone attack for robustness evaluation. In terms 
of evaluating ImageNet defenses, our MD attack alone can outperform the AA ensem-
ble attack on XCiT-S and FastAT, compared to the robustness evaluated and reported on 
RobustBench leaderboard (Croce et al., 2021). For instance, AA evaluates XCiT-S to be of 
41.78% robustness, while our MD evaluates it to be of 40.26% robustness. This highlights 
the significance of the imbalanced gradients problem on the large-scale dataset and the 
advantage of our proposed technique in evaluating vision transformers.

Table 1  Untargeted evaluation

Robustness ( % ) of 24 defense models on CIFAR-10 and 4 defense models on ImageNet, all evaluated by 
untargeted attacks.  The ‘diff’ column shows the robustness decrease by our MD attack compared to the 
best baseline attack (i.e., best baseline - MD)
The best results are boldfaced

Dataset Defense (ranked by MD robust-
ness)

Clean CW PGD ODI FAB DLR MD Diff

CIFAR10 R-WRN (Huang et al., 2021) 91.23 64.28 64.98 64.76 64.49 64.38 62.91 − 1.37
AWP (Wu et al., 2020) 88.25 63.64 63.45 62.14 60.74 60.73 60.19 − 0.54
RST (Carmon et al., 2019) 89.69 62.25 61.99 61.89 60.92 60.88 59.77 − 1.11
UAT (Alayrac et al., 2019) 86.46 61.19 60.96 60.17 60.06 62.97 58.44 − 1.62
AT-PT (Hendrycks et al., 2019) 87.11 57.57 57.53 56.84 55.57 57.25 55.22 − 0.35
AT-ES (Rice et al., 2020) 85.52 55.80 55.80 54.50 53.14 54.67 52.94 − 0.20
TRADES (Zhang et al., 2019) 84.92 55.07 54.98 54.83 53.50 53.66 52.74 − 0.76
AT-HE (Pang et al., 2020) 81.43 53.05 52.87 52.89 52.20 54.62 51.85 − 0.35
MART (Wang et al., 2020) 83.62 56.09 55.84 53.43 51.80 52.90 51.50 − 0.30
SAT-DenseNet121 (Huang et al., 

2021)
86.07 52.75 52.70 53.01 51.39 53.06 50.83 − 0.56

SAT-DARTS (Huang et al., 2021) 86.76 49.16 46.35 48.64 46.65 47.38 45.78 − 0.57
Adv-Interp (Zhang & Xu, 2020) 90.25 73.12 73.05 50.85 43.96 52.87 45.07 1.11
MMA (Ding et al., 2018) 84.36 51.34 51.40 46.90 48.97 51.20 44.94 − 1.96
SAT (Madry et al., 2018) 87.25 51.49 45.32 47.23 45.94 46.85 44.70 − 0.62
Dynamic (Wang et al., 2019) 84.36 51.34 51.40 44.30 46.90 51.20 44.94 − 0.48
SAT-VGG19 (Huang et al., 2021) 77.06 45.51 46.06 44.86 43.88 46.08 43.56 − 0.32
FeaScatter (Zhang & Wang, 

2019)
89.98 69.56 69.35 44.89 43.78 51.82 42.16 − 1.62

Sense (Kim & Wang, 2020) 91.51 60.68 60.61 46.32 42.24 50.54 39.91 − 2.33
Bilateral (Wang & Zhang, 2019) 90.73 61.50 61.20 44.73 43.79 46.36 39.39 − 4.11
JARN-AT1 (Chan et al., 2020) 83.86 50.15 19.36 19.73 20.14 20.57 17.32 − 2.04

ImageNet XCiT-S (Debenedetti et al., 2022) 72.53 55.55 42.84 41.63 - 44.48 40.26 − 1.37
ResNet-50 (Salman et al., 2020) 63.87 51.14 38.60 36.41 - 37.92 35.31 − 1.09
ResNet-50 (Engstrom et al., 

2019)
62.40 49.16 32.46 31.23 - 33.00 29.76 − 1.47

FastAT (Wong et al., 2020) 53.82 44.55 27.28 26.31 - 27.48 25.34 − 0.98
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The multi-targeted evaluation results are presented in Table 2, where it shows that our 
MD-MT attack is the strongest attack on average. By comparing Table 1 with Table 2, 
we find that the multi-targeted robustness is lower than the untargeted robustness for 
all defenses. This indicates that multi-targeted evaluation is more accurate than untar-
geted evaluation. Overall, our MD-MT attack demonstrates the most reliable robustness 
on 13/20 defense models, while DLR-MT is slightly better on the other 7 models. The 
improvement of DLR-MT over DLR indicates that exploring different targets can help 
circumvent imbalanced gradients to some extent. We will conduct a detailed analysis of 
different attack techniques against imbalanced gradients in Sect. 5.3.

We further compare our MDE attack with the AutoAttack in Table 3. Compared to 
multi-targeted evaluation, the use of ensemble attacks produces the most accurate evalu-
ation for all defense models. This is because ensemble attacks combine the strengths 
of multiple attacks. It is worth mentioning that the current adversarial robustness lead-
erboard is created based on the AutoAttack ensemble (Croce et  al., 2020). By replac-
ing two of its attacks, our MDE is able to produce even better evaluation with lower 
robustness in most cases, except a tie on SAT and R-WRN, and 0.05% worse on UAT. 
The improvements are more pronounced on the imbalanced gradients models (e.g., the 
bottom 6 models). This result again verifies the importance of margin exploration in 
robustness evaluation.

Table 2  Multi-targeted evaluation.

Robustness ( % ) of 20 defense models on CIFAR-10 evaluated by different multi-targeted attacks. The ‘diff’ 
column shows the robustness decrease by our MD-MT attack compared to the best baseline attack (i.e., best 
baseline - MD-MT)
The best results are boldfaced

Defense (ranked by MD-MT robustness) Clean MT FAB-MT DLR-MT MD-MT Diff

R-WRN (Huang et al., 2021) 91.23 62.64 63.18 62.55 62.57 0.02
AWP (Wu et al., 2020) 88.25 60.12 60.52 60.05 60.07 0.02
RST (Carmon et al., 2019) 89.69 59.74 60.20 59.58 59.55 − 0.03
UAT (Alayrac et al., 2019) 86.46 56.50 59.98 56.16 56.19 0.03
AT-PT (Hendrycks et al., 2019) 87.11 55.04 55.28 54.88 54.87 − 0.01
TRADES (Zhang et al., 2019) 84.92 52.61 53.06 52.53 52.51 − 0.02
AT-ES (Rice et al., 2020) 85.52 52.42 52.75 52.35 52.31 − 0.04
AT-HE (Pang et al., 2020) 81.43 51.17 51.53 51.10 51.04 − 0.06
MART (Wang et al., 2020) 83.62 51.00 51.39 50.95 50.91 − 0.04
SAT-DenseNet121 (Huang et al., 2021) 86.07 50.24 50.64 50.12 50.14 0.02
SAT-DARTS (Huang et al., 2021) 86.76 45.39 45.97 45.09 45.11 0.02
SAT (Madry et al., 2018) 87.25 44.67 45.29 44.52 44.49 − 0.03
Dynamic (Wang et al., 2019) 84.48 43.01 43.40 42.93 42.91 − 0.02
SAT-VGG19 (Huang et al., 2021) 77.06 42.67 43.30 42.62 42.60 − 0.02
MMA (Ding et al., 2018) 84.36 42.74 42.66 41.72 41.45 − 0.27
ADVInterp (Zhang & Xu, 2020) 90.25 66.30 39.10 37.53 37.54 0.01
Bilateral (Wang & Zhang, 2019) 90.73 57.51 38.36 38.55 37.03 − 1.33
FeaScatter (Zhang & Wang, 2019) 89.98 43.37 38.54 37.29 36.72 − 0.57
Sense (Kim & Wang, 2020) 91.51 48.40 35.50 35.94 34.87 − 0.63
JARN-AT1 (Chan et al., 2020) 83.86 17.10 17.49 16.58 16.63 0.05
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5.2  Defenses that cause imbalanced gradients

Here, we explore common defense techniques that cause imbalanced gradients by focus-
ing on the 6 defense models that are relatively more susceptible to imbalanced gradients: 
MMA, Bilateral, Adv-Interp, FeaScatter, Sense, and JARN-AT1. To avoid other fac-
tors introduced by the different attack techniques used by ODI and DLR attacks, here we 
directly compare the robustness evaluated by the classic PGD attack and that evaluated by 
our MD attack. Note that imbalanced gradients are not the only possible but rather a subtle 
cause of over-estimated robustness. That is, it is more subtle than obfuscated gradients and 
needs specific techniques to evade.

Label smoothing causes imbalanced gradients According to Table 1, the PGD robust-
ness of Adv-Interp, FeaScatter, and Bilateral decreases the most (i.e., 20–27%) against 
our MD attack. This indicates that these defenses have caused the imbalanced gradients 
problem, as also confirmed by their high GIR values in Fig.  2a. All three defenses use 
label smoothing as part of their training scheme to improve adversarial training, which we 
suspect is one major cause of imbalanced gradients. Given a sample x with label y, label 
smoothing encourages the model to learn a uniform logit or probability distribution over 
classes j ≠ y . This tends to smooth out the input gradients of x with respect to these classes, 
resulting in smaller gradients. In order to confirm label smoothing indeed causes imbal-
anced gradients, we train a WideResNet-34–10 model using natural training (‘Natural’) 

Table 3  Ensemble evaluation

Robustness ( % ) of 20 defense models evaluated by ensemble attacks. The ‘diff’ column shows the robust-
ness decrease by our MDE attack compared to the best baseline attack (i.e., best baseline - MDE)
The best results are boldfaced

Defense (ranked) Clean AutoAttack MDE Diff

R-WRN (Huang et al., 2021) 91.23 62.54 62.54 0.00
AWP (Wu et al., 2020) 88.25 60.05 60.00 − 0.05
RST (Carmon et al., 2019) 89.69 59.56 59.53 − 0.03
UAT (Alayrac et al., 2019) 86.46 56.11 56.16 0.05
AT-PT (Hendrycks et al., 2019) 87.11 54.91 54.86 − 0.05
TRADES (Zhang et al., 2019) 84.92 52.54 52.51 − 0.03
AT-ES (Rice et al., 2020) 85.52 52.34 52.30 − 0.04
AT-HE (Pang et al., 2020) 81.43 51.09 51.06 − 0.03
SAT-DenseNet121 (Huang et al., 2021) 86.07 50.11 50.09 − 0.02
SAT-DARTS (Huang et al., 2021) 86.76 45.00 45.01 0.01
MART (Wang et al., 2020) 83.62 50.94 50.89 − 0.05
SAT (Madry et al., 2018) 87.25 44.45 44.45 0.00
Dynamic (Wang et al., 2019) 84.48 42.90 42.89 − 0.01
SAT-VGG19 (Huang et al., 2021) 77.06 42.61 42.57 − 0.04
MMA (Ding et al., 2018) 84.36 41.51 41.34 − 0.17
ADVInterp (Zhang & Xu, 2020) 90.25 36.46 36.55 − 0.09
Bilateral (Wang & Zhang, 2019) 90.73 36.61 36.48 − 0.13
FeaScatter (Zhang & Wang, 2019) 89.98 36.65 36.25 − 0.40
Sense (Kim & Wang, 2020) 91.51 34.19 33.84 − 0.35
JARN-AT1 (Chan et al., 2020) 83.80 16.55 16.51 − 0.04
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and SAT with or without label smoothing (smoothing parameter 0.5). We report their 
robustness in Table 4, and show their gradient imbalance ratios (GIRs) in Fig. 4. According 
to the GIRs, adding label smoothing into the training process immediately increases the 
imbalance ratio, especially in natural training. The PGD robustness of the naturally-trained 
model also “increases" to 7.87%, which is almost zero (0.06%) according to our MD attack. 
Using smoothed labels in SAT defense also “increases" PGD robustness by more than 1%, 
which in fact is only 0.3% according to our MD. Other attacks including CW and DLR 
are also affected by the label-smoothing effect. This is because CW and DLR are both 
logit-based attacks, which are more prone to imbalanced gradients. ODI is less sensitive to 
label smoothing, yet is still not as effective as our MD attack. These evidences confirm that 
label smoothing indeed causes imbalanced gradients, leading to overestimated robustness 
if evaluated by regular attacks like PGD or DLR. Figure 4 demonstrates that adversarial 
training can inhibit imbalanced gradients caused by label smoothing to large extent. This is 
because the adversarial examples used for adversarial training are specifically perturbed to 
the j ≠ y classes, thus helping avoid uniform logits over classes j ≠ y to some extent.

The last three columns in Table 4 show the robustness results when different loss terms 
are used in MD, in the presence of label smoothing and thus imbalanced gradients. They 
are consistent with our illustration in Fig. 2b, i.e., −zy works similarly as zmax − −zy , while 
zmax is the worst. This means that the non-dominant term is more effective when there are 
imbalanced gradients.

Other defense techniques that cause imbalanced gradients The other 3 imbalanced 
defenses MMA, Sense and JARN-AT1 adopt different defense techniques to “improve" 
robustness. MMA is a margin-based defense that maximizes the shortest successful pertur-
bation for each data point. MMA only perturbs correctly-classified examples, and the per-
turbation stops immediately at misclassification (into a j ≠ y class). In other words, MMA 
focuses on examples that are around the decision boundary (i.e., zmax = zy ) between class 
y and all other classes j ≠ y . During training, the decision boundary margin is maximized 

Table 4  Robustness (%) of WideResNet-34–10 (may be different to those evaluated in Table  1) models 
trained with/without label smoothing

The lowest robustness results are boldfaced. z
max

 , −z
y
 , and z

max
− z

y
 denote MD attack with the single loss 

terms, respectively

Defense FGSM CW PGD ODI DLR MD z
max

−z
y

z
max

− z
y

Natural 31.96 37.73 0.00 0.00 0.00 0.00 0.00 0.02 0.00
+ Label Smoothing 58.28 49.27 7.87 0.28 0.14 0.06 0.11 0.29 0.13
SAT 65.92 50.56 47.25 48.86 48.87 46.31 61.10 55.07 48.47
+ Label Smoothing 66.57 51.15 48.67 48.25 50.35 46.60 52.19 48.82 48.37

Fig. 4  Gradient imbalance ratio 
(GIR) of models trained with/
without label smoothing
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by pulling the boundary away from these examples. This process maximizes the distance 
to the closest decision boundary (e.g., towards the weakest class) and results in equal dis-
tances to all other classes. This tends to generate a uniform prediction over classes j ≠ y , a 
similar effect of label smoothing, and causes imbalanced gradients.

Similar to MMA, Sense perturbs training examples until a certain loss threshold is satis-
fied. While in MMA the threshold is misclassification, in Sense, it is the loss value with 
respect to probability (e.g., py = 0.7 ). This type of training procedures with a specific log-
its or probability distribution regularization has caused the imbalanced gradients problem 
for both MMA and Sense. Note that, Sense causes more imbalanced gradients than MMA. 
We conjecture it is because optimizing over a probability threshold is much easier than 
moving the decision boundary.

JARN-AT1 is also a regularization-based adversarial training method. Different from 
MMA or Sense, it regularizes the model’s Jacobian (e.g., input gradients) to resemble natu-
ral training images. Such explicit input gradient regularizations reduce the input gradients 
to a much smaller magnitude and only keep the salient part of input gradients. The input 
gradients associated with other j ≠ y classes will be minimized to cause an imbalance to 
that associated with class y.

The above analysis indicates that future defense should avoid using label smoothing, 
margin smoothing or input gradient regularization techniques, or should be carefully evalu-
ated against our MD attack to check for imbalanced gradients.

Correlation between GIR and robustness According to the GIR scores shown in Figs. 2a 
and 5, models exhibit high GIR scores (e.g., Adv-Interp, FeaScatter and Bilateral) are 
generally more prone to imbalanced gradients and potentially more vulnerable to our MD 
attack. However, GIR is not a measure for robustness nor should be used as an exact met-
ric to determine whether one defense is more robust than the other. For example, MART 
demonstrates a higher GIR score than Sense or JARN-AT1, however, according to our MD 
attack, it is 11% and 34% more robust than Sense and JARN-AT1, respectively. This is 
because the GIR score of a model only measures the gradient situation of the model at its 
current state, which could decrease during the attack as shown in Figs. 3 and 6. Our MD 
attack iteratively exploits and circumvents imbalanced gradients during the first attacking 
stage, thus can produce reliable robustness evaluation at the end.

Fig. 5  Gradient imbalance ratios 
(GIRs) of 12 defense models and 
a naturally trained model (“Natu-
ral”). All models are trained on 
CIFAR-10 dataset. Those defense 
models that are not susceptible to 
imbalanced gradients are omitted 
here
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5.3  An attack view of imbalanced gradients

As shown in Table 1, advanced attacks ODI and DLR are more effective than traditional 
attacks PGD and CW against imbalanced gradients. Here, we provide more insights into 
what attack techniques are effective against imbalanced gradients. Before that, we first 
show imbalanced gradients are more subtle than obfuscated gradients and cannot be easily 
circumvented by common techniques like random restarts or momentum.

5.3.1  Imbalanced gradients are different from obfuscated gradients

Imbalanced gradients occur when one loss term dominates the attack towards a suboptimal 
gradient direction, which does not necessarily block gradient descent like obfuscated gra-
dients. Therefore, it does not have the characteristics of obfuscated gradients, and cannot 
be detected by the five checking rules for obfuscated gradients (Athalye et al., 2018). Here, 
we test all five rules on the four defense models that exhibit significantly imbalanced gradi-
ents: Adv-Interp, FeaScatter, Bilateral, and Sense. Note that all these models were trained 
and tested on the CIFAR-10 dataset.

One-step attacks outperform iterative attacks. When gradients are obfuscated, iterative 
attacks are more likely to get stuck in a local minimum. To test this, we compare the suc-
cess rate of one-step attack FGSM and iterative attack PGD in Table 5. We see that PGD 
outperforms FGSM consistently on all four defense models with no obvious sign of obfus-
cated gradients.

Unbounded attacks do not reach 100% success. Increasing the distortion bound does 
not increase success. Larger perturbation bound gives the attacker more ability to attack. 
So, if gradients are not obfuscated, an unbounded attack should reach 100% success rate. 
To test this, we run an “unbounded" PGD attack with � = 255∕255 . As shown in Table 5, 
all models are completely broken by this unbounded attack, i.e., the over-estimated robust-
ness is caused by a more subtle effect than obfuscated gradients.

Black-box attacks are better than white-box attacks If a model is obfuscating gradients, 
it should fail to provide useful gradients in a small neighborhood. Therefore, using a sub-
stitute model should be able to evade the defense, as the substitute model was not trained 
to be robust to small perturbations. To test this, we run a black-box transfer PGD attack on 
naturally trained substitute models. We find that all four defenses are robust to transferred 
attacks (“Transfer" in Table 5). We also attack the four defense models using gradient-free 
attack SPSA (Uesato et al., 2018). For SPSA, we use a batch size of 8192 with 100 itera-
tions and run on 1000 randomly selected CIFAR-10 test images. We confirm that SPSA 
cannot degrade its performance. None of these results indicate obfuscated gradients.

Table 5  Test of obfuscated gradients for four defense models that have significant imbalanced gradients fol-
lowing (Athalye et al., 2018): attack success rate (%) of different attacks

The results indicate no sign of obfuscated gradients

Defense FGSM PGD Unbounded Transfer SPSA Random

Adv-Interp (Zhang & Xu, 2020) 23.06 27.52 100.00 10.89 24.80 0.00
FeaScatter (Zhang & Wang, 2019) 22.60 31.36 100.00 11.11 28.20 0.00
Bilateral (Wang & Zhang, 2019) 28.90 39.05 100.00 9.23 36.00 0.00
Sense (Kim & Wang, 2020) 27.29 40.14 100.00 9.90 37.90 0.00
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Random sampling finds adversarial examples Brute force random search within some �
-neighbourhood should not find adversarial examples when gradient-based attacks do not. 
Following (Athalye et al., 2018), we choose 1000 test images on which PGD fails. We then 
randomly sample 105 points for each image from its � = 8∕255-ball region and check if any 
of them are adversarial. The results (i.e., “Random" in Table 5) show that random sampling 
cannot find adversarial examples when PGD does not.

All the above test results lead to one conclusion that the robustness of the four defenses 
is not a result of obfuscated gradients. This indicates that imbalanced gradients does not 
share the characteristics of obfuscated gradients, and thus cannot be detected following 
the five test principles for obfuscated gradients. Therefore, imbalanced gradients should be 
addressed independently for more reliable robustness evaluation.

5.3.2  Momentum, random restart cannot circumvent imbalanced gradients

As we discussed in Sect. 3, random restarts can potentially increase the probability of find-
ing an adversarial example. Momentum method is another way to help escape overfitting to 
local gradients (Sutskever et  al., 2013). Here, we test their effectiveness in circumventing 
imbalanced gradients. For random restart, we run a 400-step PGD attack with 100 restarts 
( PGD100×400 ). For momentum, we use momentum iterative FGSM (MI-FGSM) (Dong et al., 
2018) with 40 steps, 2 restarts, and momentum 1.0. For both attacks, we set � = 8∕255 and 
step size � = 2∕255 . Note that, we removed samples that were successfully perturbed from 
the batch, thus only restarting samples that are not successful. This slightly improves the per-
formance and shows it is stronger than PGD without restarts. We apply the two attacks on 
1000 randomly chosen CIFAR-10 test images, and report the robustness in Table 6 for the 
four defense models checked in Sect. 5.3.1. Compared to traditional PGD with 40 steps, the 
robustness can indeed be decreased by PGD100×400 except on Bilateral, a consistent observa-
tion with our analysis in Sect. 3 that more restarts can lower model accuracy. However, the 
robustness is still highly overestimated compared to that of our MD attack. This indicates that 
imbalanced gradients can exist in wide-spanned input regions, resulting in a low probability 
of random restart to find successful attacks. To our surprise, MI-FGSM performs even worse 
than traditional PGD. On three defense models ( i.e., Adv-Interp, FeaScatter, and Sense), it 
produces even higher robustness than PGD. This implies that accumulating velocity in the 
gradient direction can make the overfitting even worse when there are imbalanced gradients. 
This again confirms that the imbalanced gradients problem should be explicitly addressed.

5.3.3  What can help circumvent imbalanced gradients?

Logits diversified initialization ODI randomly initializes the perturbation by adding 
random weights to logits at its first 2 steps. The random weights change the gradient 

Table 6  Robustness (%) of 
four defense models that have 
significant imbalance gradients 
against PGD, PGD100×400 , 
MI-FGSM and our MD attacks

The best results are boldfaced

Defense PGD MD (ours) PGD
100×400 MI-FGSM

Adv-Interp 72.48 45.07 71.64 73.25
FeaScatter 68.64 42.16 67.00 70.79
Sense 59.86 39.91 58.51 62.41
Bilateral 60.95 39.39 59.61 51.52
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magnitude, thus can also mitigate imbalanced gradients, as shown in Fig. 6a. However, 
the initialization can only help with the first two attack steps, and the imbalance ratio 
fluctuates drastically in the following steps. Our MD attack provides a more direct and 
efficient exploration of imbalance gradients, thus can maintain a low imbalance ratio 
even after the first few steps (see Fig. 6c). In Table 1, our MD attack was also found to 
be more effective than ODI.

Exploration beyond the �-ball By inspecting the individual attacks in AutoAt-
tack, we found that the exploration technique used by the FAB attack is also effective 
against imbalanced gradients to some extent. FAB first finds a successful attack using 
unbounded perturbation size, then minimizes the perturbation to be within the �-ball. 
As shown in Fig. 6b, the first few steps of exploration outside the �-ball can effectively 
avoid imbalanced gradients. This is also why our MD attacks use a large step size in the 
first stage. However, the imbalance ratio tends to increase when FAB attempts to mini-
mize the perturbation (steps 10–16). We believe FAB can be further improved following 
a similar strategy to our margin decomposition.

Circumventing imbalanced gradients improves black-box attacks Here we show gra-
dient estimation based black-box attacks can also benefit from our MD method when 
there are imbalanced gradients. We take SPSA as an example and use the two-stage 
losses of our MD attack for SPSA. This version of SPSA is denoted as SPSA+MD. 
For both SPSA and SPSA+MD, we use the same batch size of 8192 with 100 itera-
tions. Since black-box attack is quite time-consuming, we only run on 1000 randomly 
selected CIFAR-10 test images. The attack success rates on Adv-Interp, FeaScatter, and 
Sense models are reported in Table  7. Compared to SPSA, SPSA+MD can lower the 
robustness by at least 10.9%. This indicates that imbalanced gradient also has a nega-
tive impact on back-box attacks, and our method can be easily applied to produce more 
query-efficient and successful black-box attacks.

Fig. 6  Gradient imbalance ratio at the first 20 steps of ODI (a), FAB (b) and our MD (c) attacks on the 
AdvInterp model for 5 randomly selected CIFAR-10 test images

Table 7  Attack success rate (ASR, %) of the SPSA attack with or without our MD losses on three defense 
models. ‘↑’ marks the ASR boost by MD

The best results are boldfaced

Attack Adv-Interp FeaScatter Sense

SPSA 24.80 28.20 37.90
SPSA+MD 40.30 ( ↑15.5) 45.60 ( ↑17.4) 48.80 ( ↑10.9)
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5.4  Ablation and parameter analysis of MD attack

In this section, we provide a more detailed analysis of our proposed MD attack via an abla-
tion study and a parameter analysis. The ablation study focuses on the two attacking stages 
of MD, while the parameter analysis focuses on the perturbation-related parameters includ-
ing the number of steps and initial step size.

5.4.1  Ablation study

Here, we investigate two influential factors to our MD attack: 1) the second attacking stage, 
and 3) the stage order. We use AdvInterp as our target model, and conduct the following 
attack experiments on CIFAR-10 test data.

The second attacking stage We further investigate the importance of the second stage 
of attacking with the full margin loss in our MD and MD-MT attacks. The attack success 
rates with or without the second stage are also reported in Table 8. It shows that attack-
ing the full margin loss via the second stage can increase the success rate, for both MD 
and MD-MT. This verifies the importance of the second stage for generating the strongest 
attacks.

Ordering of the two stages To verify that the ordering of the two stages is suitable for 
MD attacks, we evaluate a new version of our MD attacks with the two stages switched: the 
first stage optimizes the full margin loss and the second stage explores the individual loss 
terms. The results are also reported in Table 8 (the last two columns). As can be observed, 
MD attacks become less effective when the two stages are switched, even compared to that 
without the second stage. This indicates that the imbalanced gradients should be addressed 
first before producing a reliable robustness evaluation.

5.4.2  Parameter analysis

We further investigate the sensitivity of our MD attack to two parameters: 1) the number of 
perturbation steps, and 2) the initial step size. Here, we focus on the first attacking stage as 
the second stage is similar to the PGD attack, which has been investigated in (Wang et al., 
2019).

Number of steps for the first stage Here, we fix the total number of steps for the two 
stages to K = 100 and vary the steps allocated for the first stage. Note that MD attack will 
reduce to the regular PGD attack if the step of its first stage is set to 0. Here, we vary the 
steps for the first stage from 5 to 50 in granularity of 5. The initial step size is fixed to 
� = 2� and gradually decreased to 0 via cosine annealing. The robustness of four defense 
models including Bilateral, Sense, Adv-Interp, and FeaScatter are illustrated in Fig. 7a. As 

Table 8  Attack success rates (%) 
of our MD and MD-MT attacks 
1) with or without the second 
stage, and 2) with or without the 
two stages being switched

Experiments are conducted on the defense model AdvInterp and 
CIFAR-10 dataset
The best results are boldfaced

Attacks Second Stage Switching Stage

Without With Yes No

MD 44.53 45.18 43.17 45.18
MD-MT 52.56 52.71 51.47 52.71
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can be observed, the effectiveness of our MD attack tends to drop at both ends, and the best 
performance (lowest evaluated robustness) is achieved at 20, except for Bilateral (which is 
25). Therefore, we suggest using 20 steps as the optimal choice for the first stage.

Initial step size for the first stage We vary the initial step size used in the first stage 
from 2/255 to 20/255 in a granularity of 2/255. The initial step size will decrease to 0 with 
the cosine annealing. Following the above experiment, here we fix the number of steps 
for the first stage to 20. The evaluated robustness (or model accuracy on the generated 
attacks) of the four defense models are illustrated in Fig. 7b. A clear improvement of using 
a large initial step size can be observed. Based on the trend, we suggest using a relatively 
large ( � ∈ [2�, 3�) ) initial step size to help circumvent imbalanced gradients during the 
first stage.

6  Conclusion

In this paper, we identified a subtle situation called Imbalanced Gradients, where exist-
ing attacks may fail to produce the most accurate adversarial robustness evaluation. We 
proposed a new metric to investigate the imbalanced gradients problem in current defense 
models. We also proposed a new attack called margin decomposition (MD) attack to lev-
erage imbalanced gradients via a two-stage attacking process. The multi-targeted and 
ensemble version of MD attacks were also introduced to generate the strongest attacks. By 
re-evaluating 24 defense models proposed since 2018, we found that 11 of them are sus-
ceptible to imbalanced gradients to some extent and their robustness evaluated by the best 
standalone attack can be further reduced for more than 1% by our MD attack. We identi-
fied a set of possible causes of imbalanced gradients, and effective countermeasures. Our 
results indicate that future defenses should avoid causing imbalanced gradients to achieve 
more reliable adversarial robustness.
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