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Abstract
Theoretically, domain adaptation is a well-researched problem. Further, this theory has 
been well-used in practice. In particular, we note the bound on target error given by Ben-
David et  al. (Mach Learn 79(1–2):151–175, 2010) and the well-known domain-aligning 
algorithm based on this work using Domain Adversarial Neural Networks (DANN) pre-
sented by Ganin and Lempitsky (in International conference on machine learning, pp 
1180–1189). Recently, multiple variants of DANN have been proposed for the related 
problem of domain generalization, but without much discussion of the original motivating 
bound. In this paper, we investigate the validity of DANN in domain generalization from 
this perspective. We investigate conditions under which application of DANN makes sense 
and further consider DANN as a dynamic process during training. Our investigation sug-
gests that the application of DANN to domain generalization may not be as straightforward 
as it seems. To address this, we design an algorithmic extension to DANN in the domain 
generalization case. Our experimentation validates both theory and algorithm.
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1 Introduction

In general, in machine learning, we assume the training data for our learning algo-
rithm is well representative of the testing data. That is, we assume our training data 
follows the same distribution as our testing data. Of primary interest to this paper is 
the case where this assumption fails to hold: we consider learning in the presence of 
multiple domains. We formalize the multiple domain problem of interest as the case 
where (at train-time) we observe k domains referred to as sources which have distri-
butions ℙ1,ℙ2,… ,ℙk over some space X  . At test-time, we are evaluated on a distinct 
target domain which has distribution ℚ over X  . All of these feature distributions have 
(potentially) distinct labelling functions and our goal is to learn the labeling function on 
the target. Typically, we assume some restriction on observation of the target domain at 
train-time. In the literature, a large amount of work is concerned with the problem of 
Domain Adaptation (DA) which assumes access to samples from ℚ , but restricts access 
to the labels of these samples. More recently, there has also been an active investigation 
on the problem of Domain Generalization (DG) which instead assumes absolutely no 
access to the target domain. In spite of these restrictions, in both cases, the goal is for 
our learning algorithm trained on sources to perform well when evaluated on the target.

One popular approach to DA is the use of a Domain Adversarial Neural Network 
(DANN) originally proposed by Ganin and Lempitsky (2015). Intuitively, this approach 
attempts to align the source and target domains by learning feature representations of 
both which are indiscernible by a domain discriminator trained to distinguish between 
the two distributions. Informally speaking, this seems like a sensible approach to DA. 
By accomplishing this domain alignment, the neural network should still be adept at the 
learned task when it is evaluated on the target domain at test-time. While DANN was 
originally proposed for DA, the adoption of this reasoning has motivated adaptations of 
this approach for DG (Albuquerque et al., 2020; Li et al., 2018b, c; Matsuura & Harada, 
2020). In fact, very early works in DG (Muandet et al., 2013) are similarly motivated by 
the goal of domain-agnostic feature representations.

Still, it is worth noting that the original proposal of DANN (Ganin & Lempitsky, 
2015) was motivated by theory. In particular, Ganin and Lempitsky base their algo-
rithm on the target-error bound given by Ben-David et al. (2007, 2010a). Under appro-
priate assumptions, interpretation of the bound suggests domain alignment as achieved 
through DANN should improve performance on the target distribution, but importantly, 
it motivates alignment between the source and target. Counter to this, DANN variants 
for DG generally align multiple source domains because no access to target data is per-
mitted. This shortcoming gives rise to the question of primary interest to this paper:

Is there a justification for source alignment using DANN in DG?

Specifically, we are concerned with a target-error bound similar to those provided by 
Ben-David et  al. (2010a). To answer this question, we appeal to a recent theoretical 
proposal by Albuquerque et  al. (2020) which uses a reference object (i.e., the set of 
mixture distributions of the sources) to derive a target-error bound in the domain gen-
eralization setting. Building on this framework, we provide answers to two important 
considerations: 

1. What additional reference objects (besides sets of mixture distributions) satisfy the 
primary condition used to derive target-error bounds in DG?
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2. How does the target-error bound behave as a dynamic quantity during the training pro-
cess?

Ultimately, answering these two questions allows us to formulate a novel extension of 
the Domain Adversarial Neural Network. We validate experimentally that this extension 
improves performance and otherwise agrees with our theoretical expectations.

2  Domain Adversarial Neural Network (DANN)

In this section, we cover the necessary background on Domain Adversarial Neural Net-
works (DANN). We first present the original bound on target-error in the case of unsu-
pervised DA (Ben-David et al., 2007, 2010a) which motivates the DANN algorithm pro-
posed by Ganin and Lempitsky (Ganin & Lempitsky, 2015). Following this, we outline the 
key differences introduced by a DANN variant proposed by Matsuura and Harada (2020). 
Although this variant achieves state-of-the-art (DANN) performance in DG, we point out 
the main concerns we have regarding the justification of this approach.

2.1  In domain adaptation

As mentioned, we begin with a motivating result of Ben-David et al. (2010a). Intuitively, 
this result describes bounds on the target-error controlled, in part, by a computable meas-
ure of divergence between distributions. While we provide a more detailed exposition of 
the problem setup in Appendix A, we begin by listing here the key terms to familiarize the 
reader.

2.1.1  Setup

For a binary hypothesis h, a distribution ℙ , and a labeling function f for ℙ , we define the 
error Eℙ(h) of h on the distribution ℙ as follows

This is our primary measure of the quality of a hypothesis when predicting on a distribu-
tion ℙ . To measure differences in distribution, we use the H-divergence which is an adapta-
tion of the A-distance Kifer et al. (2004). In particular, given two distributions ℙ , ℚ over a 
space X  and a corresponding hypothesis class H ⊆ {h ∣ h ∶ X → {0, 1}} , the H-divergence 
Ben-David et al. (2010a) is defined

where Ih = {x ∈ X ∣ h(x) = 1} . Generally, it is more useful to consider the the HΔH

-divergence, specifically, where Ben-David et al. (2010a) define the symmetric difference 
hypothesis class HΔH as the set of functions characteristic to disagreements between 
hypotheses.1 This special case of the H-divergence will be the measure of divergence in all 
considered bounds.

(1)Eℙ(h) = Ex∼ℙ|h(x) − f (x)| = Ex∼ℙ

[
1[h(x) ≠ f (x)]

]
.

(2)dH(ℙ,ℚ) = 2 sup
h∈H

||Prℙ(Ih) − Prℚ(Ih)
||

1 Specifically, g ∈ HΔH ⇔ g(x) = h1(x)⊕ h2(x) = |h1(x) − h2(x)| for h1, h2 ∈ H
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2.1.2  The motivating bound

We can now present the result of Ben-David et al. (2010a) based on the triangle inequality 
of classification error (Crammer et al., 2007; Ben-David et al., 2007). This bound is the key 
motivation behind DANN (Ganin & Lempitsky, 2015). For proof and a discussion on sam-
ple complexity, see Appendix A.

Theorem 1 (modified from Ben-David et al. (2010a), Theorem 2) Let X  be a space and 
H be a class of hypotheses corresponding to this space. Suppose ℙ and ℚ are distributions 
over X  . Then for any h ∈ H,

with � the error of an ideal joint hypothesis for ℚ , ℙ.

This statement provides an upper bound on the target-error. Thus, minimizing this upper 
bound is a good proxy for the minimization of the target-error itself. The first term � is a 
property of the dataset and hypothesis class which we typically assume to be small, but 
should not be ignored. As Ben-David et al. (2010a) note, this may be interpreted as a real-
izability assumption which requires the existence of some hypothesis in our search space 
that does well on both distributions (simultaneously). If this hypothesis does not exist, we 
cannot hope to do adaptation by minimizing the source-risk (Ben-David et  al., 2010b). 
Notably, � also plays an important role in algorithms like DANN which modify the distri-
butions over which they learn since these algorithms implicitly change � . We discuss this 
issue in detail in Sect. 2.3.

The latter terms are more explicitly controllable. The source-error Eℙ(h) can be mini-
mized as usual by Empirical Risk Minimization (ERM). The divergence can be empirically 
computed using another result of Ben-David et  al. (2010a). While we give this result in 
the Appendix (Propositions  7 and 8, respectively), previous interpretation by Ganin and 
Lempitsky (2015) suggests to minimize the divergence by learning indiscernible represen-
tations of the distributions—i.e., aligning the domains.2 As we describe in the following, 
this may be accomplished by maximizing the errors of a domain discriminator trained to 
distinguish the distributions.

2.1.3  The DANN algorithm

Ganin and Lempitsky (2015) separate the neural network used to learn the task into a 
feature extractor network r� and task-specific network c� , parameterized respectively by 
� and � . A binary domain discriminator d� outputting probabilities is trained to distin-
guish between the source and target distribution based on the representation learned by 
r� . Meanwhile, r� is trained to learn a representation that is not only useful for the task at 
hand, but also adept at “fooling” the domain discriminator (i.e., maximizing its errors). In 
details, given an empirical sample ℙ̂ = (xi)

n
i=1

 from the source distribution ℙ and a sam-
ple ℚ̂ = (x�

i
)n
i=1

 from the target distribution ℚ , the domain adversarial training objective is 
described

(3)Eℚ(h) ≤ � + Eℙ(h) +
1

2
dHΔH(ℚ,ℙ)

2 Note, the motivation of this representation learning is not entirely precise. In fact, this is the cause of the 
issues we discuss later in Sect. 2.3.
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where

By this specification, d�◦r�(x) is meant to estimate the probability x was drawn from ℚ and 
LD represents the binary cross-entropy loss for a domain discriminator trained to distin-
guish ℙ and ℚ . Combining this with a task-specific loss Lℙ

T
 we get the formulation given by 

Ganin and Lempitsky (2015)

where � (in this context) is a trade-off parameter. The above is generally implemented by 
simultaneous gradient descent. We remark a solution to this optimization problem is easily 
approximated by incorporating a Gradient Reversal Layer (GRL) between r� and d� (Ganin 
& Lempitsky, 2015).

2.2  In domain generalization

Recent adaptions to the above formulation have been proposed in context of DG. Here, we 
focus on the proposal of Matsuura and Harada (2020) since their empirical results are one 
of the more competitive DG methods to date. In DG, since no access to ℚ is given, one 
cannot actually compute LD as described above—it assumes at least unlabeled examples 
from ℚ . Given this, Matsuura and Harada (2020) propose a modification which operates on 
k source samples

where 1[⋅] is the indicator function. Now, d� is a multi-class domain discriminator trained to 
distinguish between sources; it outputs the estimated probabilities that x is drawn from each 
source. Hence, LSD is essentially a multi-class cross-entropy loss. Given the source sam-
ples ℙ̂j = (x

j

i
)n
i=1

∀j ∈ [k] drawn respectively from the source distributions ℙ1,ℙ2,… ,ℙk , 
we substitute this into Eq. (6):

which gives a domain adversarial training objective aimed at aligning the sources (while 
also maintaining good task performance). Hereon, we often refer to this as a source-source 
DANN, rather than a source-target DANN as was given in Eq. (6). On the surface, there 
seems to be no justification for the source-source DANN. If we recall the interpretation of 
Theorem 1, there is one key difference: rather than aligning the source and target domains 
ℙ and ℚ as suggested by the divergence term in Theorem 1, the objective in Eq. (8) aligns 
source domains ℙi and ℙj ∀(i, j) ∈ [k]2 whose divergences do not appear in the upper 

(4)min
�

max
�

1

2n

n∑
i=1

LD(�, �, xi, 0) + LD(�, �, x
�
i
, 1)

(5)−LD(�, �, x, y) =(1 − y) log(1 − d�◦r�(x)) + y log(d�◦r�(x)).

(6)min
�,�

max
�

1

2n

n∑
i=1

L
ℙ

T
(�, �, xi) −

�

2n

n∑
j=1

LD(�, �, xj, 0) + LD(�, �, x
�
j
, 1)

(7)−LSD(�, �, x, y) =

k∑
i=1

1[i = y] log((d�◦r�(x))i)

(8)min
�,�

max
�

1

kn

n∑
i=1

k∑
j=1

L
ℙj

T
(�, �, x

j

i
) +

�

kn

n∑
i=1

k∑
j=1

LSD(�, �, x
j

i
, j)
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bound. Thus, the motivating argument is lost in this new formulation. If we look to recent 
literature, preliminary theoretical work to motivate this modification of DANN does exist 
(Albuquerque et al., 2020). We start from this work in the derivation of our own results.

2.3  A gap between theory and algorithm

To be totally precise, the algorithm given above does not actually minimize dHΔH(ℙi,ℙj) 
for any i, j. As we have noted, the idea to “align domains” through a common feature rep-
resentation is simply an interpretation following the convention of Ganin and Lempitsky 
(2015). If the class from which we select d� is G and the class from which we select r� is F  , 
the algorithm actually approximates minimization of dGΔG(ℙi◦r

−1
�
,ℙj◦r

−1
�
) with respect to 

� . Here, the notation ℙi◦r
−1
�

 denotes the pushforward of ℙi by r� which is (intuitively) the 
image of ℙi in the feature space. While this technicality will be unimportant for our discus-
sions in the remainder of this text, it can potentially have significant negative ramifications. 
So, we discuss it in some detail here.

In particular, this gap between theory and algorithm implies that learning indiscern-
ible representations of the source and target distributions while also minimizing the source 
error is not always sufficient for reducing the bound in Theorem  1. The problem arises 
because the ideal joint error (which is usually assumed small in the original problem) does 
not always remain small after feature transformation as in DANN. That is, while the ideal-
joint error between ℙi and ℙj may be small, this may not be true of ℙi◦r

−1
�

 and ℙj◦r
−1
�

 . 
This fact was recently observed independently by Johansson et al. (2019) and Zhao et al. 
(2019). Johansson et  al. point out that learning a particular feature representation will 
always increase the ideal joint error (as compared to the original problem) whenever this 
feature representation is not invertible. Zhao et al. compliment this result by providing a 
lowerbound on target error in case the marginal label distributions3 have large deviation. In 
particular, the Jenson–Shannon (JS) divergence between the the label distributions should 
be at least as large as the JS divergence between the source and target feature distributions 
for the lowerbound to hold. If it is, the lowerbound shows simultaneous minimization of 
the source-error and the HΔH-divergence actually increases target-error.

In practice, as we are aware, it is not clear to what extent non-invertible feature repre-
sentations increase the ideal joint error. Further, it is not easy to test whether the JS-diver-
gence of the label distributions is larger than the JS-divergence of the source and target 
feature distributions. For this reason, in this work, we will simply assume the ideal joint 
error remains small after feature transformation; i.e., we do not explicitly consider any set-
tings in which there are negative ramifications of the known gap between theory and algo-
rithm for DANN. If these issues are of significant concern for a particular application (i.e., 
if the marginal label shift is known to be large), a recent modification of DANN which uses 
importance weighting has been proposed by Tachet et al. (2020). This modification aims 
to correct the short-comings of standard DANN in case of label-shift. While we do not 
explicitly experiment with this method, our theoretical discussion and algorithmic exten-
sion still apply in context of this variation on DANN.

3 The marginal label distribution of the source or target is, formally, the pushforward of the source or target 
distribution by the respective labeling function.
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3  Understanding domain alignment in domain generalization

Our discussion of source-source DANN for DG begins with the motivating target-error 
bound proposed by Albuquerque et al. (2020). Originally, given a set of source distribu-
tions {ℙi} , the bound uses the set of mixture distributions having these sources as com-
ponents—we refer to this set as M . Below, we consider a more general adaptation of this 
result. Although the proof strategy is largely similar, we do provide proof for this more 
general re-statement.

Proposition 2 (adapted from Albuquerque et al. (2020); Proposition 2) Let X  be a space 
and let H be a class of hypotheses corresponding to this space. Let ℚ and the collection 
{ℙi}

k
i=1

 be distributions over X  and let {�i}
k
i=1

 be a collection of non-negative coefficients 
with 

∑
i �i = 1 . Let the object O be a set of distributions such that for every � ∈ O the fol-

lowing holds

Then, for any h ∈ H,

where �� =
∑

i �i�i and each �i is the error of an ideal joint hypothesis for ℚ and ℙi.

Proof Let h ∈ H . For each ℙi apply Theorem 1 and multiply the equation by �i to achieve

Taking �� =
∑

i �i�i , we may sum over all k of these inequalities as below

Since 
∑

i �i = 1 we can rewrite this as

Now, for each ℙi , the following is true because the H-divergence abides by the triangle 
inequality

where

Since this is true for each ℙi , we may write

(9)
∑

i
�idHΔH(ℙi,𝕊) ≤ maxi,j dHΔH(ℙi,ℙj).

(10)
Eℚ(h) ≤ �� +

∑
i
�iEℙi

(h) +
1

2
min𝕊∈O dHΔH(𝕊,ℚ)

+
1

2
maxi,j dHΔH(ℙi,ℙj)

(11)�iEℚ(h) ≤ �i�i + �iEℙi
(h) +

�i

2
dHΔH(ℚ,ℙi)

(12)
∑

i
�iEℚ(h) ≤ �� +

∑
i
�iEℙi

(h) +
�i

2
dHΔH(ℚ,ℙi).

(13)Eℚ(h) ≤ �� +
∑

i
�iEℙi

(h) +
1

2

∑
i
�idHΔH(ℚ,ℙi).

(14)dHΔH(ℚ,ℙi) ≤ dHΔH(ℚ,𝕊∗) + dHΔH(𝕊
∗,ℙi)

(15)𝕊
∗ ∈ argmin𝕊∈O dHΔH(ℚ,𝕊).
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where the last inequality is due to the choice �∗ ∈ O . Recalling �∗ is also a minimizer of 
dHΔH(ℚ, ⋅) yields the result.   ◻

As suggested by Albuquerque et al. (2020), interpreting this result provides a reasonable 
motivation for the use of source-source DANN in DG. The first term is a convex combination 
of ideal-joint errors between each source and the target. As before, we assume this is small and 
remains small after feature transformation by r� when we apply DANN; i.e., recall Sect. 2.3. 
Later, we discuss some differences between the ideal-error terms we give in our bound and 
the ideal-error terms in the original bound of Albuquerque et al. (2020). The second term is 
a convex combination of the source errors. ERM on a mixture of the sources is appropriate 
for controlling this term. In both of the previous convex sums, the coefficients are assumed 
to be fixed, but arbitrary, replicating a natural data generation process where amounts of data 
from each source are not assumed. Ben-David et al. (2010a) model data arising from multiple 
sources in this way and provide generalization bounds as well. For the third term, when O is 
fixed as the set of mixtures M , Albuquerque et al. (2020) suggest this term demonstrates the 
importance of diverse source distributions, so that the unseen target ℚ might be “near" M . 
We extend this discussion later, showing how this term can change dynamically throughout 
the training process. The final term is a maximum over the source-source divergences. Appli-
cation of the interpretation by Ganin and Lempitsky (2015)—to align domains through rep-
resentation learning—motivates the suggestion of Matsuura and Harada (2020) to maximize 
the errors of a multi-class (source-source) domain discriminator. A more precise application 
might be to train all combinations of binary domain discriminator, but as Albuquerque et al. 
(2020) point out, this leads to a polynomial number of discriminators. As a practical surrogate, 
we opt to employ the best empirical strategy to date Matsuura and Harada (2020). Another 
option might be to instead use a collection of one-versus-all classifiers in place of a multi-class 
classifier Albuquerque et al. (2020). Note, neither method precisely minimizes Eq. (10), so we 
treat this as an implementation choice.

A remark on  differences  As mentioned briefly, a reader familiar with the original 
statement of Albuquerque et al. (2020) will notice two differences: (1) rather than limiting 
consideration to the set of mixtures M , this statement holds for all sets O which satisfy 
Condition (9) and (2) �� is a different quantity for the ideal joint-error between ℚ and {ℙi}.

On the latter point, rather than �� , Albuquerque et al. (2020) use the following definition 
of the ideal joint error given by Zhao et al. (2018) as below

where �∗ ∈ M is the mixture distribution closest to ℚ . As the original statement of Albu-
querque et al. (2020) defines O = M , this definition is a perfectly reasonable choice. But, 
since our re-statement considers more general objects O , we have removed this dependence 
on M . As is visible in the proof, �� does remove this dependence. In general, �∗ and �� are 

(16)

1

2

∑
i
�idHΔH(ℚ,ℙi) ≤ 1

2

∑
i
�idHΔH(ℚ,𝕊∗) +

1

2

∑
i
�idHΔH(𝕊

∗,ℙi)

=
1

2
dHΔH(ℚ,𝕊∗) +

1

2

∑
i
�idHΔH(𝕊

∗,ℙi)

≤ 1

2
dHΔH(ℚ,𝕊∗) +

1

2
maxi,j dHΔH(ℙi,ℙj)

(17)�∗ = min
h∈H

Eℚ(h) + E𝕊∗ (h)
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incomparable. If one attempts to compare them, it will become evident that some assump-
tions must be made—e.g., on the relationship between the {�i}i (which are arbitrary but 
fixed) and the coefficients used to form the mixture for �∗ (which are dependent on ℚ ). One 
reason to prefer �� is that it does not require a single hypothesis to have low error on all 
sources simultaneously. Ben-David et al. (2010a) provide a larger discussion on the ben-
efits of various approaches when combining data from multiple sources.

The former difference is of primary interest in this paper. Condition  (9) may be con-
sidered to be the key fact about M which allows the derivation of Eq. (10). By identifying 
this, we open the possibility of considering more general objects satisfying Condition (9). 
In the following, we demonstrate the existence of such objects O and discuss the benefit 
they add.

3.1  Beyond mixture distributions

Consideration of general objects O which satisfy Condition  (9) is only useful if such 
objects exist (besides M ). The following example provides proof. See Fig. 1 for an illustra-
tive picture.

Example 1 Let X  be the real line (−∞,∞) and let H be the set of hypotheses {ha(.)}a∈ℝ 
where ha(.) is characteristic to the ray (−∞, a] . Then, HΔH is the set of hypotheses 
{ha,b(.)}(a,b)∈ℝ2 where ha,b(.) is characteristic to the interval [a, b]. Let ℙ1 be the uniform dis-
tribution U(0, 2) , let ℙ2 be U(2, 4) , and let � be U(1, 3) . Then � is not a mixture distribution 
of the components ℙ1 and ℙ2 , but

for all non-negative coefficients {�i}i which sum to 1.

(18)2 = maxi,j dHΔH(ℙi,ℙj) ≥
∑

i
�idHΔH(ℙi,𝕊)

Fig. 1  A visualization of Example 1. Best viewed in color. The green line gives the value b of a hypothesis 
in {h

a,b(.)}(a,b) with a ≤ 0 . Such a hypothesis would perfectly discern ℙ1 and ℙ2 . From this, it follows that 
dHΔH(ℙ1,ℙ2) = 2 because a hypothesis in {h

a,b(.)}(a,b) can achieve 2 and 2 is the maximum value for any 
divergence. Note, from this, it already follows that Eq. (18) holds because each term on the right-hand-side 
is bounded above by 2, and therefore, so is their convex combination. Still, we can analyze the example 
further. If we imagine the red line also gives the value b of a hypothesis in {h

a,b(.)}(a,b) with a ≤ 0 and slide 
it back and forth, we can never perfectly discern ℙ1 or ℙ2 from � and therefore we will never achieve the 
maximum divergence 2
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In the context of this example, we might consider the object O = M + {�} to quickly 
see that more than just M can satisfy Condition (9). If � is a unique minimizer of the third 
term in Eq. (10) and does not increase the final term, then using O in place of M actually 
produces a strictly tighter bound. Later we more generally expand on this and other ben-
efits of considering O ≠ M.

Still, one simple example cannot fully justify the existence of useful O ≠ M . For a 
more general perspective, it is useful to think of things geometrically. Albuquerque et al. 
(2020) often refer to M as the convex-hull of the sources. In this same vein, we point out 
that dHΔH is a pseudometric4 and therefore, shares most of the nice properties required of 
metrics used in the vast mathematical literature on metric spaces. Viewing a metric space 
as a topological space, it is common to think of open balls as the “the fundamental unit” or 
“basis” of the metric space. Loosely, borrowing this idea, we can define the (closed) H, �

-ball as below

Using this object, the following result provides some useful information on the types of 
objects O which satisfy Condition (9). See Fig. 2 for a helpful visualization of our results.

Proposition 3 Let X  be a space and let H be a class of hypotheses corresponding to this 
space. Let the collection {ℙi}

k
i=1

 be distributions over X  and let {�i}
k
i=1

 be a collection of 
non-negative coefficients with 

∑
i �i = 1 . Now, set � = maxu,v dHΔH(ℙu,ℙv) . We show three 

results,

1. M ⊆
⋂

i B𝜌(ℙi).
2. If 𝕊 ∈

⋂
i B�(ℙi) , then Condition (9) holds.

3. If 𝕊 ∉
⋃

i B�(ℙi) , then Condition (9) fails to hold.

Proof We begin with a proof of (1). Let � ∈ M arbitrarily. The result follows by first 
observing, for all ℙi,

(19)B�(ℙ) = {𝕊 ∣ dHΔH(ℙ,𝕊) ≤ �}.

Fig. 2  An informal visualization. Blue dots represent sources. Purple lines define the boundaries of M . 
Grey lines give the boundaries of the closed H, �-balls around each source (defined in Proposition 3). Green 
colored areas define the boundary of 

⋂
i
B�(ℙi

) . Distributions within the yellow area may satisfy Condi-
tion (9). Distributions outside the yellow area (red dots) do not satisfy Condition (9) (Color figure online)

4 In Appendix A, we show the commonly used fact that dHΔH possesses a triangle-inequality. Symmetry 
and evaluation to 0 for identical distributions are easy to see.
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The first inequality follows by a property of the M shown by Albuquerque et al. (2020); for 
reference, we provide proof of this in Lemma 2 in the Appendix. The second inequality fol-
lows because � is defined as the largest source-source divergence. Now, if this is true for all 
ℙi , then � is by definition contained in every H, �-ball in the intersection 

⋂
i B�(ℙi) . If an 

element is contained in every component set of an intersection, then it is contained in the 
intersection. And, we have shown (1).

Next, we show (2). By definition of B�(ℙi) , if 𝕊 ∈ B�(ℙi) then dHΔH(ℙi,𝕊) ≤ � . Since 
𝕊 ∈

⋂
i B�(ℙi) this is true for all i ∈ [k] . Then,

We again recall that � = maxu,v dHΔH(ℙu,ℙv) . Hence, we have shown (2).
Finally, we demonstrate (3). To see this, note that if 𝕊 ∉

⋃
i B�(ℙi) , then by definition 

for all i we have that dHΔH(ℙi,𝕊) > 𝜌 . We follow the chain of inequalities below to arrive 
at our result

Hence, we have shown (3) and are done.   ◻

Statements 1 and 2 in conjunction show there are intuitive objects O—i.e., 
⋂

i B�(ℙi)—
which both contain M and satisfy Condition (9). Statement 3 provides an intuitive bound-
ary for O . Thus, comparison of O to the union and intersection of closed balls, respectively, 
provides necessary and sufficient conditions for satisfying Condition (9).

3.2  The benefits of looking beyond mixtures

While the above discussion is useful in its own right, a more careful discussion of practical 
ramifications is needed.

Computationally tighter bounds First, we point out that different objects O can lead 
to computationally tighter bounds in Eq. (10). For a concrete example, we prove 

⋂
i B�(ℙi) 

can lead to tighter bounds than M below. The proof follows a similar logic as presented 
following Example 1. In fact, for Example 1, it is true that 

⋂
i B�(ℙi) contains M + {�} , 

and thus, may reap the discussed benefit.

Proposition 4 Let X  be a space and let H be a class of hypotheses corresponding to this 
space. Let ℚ and the collection {ℙi}

k
i=1

 be distributions over X  . Let ℙ∗ be the distribution in ⋂
i B�(ℙi) closest to ℚ and let �∗ ∈ M be the mixture distribution closest to ℚ . Then,

Now, further, suppose the only solution to

(20)dHΔH(ℙi,𝕊) ≤
∑

j
�jdHΔH(ℙi,ℙj) ≤ �.

(21)
∑

i
�idHΔH(ℙi,𝕊) ≤

∑
j
�j� = �.

(22)

∑
i
𝜑idHΔH(ℙi,𝕊)

>
∑

i
𝜑i𝜌

= maxi,j dHΔH(ℙi,ℙj).

(23)dHΔH(ℙ
∗,ℚ) ≤ dHΔH(𝕊

∗,ℚ).
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is contained in 
⋂

i B�(ℙi)⧵M . Then, we have

Proof To see the first claim, note by Proposition 3, M ⊆
⋂

i B𝜌(ℙi) . So it is clear that

Since ℙ∗ and �∗ are arguments minimizing left- and right-hand-side, respectively, we are 
done.

Now, we show the second claim. Equation  26 holds irregardless of our additional 
assumption, so we need only show that

But this is clear because if we assume the contrary—that the two quantities are equal—the 
implication is that a solution to Eq. 24 is contained in M , a contradiction. Therefore, we 
have our result.   ◻

Now, for DANN, our hypothesis will usually be a neural network. In this case, the ben-
efit of tightness may be considered irrelevant because the large VC-Dimension of neural 
networks (Bartlett et al., 2019) is the dominant term in any bound on error (i.e., using the 
PAC framework). Still, this conversation is not complete without considering the recent 
success of PAC-Bayesian formulations (e.g., see Dziugaite and Roy (2017)) which provide 
much tighter bounds when the hypothesis is a stochastic neural network. In Appendix A, 
we discuss a PAC-Bayesian distribution psuedometric (Germain et  al., 2020) analogous 
to dHΔH . Because this psuedometric shares the important properties of dHΔH , these results 
are easily re-framed in this more modern formulation as well—where tightness may be a 
primary concern.

Intuitive analysis Second, we point out that a particular object O can be easier to ana-
lyze. This fact will become evident as we develop an algorithmic extension to DANN for 
DG. Ultimately, we find that the novel object 

⋂
i B�(ℙi) may be manipulated to provide key 

motivating insights in algorithm design.

3.3  The H1H‑divergence as a dynamic quantity

As mentioned, Albuquerque et al. (2020) interpret Proposition 2 as showing the necessity 
of diverse source distributions to control the third term min𝕊∈O dHΔH(𝕊,ℚ) when O = M . 
Logically, when distributions are heterogeneous, M presumably contains more elements, 
and so, the unseen target is more likely to be “close." When O =

⋂
i B�(ℙi) , this is easier 

to see because the size of O is directly dependent on the maximum divergence between 
the sources (by the definition of � ). In particular, reducing the maximum divergence and 

(24)min
ℙ∈

⋂
i B�(ℙi)

dHΔH(ℙ,ℚ)

(25)dHΔH(ℙ
∗,ℚ) < dHΔH(𝕊

∗,ℚ).

(26)min
ℙ∈

⋂
i B�(ℙi)

dHΔH(ℙ,ℚ) ≤ min
𝕊∈M

dHΔH(𝕊,ℚ).

(27)min
ℙ∈

⋂
i B�(ℙi)

dHΔH(ℙ,ℚ) ≠ min
𝕊∈M

dHΔH(𝕊,ℚ).
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re-computing O could lead to removal of a unique minimizer for min𝕊∈O dHΔH(𝕊,ℚ).5 In 
the context of the DANN algorithm, this is worrisome. Namely, during training, the point 
of using DANN is to effectively reduce the maximum divergence between sources and we 
expect this divergence to be decreasing as the feature representations of the source distri-
butions are modified. In fact, under mild assumptions, we can formally show that DANN 
acts like a contraction mapping, and therefore, can only decrease the pairwise source-diver-
gences. So, it is possible min𝕊∈O dHΔH(𝕊,ℚ) increases as the changing object O shrinks 
during training. Below we consider gradient descent on a smooth proxy of the HΔH

-Divergence in the simple, two-distribution case. The map r� acts as the feature extractor 
affected by DANN.

Proposition 5 Let � be a space of empirical samples over X  . Let r� ∶ X → X  be a 
deterministic representation function parameterized by the real vector � ∈ ℝm . Fur-
ther, denote by r�(ℙ̂) the application of r� to every point of ℙ̂ ∈ � . Fix ℙ̂, ℚ̂ ∈ � , let 
L ∶ � ×� → [0,∞) . Define �(�) = L(r�(ℙ̂), r�(ℚ̂)) and suppose it is differentiable with 
K-Lipschitz gradients. Further, suppose �∗ is the unique local minimum of � on a bounded 
subset Ω ⊂ ℝm . Then for � ∈ Ω such that � ≠ �∗ , the function � ∶ Ω → ℝm defined 
�(�) = � − �∇��(�) has the property

for some constant �� dependent on � . In particular, for all � ∈ Ω , there is � so that 
0 < 𝛽𝜃 < 1.

Proof We proceed by first showing an import inequality for functions � with the assumed 
properties, in particular, using a derivation presented by Wright (2016). Note first, by Tay-
lor’s Theorem, for vectors u, v ∈ ℝn , we have

where the first line, as mentioned, is by Taylor’s Theorem, the second is by addition and 
subtraction of ∇�(u)Tv , the third is because the norm of a vector product is never larger 
than the vector product, and the fourth is by the Lipshitz property assumed on the gradients 
of �.

With this inequality, we let � ∈ Ω with � ≠ �∗ . Taking u = � and v = −�∇�(�) achieves

(28)L(r�(�)(ℙ̂), r�(�)(ℚ̂)) ≤ ��L(r�(ℙ̂), r�(ℚ̂))

(29)

�(u + v) = �(u) + �
1

0

∇�(u + �v)Tv d�

= �(u) + ∇�(u)Tv + �
1

0

∇[�(u + �v) − ∇�(u)]Tv d�

≤ �(u) + ∇�(u)Tv + �
1

0

||∇�(u + �v) − ∇�(u)|| ||v|| d�

≤ �(u) + ∇�(u)Tv + �
1

0

�K||v||2 d�

= �(u) + ∇�(u)Tv +
1

2
K||v||2.

5 Under conditions discussed later, the newly computed O will be a subset and this unique minimizer might 
be absent in this subset.
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Next, we note that for � ≠ �∗ we have 0 ≤ �(𝜃∗) < �(𝜃) because �∗ was assumed to be the 
unique local minimum of Ω . Then, we may set

which, in combination with Eq. (30) yields our first desired result (Eq. (28)).
Next, we show that for all � ≠ �∗ , we can pick � which forces 0 < 𝛽𝜃 < 1 . We first note 

that it is sufficient to show

since we may simply multiply by the reciprocal of the lower-bound and add one to realize 
the result. Next, we point out that there is some constant M > 0 such that ||∇�(�)|| ≤ KM . 
This follows by

where the equality holds because �∗ is a local minimum, the first inequality holds by the 
assumed Lipshitz property, and the second inequality holds because Ω was assumed to be 
bounded. Without loss of generality, suppose M ≥ 1 (Eq. (33) holds regardless). Then our 
problem reduces further. In particular, it suffices to pick � such that

since this lower bound is larger than or equal to that of Eq. (32). First, clearly, the upper 
bound holds when 0 < 𝛾 <

2

K
 , so this immediately restricts our choice of � . For the 

lower bound, we consider two cases for the value of �(�) and demonstrate there is � with 
0 < 𝛾 <

2

K
 in both.

First, suppose �(�) ≥ 1

2
KM2 . Then, if 2

K
> 𝛾 >

1

K
 we have

Second, suppose �(𝜃) < 1

2
KM2. Then if � is such that

we have

(30)
�(�(�)) ≤ �(�) − �∇�(�)T∇�(�) +

�2K

2
||∇�(�)||2

= �(�) + �(
1

2
�K − 1)||∇�(�)||2.

(31)�� = 1 + �
(

1

2
�K − 1

)||∇�(�)||2
�(�)

(32)
−�(𝜃)

||∇�(𝜃)||2 < 𝛾
(

1

2
𝛾K − 1

)
< 0

(33)||∇�(�)|| = ||∇�(�) − ∇�(�∗)|| ≤ K||� − �∗|| ≤ KM

(34)
−�(𝜃)

K2M2
< 𝛾

(
1

2
𝛾K − 1

)
< 0

(35)0 > 𝛾
(

1

2
𝛾K − 1

)
>

−1

2K
=

−KM2

2K2M2
>

−�(𝜃)

K2M2
.

(36)2

K
> 𝛾 >

1 −

√
1 −

2�(𝜃)

KM2

K
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Subtracting �(�)
K2M2

 from both sides of this inequality yields the desired lower bound. Further, 
we still have 𝛾 <

2

K
 , so the desired upper bound holds and we have our result.

Then, in any case, for each � ≠ �∗ , we can select � so that 0 < 𝛽𝜃 < 1 .   ◻

A key takeaway from the above is the presence of competing objectives during train-
ing. These objectives require balance. While DANN reduces the source-divergences to 
account for the final term in Eq.  (10), we should also (somehow) consider the diversity 
of our sources throughout training to account for the effected term min𝕊∈O dHΔH(𝕊,ℚ) . 
Another insight the reader gains (i.e., from reading the proof) is that the upper bound on � 
is constant and the lower bound goes to 0 as �(�) → 0 . An interpretation of these bounds 
suggests the practical importance of an annealing schedule on � during DANN training. In 
our own experiments, we anneal � by a constant factor (i.e., step decay).

4  An algorithmic extension to DANN

Motivated by the argument presented in Sect.  3.3, this section devises an extension to 
DANN. While DANN acts to align domains, as noted, its success in the context of domain 
generalization is also dependent on the heterogeneity of the source distributions throughout 
the training process. Therefore, in an attempt to balance these objectives, we propose an 
addition to source-source DANN which acts to diversify the sources throughout the train-
ing. Note, while the theoretical principles of our approach are certainly applicable to other 
feature matching methods in the literature (see Sect. 6), the implementation of the algo-
rithm we devise in this section may be different (i.e., if the feature matching method is not 
based on loss-modification and gradient updates).

Theoretical motivation We recall the intersection of closed balls O =
⋂

i B�(ℙi) ; 
this is the main object of interest as it controls the size of the divergences in the 
upper bound of Proposition  2. More specifically, we are concerned with the quantity 
minℙ∈

⋂
i B�(ℙi)

dHΔH(ℙ,ℚ) . Intuitively, if we want to reduce this quantity we should find 
some means to increase � . One might propose to accomplish this by modifying our source 
distributions—e.g., through data augmentation –, but clearly, modifying our source distri-
butions in an uncontrolled manner is not wise. This ignores the structure of the space of 
distributions under consideration and whichever distribution governs our sampling from 
this space – information that is, in part, given by our sample of sources itself. In this sense, 
while increasing � , we should preserve the structure of 

⋂
i B�(ℙi) as much as possible. 

Proposition 6 identifies conditions we must satisfy if we wish to increase � and modify our 
source distributions in a way that is guaranteed to reduce the third term of the upperbound 
in Eq. (10).

(37)

𝛾
�

1

2
𝛾K − 1

�
+

�(𝜃)

K2M2

>
K

2

⎛⎜⎜⎜⎝

1 −

�
1 −

2�(𝜃)

KM2

K

⎞⎟⎟⎟⎠

2

−
1 −

�
1 −

2�(𝜃)

KM2

K
+

�(𝜃)

K2M2

= 0.
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Proposition 6 Let X  be a space and let H be a class of hypotheses corresponding to 
this space. Let � be the space of distributions over X  and let the collection {ℙi}

k
i=1

 and 
the collection {ℝi}

k
i=1

 be contained in � . Now, consider the collection of mixture distri-
butions {�i}i defined so that for each set A, Pr𝕊i

(A) = �Prℙi
(A) + �Prℝi

(A) . Further, set 
� = maxi,j dHΔH(ℙi,ℙj) and �∗ = maxi,j dHΔH(�i,�j) . Then 

⋂
i B𝜌(ℙi) ⊆

⋂
i B𝜌∗ (𝕊i) when-

ever �∗ − �maxi dHΔH(ℝi,ℙi) ≥ �.

Proof Let ℚ ∈
⋂

i B�(ℙi) be arbitrary. Then, by definition, for all i, we have that

Then, for all i, we have

where the first inequality follows by Lemma  2, the second inequality follows because 
ℚ ∈

⋂
i B�(ℙi) so the divergence is bounded by � for all i, the third inequality follows 

because, in general, the H-divergence abides by the triangle-inequality, the fourth inequal-
ity follows again because ℚ ∈

⋂
i B�(ℙi) , and the last inequality follows because we have 

assumed

Now, this is true for all i, so by definition of 
⋂

i B�∗ (�i) , we have that ℚ ∈
⋂

i B�∗ (𝕊i) . Since 
ℚ was an arbitrary element of 

⋂
i B�(ℙi) , we have shown 

⋂
i B𝜌(ℙi) ⊆

⋂
i B𝜌∗ (𝕊i) and we 

have our result.   ◻

The above statement suggests that if we want to diversify our training distribu-
tions, we should train on a collection of modified source distributions {�i}i . The modi-
fied distributions are mixture distributions whose components are pairs of our origi-
nal source distributions {ℙi}i and new auxiliary distributions {ℝi}i . The choice of {ℝi}i 
is constrained to guarantee the new intersection 

⋂
i B�∗ (�i) (with modified sources) 

contains the original intersection 
⋂

i B�(ℙi) . Ultimately, this means we can guarantee 
min𝕊∈

⋂
i B�∗ (𝕊i)

dHΔH(𝕊,ℚ) ≤ minℙ∈
⋂

i B�(ℙi)
dHΔH(ℙ,ℚ).

Algorithm  Empirically speaking, our modified source samples {�̂i}i will be a mix of 
examples from the original sources {ℙi}i and the auxiliary distributions {ℝi}i—drawn from 
each proportionally to the mixture weights � and � . We plan to generate samples from the 
auxiliary distributions {ℝi}i and our interpretation of Proposition 6 suggests we should do 
so subject to the constraint below

(38)dHΔH(ℙi,ℚ) ≤ �.

(39)

dHΔH(𝕊i,ℚ) ≤ �dHΔH(ℙi,ℚ) + �dHΔH(ℝi,ℚ)

≤ �� + �dHΔH(ℝi,ℚ)

≤ �� + �dHΔH(ℝi,ℙi) + �dHΔH(ℙi,ℚ)

≤ (� + �)� + �dHΔH(ℝi,ℙi)

= � + �dHΔH(ℝi,ℙi)

≤ � + �maxi dHΔH(ℝi,ℙi)

≤ �∗

(40)�∗ − �maxi dHΔH(ℝi,ℙi) ≥ �.

(41)maxi,j dHΔH(𝕊i,𝕊j) − �maxi dHΔH(ℝi,ℙi) ≥ �.
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Because � is a property of our original dataset, it is independent of the distributions {ℝi}i . 
This suggests that we should generate {ℝ̂i}i to maximize the left hand side. Maximizing 
this requires: (Req.I) maximizing the largest divergence between the new source samples 
{�̂i}i and (Req.II) minimizing the largest divergence between our auxiliary samples {ℝ̂i}i 
and our original source samples {ℙ̂i}i . Algorithmically, we can coarsely approximate these 
divergences, again appealing to the interpretation provided by Ben-David et  al. (2010a) 
and Ganin and Lempitsky (2015): (Req.I) requires that our domain discriminator make 
fewer errors when discriminating the new source samples {�̂i}i and (Req.II) requires that 
the auxiliary samples {ℝ̂i}i and the original sources {ℙ̂i}i be indiscernible by our domain 
discriminator.

To implement these requirements, we modify our dataset through gradient descent. 
Suppose that ℙ̂i is an empirical sample from the distribution ℙi . We can alter data-points 
aj ∼ ℙ̂j to generate data-points bj ∼ ℝ̂j by setting xj(0) = aj and iterating the below update 
rule to minimize LSD for T steps

and then taking bj = xj(T) . Importantly, we do not modify the domain labels in this modi-
fication. So, our updates satisfy requirement (Req.I) because minimization of LSD approxi-
mates minimization of our domain discriminator’s errors, and further, satisfy (Req.II) 
because ai and bi are identically labeled, so minimization of the domain discriminator’s 
errors suggests that these examples should be indiscernible (i.e., assigned the same correct 
label).

While this update rule seemingly accomplishes our algorithmic goals, we must recall 
the final upper bound we wish to minimize (see Eq.  (10)). The first two terms in this 
bound, �� and 

∑
i �iEℙi

(h) , relate to our classification error—i.e., to the task-specific net-
work c� . If our generated distributions {ℝ̂i}i distort the underlying class information, these 
terms may grow uncontrollably. To account for this, we further modify the update rule of 
Eq. (42) to minimize the change in the probability distribution output by the task classifier. 
We measure the change caused by our updates using the loss LKL—i.e., the KL-Divergence 
(Kullback, 1997). This gives the modified update rule

(42)xj(t) ← xj(t − 1) − �∇xLSD(�, �, x
j(t − 1), j)

(43)
x
j

i
(t) ←x

j

i
(t − 1) − �∇x

[
LSD(�, �, x

j

i
(t − 1), j)

+LKL(c�◦r�(x
j

i
(0)), c�◦r�(x

j

i
(t − 1)))

]
.
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Interpretation In totality, this algorithm may be seen as employing a style of adver-
sarial training where, rather than generating examples to fool a task classifier—e.g., the 
single-source DG approach of Volpi et al. (2018), we instead generate examples to exploit 
the weaknesses of the feature extractor r� whose goal is to fool the domain discriminator. 
In this sense, the generated examples can be interpreted as cooperating with the domain 
discriminator. Hence, we refer to the technique as DANN with Cooperative Examples, or 
DANNCE. For details on our implementation of DANNCE please see the pseudo-code in 
Algorithm Block 1. Additional details can also be found in Appendix B.

5  Experimentation

In this section, we aim at addressing the primary point argued throughout this paper: the 
application of DANN to DG can benefit from (algorithmic) consideration of source diver-
sity. While our theoretical discussion heavily focuses on convex hulls and H, �-balls, we 
remind the reader that our theoretical results and algorithm are actually applicable to any 
distribution; these aforementioned geometric objects are only used as a theoretical refer-
ence to compare the target to the training data. So, since these geometric objects are chal-
lenging to compute for distributions, we instead validate our theoretical insights through 
the algorithm they produce. Namely, our modus operandi is comparison to recent state-of-
the-art methods using a source-source DANN, or other domain alignment techniques, for 
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domain generalization. See Appendix B and code provided in supplement for all imple-
mentation details and additional experiments.

Datasets and  hyper‑parameters We evaluate our method on two multi-source DG 
datasets. (1) PACS (Li et al., 2017) contains 4 different styles of images (Photo, Art, Car-
toon, and Sketch) with 7 common object categories. (2) Office-Home (Venkateswara et al., 
2017) also contains 4 different styles of images (Art, Clipart, Product, and Real-W[orld]) 
with 65 common categories of daily objects. For both datasets, we follow standard experi-
mental setups. We use 1 domain as target and the remaining 3 domains as sources. We 
report the average classification accuracy of the unseen target over 3 runs, using the model 
state at the last epoch to avoid peaking at the target. We select our hyper-parameters using 
leave-one-source-out CV (Balaji et al., 2018); this again avoids using the target in any way. 
Because some methods select parameters using a source train/val split, we use only the 
training data of the standard splits for fairness. Other parameters of our setup, unrelated to 
our own method, are selected based on the environment of Matsuura and Harada (Matsuura 
& Harada, 2020) (MMLD)—a SOTA source-source DANN technique. For full details, see 
Appendix B.

Our models For the feature extractor r� we use AlexNet (Krizhevsky et  al., 2012) for 
PACS and ResNet-18 (He et  al., 2016) for PACS and OfficeHome. Both are pretrained 
on ImageNet with the last fully-connected (FC) layer removed. For task classifier c� and 
domain discriminator d� we use only FC layers. For ERM (often called Vanilla or Deep 
All) only r� and c� are used and the model is trained on a mixture of all sources; this is a 
traditional DG baseline. For DANN, we add the domain discriminator d� and additionally 
update r� with LSD (see Eq. (8)). Because we ultimately compare against DANN as a base-
line, we must ensure our implementation is state-of-the-art. Therefore, we generally follow 
the implementation described by Matsuura and Harada (2020), adding a commonly used 
Entropy Loss (Bengio et al., 1992; Shu et al., 2018) and phasing-in the impact of LSD on r� 
by setting � = 2∕(1 + exp(−� ⋅ p)) − 1 in Eq. (8) with p = epoch∕max_epoch and � = 10.

For our proposed method, DANNCE, we use the same baseline DANN, but update 50% 
of the images (i.e., � = 0.5 ) to cooperate with the domain discriminator following Eq. (43). 
The number of update steps per image is 5 (i.e., T = 5).

Experimental baselines As mentioned, we focus on comparison to other methods 
proposing domain alignment for DG.   Albuquerque et  al. (2020) (G2DM) and Li et  al. 
(2018b) (MMD-AAE) propose variants of DANN,6 and in particular, align domains by 
making updates to the feature extractor. As noted, Matsuura and Harada (2020) (MMLD) 
propose the DANN setup most similar to our baseline DANN. For MMLD, Matsuura and 
Harada (2020) additionally propose a source domain mixing algorithm—we denote this 
by MMLD-K with K the number of domains after re-clustering. Shankar et  al. (2018) 
(CrossGRAD) and Zhou et al. (2020) (DDAIG), contrary to our work, generate examples 
which maximize the domain loss. Because, they do not update the feature extractor with 
the domain loss LSD as we do, this may actually be viewed as domain-alignment by data 
generation (see Liu et  al. (2019) who first propose this technique). For MMD-AAE and 

6 MMD-AAE is based on the maximum-mean discrepancy (Gretton et al., 2012) rather than H-divergence.
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CrossGRAD, we use results reported by  Zhou et al. (2020) because the original methods 
do not test on our datasets.

Analysis of performance Generally, in DG, the comparison of performance is subjec-
tive across different experimental setups—a problem highlighted by a recent commen-
tary on the experimental rigor of DG setups (Gulrajani & Lopez-Paz, 2020). As such, 
we include reported results from other experimental setups, predominantly, to show our 
DANN implementation is a competitive baseline. This much is visible in Table 1. For 2 out 
of 3 setups, our DANN alone has higher overall accuracy than any other method.

Our focus, then, is the validation of our main argument using our strong DANN baseline. 
In this context, shown in Table 1, ablation of DANNCE reveals substantial improvement 

Table 1  PACS and OfficeHome 
results in accuracy (%)

avg: average of the target domain accuracies. gain: avg gain over the 
respective ERM (if reported)

PACS Art Cartoon Sketch Photo Avg Gain

AlexNet
ERM 69.1 70.2 61.8 88.9 72.3 -
MMLD 68.5 72.2 66.3 89.3 74.1 1.8
MMLD-2 67.0 70.6 67.8 89.4 73.7 1.4
MMLD-3 69.3 72.8 66.4 89.0 74.4 2.1
ERM 64.9 70.2 61.4 90.0 71.6 -
G2DM 66.6 73.4 66.2 88.1 73.6 2.0
ERM 67.6 70.2 60.3 89.3 71.9 -
DANN 71.2 72.1 66.3 88.3 74.5 2.6
DANNCE 70.9 72.0 67.9 89.6 75.1 3.2
ResNet-18
ERM 77.0 75.9 69.2 96.0 79.5 -
MMD-AAE 75.2 72.7 64.2 96.0 77.0 −2.5
CrossGRAD 79.8 76.8 70.2 96.0 80.7 1.2
DDAIG 84.2 78.1 74.7 95.3 83.1 3.6
ERM 78.3 75.0 65.2 96.2 78.7 -
MMLD-2 81.3 77.2 72.3 96.1 81.8 3.1
MMLD-3 79.6 76.8 71.2 95.9 80.9 3.1
G2DM 77.8 75.5 77.6 93.8 81.2 -
ERM 78.1 75.6 66.0 95.4 78.7 -
DANN 80.2 77.6 70.0 95.4 80.8 2.0
DANNCE 82.1 78.2 71.9 94.7 81.7 3.0
OfficeHome Art Clipart Product Real-w Avg Gain
ERM 58.9 49.4 74.3 76.2 64.7 -
MMD-AAE 56.5 47.3 72.1 74.8 62.7 −2.0
CrossGRAD 58.4 49.4 73.9 75.8 64.4 −0.4
DDAIG 59.2 52.3 74.6 76.0 65.5 0.8
ERM 60.0 49.0 75.4 76.8 65.3 -
DANN 61.6 48.9 75.8 76.2 65.6 0.3
DANNCE 61.6 50.2 75.6 75.9 65.8 0.5
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upon the traditional source-source DANN in all PACS setups and (seemingly) marginal 
improvement in the OfficeHome setup. While performance improvements on OfficeHome 
may seem marginal, they actually present a reasonable improvement, since OfficeHome 
has a staggering 65 categories to classify compared to 7 in PACS.7 Ultimately, the per-
formance gains demonstrated by addition of DANNCE agrees with our main argument: 
increasing diversity when aligning domains can have practical benefits in DG.

Analysis of  loss curves To measure domain diversity, we use the loss of the domain 
discriminator (averaged per epoch). This loss is used to proxy the H-divergence (an 
inverse relationship). A lower loss should then indicate more domain diversity, and, has 
the benefit of dynamically measuring diversity during training. Figure 5 shows the domain 

Fig. 3  Cooperative Examples (bottom) and corresponding original image after pre-processing (top) for 
PACS setup with target sketch and ResNet-18. Gradient updates appear to introduce relatively large changes 
in color hues/tints. Changes in image texture are also present (see Fig. 4)

Fig. 4  Cooperative Examples (bottom) and original images (top) magnified to illustrate change in image 
texture. Setup is identical to Fig. 3

7 To better understand this, we assume the distribution of classes is uniform and consider gain as a percent-
age of a uniformly random classifier’s accuracy (RCA). This accounts for the difficulty of the problem. 
Then, for ResNet-18, the gain on OfficeHome would be 32.5% RCA and the gain on PACS would 21% 
RCA.
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Fig. 5  Domain Discriminator Loss of DANN and DANNCE on PACS. For each target, we show the loss of 
its corresponding sources during training

Fig. 6  Domain Discriminator Loss of DANNCE with 5 and 20 Steps of Image Updates
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discriminator loss across epochs for our implementations of DANN and DANNCE using 
AlexNet on PACS. We generally see after epoch 15, the loss for DANNCE is lowest. Fig-
ure 6 further shows the effect of increasing the number of steps per image update. This 
suggests that increasing the number of updates has some control over the source domain 
diversity as intended. Finally, in both Figures, epochs 10 to 24 show the (inverted) smooth 
proxy for the domain divergence is increasing. This agrees with the formal claim made in 
Proposition 5. Although the trend changes after epoch 24, this is likely due to a decrease in 
� at this epoch, and thus, does not necessarily disagree with our formal claim.

6  Related works

6.1  Domain adaptation theory

Many works extend the theoretical framework of Ben-David et al. (2010a) to motivate new 
variants of DANN. Zhao et al. (2018) consider the multi-source setting, Schoenauer-Sebag 
et  al. (2019) consider a multi-domain setting in which all domains have labels but large 
variability across domains must be handled, and Zhang et al. (2019, 2020) consider theo-
retical extensions to the multi-class setting using a margin-loss. Besides the theoretical per-
spective of Ben-David et al. in DA, there are many other works to consider. Mansour et al. 
(2009) consider the case of general loss functions rather than the 01-error. Kuroki et  al. 
(2019) consider a domain-divergence which depends on the source-domain and, through 
this dependence, always produces a tighter bound. Flamary et  al. (2016) frame domain 
adaptation in terms of optimal transport. Many works also consider intergral probability 
metrics including: Redko et al. (2017), Shen et al. (2018), and Johansson et al. (2019). As 
has been discussed in this paper, the assumptions of various domain adaptation theories are 
of particular importance. Consequently, these assumptions are also important for DG. We 
discuss some assumptions in more detail in the next part.

6.2  Assumptions in DA

Ben-David et al. (2010b) show control of their divergence term as well as the ideal joint 
error � (so that both are small) give necessary and sufficient conditions for a large class of 
domain adaptation learners. These are the conditions which we control (in case of the diver-
gence term) and assume (in case of the ideal joint error). Other assumptions for DA include 
the co-variate shift assumption in which the marginal feature distributions are assumed to 
change but the feature conditional label distributions across domains remain constant. As 
we have discussed, Zhao et al. (2019) show that this assumption is not always enough in 
the context of DANN and Johansson et al. (2019) provide similar conceptualizations. Still, 
this assumption can be useful in the context of model selection (Sugiyama et al., 2007; You 
et al., 2019). Another common assumption is label shift: the marginal label distributions 
disagree, but the label conditional feature distributions are the same. Again, this is related 
to the concern of Zhao et al. (2019) since significant disagreement in the label distributions 
can cause DANN to fail miserably. Lipton et al. (2018) provide adaptation algorithms for 
this particular situation. Another assumption one can make for the benefit of algorithm 
design is the notion of generalized label shift in which the label distributions may disagree 
and the feature conditional label distributions agree in an intermediate feature space. As we 
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have noted, Tachet et al. (2020) propose this assumption, devise new theoretical arguments 
under this assumptions, and suggest a number of algorithms based on their proposal.

6.3  Domain generalization theory

For DG, there is decidedly less theoretical work, but throughout our text, we have 
attempted to compare to the most relevant (and recent)—a bound proposed by Albuquer-
que et al. (2020). Albeit, some different theoretical perspectives on DG do exist. Li et al. 
(2020) consider the case where the feature conditional distribution of the target’s latent 
space is a linear combination of the sources; effectively moving the convex-hull concept 
to a learned feature-conditional latent space. Ye et al. (2021) consider the learnability of a 
DG problem, providing rigorous definitions of which problems one can expect to solve and 
which problems one cannot. The accompanying generalization bounds assume this defini-
tion of learnability, whereas bounds in our work do not. Instead, our bounds are applicable 
to all distributions and may be thought of as incorporating some idea of “learnability” into 
the bound itself via the hypothesis class and reference objects like the set of mixtures. In 
case the number of domains sampled may be larger, Blanchard et  al. (2011, 2021) and 
Deng et al. (2020) consider domain generalization from the perspective of a meta-distri-
bution which governs our observation of domains. Asymptotically, as we observe more 
domains, we can be more confident on the success of our algorithm. While this approach 
is interesting, our paper instead focuses on the case where we only have a relatively small 
number of domains from which to learn. In general, it is important to realize DG is a chal-
lenging problem where some assumptions must be made in order to provably guarantee the 
success of a learning algorithm. Different theoretical frameworks with different assump-
tions may be more or less applicable to different real-world problems.

6.4  Algorithms in DG

Besides DANN and other domain-aligning algorithms mentioned in this text, there are of 
course additional algorithmic perspectives on DG too. An early work in DG by Muan-
det et al. (2013) proposes a kernel-based algorithm aimed at producing domain-invariant 
features with a strong theoretical justification. More recently, a common thread is the use 
of meta-learning (e.g. to simulate domain-holdout) seen in Li et al. (2018a), Balaji et al. 
(2018), and Dou et al. (2019). Some authors, such as Wang et al. (2019) and Carlucci et al. 
(2019), make additional assumptions on the domains to be seen and use this in algorithm 
design. As mentioned, similiar to our own algorithm, many works emphasize the impor-
tance of increasing the diversity of the source-data during training: Volpi et  al. (2018), 
Albuquerque et al. (2020), Zhou et al. (2021), and Zhang et al. (2022). In addition in the 
distinctions present in algorithm design, our work also differs from these in its emphasis on 
the competing objectives this produces in feature-matching algorithms and accompanying 
theoretical analysis. Lastly, some works focus on the neural network components them-
selves, e.g., Li et al. (2017). These architecture changes can be very effective (see Seo et al. 
(2019) for impressive results when modifying batch-normalization). Related to our paper’s 
main point, we primarily focus on comparison to other methods proposing domain align-
ment for DG, especially those which are, in some sense, model agnostic. These additional 
references are discussed in Experimental Baselines.
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7  Discussion

In this work, we investigate the applicability of source-source DANN for domain generali-
zation. Our theoretical results and interpretation suggest a complex relationship between the 
heterogeneity of the source domains and the usual process of domain alignment. Motivated 
by this, we construct an algorithmic extension for DANN which diversifies the sources via 
gradient-based image updates. Our empirical results and analyses support our findings.

One of the motivations of our algorithm is also one of the predominant limitations of our 
study. In particular, the behavior of DANN as a dynamic process is not well understood. Stud-
ying it as such can reveal to us new information. For example, in the proof of Proposition 5, 
we saw the importance of annealing the learning rate for DANN. We also use Proposition 5 to 
motivate our algorithm design, but there are certainly open questions on the dynamic behav-
ior of DANN and DANNCE. For example, it would be interesting to consider the competing 
objectives we have discussed in a more analytically tractable environment. Even for simple 
distributions, it is an open question as to how the hyper-parameters of DANNCE—which 
intuitively balance the competing objectives—may be optimally selected. On a related note, 
although we have assumed the ideal joint error is generally small, we have also pointed out 
that this is not always the case Zhao et al. (2019). While our promising results indicate this 
may not be an issue in practice, it is still interesting to consider this from a more theoretical 
perspective as well. Finally, it is important to point out that our empirical investigation was 
limited to images. It is interesting to consider how our technique might extend to natural lan-
guage or other areas where gradient-based algorithms are used for learning.

Appendix A

On Theorem 1 in the main text

This section covers much of the theoretical background our work relies on in detail. State-
ments by Ben-David et al. (2007, 2010a) used to motivate the DANN algorithm (Ganin & 
Lempitsky, 2015) as well as statements on sample complexity (Kifer et al., 2004) are included.

Setup

We begin with a more detailed exposition of the setup assumed. We assume a space X  and a 
class of deterministic hypotheses H ⊆ {h ∣ X → {0, 1}} . In accordance with Ben-David et al. 
(2010a), for two functions h and f mapping from a space X  into the set {0, 1} , we define a disa-
greement measure with respect to a distribution ℙ over X  as below

where � is the indicator function; i.e., Eℙ(h, f ) is the probability that h disagrees with f. If 
h is a hypothesis and f is a labeling function for ℙ which we would like to approximate by 
h, we call this term the error of h and write Eℙ(h) . We remark that the labeling function for 
ℙ need not be in H . Further, we sometimes permit the labeling function f to have the con-
tinuous image [0, 1] to capture the possibility of a non-deterministic label. Lastly, for each 
distribution ℙ , we write an empirical sample as ℙ̂ , and generally, specify its size.

(44)
Eℙ(h, f ) = Ex∼ℙ|h(x) − f (x)|

= Ex∼ℙ

[
𝕀[h(x) ≠ f (x)]

]
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We also recall from the main text, the measure considered in this paper is based on the 
H-divergence which itself is an adaptation of the A-distance Kifer et al. (2004). In particu-
lar, given two distributions ℙ , ℚ over a space X  and a corresponding hypothesis class H , 
the H-divergence (Ben-David et al., 2010a) is defined

where Ih = {x ∈ X ∣ h(x) = 1} . To arrive at the HΔH-divergence, Ben-David et al. (2010a) 
define the symmetric difference hypothesis class HΔH . In particular, given a hypothesis 
class H , the class HΔH is the set of functions which are characteristic to disagreements 
between hypotheses. In details, we have

Therefore, the HΔH-divergence is just a special case of the H-divergence. As mentioned, 
this will be the measurement of divergence used in all considered bounds.

Computing the H‑divergence empirically

Here, we present Proposition  7. This result is an important consideration for the design 
of the DANN algorithm. In particular, both Ben-David et  al. (2007, 2010a) and Ganin 
and Lempitsky (2015) suggest approximating the empirical HΔH-divergence by train-
ing a classifier to distinguish between the source and target distributions. To minimize the 
empirical HΔH-divergence, we should maximize this classifiers errors. Thus, this proposi-
tion can be viewed as motivation for our—and many other authors’—choice to approxi-
mate minimization of the divergence by maximization of a domain classifier’s errors.

Proposition 7 (Ben-David et  al. (2010a) Lemma 2) Provided a symmetric hypothesis 
class8 and samples ℙ̂ , ℚ̂ of size n

Proof We proceed in a similar fashion to Ben-David et al. (2010a). Let h ∈ H and consider 
the quantity

We note two obvious facts. Every x must belong to the sample ℚ̂ or ℙ̂ and every x must 
have h(x) ∈ {0, 1} . Therefore, we can rewrite 1 =

2n

2n
 and we have

By taking the common denominator 2n, we may then write

(45)dH(ℙ,ℚ) = 2 suph∈H
||Prℙ(Ih) − Prℚ(Ih)

||

(46)g ∈ HΔH ⇔ g(x) = h1(x)⊕ h2(x) = |h1(x) − h2(x)| h1, h2 ∈ H.

(47)d̂H(
�ℙ, �ℚ) = 2

(
1 −min

h∈H

[
1

n

∑
x∣h(x)=0

𝕀

[
x ∈ �ℙ

]
+

1

n

∑
x∣h(x)=1

𝕀

[
x ∈ �ℚ

]])

(48)1 −

[
1

n

∑
x∣h(x)=0

𝕀

[
x ∈ ℙ̂

]
+

1

n

∑
x∣h(x)=1

𝕀

[
x ∈ ℚ̂

]]
.

(49)1 =
1

2n

∑
x∣h(x)=0

(
𝕀

[
x ∈ ℙ̂

]
+ 𝕀

[
x ∈ ℚ̂

])
+

1

2n

∑
x∣h(x)=1

(
𝕀

[
x ∈ ℙ̂

]
+ 𝕀

[
x ∈ ℚ̂

])

8 A hypothesis class is symmetric if and only if for every h ∈ H , we also have 1 − h ∈ H.
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Now, for any sample ℙ̂ of size n, we have

and

Therefore,

Following the chain of inequalities and taking a maximum on both sides, we therefore have

Finally, to complete the proof, we note that

Since H is assumed symmetric, we therefore have

and we are done.   ◻

Proof of Theorem 1

Here, we present Theorem 2.1 of the main text (referenced in the Appendix as Theo-
rem 1). We begin with a required Lemma for the final proof.

Lemma 1 (Ben-David et al. (2010a) Lemma 3) Let X  be a space and H a class of hypoth-
eses corresponding to this space. Let ℙ and ℚ be distributions over X  . Then for any hypoth-
eses h1, h2 ∈ H , we have

(50)
1 −

[
1

n

∑
x∣h(x)=0

𝕀

[
x ∈ ℙ̂

]
+

1

n

∑
x∣h(x)=1

𝕀

[
x ∈ ℚ̂

]]

=
1

2n

∑
x∣h(x)=0

(
𝕀

[
x ∈ ℚ̂

]
− 𝕀

[
x ∈ ℙ̂

])
+

1

2n

∑
x∣h(x)=1

(
𝕀

[
x ∈ ℙ̂

]
− 𝕀

[
x ∈ ℚ̂

])
.

(51)Pr
ℙ̂
(Ih) =

1

n

∑
x∣h(x)=1

𝕀

[
x ∈ ℙ̂

]

(52)1 − Pr
ℙ̂
(Ih) =

1

n

∑
x∣h(x)=0

𝕀

[
x ∈ ℙ̂

]
.

(53)

1

2n

∑
x∣h(x)=0

(
𝕀

[
x ∈ ℚ̂

]
− 𝕀

[
x ∈ ℙ̂

])
+

1

2n

∑
x∣h(x)=1

(
𝕀

[
x ∈ ℙ̂

]
− 𝕀

[
x ∈ ℚ̂

])

=
1

2

(
1 − Pr

ℚ̂
(Ih) − (1 − Pr

ℙ̂
(Ih))

)
+

1

2

(
Pr

ℙ̂
(Ih) − Pr

ℚ̂
(Ih)

)

= Pr
ℙ̂
(Ih) − Pr

ℚ̂
(Ih).

(54)max
h∈H

Pr
ℙ̂
(Ih) − Pr

ℚ̂
(Ih) = 1 −min

h∈H

[
1

n

∑
x∣h(x)=0

𝕀

[
x ∈ ℙ̂

]
+

1

n

∑
x∣h(x)=1

𝕀

[
x ∈ ℚ̂

]]
.

(55)Pr
ℙ̂
(Ih) − Pr

ℚ̂
(Ih) = Pr

ℚ̂
(I1−h) − Pr

ℙ̂
(I1−h).

(56)max
h∈H

Pr
ℙ̂
(Ih) − Pr

ℚ̂
(Ih) = max

h∈H

|||Prℙ̂(Ih) − Pr
ℚ̂
(Ih)

|||
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Proof We proceed in a similar fashion to Ben-David et al. (2010a). By definition of the H
-divergence we have

Here, the second equality follows directly from the definition of HΔH , the fourth equality 
follows from Main Text Eq. 6, and the last inequality follows by properties of the supre-
mum.   ◻

Using Lemma 1, we may present the proof of Theorem 1. Our statement is modi-
fied, omitting empirical quantities. We invite the reader to view Theorem  2 of Ben-
David et al. (2010a) for the full result.

Proof We proceed in a similar fashion to Ben-David et al. (2010a). First, note the trian-
gle inequality of classification error (Crammer et al., 2007; Ben-David et al., 2007) which 
states that given any labeling functions h1, h2, h3 , we have

Then, let h ∈ H , let � = argminh∈H Eℚ(h) + Eℙ(h) , and let fℙ, fℚ be the true labeling func-
tions of ℙ,ℚ on X  , respectively. Given this, we have

Here, the second inequality comes from considering both the cases E�(𝜂, h) > E�(𝜂, h) and 
E�(𝜂, h) > E�(𝜂, h) , the third inequality comes from Lemma 1, and all other inequalities 
follow from the triangle inequality of classification error.   ◻

(57)||Eℙ(h1, h2) − Eℚ(h1, h2)
|| ≤ 1

2
dHΔH(ℙ,ℚ)

(58)

dHΔH(ℙ,ℚ) = 2 sup
g∈HΔH

|||Prℙ(Ig) − Prℚ(Ig)
|||

= 2 sup
h,h�∈H

|Prℙ({x ∣ h(x) ≠ h�(x)}) − Prℚ({x ∣ h(x) ≠ h�(x)})|
= 2 sup

h,h�∈H

|Ex∼ℙ

[
𝕀[h(x) ≠ h�(x)]

]
− Ex∼ℚ

[
𝕀[h(x) ≠ h�(x)]

]|
= 2 sup

h,h�∈H

||Eℙ(h, h�) − Eℚ(h, h
�)||

≥ 2||Eℙ(h1, h2) − Eℚ(h1, h2)
||.

(59)E�(h1, h2) ≤ E�(h1, h3) + E�(h2, h3).

(60)

Eℚ(h) = Eℚ(h, fℚ)

≤ Eℚ(�, fℚ) + Eℚ(�, h)

≤ Eℚ(�, fℚ) + Eℙ(�, h) +
||Eℙ(�, h) − Eℚ(�, h)

||
≤ Eℚ(�, fℚ) + Eℙ(�, h) +

1

2
dHΔH(ℚ,ℙ)

≤ Eℚ(�, fℚ) + Eℙ(�, fℙ) + Eℙ(h, fℙ) +
1

2
dHΔH(ℚ,ℙ)

= Eℚ(�) + Eℙ(�) + Eℙ(h) +
1

2
dHΔH(ℚ,ℙ).
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Sample complexity of Theorem 1

Here, we present Proposition 8. This Proposition contributes the main result required to 
derive generalization bounds for Theorem 1. Since Theorem 1 is modified from Theorem 2 
of  Ben-David et al. (2010a), we direct the reader to this proof for further details.

Remark on sample complexity In general, we choose to omit discussion of sample com-
plexity from the main text. In the usual case, where H is a class of neural networks, the VC 
Dimension (Vapnik, 1999) is usually larger.9 than the number of samples. As can be seen 
in the statement of Proposition 8, this causes problems in the interpretation and assump-
tions of the generalization bound. Despite this fact, Ganin and Lempitsky (2015) have 
shown that (empirically) this is a non-issue for application of DANN. With this said, some 
readers may rightly desire tighter bounds on empirical quantities when dealing with neu-
ral networks. Recently, some works have shown success in deriving much tighter bounds 
on empirical quantities (like error) for stochastic neural networks using the PAC-Bayes-
ian framework Dziugaite and Roy (2017). Within the PAC-Bayesian framework, Germain 
et  al. (2020) provide a distribution divergence psuedometric very similar to the HΔH

-divergence. As mentioned in the main text, the important property we use in our results is 
the psuedometric property, so we expect our results to hold in this more modern formula-
tion as well.

In any case, we remark that generalization bounds can be derived for Theorem 1 and 
other results in this paper by application of the below statement. For a more detailed dis-
cussion, where empirical quantities are considered and generalization bounds are discussed 
in a variety of circumstances, we direct the reader to the original work of Ben-David et al. 
(2010a).

Proposition 8 (Ben-David et al. (2010a) Lemma 2; Kifer et al. (2004) Theorem 3.2) Let 
X  be a space and H be a class of hypotheses corresponding to this space with VC dimen-
sion d. Suppose ℙ and ℚ are distributions over X  with corresponding samples ℙ̂ and ℚ̂ of 
size n. Suppose d̂H(�ℙ, �ℚ) is the empirical H-divergence between samples. Then, for any 
� ∈ (0, 1) the following holds with probability at least 1 − �

On the H1H‑divergence with comparison to a PAC‑Bayesian distribution 
divergence

Here, we prove some useful facts about the HΔH-divergence. In fact, these are the essen-
tial properties used to prove our formal claims in the main text. Most of these are known 
and have been used by other authors, but we restate and prove them here for completeness. 
One important point of this discussion is to demonstrate the relation between a second 
distribution divergence proposed by Germain et al. (2020) within the PAC-Bayes frame-
work. As we will show, this PAC-Bayesian divergence exhibits the same properties. The 

(61)dH(ℙ,ℚ) ≤ d̂H(
�ℙ, �ℚ) + O

(√
d log(

2n

d
)+log(

4

𝛿
)

n

)

9 For NNs, it is O(WL logW) where W/L are the number of weights/layers (Bartlett et al., 2019).
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consequence is that much of our formal discussion holds for this more modern divergence 
as well.

A nice property of mixture distributions

Below we provide a nice property of mixture distributions when considering their diver-
gence. We are aware of variants of this result which have been observed by both Zhao et al. 
(2018) and Albuquerque et al. (2020) in derivation of their own bounds. We use this result 
in most of our proofs involving mixtures.

Lemma 2 Let X  be a space and let H be a class of hypotheses corresponding to this space. 
Let the collection {ℙi}

k
i=1

 be distributions over X  . Now, suppose also that ℚ is a mixture of 
the component distributions {ℙi}i ; that is, for any set A, we have Prℚ(A) =

∑
i �iPrℙi

(A) 
with 

∑
i �i = 1 and �i ≥ 0,∀i . Then, for any distribution ℙ , the following holds

Proof The result follows from the chain below

Here, the results follow mostly by definition or arithmetic, but we highlight some excep-
tions. The third equality follows because the coefficients {�j}j sum to 1. The only inequality 
follows by application of the triangle inequality (for absolute values) and properties of the 
supremum. In particular, for any h∗ ∈ HΔH , we have

where the first inequality follows because the supremum is defined as an upper-bound and 
the second follows from the triangle inequality. But, the supremum is also specified as the 
least upper bound, so with

for any h∗ ∈ HΔH , we may use the least upper bound property of 
suph∈HΔH

���
∑

j �jPrℙi
(Ih) −

∑
j �jPrℙj

(Ih)
��� to observe that

(62)dHΔH(ℙ,ℚ) ≤ ∑
i
�idHΔH(ℙ,ℙi).

(63)

dHΔH(ℙ,ℚ) = 2 sup
h∈HΔH

||Prℙ(Ih) − Prℚ(Ih)
||

= 2 sup
h∈HΔH

|||Prℙ(Ih) −
∑

j
�jPrℙj

(Ih)
|||

= 2 sup
h∈HΔH

|||
∑

j
�jPrℙ(Ih) −

∑
j
�jPrℙj

(Ih)
|||

= 2 sup
h∈HΔH

||||
∑

j
�j

(
Prℙ(Ih) − Prℙj

(Ih)
)||||

≤ 2
∑

j
�j sup

h∈HΔH

|||Prℙ(Ih) − Prℙj
(Ih)

|||
=
∑

j
�jdHΔH(ℙ,ℙj).

(64)

∑
j
�j sup

h∈HΔH

|||Prℙ(Ih) − Prℙj
(Ih)

||| ≥
∑

j
�j
|||Prℙ(Ih∗ ) − Prℙj

(Ih∗ )
|||

≥ ||||
∑

j
�j

(
Prℙ(Ih∗ ) − Prℙj

(Ih∗ )
)||||

(65)
∑

j
�j sup

h∈HΔH

|||Prℙ(Ih) − Prℙj
(Ih)

||| ≥
||||
∑

j
�j

(
Prℙ(Ih∗ ) − Prℙj

(Ih∗ )
)||||
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affirming the third inequality.   ◻

Triangle inequality

Below, we provide proof that the HΔH-divergence abides by the triangle inequality. This 
result is used by many authors, although we have not seen proof. As noted in the main text, 
this (along with some other easy to verify properties) make the HΔH-divergence a psuedo-
metric. We use the triangle inequality a great deal throughout our proofs.

Proposition 9 Let H be and arbitrary class of hypotheses over X  . Then, the H-diver-
gence abides by the triangle-inequality.

Proof Let ℙ , ℚ , and � be distributions over X  . We observe the following chain of 
inequalities

The inequality follows from an argument similar to that used in defense of Lemma  2, 
Eq. 63.   ◻

Comparison to the domain disagreement Germain et al. (2020)

The domain disagreement is another distribution divergence proposed by Germain et  al. 
(2020). As noted by the these authors, the divergence is in fact designed as the PAC-Bayes-
ian analog of the HΔH-divergence. We define the domain disagreement below for a distri-
bution � over H

As it turns out, the domain disagreement abides by a triangle-inequality and further satis-
fies Lemma 2. The former is a simple consequence of the fact that the domain disagree-
ment is also a pseudometric (Germain et al., 2020). The latter is not so trivial to see, but we 
provide a quick sketch of the required steps below. Assuming � is a mixture as in Lemma 2 
we have

(66)

∑
j
�j sup

h∈HΔH

|||Prℙ(Ih) − Prℙj
(Ih)

|||
≥ sup

h∈HΔH

|||
∑

j
�jPrℙ(Ih) −

∑
j
�jPrℙj

(Ih)
|||

(67)

dH(ℙ,ℚ) = 2 sup
h∈H

||Prℙ(Ih) − Prℚ(Ih)
||

= 2 sup
h∈H

||Prℙ(Ih) − Pr𝕊(Ih) + Pr𝕊(Ih) − Prℚ(Ih)
||

≤ 2 sup
h∈H

||Prℙ(Ih) − Pr𝕊(Ih)
|| + 2 sup

h∈H

||Pr𝕊(Ih) − Prℚ(Ih)
||

= dH(ℙ,𝕊) + dH(𝕊,ℚ).

(68)dis�(ℙ,𝕊) =
|||E(h,h�)∼�2

[
Eℙ(h, h

�) − E𝕊(h, h
�)
]|||.
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The steps above generally follow from arithmetic similar to Eq. (63) or by linearity of the 
expectation. The last inequality uses properties of the absolute value.

Harking back to the main point, we remind the reader that Lemma 2 and the triangle-
inequality the primary tools needed for our results. As such, much of our formal discussion 
holds for this more modern divergence as well.

Appendix B

We provide full details of our experiments and implementation. In the supplementary 
material package, we also provide the fully functioning implementation of our approach. 
Scripts for notable experimental setups and associated dataset links are provided for repro-
ducibility. These will be publicly available on github upon acceptance.

Datasets

PACS PACS is a relatively new domain generalization dataset based on different styles 
of images (Li et al., 2017). Across 4 domains (Photo, Art Painting, Cartoon, and Sketch), 
there are 7 common object categories: dog, elephant, giraffe, guitar, horse, house, and per-
son. There are a total of 9991 images. We split each domain into 90% for training set and 
10% for validation set. The detail of PACS splits can be found in our codebase (/paths/
PACS/).

OfficeHome Office-Home (Venkateswara et  al., 2017) also contains 4 different styles 
of images (Art, Clipart, Product, and Real-W[orld]) with 65 common categories of daily 
objects. We use the down-sampled and preprocessed dataset curated by Zhou et al. Zhou 
et al. (2020) who propose DDAIG (compared to in the main text).

Training details

As mentioned in the main text, our setup closely follows Matsuura and Harada (2020). We 
implement our model in PyTorch (Paszke et al., 2019). Our model was trained by using 
30 epochs, batch size 128, and SGD optimizer configured with momentum 0.9 and weight 
decay 5e-4. We augment images using the same strategy as Matsuura and Harada (2020), 
employing color-jitter, horizontal flips, and cropping. For PACS (AlexNet and ResNet), 
the initial learning rate of the feature extractors are 1e-3. The classifiers (i.e., task classi-
fier and domain discriminator) have 10 times the initial learning rates of the correspond-
ing feature extractor’s initial learning rate since they are not pre-trained. We decrease all 

(69)

dis�(ℙ,𝕊) =
|||E(h,h�)∼�2

[
Eℙ(h, h

�) − E𝕊(h, h
�)
]|||

=
||||E(h,h�)∼�2

[
Eℙ(h, h

�) −
∑

i
�iEℙi

(h, h�)
]||||

=
||||E(h,h�)∼�2

[∑
i
�i
(
Eℙ(h, h

�) − Eℙi
(h, h�)

)]||||
=
|||
∑

i
�iE(h,h�)∼�2

[
Eℙ(h, h

�) − Eℙi
(h, h�)

]|||
≤ ∑

i
�i
|||E(h,h�)∼�2

[
Eℙ(h, h

�) − Eℙi
(h, h�)

]|||.
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learning rates by a factor of 10 after 24 epochs. All losses are weighted equally by default, 
but as mentioned, following Matsuura and Harada (2020), we phase-in the impact of LSD 
and the entropy loss on r� by using the weight � = 2∕(1 + exp(−� ⋅ p)) − 1 . For Office-
Home, experimental settings are almost identical. We deviate only slightly by lowering the 
learning rate of the domain-discriminator by a factor of 10 and lowering the magnitude of 
LSD by a factor of 4 when updating the feature extractor.10

All experiments were run on an NVIDIA GeForce RTX 2080 Ti GPU 11GB. We used 
the helpful Weights and Biases tool (Biewald, 2020) during experimentation for visualiz-
ing our model training and results.

Network architectures

In this section, we provide details of the network architectures of our model components.
Feature extractors We use AlexNet (Krizhevsky et al., 2012) for PACS and ResNet-18 

(He et  al., 2016) for PACS and OfficeHome. In both cases, we pretrain on ImageNet 
(Deng et al., 2009) with the last FC layer removed. We note that we used a Caffe version 
of AlexNet implemented in PyTorch to follow related recent works (Carlucci et al., 2019; 
Matsuura & Harada, 2020) which showed consistently competitive Deep All baseline 
accuracies. The exact implementations can be found in our codebase (/src/models/
caffenet/models.py and /src/models/resnet.py). The pretrained model for 
AlexNet is also included in our supplementary materials. For ResNet-18, it is loaded from 
torchvision in the code.

Classifiers The class classifier for is a single fully connected (FC) layer. The domain 
discriminator follows the design of Matsuura and Harada (2020) and is a simple stack of 
fully connected layers:

Again following Matsuura and Harada (2020), the class classifier has an xavier (glorot) 
uniform initialization (Glorot & Bengio, 2010) with gain set to 0.1, while the domain clas-
sifier uses the PyTorch (Paszke et al., 2019) default initialization (version 1.4). The exact 
implementation can be found in the code, specifically module /src/models.

Hyper‑parameters of DANNCE

While we generally try to follow Matsuura and Harada (2020) as closely as possible 
to ensure our baseline DANN is state-of-the-art, we cannot use existing hyper-param-
eter choices for our novel algorithm (i.e., DANNCE). To perform the image updates 
(Line  5, Algorithm  1) we use the Adam optimizer (Kingma & Ba, 2014). Generally, 
we fix � = 0.5 and t = 5 in Algorithm 1. To maintain realistic image values, we clamp 
the pixel-values of the resulting images after each update based on the max and min 
pixel values of the PACS dataset. Yosinski et  al. (2015) also use image-space gradi-
ent updates and further identify the addition of Gaussian blurring to be an important 

(70)
��(����) − ���� − �������(�.�) − ��(����) − ���� − �������(�.�) − ��(
��_��_
	���)

10 Studying learning curves early-on during experimentation suggested that (1) the domain-discriminator 
was learning to quickly for the feature extractor and (2) the feature extractor was ignoring the classification 
loss and focusing on LSD as a result. These changes aimed to accommodate both of these observations and 
generally improved the learning curves.
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parameter for producing realistic images. Based on one of the optimal settings described 
by Yosinski et al. (2015), we use Gaussian blurring once every 4 steps of our algorithm. 
We provide ablation of the effect of blurring in Table 2 which reveals that blurring may 
indeed be important for our method when applied to images, but importantly also shows 
that our gain in performance does not only come from blurring because blurring without 
our algorithm actually hurts performance of the baseline DANN.

We select the learning-rate and weight-decay of our Adam optimizer from the set {
1e-2, 1e-2, 1e-3} based on a leave-one-source-out cross validation used by Balaji et al. 
(2018). For example, when Art is the unseen target, we run DANNCE with every param-
eter setting holding out each of Cartoon, Photo, and Sketch as a pseudo target domain 
– the pair of parameters performing best on the simulated holdout task (averaged over 
the three psuedo targets) is used for a final training phase including all three sources and 
evaluated on Art. Note that this does not use the unseen target (e.g., Art) at all in the 
hyper-parameter selection, mimicking a real-life DG scenario. For PACS (AlexNet and 
ResNet-18), we run this leave-one-source-out cross validation. In the interest of time, 
for OfficeHome, we use the best parameter setting of PACS AlexNet (averaged over all 
pseudo targets) instead of performing a leave-one-source-out cross validation. Clearly, 
this still does not use any information from the unseen target. The exact parameter set-
tings in every case may be found in the code within each experiment’s bash script (see 
directory final_scripts).
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Table 2  Ablation of Gaussian Blurring for DANNCE on PACS AlexNet

gain is computed with respect to the baseline DANN. For DANN with BLUR, we use the same blurring 
schedule as used in our DANNCE implementation, but make no image updates. For DANNCE without 
BLUR, we simply omit blurring from our DANNCE implementation. The results demonstrate two things: 
(1) blurring without image updates worsens performance against DANN and (2) DANNCE without blur-
ring has no performance gain over DANN. This ablation tells us that while our performance gains are not 
coming from blurring itself, blurring may be important for DANNCE on image datasets. This agrees with 
findings by Yosinski et al. (2015) which suggests blurring suppresses high frequency information produced 
by gradient updates so that image statistics do not differ too much from the real dataset

PACS Art Cartoon Sketch Photo Avg Gain

AlexNet
DANN 71.2 72.1 66.3 88.3 74.5 -
DANN with BLUR 70.1 70.9 66.7 89.14 74.2 −0.3
DANNCE without BLUR 70.9 72.1 66.0 88.8 74.5 0.0
DANNCE 70.9 72.0 67.9 89.6 75.1 0.6
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