
Vol.:(0123456789)

Machine Learning (2023) 112:2555–2591
https://doi.org/10.1007/s10994-023-06316-x

1 3

SETAR‑Tree: a novel and accurate tree algorithm for global
time series forecasting

Rakshitha Godahewa1 · Geoffrey I. Webb1 · Daniel Schmidt1 · Christoph Bergmeir1

Received: 11 February 2022 / Revised: 17 November 2022 / Accepted: 6 February 2023 /
Published online: 13 March 2023
© The Author(s) 2023

Abstract
Threshold Autoregressive (TAR) models have been widely used by statisticians for non-
linear time series forecasting during the past few decades, due to their simplicity and math-
ematical properties. On the other hand, in the forecasting community, general-purpose tree-
based regression algorithms (forests, gradient-boosting) have become popular recently due
to their ease of use and accuracy. In this paper, we explore the close connections between
TAR models and regression trees. These enable us to use the rich methodology from the
literature on TAR models to define a hierarchical TAR model as a regression tree that
trains globally across series, which we call SETAR-Tree. In contrast to the general-purpose
tree-based models that do not primarily focus on forecasting, and calculate averages at the
leaf nodes, we introduce a new forecasting-specific tree algorithm that trains global Pooled
Regression (PR) models in the leaves allowing the models to learn cross-series information
and also uses some time-series-specific splitting and stopping procedures. The depth of
the tree is controlled by conducting a statistical linearity test commonly employed in TAR
models, as well as measuring the error reduction percentage at each node split. Thus, the
proposed tree model requires minimal external hyperparameter tuning and provides com-
petitive results under its default configuration. We also use this tree algorithm to develop a
forest where the forecasts provided by a collection of diverse SETAR-Trees are combined
during the forecasting process. In our evaluation on eight publicly available datasets, the
proposed tree and forest models are able to achieve significantly higher accuracy than a set
of state-of-the-art tree-based algorithms and forecasting benchmarks across four evaluation
metrics.

Keywords Threshold autoregressive models · Global time series forecasting · Tree
models · Forest models

Editors: Krzysztof Dembczynski and Emilie Devijver.

 * Rakshitha Godahewa
 rakshitha.godahewa@monash.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1333-7249
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06316-x&domain=pdf

2556 Machine Learning (2023) 112:2555–2591

1 3

1 Introduction

Global time series forecasting models (GFM, Januschowski et al., 2020) have shown their
capability of providing accurate forecasts compared to traditional univariate forecasting
models such as Exponential Smoothing (ETS, Hyndman et al., 2008) and Auto-Regressive
Integrated Moving Average models (ARIMA, Box et al., 2015), in particular with obtain-
ing superior results in the recently held M4 (Makridakis et al., 2018) and M5 (Makridakis
et al., 2022) forecasting competitions. In contrast to traditional univariate forecasting mod-
els that build isolated models to forecast each series, GFMs are trained across collections
of time series allowing the models to learn cross-series information, which also allows
them to generalise better and control model complexity on a global level (Montero-Manso
& Hyndman, 2021).

While a lot of research in this space focuses on neural networks and deep-learning mod-
els (e.g., Salinas et al., 2020; Hewamalage et al., 2021; Oreshkin et al., 2020), tree-based
GFM algorithms have risen greatly in popularity after dominating the winning methods of
the M5 forecasting competition (Makridakis et al., 2022). In particular, these approaches
use LightGBM (Ke et al., 2017) which is a highly efficient gradient boosted tree-based algo-
rithm, to train global models across time series. Also other tree-based algorithms that can
be trained as GFMs such as eXtreme Gradient Boosting (XGBoost, Chen & Guestrin, 2016)
and CatBoost (Prokhorenkova et al., 2018) have been used in the forecasting space. The
advantages of these methods (especially compared with deep-learning methods) are their
speed of training, their ease to include external regressors (numerical and categorical), and
their relative ease and robustness of hyperparameter tuning. However, these algorithms
are general-purpose algorithms, and none of them is specifically designed for forecasting.
When performing regression, they use the average of the training outputs at a leaf node as
the prediction for an instance that reaches that node during forecasting. Furthermore, while
potentially easier to handle than in other algorithms, their accuracy is still subject to tuning
of a number of hyperparameters such as the maximum tree depth, maximum number of
leaf nodes, minimum number of instances in a leaf node and learning rate. These findings
motivate us to develop a global tree-based algorithm specifically for forecasting, achieving
higher forecasting accuracy with minimal hyperparameter tuning.

Piecewise linear models such as Threshold Autoregressive (TAR) models (Tong, 1978;
1993; Terasvirta, 1994) have greatly contributed to the econometric and forecasting fields
during the past few decades. These models partition the instance space of a particular sin-
gle time series to be forecast into several subspaces where each subspace is modeled by a
separate Autoregressive (AR) model. There are many variations of TAR models such as
Self Exciting Threshold Autoregressive (SETAR, Tong, 1993), Smooth Transition Autore-
gressive (STAR, Terasvirta, 1994), Exponential STAR (ESTAR), Logistic STAR (LSTAR)
and Neuro-Coefficient STAR (Medeiros & Veiga, 2000) models.

Similar to the works of Aznarte and Benítez (2010), Aznarte et al. (2010) and Aznarte
et al. (2007) that establish analogies between certain types of TAR models and Fuzzy Rule
Based Systems, we exploit the analogy of TAR models and decision trees that fit a linear
model per leaf, for global time series forecasting, to introduce a new tree-based algorithm
that uses the underlying concept of SETAR models in defining the splits. Thus, we name
this model as SETAR-Tree. In particular, our method internally finds the optimal past lag
and the threshold that should be used to split the instances of a particular tree node into
child nodes. The instances whose corresponding values of the optimal lag are greater than
or equal to the selected optimal threshold and less than the selected optimal threshold are

2557Machine Learning (2023) 112:2555–2591

1 3

grouped separately whereas each instance group is considered as a child node. In contrast
to the traditional general purpose tree-based regression algorithms that compute the aver-
age of the training outputs at a leaf node as the final prediction, our proposed method is
a forecasting-specific tree which builds a Pooled Regression model (PR, Gelman & Hill,
2006; Montero-Manso & Hyndman, 2021) which is a global linear AR model, at each leaf
node allowing the model to learn cross-series information. As our model is a forecasting-
specific tree with global regression models in the leaf nodes, it can be essentially identified
as a global (cross-series) hierarchical SETAR model. Furthermore, the SETAR-Tree uses
some time-series-specific stopping procedures. Exploiting the analogy of TAR models and
regression trees, our proposed SETAR-Tree internally tunes the maximum tree depth using a
statistical linearity test well established in the literature for TAR models (Terasvirta, 1994),
as well as measuring the error reduction percentage at each node split. Thus, our proposed
model requires minimal external hyperparameter tuning whereas it provides competitive
results even with its default hyperparameters. The proposed method is also applicable to
time series forecasting problems that use external covariates during modelling.

Proposing a novel tree algorithm for forecasting naturally lends itself to extend the pro-
cedure to a forest, which is another main contribution of this study. In line with the tra-
ditional forest-based algorithms such as Random Forest (RF, Breiman, 2001), our forest
model uses a collection of diverse SETAR-Trees that are trained using a set of randomly
selected time series. The forecasts provided by all trees are averaged to obtain the final
forecasts. The trees are made diverse in terms of the significance of the statistical linearity
test and error reduction percentage that are used to split each node. Thus, the forecasting
accuracy of the forest model is even less sensitive to the hyperparameters than the tree.

Our proposed SETAR-Tree and SETAR-Forest algorithms in particular also outperform
a set of state-of-the-art tree-based algorithms and forecasting benchmarks with statistical
significance across eight experimental datasets on four error metrics. All implementations
of this study are publicly available at: https:// github. com/ raksh itha1 23/ SETAR_ Trees.

The remainder of this paper is organized as follows: Sect. 2 reviews the relevant prior
work. Section 3 explains the theoretical concepts of SETAR models, and the proposed tree
and forest algorithms in detail. Section 4 explains the experimental framework, including
the datasets, error metrics, benchmarks and statistical testing. An analysis of the results is
presented in Sect. 5. Section 6 concludes the paper and discusses possible future research.

2 Related work

In the following, we discuss the related prior work in the areas of TAR models, GFMs and
the state-of-the-art tree-based forecasting models.

2.1 Threshold autoregressive models

TAR models (Tong, 1978; 1993) are piece-wise linear models that model the state space
of a given prediction problem using multiple AR models. TAR models are also known as
AR regime switching models which use separate (same or different order) AR functions to
model different regimes.

TAR models have variants such as SETAR and STAR (Terasvirta, 1994) which are dif-
ferent in terms of the transition function and the method of defining regimes. The simplest
version of the TAR model is known as the SETAR model (Tong, 1993) which defines two

https://github.com/rakshitha123/SETAR_Trees

2558 Machine Learning (2023) 112:2555–2591

1 3

or more regimes based on a particular lagged value of the time series itself. Thus, SETAR
models are required to estimate the optimal lag, and the optimal threshold corresponding
with that chosen optimal lag to define regimes. The most common way of defining these
optimal lag and threshold values is using a grid search. The optimal thresholds can be also
identified by analysing the places of time series showing significant increasing or decreas-
ing rates (Ghosh et al., 2006) and by using memetic algorithms (Bergmeir et al., 2012).
The transition function used by the SETAR model is generally a step function. Thus, during
prediction, SETAR models use only one AR model. Versions of the SETAR model exist
that use statistical tests such as a Lagrange Multiplier (LM) test (Breusch and Pagan, 1980)
to determine the linearity captured by the AR models (Terasvirta, 1994). In STAR models
(Terasvirta, 1994), the transition can happen either using a past value of a series or an exter-
nal variable. Unlike the SETAR models, STAR models use a transition function such as
exponential or logistic, resulting in ESTAR and LSTAR models, respectively, and thus, the
transition happens smoothly. During prediction, STAR models use multiple AR models to
determine the final output where the corresponding weight of each contributing AR model
is determined based on the transition function.

Aznarte and Benítez (2010) and Aznarte et al. (2010) establish the equivalence between
TAR models and certain types of fuzzy rule-based systems. Inspired by this work, we
exploit equivalences between TAR models and decision trees, and extend TAR models to
global hierarchical models which train across series.

TAR models have been used to address many real-world forecasting problems such as
stock market forecasting (Narayan, 2006), exchange rate forecasting (Pippenger & Goering,
1998) and electricity price forecasting (Rambharat et al., 2005). To the best of our knowl-
edge, none of these TAR models have been used as global models across time series yet.

2.2 Global time series forecasting

Global time series forecasting (Januschowski et al., 2020) is a relatively recent trend in
forecasting that became popular after contributing to the winning methods of the M4
(Makridakis et al., 2018) and M5 (Makridakis et al., 2022) forecasting competitions. In
particular, many top solutions of the M5 competition used global (tree-based) models.
GFMs build a single forecasting model across many series sharing the same parameters
across all series. Thus, the model has the capability to explore cross-series information
with a fewer amount of parameters compared to traditional univariate forecasting models.

Many works use Recurrent Neural Networks (RNN, Hewamalage et al., 2021) as the
baseline model when developing global forecasting frameworks. The winning method of
the M4 competition (Smyl, 2020) uses an ensembling approach, ensemble of specialists
(Smyl, 2020), that combines the predictions of a set of globally trained RNNs. Smyl and
Kuber (2016) use globally trained RNNs for forecasting. One of the state-of-the-art prob-
abilistic forecasting algorithms, DeepAR (Salinas et al., 2020), uses a global AR RNN.
Godahewa et al. (2022) propose a weekly forecasting framework that uses global RNNs.

In particular, the winning method of the M5 forecasting competition uses a globally
trained LightGBM model (Ke et al., 2017). GFMs have also contributed to the winning
methods of many other recently held Kaggle competitions (Bojer & Meldgaard, 2020).
Nowadays, GFMs are used with many real-world applications such as energy optimisation
(Godahewa et al., 2022), sales demand forecasting (Bandara et al., 2019) and emergency
medical services demand forecasting (Bandara et al., 2020).

2559Machine Learning (2023) 112:2555–2591

1 3

Godahewa et al. (2021) and Bandara et al. (2020) show that a GFM should be trained
with a set of related time series. Those authors further claim that if a collection of time
series has heterogeneous series, then the series should be first grouped based on their
similarity and then, separate GFMs should be trained per each series group. In line with
this concept, our proposed SETAR-Tree model trains multiple GFMs, one per leaf node,
because the instances belonging to a particular leaf node are similar in terms of their values
corresponding with the optimal lag identified using the SETAR methodology. As the base-
line GFM, we use a linear AR model trained across a set of time series that is known as a
PR model (Gelman & Hill, 2006).

2.3 Tree‑based forecasting models

There are many popular tree-based algorithms used for forecasting, including regression
trees (Loh, 2011), gradient boosted trees (Friedman, 2001), XGBoost (Chen & Guestrin,
2016), CatBoost (Prokhorenkova et al., 2018), and LightGBM (Ke et al., 2017).

As forecasting is usually a regression task with numerical values, regression trees (Loh,
2011) are used for forecasting, as opposed to decision trees for classification. Spiliotis
(2022) provides an overview of how decision trees can be used for time series forecast-
ing. In particular, the author highlights that in the forecasting domain, a regression tree
provides a piece-wise approximation to a single continuous function in standard regres-
sion. Regression trees use every possible binary split on every input attribute to determine
the node splits. Regression trees have been successfully applied to address real-world time
series forecasting applications. Torgo and Oliveira (2014) use bagged regression trees to
handle the diverse dynamic regimes and non-stationarities observed in real-world time
series. Cerqueira et al. (2019) use a regression tree as a base model of a pool of forecasting
experts where the forecasts of experts are dynamically combined using arbitrating to obtain
the final forecasts. Gradient boosted trees (Friedman, 2001) use a collection of regres-
sion trees as a sequential ensemble model. The first regression tree is trained on the actual
observations of the training instances where the remaining trees are trained to predict the
residuals of the previous tree in the sequence. XGBoost (Chen & Guestrin, 2016) is an
accurate, efficient and scalable version of gradient boosted trees. To define the best node
splits, XGBoost uses similarity scores in a way that the gain is maximised. Furthermore,
to reduce overfitting, XGBoost uses regularisation parameters when calculating similar-
ity scores and tree pruning. The second winning method of the M4 forecasting competi-
tion, Feature-based Forecast Model Averaging (FFORMA, Montero-Manso et al., 2020)
uses XGBoost as a meta-learner to determine the weights that should be used to combine
the predictions of a set of base forecasting models. CatBoost (Prokhorenkova et al., 2018)
considers the order of data points during modelling and thus, it is more suitable to address
time series forecasting problems. CatBoost more effectively deals with categorical vari-
ables compared to other tree-based algorithms.

As stated earlier, tree-based forecasting models recently obtained popularity in the fore-
casting field after contributing to the winning approach and many other top submissions in
the M5 forecasting competition (Makridakis et al., 2022). In particular, many top submis-
sions of the competition incorporate a highly efficient gradient boosted tree-based model,
LightGBM (Ke et al., 2017). The LightGBM trees use the leaf-wise tree growth approach
instead of the level-wise tree growth used in traditional tree-based algorithms. It identi-
fies the best node splits by using Gradient-based One-Side Sampling (GOSS). LightGBM
can handle extremely large datasets as well and nowadays, it is used with many real-world

2560 Machine Learning (2023) 112:2555–2591

1 3

forecasting applications such as cryptocurrency price trend forecasting (Sun et al., 2020),
sales demand forecasting (Weng et al., 2020) and wind power forecasting (Ju et al., 2019).
Januschowski et al. (2021) highlight that tree-based algorithms are blackbox learners
which are highly efficient and more robust than the existing deep learning techniques. In
particular, the LightGBM algorithm offers a large number of loss functions and missing
value handling methods where the users can choose the corresponding options based on
their application.

Even though these tree algorithms are efficient, they are not tailored to the forecast-
ing problem. For example, they consider the average of the training outputs in a particular
leaf node as the forecast of the test instances that reach that node during forecasting. In
contrast, our proposed SETAR-Tree algorithm trains a global linear AR model in each leaf
node, allowing each leaf node to learn the cross-series information.

In the literature, there already exist tree models which train linear models in leaf nodes,
known as linear regression model trees (Quinlan, 1992). They analyse every possible split
to determine the node splits where the split which maximises the difference between the
standard deviation of the actual target values of the parent node and the mean of the stand-
ard deviations of the actual target values of child nodes, is considered as the optimal split.
The prediction for a given test instance is obtained by its corresponding leaf node where the
prediction is then adjusted based on the nodes from the root node to its corresponding leaf
node. Cubist (Kuhn & Johnson, 2013) is such a linear model tree that performs rule-based
modelling. It trains linear models in all tree nodes where the predictions are obtained from
the leaf nodes and are smoothed afterwards. Lefakis et al. (2019) propose a piecewise linear
regression tree which trains regularised linear models in leaf nodes. The nodes are split in a
way that the least square errors of linear predictors after splitting are minimised. Loh (2002)
proposes a regression tree which uses the significance of the chi-square test to identify the
variables that should be used during node splitting. Dutang and Guibert (2022) propose a
splitting procedure for regression trees where the optimal splits are chosen based on the
explicit likelihood. Zeileis et al. (2008) propose a regression model which uses recursive
partitioning where the nodes are only further split if there exists an overall parameter insta-
bility. Hothorn et al. (2006) propose CTree, a regression model that uses recursive partition-
ing with conditional inference procedures. There are hardly any works in the literature that
propose tree-based models particularly for forecasting that we are aware of, and the few
works available address local forecasting, not global forecasting models. In particular, the
STR-Tree proposed by da Rosa et al. (2008), though proposed for regression, is deemed
by its authors to be trivially extendable to forecasting, and Epprecht and Veiga (2012) pro-
pose a tree method to predict stock market returns where in the leaf nodes AR models with
extra inputs are trained. These works use the concept of STAR models during node split-
ting, which is similar to our approach but limits them effectively to smaller sample sizes, as
the smooth transitions make their model training computationally considerably more costly.
Thus, these methods are inherently more suitable for local forecasting and using them in
current typical global forecasting scenarios brings scalability issues.

Our proposed SETAR-Tree algorithm is in particular tailored to the time series forecast-
ing task by using the concept of SETAR models in defining splits where the optimal lag
and the threshold that should be used for node splitting is determined using a grid search
approach, without considering every possible split as used by the above explained linear
regression model trees. Our grid search approach selects the lag and the threshold that is
corresponding with the split which minimises the Sum of Squared Errors (SSE) at the child
nodes. Furthermore, to determine the validity of a split, we use a statistical linearity test
and the error reduction percentage that can be gained from the split, where a node is only

2561Machine Learning (2023) 112:2555–2591

1 3

further split if making that split is worth enough. In leaf nodes, we train global AR models
allowing the models to learn the cross-series information and they do not use any regulari-
sation during model fitting. Also, the predictions for the test instances are obtained only
from their corresponding leaf nodes where no further adjustments are applied to the pre-
dictions as in linear regression model trees (for details, see Sect. 3.3).

A collection of parallel executed tree models is known as a forest. The RF (Breiman,
2001) algorithm is the most common type of forest algorithms which averages the pre-
dictions provided by a set of diverse regression trees to obtain the final predictions. The
trees can be diverse in terms of the data and features used during training. This ensembling
technique is also known as bagging in the machine learning literature and it is expected to
improve the accuracy of the final predictions compared to the predictions of the individual
trees by properly addressing data, model and parameter uncertainties (Petropoulos et al.,
2018; Bergmeir et al., 2016). Also, Coulombe (2021) argues that the RF does an optimal
pruning as the splits that overfit are averaged out through bagging. In the context of linear
model trees, the Macroeconomic RF (MRF) proposed by Coulombe (2020) consists of a
collection of linear model trees that use the concept of TAR models during node splitting.
However, MRF is not designed for global time series forecasting. Unlike our SETAR-Tree,
the individual trees in MRF use regularisation during parameter estimation, and use mov-
ing average factors calculated using the lagged values of time series as regressors during
training. The trees also do not use any stopping criterion based on statistical tests or error
reduction percentages. In particular, the individual trees in MRF do not use early stopping
where they are allowed to grow into higher depths ensuring the trees are sufficiently diver-
sified. Furthermore, Athey et al. (2019) propose generalized RFs, a method based on RFs
that can be used for non-parametric statistical estimation. Consequently, we propose a for-
est model that uses a collection of SETAR-Trees where the individual trees are diverse in
terms of the significance of the linearity test and the error threshold used to make the node
splits (for details, see Sects. 3.3.2, 3.3.3 and 3.4).

3 Methodology

This section first gives a brief overview of the theory of SETAR models. Then, we explain
the terminology of GFMs. Later, the proposed SETAR-Tree and forest algorithms are
explained in detail.

3.1 Self exciting threshold autoregressive models

For our study, we consider a 2-regime SETAR model (Tong, 1993) which is defined in
Eq. 1. Here, yt is the value of the series at time t, n is the number of past time series lags, T
is the threshold value, and � i and �i are respectively the AR parameters and error terms of
the ith regime.

As shown in Eq. 1, SETAR models define regimes based on a particular lagged value of the
time series itself. One regime is defined for the training instances where the corresponding

(1)yt =

⎧
⎪⎨⎪⎩

∑n

l=1
𝛽
(1)

l
yt−l + 𝜖

(1)
t , if yt−l < T

∑n

l=1
𝛽
(2)

l
yt−l + 𝜖

(2)
t , otherwise

2562 Machine Learning (2023) 112:2555–2591

1 3

lagged value is less than the threshold value T, and the other regime is defined for the
remaining instances where the corresponding lagged value is greater than or equal to T.
Thus, SETAR models have as hyperparameters the optimal lag, l, and the optimal thresh-
old value, T corresponding with l to define the regimes.

3.2 Terminology of global forecasting models

For our study, we consider univariate time series forecasting which predicts the future
values of a particular time series using its own past values and possibly, some external
covariates. We use the usual out-of-sample evaluation in forecasting that reserves a
block of data from the very end of the time series for evaluation (Bergmeir & Benítez,
2012). For that, the time series are first split into training and test parts where the
training parts are used for model training and the test parts are the actual values cor-
responding with the expected forecast horizon.

Let TS1 and TS2 be two time series. To train purely autoregressive GFMs, as shown
in Fig. 1, an embedded matrix is constructed using TS1 and TS2 where each row con-
tains a window of a time series which is composed of a set of lagged values and the
corresponding next value. The rows of the embedded matrix that are corresponding
with the training parts of the series are used to train GFMs. The forecasts correspond-
ing with the expected forecast horizon are obtained for each series using the trained

Fig. 1 Visualisation of an embedded matrix created using two time series: TS
1
 and TS

2
 . Each row contains

a window of a time series which is composed with a set of lagged values (L1 to L5) and the corresponding
next value/true output (y). The windows corresponding with the training and test sets are respectively high-
lighted in yellow and blue

2563Machine Learning (2023) 112:2555–2591

1 3

GFMs. During the evaluation, the forecasts are compared with their corresponding
actual values that are in the test set and the forecasting errors are measured using the
error metrics explained in Sect. 4.2.

3.3 SETAR‑Tree model

Figure 2 shows an overview of an example SETAR-Tree model. Level 0 refers to the root
node of the tree. The root node is an embedded matrix constructed using the training
parts of TS1 and TS2 as explained in Sect. 3.2. Each row of the embedded matrix is used

Fig. 2 Overview of an example SETAR-Tree constructed using TS
1
 and TS

2
 . The matrices containing the

past time series lags and their corresponding true outputs are considered as nodes. Each row of a matrix is
considered as a training instance. The training instances of each node are optimally split into child nodes
based on the concept of SETAR models. Here l and T mentioned with the split nodes refer to the optimal
lag and the optimal threshold that are used to split at a particular node. A node is only split if there exists
remaining non-linearity in the training instances of that node and/or it can gain a certain training error
reduction by splitting. This example tree model has three levels. This model uses a leaf-wise tree growth
approach and thus, the branches of the tree may have different lengths

2564 Machine Learning (2023) 112:2555–2591

1 3

as a training instance. We use the concept of SETAR models to split the training instances
into child nodes. As we only consider 2-regime SETAR models, a given tree node is split
into two child nodes. The optimal lag, l and the optimal threshold, T that are used to split
each node are determined by using a grid search approach as explained in Sect. 3.3.1. The
instances where the corresponding value of the Lag l is less than T, and greater than or
equal to T, are separately grouped into child nodes. However, a node is only split if mak-
ing that split is worth enough. In particular, a node is only split if there exists remaining
non-linearity in the training instances of that node (Sect. 3.3.2) and/or it can gain a certain
training error reduction by splitting (Sect. 3.3.3). Thus, our model uses the leaf-wise tree
growth approach where the branches of the tree may have different lengths. For an exam-
ple, at Level 1, only one node is further split into child nodes. The other node is not split
and it has been treated as a leaf node because further splitting that node does not fulfill the
specified criteria.

The two methods we use to determine whether a node should be split or not, a statisti-
cal linearity test and the error reduction gained by node splitting, are explained in detail in
Sects. 3.3.2 and 3.3.3. They control the growth of the tree and thus, the model can itself
determine the maximum tree depth that it should allow. In particular, these two methods
act as the stopping criteria of the tree growth where constructing the tree is completed
when none of the nodes should be further split. The leaf nodes can be there at different tree
levels as shown in Fig. 2 where one leaf node is in Level 1 and two leaf nodes are in Level
2. In each leaf node, a global PR model is trained using the instances corresponding with
that node.

During testing, the model identifies the leaf node corresponding with a given test
instance by following the same optimal lags and thresholds it previously used during node
splitting starting from the root node. The prediction of the test instance is then obtained
using the trained PR model corresponding with its leaf node.

The SETAR-Tree requires minimal hyperparameter tuning. A few parameters are used
for the statistical linearity test and for measuring error reduction in node spitting. However,
the model provides competitive results with their default parameters that we provide and
thus, setting externally tuned hyperparameters is not mandatory for our model.

3.3.1 Finding optimal lags and thresholds

To find the lag and threshold that will be used to split a given node, we utilise a standard
grid-search approach. Given a node, we consider each lag and a set (grid) of thresholds
with which to split the node into two children. For each lag and threshold pair in the grid,
separate linear models are fitted to the two subsets of data formed by partitioning the cho-
sen lag at the specified threshold. The lag and the threshold that are results in the split with
the minimum SSE at the child nodes is selected as the “optimal” lag and threshold for
splitting.

To increase the efficiency of the grid-search, we exploit the properties of the least-
squares estimates during fitting. Recall that the leaf models are linear AR models of the
form

2565Machine Learning (2023) 112:2555–2591

1 3

where X is the lag-matrix, y are the outputs, � the AR coefficients and � a vector of errors.
The least-squares estimates of � are well known to be

where T and -1 respectively refer to the transpose and inverse of the matrix. The SSE of the
least-squares fit is given by

An important property of the least-squares estimates are that they depend on X and y
only through their inner products. We can exploit this to fit the models for all potential
thresholds in O(n log n) time. Let Xl be the lag variable we will be splitting on, and let
s = (s1,… , sq) be the q candidate thresholds for splitting. Define the sets

These sets indicate which rows fall into each of the q + 1 different partitions of the data
defined by the set of thresholds. Let x̄i denote the i-th row of X; we can then define the
quantities

These are the relevant inner products for the “left” child node model formed by splitting
the data at each of the thresholds sk . From Eq. 2, if we choose to split at threshold sk , the
least squares estimates for the left and right child node models can be written as

respectively. Using Eq. 3, the SSE in the left and right child node models can be then writ-
ten as

and

respectively. When considering a lag xl to split on, we can first sort the rows of X by xl . In
practice, these sorted values can then be used to find a set of suitable thresholds; typically
we choose fifteen equispaced quantiles of the vector xl . We can then use Eq. 4 to compute
the relevant inner products for the first threshold, i.e., B(1) , c(1) and d(1) . We can then itera-
tively try each potential threshold s1,… , sq in turn using Eqs. 5, 6 and 7, exploiting the fact
that we can update the inner products using

y = X� + �

(2)𝛽 = (XTX)−1XTy

(3)SSE(𝛽) = yTy − 𝛽TXTX𝛽.

Si =
{
j ∶ xj,l ≤ si

}
, (i = 1,… , q) and Sq+1 =

{
j ∶ xj,l > sq

}
.

(4)B(k) =

k∑
i=1

∑
j∈Si

x̄jx̄
T
j
, c(k) =

k∑
i=1

∑
j∈Si

x̄jyj and d(k) =

k∑
i=1

∑
j∈Si

y2
j
.

(5)𝛽(Lk) = B−1
(k)
c(k) and 𝛽(Rk) =

(
XTX − B(k)

)−1(
XTy − c(k)

)

(6)SSE(Lk) = d(k) −
(
𝛽(Lk)

)T
B(k)

(
𝛽(Lk)

)

(7)SSE(Rk) =
(
yTy − d(k)

)
−
(
𝛽(Lk)

)T(
XTX − B(k)

)(
𝛽(Lk)

)

2566 Machine Learning (2023) 112:2555–2591

1 3

as we move from threshold sk to sk+1 , with similar expressions for c(k) and d(k) to efficiently
compute the running totals of these quantities.

3.3.2 Statistical linearity test

The usage of linearity tests in determining the amount of regimes and the goodness of TAR
models is well-established in the econometrics and statistics literature (Terasvirta, 1994).
However, to the best of our knowledge, the linearity tests have not been used to determine
the goodness of a SETAR model trained across series, in particular to determine the depth
of a hierarchical SETAR model as we propose.

We use the general linear F-test (Box, 1953) to determine whether there exists a remain-
ing non-linearity of a set of training instances in a particular tree node. The node is only
further split if there exists a significant remaining non-linearity.

The null hypothesis of the linear F-test, H0 states that there exists no significant
remaining non-linearity in the training instances and thus, the parent node is enough to
model the instances. The alternative hypothesis, H1 states that there exists a significant
remaining non-linearity in the training instances and therefore, a node should be further
split into child nodes.

In particular, the linear F-test calculates a statistic, namely the F-statistic, which
compares a complex model and a reduced model, and determines whether the reduced
model should be rejected in favour of the complex model. In our node splitting scenario,
the reduced and complex models respectively refer to the global PR models that are
trained on parent and child nodes corresponding with a particular split. The suitability
of the split is determined based on the value of the F-statistic calculated using the SSE
corresponding with PR models built on parent and child nodes.

The SSE of a parent node and the corresponding child nodes are respectively defined
in Eqs. 8 and 9. Here, N is the number of training instances, yk are the observed values,
ypk are the fitted values of the parent node model and yck are the fitted values of the
child node models.

The F-statistic corresponding with a node split is then calculated using Eq. 10 where dfP
and dfC are the degrees of freedom of parent and child node models, respectively.

B(k+1) = B(k) +
∑
j∈Sk

x̄jx̄
T
j
,

(8)SSE(P) =

N∑
k=1

(yk − ypk)
2

(9)SSE(C) =

N∑
k=1

(yk − yck)
2

2567Machine Learning (2023) 112:2555–2591

1 3

For simplicity, we consider the same number of past lag values when training the PR mod-
els in all nodes. Hence, dfP and dfC are defined as in Eqs. 11 and 12 where L is the number
of past lags used for modelling.

Substituting dfP and dfC reduces Eq. 10 as follows.

The p-value of the F-test is determined by comparing the value of F∗ to the F distribution.
If the p-value is less than the considered significance level, � , then H1 is accepted and the
node is further split into child nodes. Otherwise, the node is kept as a leaf node of the tree.

As a form of multiple testing correction (Noble, 2009), we gradually decrease the
value of � when the tree grows level by level as defined in Eq. 14, where �d and �d+1 are
the significance levels corresponding with the tree levels d and d + 1 , respectively.

This reduces unnecessary tree growth and acts as a way of preventing model overfitting.
The values of �0 and significance_divider are user defined, with default values of 0.05 and
2, repectively. As our trees perform binary splits, using a significance_divider of 2 corre-
sponds to a Bonferroni correction, where the family-wise error is kept constant across the
levels of the tree. Larger values lead accordingly to more conservative significance levels.

3.3.3 Error reduction in node splitting

We also consider the error reduction percentage to determine whether a node should be
further split or not. The child nodes models together use more parameters during model
fitting and thus, they always give lower training error compared to the parent node model.
Here, the purpose is to check whether the error reduction percentage that can be gained by
splitting a node is considerably high or not. A node is only split if the error reduction per-
centage is greater than or equal to a particular error threshold (et) and otherwise, the node
is considered as a leaf node of the tree. The value of et is user defined and based on our
preliminary experiments, it is set to 3%, by default.

Algorithm 1 shows the training and testing phases of the SETAR-Tree model. The algo-
rithm takes the following parameters as inputs.

(10)F∗ =

(
SSE(P) − SSE(C)

dfP − dfC

)(
SSE(C)

dfC

)−1

(11)dfP =N − L − 1

(12)dfC =N − 2L − 2

(13)F∗ =

(
SSE(P) − SSE(C)

L + 1

)(
SSE(C)

N − 2L − 2

)−1

(14)�d+1 =
�d

significance_divider

2568 Machine Learning (2023) 112:2555–2591

1 3

2569Machine Learning (2023) 112:2555–2591

1 3

• training_set contains the training parts of each series of the dataset
• forecast_horizon the length of the prediction period
• lag the number of past lags used to forecast the next series value
• stopping_criteria the criteria that are used to determine whether a node should be split
• max_depth maximum possible tree depth (optional)
• alpha0 the initial significance level to be used by the F-test (optional)
• significance_divider the significance level used by the F-test is sequentially divided at

each tree level by this value (optional)
• error_threshold minimum error reduction that should be gained to split a node

(optional)

The algorithm first creates an embedded matrix using the training parts of each series
which is considered as the root node of the tree. The function create_input_matrix cre-
ates this embedded matrix taking training_set and lag as inputs (line 6). It then finds the
optimal lag and the threshold that should be used to split the node into child nodes using
the function get_opt_params (line 11). This function internally conducts a grid search over
the lags of the node and selects the lag and the threshold that are corresponding with the
split which provides the minimum SSE at the child nodes. Then, the function split_node
(line 14) splits the parent node into child nodes using the optimal lag (opt_lag) and the
threshold (opt_threshold) returned by get_opt_params. Based on the stopping_criteria,
the split is further assessed to determine whether the child nodes should be added to the
tree or not. The functions check_linearity (line 16) and check_error_reduction (line 18)
respectively check whether there exists remaining non-linearity in the training instances of
the parent node and whether the training error reduction gain by node splitting is greater
than the error_threshold. If the split is worth to make, then the child nodes are added to
the tree (line 24). The tree building procedure is stopped if none of the nodes at the cur-
rent tree level is split (line 34). If at least one node at the current tree level is split, then
the same node splitting procedure is conducted for the next tree level. At each tree level,
the significance level used by the F-test, alpha, is decreased by dividing it by the signifi-
cance_divider (line 32). After completing the tree construction process, our method trains
a global PR model at each leaf node using the function train_pr_model (line 40). During
the testing phase, it first creates a set of test instances, test_set, using the function cre-
ate_test_set which returns the last set of lags in each training series (line 44). The forecasts
for the required forecast horizon are then obtained iteratively. In each iteration, the function
find_leaf_node_index (line 47) identifies the corresponding leaf node for each test instance
by following the same optimal lags (opt_lags) and thresholds (opt_thresholds) it previously
used during node splitting. The predictions for the test instances are then obtained using
the corresponding trained models at their leaf nodes (line 48). In each iteration, the test_set
is also updated using the function update_test_set, by appending the forecasts of the previ-
ous iteration (line 50).

3.3.4 Training with covariates

The proposed SETAR-Tree model can also be trained with external numerical and cat-
egorical covariates in addition to the past lags of time series. The numerical covariates

2570 Machine Learning (2023) 112:2555–2591

1 3

are treated in the same way as the time series lagged values. The categorical covariates
are converted into numerical format beforehand by applying one-hot encoding which then
allows to treat them in the same way as numerical attributes. When determining the opti-
mal attribute and the threshold to split a node, the past lags of series, numerical covariates
and categorical covariates are all considered together.

3.4 SETAR‑Forest model

A forest is an ensemble model that aggregates the predictions provided by a set of diverse
tree models to obtain a prediction, often through bootstrap aggregation (“bagging”) (Brei-
man, 2001).

We introduce a new forest algorithm, SETAR-Forest, which consists of a collection of
diverse SETAR-Trees. The trees are made diverse by varying the initial significance level
(�0), the significance divider used to calculate the sequence significance levels and the
error reduction percentage threshold (et) used during node splitting. In a SETAR-Tree,
these three parameters are set by default based on our preliminary experiments and in
contrast to that, in the forest algorithm, each tree selects the values of these parameters
randomly. For our experiments, we consider ten SETAR-Trees for a SETAR-Forest. An
individual SETAR-Tree does not use bagging whereas the SETAR-Forest does. A set of
randomly chosen 80% of instances and all attributes of them are used to train each SETAR-
Tree in a SETAR-Forest. Thus, the values of bagging frequency, bagging fraction and fea-
ture fraction of our SETAR-Forest are 10, 0.8, and 1, respectively, by default. However, our
implementation takes these values as external parameters and thus, users can modify them
based on the application.

During testing, the forecasts of the test instances are obtained by averaging the corre-
sponding forecasts provided by all SETAR-Trees in the forest.

Table 1 Datasets information

Dataset name No. of time series Forecast
horizon

Frequency Minimum length Maximum
length

Rossmann 1115 48 Daily 894 894
Wikipedia web traffic 1000 59 Daily 744 744
Favorita 1000 16 Daily 1668 1668
M5 1490 28 Daily 1941 1941
Tourism monthly 366 24 Monthly 67 309
Tourism quarterly 427 8 Quarterly 22 122
Chaotic logistic 100 8 – 592 592
Mackey-glass 100 8 – 592 592

2571Machine Learning (2023) 112:2555–2591

1 3

4 Experimental framework

In this section, we discuss the experimental datasets, error metrics, and benchmarks used
in our experiments.

4.1 Datasets

We use eight experimental datasets,1 six publicly available datasets and two simulated
datasets, to evaluate the performance of our proposed SETAR-Tree and forest algorithms.
The datasets are briefly explained in the following and Table 1 provides their summary
statistics.

• Rossmann Sales Dataset (Kaggle, 2015) The dataset from the Rossmann Sales fore-
casting competition that shows the daily sales of a set of Rossmann stores. The miss-
ing observations of this dataset are replaced by carrying forward the corresponding
last observations (LOCF method). Several covariates are also available with this data-
set such as the daily number of customers to each store, status of the stores (open or
closed), promotion details and state/school holidays information.

• Kaggle Wikipedia Web Traffic Dataset (Google, 2017) The first 1000 time series from
the Kaggle Wikipedia Web Traffic forecasting competition that shows the number of
daily hits for a given set of Wikipedia web pages. Following the procedure suggested
by Hewamalage et al. (2021), the missing observations of this dataset are replaced by
zeros. Covariates are also available with this dataset such as day of the week. The data-
set was extracted from Godahewa et al. (2021).

• Favorita Dataset (Kaggle, 2018) The first 1000 time series from the Corporación
Favorita Grocery Sales forecasting competition that shows daily unit sales of a set of
items sold at different Favorita stores. The missing observations of this dataset are
replaced by zeros. Covariates are also available with this dataset such as day of the
week.

• M5 Dataset (Makridakis et al., 2022) A subset of time series from the M5 forecast-
ing competition that shows daily unit sales of a set of items sold at different Walmart
stores. To make the amount of time series comparable with the other datasets, we select
the items that belong to the HOBBIES_2 department which is one of the ten depart-
ments used in the competition.

• Tourism Monthly Dataset (Athanasopoulos et al., 2011) Monthly dataset from the Tour-
ism forecasting competition. The dataset was extracted from Godahewa et al. (2021).

• Tourism Quarterly Dataset (Athanasopoulos et al., 2011) Quarterly dataset from the
Tourism forecasting competition. The dataset was extracted from Godahewa et al.
(2021).

• Chaotic Logistic Dataset A simulated dataset used in Hewamalage et al. (2021a) con-
structed by using the Chaotic Logistic Map (May, 1976) Data Generation Process
(DGP)

1 The experimental datasets are available at https:// github. com/ raksh itha1 23/ SETAR_ Trees/ tree/ master/
datas ets.

https://github.com/rakshitha123/SETAR_Trees/tree/master/datasets
https://github.com/rakshitha123/SETAR_Trees/tree/master/datasets

2572 Machine Learning (2023) 112:2555–2591

1 3

• Mackey-Glass Dataset A simulated dataset used in Hewamalage et al. (2021a) con-
structed by using the Mackey-Glass Equation (Mackey and Glass, 1977) DGP.

For our study, we have mostly used datasets where globally trained tree models are known
to provide good forecasts. Note that four datasets: Rossmann, Kaggle Web Traffic, Favorita
and M5 are from Kaggle competitions where tree-based models have won the first or sec-
ond positions (Bojer & Meldgaard, 2020). The two simulated datasets also contain non-lin-
ear time series where tree-based models have provided accurate forecasts compared to PR
and neural network models based on the results published by Hewamalage et al. (2021a).
To add some diversity into the pool of datasets, we consider the Tourism Monthly and
Quarterly datasets from the Tourism forecasting competition where the traditional univari-
ate forecasting models have provided better forecasts. There are other popular benchmark-
ing datasets in the global forecasting field, most notably the M3 (Makridakis & Hibon,
2000) and M4 (Makridakis et al., 2018) datasets. However, these datasets are very het-
erogeneous as they contain time series from many different use cases and require special
preprocessing and/or ensembling techniques such as clustering and ensemble of specialists
(Godahewa et al., 2021; Bandara et al., 2020; Smyl, 2020) to make global models competi-
tive. As we deem such additional techniques to be out of the scope of our current paper, we
do not consider these datasets for this study.

4.2 Error metrics

We measure the performance of our models using the modified version of symmetric Mean
Absolute Percentage Error (msMAPE, Suilin, 2017) and Mean Absolute Scaled Error
(MASE, Hyndman & Koehler, 2006) which are commonly used error metrics in the time
series forecasting field. Equations 15 and 16 respectively define the msMAPE and MASE
error metrics. Here, Fk are the forecasts, Yk are the actual values for the required forecast
horizon, M is the number of instances in the training set, N is the number of data points in
the test set and S is the length of the seasonal cycle. In Eq. 15, the � is set to its proposed
default value of 0.1.

For the two simulated datasets, the length of the seasonal cycle is considered as one. Since
all these error measures are defined for each time series, we calculate the mean and median
values of them across a dataset to measure the model performance. Therefore, four error
metrics are used to evaluate each model: mean msMAPE, median msMAPE, mean MASE
and median MASE.

4.3 Benchmarks and variants

We use seven global models: a PR model (Gelman & Hill, 2006), Feed-Forward Neural
Network (FFNN, Goodfellow et al., 2016) and five tree-based models: a regression tree

(15)msMAPE =
100%

N

N∑
k=1

|Fk − Yk|
(max(|Yk| + |Fk| + �, 0.5 + �))∕2

(16)MASE =

∑N

k=1
�Fk − Yk�

N

M−S

∑M

k=S+1
�Yk − Yk−S�

2573Machine Learning (2023) 112:2555–2591

1 3

(Loh, 2011), Cubist (Kuhn & Johnson, 2013), LightGBM (Ke et al., 2017), XGBoost
(Chen & Guestrin, 2016), and CatBoost (Prokhorenkova et al., 2018), as the main bench-
marks of our study. These tree-based models are popular well-performing models in the
forecasting domain. Regression trees have provided successful insights and foundations for
machine learning approaches in the forecasting domain (Spiliotis, 2022). Cubist is a well-
known regression model tree that performs rule-based modelling (Quinlan, 1992). Many
top solutions of the M5 forecasting competition (Makridakis et al., 2022) including the
winning method use globally trained LightGBM models. Furthermore, the winning meth-
ods of many recently held Kaggle forecasting competitions use tree-based models (Bojer
& Meldgaard, 2020). The FFORMA method (Montero-Manso et al., 2020) which placed
second in the M4 forecasting competition (Makridakis et al., 2018) uses XGBoost as a
meta-learner. CatBoost considers the order of data points during modelling which makes it
more suitable for time series forecasting (Prokhorenkova et al., 2018).

The R packages glmnet (Friedman et al., 2010), nnet (Venables & Ripley, 2002), rpart
(Therneau & Atkinson, 2019), Cubist (Kuhn & Quinlan, 2022), lightgbm (Ke et al., 2020),
xgboost (Chen et al., 2020) and catboost (Prokhorenkova et al., 2018) are respectively used
to implement the PR, FFNN, regression tree, Cubist, LightGBM, XGBoost and CatBoost
models. The hyperparameters of FFNN, LightGBM and XGBoost are tuned using a grid
search approach. For the FFNN, the number of nodes in the hidden layers is varied from
10 to 60 in steps of 10, and the learning rate decay is varied from 0.01 to 0.1 in steps of
0.01. For LightGBM, the minimum number of instances in a leaf node is varied from 50
to 200 in steps of 50, and the learning rate is varied from 0.01 to 0.1 in steps of 0.01. For
XGBoost, the maximum tree depth is varied from 3 to 10 in steps of 1, and � is varied from
0.1 to 0.5 in steps of 0.1. The regression tree, Cubist and CatBoost models are used with
their default parameters that are assumed to provide good results. The PR model does not
require any hyperparameter tuning.

We also consider two traditional univariate forecasting models: ETS (Hyndman et al.,
2008) and ARIMA (Box et al., 2015) that are commonly used in the forecasting space, as
the benchmarks of our study. They are implemented using the R package, forecast (Hynd-
man & Khandakar, 2008) under the default configurations.

The SETAR (Tong, 1993) and STAR (Terasvirta, 1994) models that are trained per
series are also considered as benchmarks. They are implemented using the R package,
tsDyn (Narzo et al., 2022) under the default configurations.

We further consider RF (Breiman, 2001) as a benchmark to evaluate the performance of
our SETAR-Forest algorithm. For that, the implementation of RF in the R package light-
gbm (Ke et al., 2020) is used where the hyperparameters are tuned using a grid search
approach. The minimum number of instances in a leaf node is varied from 50 to 200 in
steps of 50, and the learning rate is varied from 0.01 to 0.1 in steps of 0.01. The bagging
frequency, bagging fraction and feature fraction are respectively set to the same default
values used in our SETAR-Forest algorithm: 10, 0.8 and 1 to facilitate the comparison
between RF and the proposed SETAR-Forest model.

Three variants of the proposed SETAR-Tree model (Sect. 3.3) are used as follows.

Tree.Lin.Test Uses the significance of the linearity test as the stopping criterion of
node splitting.
Tree.Error.Red Uses the error reduction percentage that can be gained by node splitting
as the stopping criterion.

2574 Machine Learning (2023) 112:2555–2591

1 3

Tree.Lin.Test.Error.Red Uses both the significance of the linearity test and the error
reduction percentage gained by node splitting as the stopping criteria.

Three variants of the proposed SETAR-Forest model (Sect. 3.4) are used as follows.

Forest.Significance The trees are randomised in terms of the significance level and the
sequence significance divider considered in the linearity test.
Forest.Error.Red The trees are randomised in terms of the error threshold used to meas-
ure the error reduction percentage of node splitting.
Forest.Significance.Error.Red The trees are randomised in terms of the significance
level and the sequence significance divider considered in the linearity test as well as the
error threshold used to measure the error reduction percentage of node splitting.

The number of lagged values used in all GFMs including our SETAR-Tree and forest vari-
ants are determined using the heuristics suggested by Hewamalage et al. (2021) where the
number of lags used with a dataset depends on its seasonal cycle length or forecast horizon.
In particular, for daily and monthly datasets, we consider the heuristic, seasonality × 1.25 to
determine the number of lags. For daily datasets: Rossmann, Kaggle Web Traffic, Favorita
and M5, this heuristic suggests 8.75 lags, where this value is rounded (to steps of 5) and 10
lags are finally considered with those datasets. For the Tourism Monthly dataset, 15 lags
are considered as suggested by the above heuristic. For Chaotic Logistic, Mackey-Glass
and Tourism Quarterly datasets, the seasonality-based heuristic suggests small values, so
that for these datasets we use the horizon-based heuristic, and consider 10 lags which is
equal to horizon × 1.25 of those datasets. For the three datasets with external covariates:
Rossmann, Kaggle Web Traffic and Favorita, the GFMs are separately executed with and
without covariates where only the past lags are used when training without covariates, and
the past lags and covariates are together used when training with covariates.

4.4 Statistical testing of the results

The non-parametric Friedman rank-sum test is used to assess the statistical significance of
the results provided by different forecasting models across time series considering a sig-
nificance level of � = 0.05 (García et al., 2010). Based on the corresponding msMAPE
errors, the methods are ranked on every series of the eight primary experimental datasets.
In line with traditional forecasting modelling and evaluation (Koning et al., 2005), we treat
each series as a separate entity for statistical testing, so that the ranks per series are used
as inputs for the statistical tests. This seems reasonable as the methods are univariate and
– once trained – forecast each series in isolation. In this way, the statistical test has much
more information instead of averaging the results over the datasets before applying the test.
All primary experimental datasets have a comparable amount of series and thus, none of
the datasets will dominate the evaluation and we obtain a representative result across all
primary experimental datasets. The best method according to the average rank is chosen as
the control method. To further characterise the statistical differences, Hochberg’s post-hoc
procedure is used (García et al., 2010).

2575Machine Learning (2023) 112:2555–2591

1 3

5 Results

This section discusses the results in terms of main accuracy, statistical significance and
computational performance.

5.1 Main accuracy results

This section first presents the results and a comparison of our SETAR-Tree and SETAR-
Forest variants. The best SETAR-Tree and SETAR-Forest variants are then compared with
the benchmarks.

5.1.1 Comparison of SETAR‑Tree and SETAR‑Forest variants

Table 2 shows the results of the considered SETAR-Tree and SETAR-Forest variants across
all experimental datasets for mean msMAPE, median msMAPE, mean MASE and median
MASE. The tree variants and forest variants are separately grouped in Table 2. The results
of the best performing variants in each group are italicized, and the overall best perform-
ing variants across the datasets are highlighted in boldface. The preliminary experiments
are also conducted with other stopping criteria such as using Akaike Information Criterion
(AIC), however, the performance of the SETAR-Tree was not improved with them con-
firming the claims of prior similar studies (da Rosa et al., 2008). Thus, the corresponding
results are not included here.

Across the tree model variants, on mean msMAPE, the Tree.Lin.Test model variant
shows the best performance across five primary datasets where the Tree.Lin.Test.Error.
Red model variant shows the best performance across four primary datasets. However, on
all other error metrics, Tree.Lin.Test.Error.Red shows the overall best performance across
the majority of the experimental datasets from the tree model variants. Compared with
the Tree.Lin.Test and Tree.Lin.Test.Error.Red model variants, the Tree.Error.Red model
variant shows worse performance on all error metrics except across the Kaggle Web Traffic
dataset. This shows that using the significance of the statistical linearity test individually
or together with the error reduction percentage gained by node splitting are better options
rather than using the error reduction percentage on its own as the stopping criterion of the
SETAR-Tree to determine its maximum depth.

In the SETAR-Forest model variants, as the stopping criteria of each individual SETAR-
Tree, we consider both the significance of the statistical linearity test and the error reduc-
tion percentage gained by node splitting which is the stopping criterion of our best SETAR-
Tree variant, Tree.Lin.Test.Error.Red. Out of the three SETAR-Forest variants, Forest.
Significance.Error.Red shows an overall better performance compared to the other two for-
est variants across all experimental datasets on all error metrics. This shows that when
the individual SETAR-Trees of the forest are more diversified, the resultant forecasts are
more accurate. We see that overall, the SETAR-Forest variants show the best performance
across the majority of datasets compared to the SETAR-Tree variants on all error metrics.
The forests properly address the data, model, and parameter uncertainties through bagging
compared to the individual trees and that can be considered as the major reason for this
phenomenon.

2576 Machine Learning (2023) 112:2555–2591

1 3

Ta
bl

e
2

 R
es

ul
ts

 o
f S

ET
A

R-
Tr

ee
 a

nd
 S

ET
A

R-
Fo

re
st

va
ria

nt
s a

cr
os

s a
ll

ex
pe

rim
en

ta
l d

at
as

et
s.

W
ith

ou
t c

ov
ar

ia
te

s
W

ith
 c

ov
ar

ia
te

s

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a
M

5
To

ur
 (M

)
To

ur
 (Q

)
C

ha
ot

ic
M

ac
ke

y-
G

la
ss

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a

M
ea

n
m

sM
A

PE
Tr

ee
.L

in
.T

es
t

39
.0

5
71

.0
4

83
.0
1

45
.2

8
23

.9
4

17
.0

4
41
.8
3

0.
00
37
2

11
.5

3
66

.6
4

94
.7

7
Tr

ee
.E

rr
or

.R
ed

54
.9

3
44
.7
4

85
.0

4
53

.9
2

22
.6

2
19

.0
4

49
.3

6
0.

00
66

1
15

.2
0

45
.0

1
97

.0
1

Tr
ee

.L
in

.T
es

t.E
rr

or
.R

ed
41

.9
0

44
.7
4

85
.0

4
53

.9
2

21
.5
2

15
.5

9
41

.9
8

0.
00
37
2

12
.0

9
44

.8
8

97
.0

1

Fo
re

st.
Si

gn
ifi

ca
nc

e
41

.6
5

48
.1

3
85

.0
6

53
.9
1

21
.1

7
15

.5
9

41
.3

0
0.

00
29

6
12

.0
6

46
.8
5

96
.6

7
Fo

re
st.

Er
ro

r.R
ed

43
.0

3
43

.9
7

82
.4

4
54

.1
3

25
.6

1
16

.5
7

41
.5

5
0.

00
30

7
12

.0
7

47
.9

4
95

.3
2

Fo
re

st.
Si

gn
ifi

ca
nc

e.
Er

ro
r.R

ed
40
.7
3

43
.8

0
82

.3
6

54
.1

3
22

.1
6

15
.9

7
41

.1
4

0.
00

29
6

11
.9
3

47
.8

3
95
.2
8

M
ed

ia
n

m
sM

A
PE

Tr
ee

.L
in

.T
es

t
36

.8
6

69
.7

2
81

.8
8

41
.4

8
19

.6
1

13
.4

4
36

.3
7

0.
00

08
2

10
.0

2
63

.7
8

90
.0

9
Tr

ee
.E

rr
or

.R
ed

42
.9

0
41
.5
2

87
.6

0
49

.9
6

17
.4

3
13

.2
3

41
.0

0
0.

00
11

8
11

.6
4

40
.9

5
91

.3
3

Tr
ee

.L
in

.T
es

t.E
rr

or
.R

ed
41

.0
7

41
.5
2

87
.6

0
49

.9
6

17
.2
6

12
.5
9

36
.3
0

0.
00

08
2

10
.5

2
40

.9
0

91
.3

3

Fo
re

st.
Si

gn
ifi

ca
nc

e
40

.7
2

45
.7

0
87

.6
6

49
.9
6

16
.9

6
12

.6
2

37
.4

1
0.

00
12

4
10

.5
9

41
.6
4

91
.1

2
Fo

re
st.

Er
ro

r.R
ed

39
.2

7
40

.8
3

82
.8
0

50
.0

8
18

.4
0

12
.7

0
36

.0
7

0.
00

08
2

10
.3
1

43
.2

0
90

.8
5

Fo
re

st.
Si

gn
ifi

ca
nc

e.
Er

ro
r.R

ed
39
.1
1

40
.8

1
82
.8
0

50
.0

8
17

.7
1

12
.5

7
36

.3
8

0.
00

12
4

10
.3

8
43

.1
7

90
.8
1

M
ea

n
M

A
SE

Tr
ee

.L
in

.T
es

t
0.

54
6

2.
60

5
0.

83
5

1.
33

0
1.

72
6

1.
69

8
0.
68
2

0.
00
64
1

0.
43

4
3.

05
8

3.
94

0
Tr

ee
.E

rr
or

.R
ed

0.
67

6
0.
96
0

0.
78
4

1.
44

2
1.
57
2

1.
66

7
0.

81
0

0.
01

15
0

0.
57

1
1.

42
8

1.
01
5

Tr
ee

.L
in

.T
es

t.E
rr

or
.R

ed
0.
52
2

0.
96
0

0.
78
4

1.
44

2
1.

57
5

1.
55
9

0.
68

7
0.
00
64
1

0.
45

9
1.
20
4

1.
01
5

Fo
re

st.
Si

gn
ifi

ca
nc

e
0.

51
1

0.
95

0
0.

78
4

1.
44
2

1.
54

6
1.

55
0

0.
67

0
0.

00
51

2
0.

45
3

0.
94

6
1.

00
3

Fo
re

st.
Er

ro
r.R

ed
0.

50
6

0.
89

5
0.

75
7

1.
44

5
1.

62
7

1.
58

9
0.

67
6

0.
00

53
1

0.
44

7
0.

97
6

0.
90

7
Fo

re
st.

Si
gn

ifi
ca

nc
e.

Er
ro

r.R
ed

0.
45

6
0.

87
2

0.
77

7
1.

44
5

1.
60

1
1.

59
3

0.
66

7
0.

00
51

2
0.
44
6

0.
96

6
0.

90
6

2577Machine Learning (2023) 112:2555–2591

1 3

Th
e

be
st

pe
rfo

rm
in

g
va

ria
nt

s i
n

ea
ch

 g
ro

up
 a

re
 it

al
ic

iz
ed

 a
nd

 th
e

ov
er

al
l b

es
t p

er
fo

rm
in

g
va

ria
nt

s a
re

 h
ig

hl
ig

ht
ed

 in
 b

ol
df

ac
e

Ta
bl

e
2

 (c
on

tin
ue

d)

W
ith

ou
t c

ov
ar

ia
te

s
W

ith
 c

ov
ar

ia
te

s

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a
M

5
To

ur
 (M

)
To

ur
 (Q

)
C

ha
ot

ic
M

ac
ke

y-
G

la
ss

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a

M
ed

ia
n

M
A

SE
Tr

ee
.L

in
.T

es
t

0.
44
3

1.
87

2
0.

73
7

1.
03

7
1.

53
2

1.
42

8
0.
65
0

0.
00
13
5

0.
35

1
1.

59
0

0.
77

3
Tr

ee
.E

rr
or

.R
ed

0.
51

8
0.
77
6

0.
71
4

1.
13

8
1.

40
9

1.
36

5
0.

74
2

0.
00

18
5

0.
41

6
0.

78
7

0.
83

9
Tr

ee
.L

in
.T

es
t.E

rr
or

.R
ed

0.
46

0
0.
77
6

0.
71
4

1.
13

8
1.
40
8

1.
32
0

0.
65

3
0.
00
13
5

0.
37

2
0.

78
7

0.
83

9

Fo
re

st.
Si

gn
ifi

ca
nc

e
0.

44
3

0.
82

0
0.

71
3

1.
13
8

1.
40

1
1.

29
1

0.
65

7
0.

00
20

6
0.

37
9

0.
84
0

0.
82

8
Fo

re
st.

Er
ro

r.R
ed

0.
38

9
0.

75
5

0.
68

8
1.

13
9

1.
45

1
1.

34
1

0.
64

1
0.

00
12

8
0.
37
0

0.
87

1
0.
77
7

Fo
re

st.
Si

gn
ifi

ca
nc

e.
Er

ro
r.R

ed
0.

38
3

0.
75

5
0.

68
8

1.
13

9
1.

41
6

1.
32

3
0.

64
6

0.
00

20
6

0.
37

1
0.

86
9

0.
77
7

2578 Machine Learning (2023) 112:2555–2591

1 3

Our SETAR-Tree and forest model variants also provide interesting results when trained
with external covariates. As discussed in Sect. 3.3.4, the categorical covariates of the Ross-
mann (status of the store, promotions, state holiday and school holiday flags), Kaggle Web
Traffic (day of the week) and Favorita (day of the week) datasets are converted into the
numerical format by applying a one-hot encoding mechanism before model training. Fur-
thermore, with the Rossmann dataset, the daily number of customers to each store is con-
sidered as an external numerical covariate. In particular, the overall result of the Rossmann
dataset has considerably improved across our proposed SETAR-Tree and forest variants
after using external covariates on all error metrics. However, the results of the Kaggle Web
Traffic and Favorita datasets do not show such improvements after using covariates across
our proposed model variants.

5.1.2 Comparison of proposed models with benchmarks

Table 3 shows the results of the benchmarks and our best SETAR-Tree and SETAR-Forest
variants, Tree.Lin.Test.Error.Red and Forest.Significance.Error.Red, across all experimen-
tal datasets for mean msMAPE, median msMAPE, mean MASE and median MASE.

The models in Table 3 are grouped based on the sub-experiments. The results of the
best performing models in each group are italicized, and the overall best performing mod-
els across the datasets are highlighted in boldface. The first group contains the traditional
univariate forecasting models, ETS, ARIMA, SETAR and STAR, where these models are
only executed with our eight primary experimental datasets without using external covari-
ates. The second group contains benchmark GFMs including PR, FFNN, state-of-the-art
tree-based models and RF. The last group contains our best SETAR-Tree and SETAR-For-
est variants that are discussed in Sect. 5.1.1. The GFMs are executed with and without
covariates for three datasets: Rossmann, Kaggle Web Traffic and Favorita, separately.

In the first group, ETS shows an overall better performance compared to ARIMA,
SETAR and STAR across all error metrics. ETS shows the best performance across
the Tourism Monthly dataset on all error metrics, Tourism Quarterly dataset on mean
msMAPE and median MASE, and the Favorita dataset on median MASE. However, GFMs
including our proposed models show a better performance than these traditional univariate
forecasting models across all experimental datasets on all error metrics except for these
seven cases.

In the second group, overall, PR and Cubist show a better performance compared to the
other benchmark GFMs across all error metrics. The Cubist and CatBoost models show a
better performance when training with external covariates.

The third group shows the results of our best SETAR-Tree variant, Tree.Lin.Test.Error.
Red, and the best SETAR-Forest variant, Forest.Significance.Error.Red. Our proposed
models show an overall better performance than other benchmark GFMs listed in the sec-
ond group. In particular, our proposed models outperform the state-of-the-art tree-based
and forest-based forecasting algorithms such as the regression tree, Cubist, LightGBM,
XGBoost, CatBoost and RF across all experimental datasets on all error metrics except
for twelve cases: Rossmann on mean msMAPE (Cubist), M5 on all error metrics (Light-
GBM), M5 on median msMAPE (CatBoost and XGBoost), Tourism Monthly on mean
msMAPE, median msMAPE and median MASE (Cubist), Favorita with covariates on
median msMAPE (LightGBM) and on all error metrics (Cubist, Catboost and XGBoost).
This further shows training a global AR model in the leaf nodes leads to more accurate

2579Machine Learning (2023) 112:2555–2591

1 3

Ta
bl

e
3

 R
es

ul
ts

 a
cr

os
s a

ll
ex

pe
rim

en
ta

l d
at

as
et

s.

W
ith

ou
t c

ov
ar

ia
te

s
W

ith
 c

ov
ar

ia
te

s

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a
M

5
To

ur
 (M

)
To

ur
 (Q

)
C

ha
ot

ic
M

ac
ke

y-
G

la
ss

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a

M
ea

n
m

sM
A

PE
ET

S
43
.9
8

46
.2
4

87
.6
7

78
.2

2
19

.0
2

15
.0

7
50

.3
3

1.
02

98
3

–
–

–
A

R
IM

A
45

.3
4

47
.9

6
87

.8
2

77
.8

1
19

.7
3

16
.5

8
48

.7
1

11
.1

21
00

–
–

–
SE

TA
R

62

.2
0

46
.7

5
94

.5
6

58
.1
8

31
.3

0
36

.1
4

52
.9

3
0.

04
07

9
–

–
–

ST
A

R

72
.8

9
46

.8
2

96
.3

0
95

.0
1

32
.5

8
34

.0
8

44
.8
2

0.
02
09
4

–
–

–

PR
64

.4
5

11
1.

48
85
.0
4

53
.9

2
21

.5
6

17
.0

7
52

.2
7

0.
01
94
9

43
.0

2
68

.7
8

99
.2

2
C

ub
ist

38
.7

7
55

.6
9

85
.7

5
14

6.
12

19
.9
6

16
.0
2

43
.0

3
0.

26
99

5
13
.0
7

55
.6

7
85

.6
3

FF
N

N
19

7.
35

16
4.

74
11

9.
40

94
.9

7
19

9.
47

19
9.

77
42

.7
8

60
.5

33
47

19
7.

35
16

4.
74

11
5.

14
Re

gr
es

si
on

 T
re

e
55

.4
8

61
.8

8
10

1.
21

65
.9

4
64

.3
4

11
5.

02
44

.7
2

3.
42

95
0

46
.5

8
61

.8
8

10
1.

21
C

at
B

oo
st

49
.3

9
49

.6
6

90
.7

3
57

.3
3

23
.7

5
25

.3
7

42
.0
9

0.
65

73
5

39
.9

1
47
.9
7

90
.9

0
Li

gh
tG

B
M

56
.1

6
55

.6
3

96
.8

3
32

.6
0

22
.1

8
19

.7
2

42
.5

3
0.

56
77

7
42

.7
3

59
.2

5
98

.0
6

X
G

B
oo

st
48

.2
9

69
.7

3
86

.9
3

54
.9

9
23

.4
8

18
.8

4
44

.4
0

0.
45

67
6

48
.4

1
65

.2
0

89
.4

1
R

F
61

.9
5

49
.6
3

10
3.

02
10

4.
49

32
.5

5
27

.1
3

42
.6

2
2.

85
19

1
46

.5
3

49
.9

0
10

1.
62

Tr
ee

.L
in

.T
es

t.E
rr

or
.R

ed
41

.9
0

44
.7

4
85

.0
4

53
.9
2

21
.5
2

15
.5
9

41
.9

8
0.

00
37

2
12

.0
9

44
.8

8
97

.0
1

Fo
re

st.
Si

gn
ifi

ca
nc

e.
Er

ro
r.R

ed
40
.7
3

43
.8

0
82

.3
6

54
.1

3
22

.1
6

15
.9

7
41

.1
4

0.
00

29
6

11
.9

3
47

.8
3

95
.2
8

M
ed

ia
n

m
sM

A
PE

ET
S

44
.2
5

41
.7

2
86

.5
9

72
.6

2
17

.1
6

12
.8
9

38
.3

7
0.

79
34

3
–

–
–

A
R

IM
A

45
.8

9
45

.0
3

84
.8
4

73
.0

8
18

.0
0

13
.1

3
37
.2
6

9.
78

09
4

–
–

–
SE

TA
R

57

.4
5

41
.5

5
88

.7
5

46
.3
9

25
.2

7
23

.3
6

51
.6

4
0.

03
11

1
–

–
–

ST
A

R

61
.0

4
41
.0
7

89
.6

5
76

.0
6

23
.6

6
17

.3
4

39
.5

3
0.
01
07
8

–
–

–

PR
64

.8
8

11
0.

64
87

.6
0

49
.9

6
18

.6
0

13
.4

2
43

.8
1

0.
01
25
5

41
.2

0
64

.6
4

91
.8

8
C

ub
ist

42
.9
1

53
.6

2
87

.7
9

14
8.

76
17
.2
4

13
.2
1

39
.9

3
0.

21
27

2
11
.1
8

53
.6

2
87

.6
9

FF
N

N
19

7.
29

16
8.

20
11

4.
39

91
.1

2
19

9.
84

19
9.

94
37

.1
8

62
.1

25
58

19
7.

29
16

8.
20

11
4.

22

2580 Machine Learning (2023) 112:2555–2591

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

W
ith

ou
t c

ov
ar

ia
te

s
W

ith
 c

ov
ar

ia
te

s

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a
M

5
To

ur
 (M

)
To

ur
 (Q

)
C

ha
ot

ic
M

ac
ke

y-
G

la
ss

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a

Re
gr

es
si

on
 T

re
e

52
.3

2
53

.5
7

92
.1

5
62

.2
2

57
.2

2
12

0.
69

37
.4

6
2.

97
34

2
44

.8
5

53
.5

7
92

.1
5

C
at

B
oo

st
48

.3
8

45
.9

4
89

.5
5

47
.8

1
20

.3
8

19
.3

1
36
.7
0

0.
48

91
0

38
.7

4
44
.0
6

89
.7

7
Li

gh
tG

B
M

57
.1

6
51

.7
1

89
.3

7
26

.4
6

19
.3

9
14

.8
8

38
.0

9
0.

41
01

3
40

.9
2

55
.7

8
89

.2
3

X
G

B
oo

st
46

.9
0

67
.2

9
83
.1
0

47
.2

6
21

.0
5

16
.1

9
37

.3
9

0.
34

45
9

47
.4

3
61

.0
0

84
.8

2
R

F
60

.7
1

45
.0
8

95
.5

0
10

2.
75

27
.1

6
20

.7
4

37
.1

3
2.

16
73

9
45

.1
1

45
.3

8
92

.8
9

Tr
ee

.L
in

.T
es

t.E
rr

or
.R

ed
41

.0
7

41
.5

2
87

.6
0

49
.9
6

17
.2
6

12
.5

9
36

.3
0

0.
00

08
2

10
.5

2
40

.9
0

91
.3

3
Fo

re
st.

Si
gn

ifi
ca

nc
e.

Er
ro

r.R
ed

39
.1

1
40

.8
1

82
.8

0
50

.0
8

17
.7

1
12

.5
7

36
.3

8
0.

00
12

4
10

.3
8

43
.1

7
90
.8
1

M
ea

n
M

A
SE

ET
S

0.
58
4

2.
58

2
0.

78
6

1.
79

6
1.

52
6

1.
59
2

0.
77

0
1.

61
78

0
–

–
–

A
R

IM
A

0.
59

6
1.

40
7

0.
78
2

1.
80

7
1.

58
9

1.
78

2
0.
74
3

17
.5

95
67

–
–

–
SE

TA
R

1.

26
0

0.
89
7

0.
84

8
1.
38
7

2.
22

5
2.

59
1

0.
85

1
0.

06
78

3
–

–
–

ST
A

R

1.
38

0
0.

90
2

0.
85

7
1.

54
0

2.
11

0
1.

91
0

0.
78

8
0.
03
49
8

–
–

–

PR
1.

33
3

1.
48

3
0.

78
4

1.
44

2
1.

68
1

1.
65
4

0.
80

2
0.
03
16
5

0.
63

8
4.

04
0

1.
10

6
C

ub
ist

0.
60
2

1.
03
1

0.
78
0

4.
40

7
1.
59
3

1.
69

3
0.

69
6

0.
43

35
0

0.
48

3
1.
03
6

0.
77

9
FF

N
N

3.
16

7
1.

90
1

0.
97

7
2.

25
9

9.
74

7
12

.5
68

0.
69

9
77

.6
35

47
3.

16
7

1.
90

1
0.

95
4

Re
gr

es
si

on
 T

re
e

0.
96

0
3.

53
0

1.
15

6
1.

78
9

8.
08

0
82

.2
50

0.
71

3
5.

44
86

7
0.

66
7

3.
53

0
1.

15
6

C
at

B
oo

st
0.

85
8

1.
51

7
0.

86
6

1.
56

2
1.

87
7

2.
85

1
0.
69
3

1.
06

16
0

0.
44
9

1.
58

4
0.

86
0

Li
gh

tG
B

M
1.

03
0

1.
97

7
0.

97
6

1.
12

8
1.

76
9

2.
24

6
0.

69
9

0.
90

97
2

0.
53

9
2.

66
0

1.
06

0
X

G
B

oo
st

0.
79

6
2.

71
9

0.
89

6
1.

54
5

1.
92

4
2.

09
4

0.
72

2
0.

75
28

5
0.

71
0

2.
75

3
0.

85
0

R
F

1.
16

7
1.

90
1

1.
32

5
2.

52
2

2.
59

6
3.

43
1

0.
70

5
4.

46
71

1
0.

66
3

1.
91

3
1.

17
5

Tr
ee

.L
in

.T
es

t.E
rr

or
.R

ed
0.

52
2

0.
96

0
0.

78
4

1.
44
2

1.
57
5

1.
55

9
0.

68
7

0.
00

64
1

0.
45

9
1.

20
4

1.
01

5
Fo

re
st.

Si
gn

ifi
ca

nc
e.

Er
ro

r.R
ed

0.
45

6
0.

87
2

0.
77

7
1.

44
5

1.
60

1
1.

59
3

0.
66

7
0.

00
51

2
0.

44
6

0.
96

6
0.
90
6

2581Machine Learning (2023) 112:2555–2591

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

W
ith

ou
t c

ov
ar

ia
te

s
W

ith
 c

ov
ar

ia
te

s

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a
M

5
To

ur
 (M

)
To

ur
 (Q

)
C

ha
ot

ic
M

ac
ke

y-
G

la
ss

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a

M
ed

ia
n

M
A

SE
ET

S
0.
55
2

0.
80

0
0.

68
3

1.
45

4
1.

27
6

1.
27

5
0.

69
7

1.
32

63
0

–
–

–
A

R
IM

A
0.

58
5

0.
80

8
0.

68
4

1.
40

3
1.

33
7

1.
38

8
0.
68
6

16
.1

57
42

–
–

–
SE

TA
R

1.

14
4

0.
77

9
0.

76
5

1.
08
7

1.
84

0
2.

31
6

0.
84

4
0.

04
83

4
–

–
–

ST
A

R

1.
25

0
0.
76
1

0.
77

1
1.

48
2

1.
68

9
1.

66
4

0.
70

6
0.
01
86
1

–
–

–

PR
1.

29
1

1.
36

8
0.

71
4

1.
13

8
1.

50
2

1.
44

2
0.

77
8

0.
02
05
5

0.
48

0
1.

53
1

0.
88

6
C

ub
ist

0.
56
2

0.
89

3
0.
69
7

3.
39

9
1.
40
6

1.
43
2

0.
70

5
0.

35
06

8
0.

39
1

0.
89

4
0.

70
5

FF
N

N
2.

98
1

1.
70

5
0.

80
8

1.
84

8
9.

10
5

11
.6

14
0.

68
8

78
.3

74
29

2.
98

1
1.

70
5

0.
79

8
Re

gr
es

si
on

 T
re

e
0.

80
7

1.
10

8
0.

87
3

1.
48

4
4.

44
0

19
.5

86
0.

68
5

4.
71

61
4

0.
55

7
1.

10
8

0.
87

3
C

at
B

oo
st

0.
82

2
0.

89
6

0.
74

2
1.

23
5

1.
66

8
2.

00
0

0.
66
4

0.
75

80
8

0.
37

1
0.
85
4

0.
73

7
Li

gh
tG

B
M

1.
01

7
1.

05
5

0.
79

3
0.

84
2

1.
56

9
1.

71
1

0.
67

4
0.

70
06

2
0.

43
1

1.
23

8
0.

83
3

X
G

B
oo

st
0.

73
5

1.
76

0
0.

76
1

1.
22

0
1.

77
7

1.
73

7
0.

68
3

0.
56

26
1

0.
65

9
1.

47
9

0.
73

4
R

F
1.

09
5

0.
86
5

0.
95

6
2.

03
5

2.
08

0
2.

17
4

0.
68

2
3.

86
98

5
0.

55
4

0.
86

5
0.

88
9

Tr
ee

.L
in

.T
es

t.E
rr

or
.R

ed
0.

46
0

0.
77

6
0.

71
4

1.
13
8

1.
40
8

1.
32
0

0.
65

3
0.

00
13

5
0.

37
2

0.
78

7
0.

83
9

Fo
re

st.
Si

gn
ifi

ca
nc

e.
Er

ro
r.R

ed
0.

38
3

0.
75

5
0.
68
8

1.
13

9
1.

41
6

1.
32

3
0.

64
6

0.
00

20
6

0.
37

1
0.

86
9

0.
77
7

Th
e

be
st

pe
rfo

rm
in

g
m

od
el

s i
n

ea
ch

 g
ro

up
 a

re
 it

al
ic

iz
ed

 a
nd

 th
e

ov
er

al
l b

es
t p

er
fo

rm
in

g
m

od
el

s a
re

 h
ig

hl
ig

ht
ed

 in
 b

ol
df

ac
e

2582 Machine Learning (2023) 112:2555–2591

1 3

forecasts rather than simply considering the average of the training instances in the leaf
nodes. We also see the results of PR and Tree.Lin.Test.Error.Red are the same across the
Favorita dataset without covariates and the M5 dataset on all error metrics. This means the
corresponding SETAR-Tree have only one node which is the parent node where the parent
node has not been further split based on the considered stopping criterion. The SETAR-
Tree and the PR model have overall provided better results across the above two datasets
compared to most of the other benchmark GFMs. It shows limiting the tree to a single node
is a worthwhile decision in these cases. We see that overall, Forest.Significance.Error.Red
shows the best performance across the majority of datasets compared to all other consid-
ered benchmarks listed in the first and second groups as well as Tree.Lin.Test.Error.Red.

Overall, our proposed models show better performance when training with covariates
compared to the benchmarks including PR, FFNN and the state-of-the-art tree-based algo-
rithms. As explained in Sect. 5.1.1, the overall result of the Rossmann dataset has consid-
erably improved across our proposed models after using external covariates on all error
metrics while considerably outperforming all benchmarks. The results of the Kaggle Web
Traffic and Favorita datasets do not show such improvements after using covariates across
our proposed models as well as all other considered benchmarks. However, across the Kag-
gle Web Traffic dataset, Tree.Lin.Test.Error.Red shows the overall best performance com-
pared to the other benchmarks when training with covariates.

5.1.3 Analysis of SETAR‑Forest size

We analyse the effect of the size of the SETAR-Forest, i.e., the number of SETAR-Trees in
the forest, for the final forecasting accuracy. Table 4 shows the results of our best SETAR-
Forest variant, Forest.Significance.Error.Red, for the Chaotic Logistic dataset across four
different sizes: 5, 10, 20 and 50 for mean msMAPE, median msMAPE, mean MASE and
median MASE.

As expected, based on the results, overall, the performance of the SETAR-Forest gets
better when the number of SETAR-Trees is increased. The SETAR-Forest containing 10
SETAR-Trees shows the best performance on mean msMAPE and mean MASE and the
second best performance on median MASE. Adding more trees does not lead to consider-
able accuracy gains. Thus, we deem ten SETAR-Trees sufficient for a SETAR-Forest to
obtain accurate forecasts in our experiments.

Table 4 Results of Forest.Significance.Error.Red for Chaotic Logistic dataset across four different sizes.

The best performing models are highlighted in boldface

No: of trees Mean msMAPE Median msMAPE Mean MASE Median MASE

5 41.65 36.57 0.676 0.644
10 41.14 36.38 0.667 0.646
20 41.34 35.65 0.670 0.644
50 41.25 35.60 0.668 0.647

2583Machine Learning (2023) 112:2555–2591

1 3

5.2 Statistical testing results

Table 5 shows the results of the statistical testing evaluation, namely the adjusted p-values
calculated from the Friedman test with Hochberg’s post-hoc procedure considering a sig-
nificance level of � = 0.05 (García et al., 2010). We consider the msMAPE of each series
provided by the benchmarks and our best SETAR-Tree and SETAR-Forest variants, Tree.
Lin.Test.Error.Red and Forest.Significance.Error.Red, for the eight primary experimen-
tal datasets, namely the Rossmann, Kaggle Web Traffic, Favorita, M5, Tourism Monthly,
Tourism Quarterly, Chaotic Logistic, and Mackey-Glass datasets. The datasets are not con-
sidered with the external covariates during statistical testing as ETS, ARIMA, SETAR and
STAR models are only executed without covariates.

The overall p-value of the Friedman rank sum test is less than 10−30 which is highly
significant. Forest.Significance.Error.Red performs the best on ranking over msMAPE per
each series of the eight primary experimental datasets and thus, it is used as the control
method as mentioned in the first row. All benchmarks and Tree.Lin.Test.Error.Red are sig-
nificantly worse than the control method as they report pHoch values less than �.

5.3 Computational performance

To compare the computational performance of the benchmarks and our proposed models,
all experiments are executed in a controlled environment, namely an Intel(R) Core(TM) i7
processor (2.6GHz) and 32GB of main memory.

Table 6 shows the computational times (in minutes) of all benchmarks and our proposed
tree and forest models across all experimental datasets. The reported computational times
include the model training, hyperparameter tuning and forecast computation times.

From Table 6, we can see that the simple models such as PR and regression tree show
the lowest computational times. Cubist, CatBoost and LightGBM models generally show
lower computational times compared to XGBoost. Our proposed SETAR-Tree model, Tree.

Table 5 Results of statistical
testing

Model pHoch

Forest.Significance.Error.Red –
Tree.Lin.Test.Error.Red 0.003
LightGBM < 10

−30

ARIMA < 10
−30

ETS < 10
−30

CatBoost < 10
−30

SETAR < 10
−30

XGBoost < 10
−30

STAR < 10
−30

Cubist < 10
−30

PR < 10
−30

Regression Tree < 10
−30

RF < 10
−30

FFNN < 10
−30

2584 Machine Learning (2023) 112:2555–2591

1 3

Ta
bl

e
6

 C
om

pu
ta

tio
na

l t
im

es
 (i

n
m

in
ut

es
) o

f a
ll

m
od

el
s a

cr
os

s a
ll

ex
pe

rim
en

ta
l d

at
as

et
s

W
ith

ou
t c

ov
ar

ia
te

s
W

ith
 c

ov
ar

ia
te

s

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a
M

5
To

ur
 (M

)
To

ur
 (Q

)
C

ha
ot

ic
M

ac
ke

y-
G

la
ss

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a

ET
S

7.
52

5.
59

8.
08

14
.4

3
5.

00
1.

06
0.

07
0.

22
–

–
–

A
R

IM
A

16
3.

80
11

.1
6

12
3.

00
25

.4
1

47
.0

0
6.

78
0.

18
0.

30
–

–
–

SE
TA

R

7.
55

0.
90

2.
01

5.
17

0.
59

0.
27

0.
38

1.
29

–
–

–
ST

A
R

99

.6
8

70
.3

3
13

3.
87

14
0.

29
10

.0
4

1.
86

4.
81

5.
11

–
–

–
PR

0.
55

0.
63

0.
65

1.
58

0.
03

0.
02

0.
02

0.
02

0.
90

0.
25

0.
55

C
ub

ist
1.

51
7.

40
2.

55
7.

44
0.

52
0.

27
0.

10
0.

06
1.

86
2.

16
2.

73
FF

N
N

7.
57

18
.8

8
22

3.
80

24
.0

1
0.

74
0.

25
25

.0
0

4.
61

10
.1

6
24

.2
2

35
2.

20
Re

gr
es

si
on

 T
re

e
0.

98
0.

48
1.

31
1.

84
0.

02
0.

02
0.

03
0.

02
1.

22
0.

37
1.

60
C

at
B

oo
st

2.
13

2.
17

1.
12

2.
07

0.
24

0.
13

0.
15

0.
43

6.
07

1.
20

2.
99

Li
gh

tG
B

M
3.

24
12

.7
3

5.
25

8.
91

0.
48

5.
03

3.
84

6.
27

48
.0

2
5.

44
12

.2
2

X
G

B
oo

st
81

.6
0

45
.0

0
23

1.
60

70
.2

6
5.

23
3.

75
7.

37
4.

72
34

1.
40

21
.9

3
59

.5
3

R
F

1.
49

58
.3

0
2.

76
4.

71
6.

89
0.

10
0.

28
0.

12
10

.4
3

6.
44

14
.2

9
Tr

ee
.L

in
.T

es
t.E

rr
or

.R
ed

13
.8

5
5.

25
0.

24
0.

53
0.

34
0.

12
0.

09
19

.2
5

38
.7

8
14

.5
2

3.
22

Fo
re

st.
Si

gn
ifi

ca
nc

e.
Er

ro
r.R

ed
12

4.
16

68
.2

2
35

.5
6

5.
53

7.
14

1.
79

0.
77

10
3.

82
31

0.
60

17
5.

88
30

0.
15

2585Machine Learning (2023) 112:2555–2591

1 3

Lin.Test.Error.Red, overall shows lower computational times than Cubist, LightGBM and
XGBoost across all primary datasets except Rossmann and Mackey-Glass. The most accu-
rate model which is our proposed SETAR-Forest model, Forest.Significance.Error.Red,
generally shows higher computational times than the benchmarks as it executes multiple
SETAR-Trees and combines their forecasts to produce the final forecasts where a single
tree internally does a lot of automatic parameter tuning. However, our SETAR-Forest
shows lower computational times across the M5, Tourism Quarterly and Chaotic Logistic
datasets than the LightGBM and XGBoost models. RF shows lower computational times
than the SETAR-Forest model, however, as our SETAR-Forest is more accurate than the
RF, the higher computational times seem justified.

Table 7 shows the times (in seconds) required by the proposed models, once trained,
to predict a data point. Across the majority of datasets, the proposed SETAR-Tree model
takes less than a second for prediction. The proposed SETAR-Forest model takes a few
seconds for the same prediction, given the trained models. Thus, we deem our models com-
putationally feasible.

Based on our results, we recommend to use our best SETAR-Tree variant, Tree.Lin.
Test.Error.Red, and the best SETAR-Forest variant, Forest.Significance.Error.Red, over the
state-of-the-art tree-based algorithms.

6 Conclusions and future research

Globally trained tree-based models have recently become popular in the forecasting field
due to their contribution to most top-performing methods in the M5 forecasting competi-
tion. However, the models used are general-purpose models not specific to the forecasting
task, and they only consider the average of the training instances at a leaf node as their
prediction.

In this paper, we have proposed a new forecasting-specific globally trained tree model
and a forest model, the SETAR-Tree and SETAR-Forest, which use time-series-specific
splitting and stopping procedures. The SETAR-Tree uses the underlying concept of SETAR
models during node splitting. In contrast to the state-of-the-art tree-based algorithms, our
proposed tree model trains a global PR model in each leaf node allowing the models to
learn the cross-series information. The SETAR-Tree internally controls the tree depth by
conducting a statistical linearity test and measuring the error reduction percentage at each
node split while making the requirement of external hyperparameter tuning to a minimal
state. The SETAR-Forest model uses a collection of SETAR-Trees during forecasting
where the trees are made diverse by randomising the significance of the statistical linear-
ity test and the threshold of the error reduction percentage used during node splitting. The
proposed tree and forest models can also be trained with external covariates. Across eight
experimental datasets, we have shown that our proposed tree and forest models can sig-
nificantly outperform a set of state-of-the-art tree-based GFMs and traditional univariate
forecasting models. As our proposed models show a better forecasting accuracy, with less
parameter tuning with a competitive computational performance compared to the bench-
marks, we recommend SETAR-Tree and SETAR-Forest as strong tree-based models for
global time series forecasting.

2586 Machine Learning (2023) 112:2555–2591

1 3

Ta
bl

e
7

 T
im

es
 (i

n
se

co
nd

s)
 re

qu
ire

d
by

 th
e

pr
op

os
ed

 m
od

el
s

to
 p

re
di

ct
 a

 d
at

a
po

in
t (

gi
ve

n
th

e
fu

lly
 tr

ai
ne

d
m

od
el

s)
. T

he
 p

re
di

ct
io

n
tim

e
of

 F
or

es
t.S

ig
ni

fic
an

ce
.E

rr
or

.R
ed

 is

te
n

tim
es

 h
ig

he
r t

ha
n

th
e

pr
ed

ic
tio

n
tim

e
of

 T
re

e.
Li

n.
Te

st.
Er

ro
r.R

ed
 a

s w
e

co
ns

id
er

 te
n

SE
TA

R-
Tr

ee
s f

or
 a

 S
ET

A
R-

Fo
re

st

W
ith

ou
t C

ov
ar

ia
te

s
W

ith
 C

ov
ar

ia
te

s

Ro
ss

m
an

n
K

ag
gl

e
Fa

vo
rit

a
M

5
To

ur
 (M

)
To

ur
 (Q

)
C

ha
ot

ic
M

ac
ke

yG
la

ss
Ro

ss
m

an
n

K
ag

gl
e

Fa
vo

rit
a

Tr
ee

.L
in

.T
es

t.E
rr

or
.R

ed
1.

20
0.

65
0.

01
0.

01
0.

29
0.

32
0.

06
0.

16
1.

52
0.

96
0.

87
Fo

re
st.

Si
gn

ifi
ca

nc
e.

Er
ro

r.R
ed

12
.0

0
6.

50
0.

10
0.

10
2.

90
3.

20
0.

60
1.

60
15

.2
0

9.
60

8.
70

2587Machine Learning (2023) 112:2555–2591

1 3

From our experiments, we conclude that training a global model in the leaf nodes often
leads to more accurate results in tree-based algorithms rather than considering the average
of the training instances in the leaf nodes in the forecasting context. We further conclude
that considering the significance of the statistical linearity test and the error reduction per-
centage gained by node splitting together is a good option in automatically determining the
maximum tree depth. The SETAR-Forest shows the best performance across the majority
of the datasets as it adequately addresses the data, model, and parameter uncertainties com-
pared to the individual tree models. The results get further improved when the individual
trees in the forest are more diversified.

The success of this approach encourages as future work to extend the proposed tree
models to work with multiple regimes, to work with boosting techniques and to provide
probabilistic forecasts. It will be also interesting to study whether incorporating tree prun-
ing can further increase the forecasting accuracy of SETAR-Trees. Analysing the effects
of training a GFM in the leaf nodes of the state-of-the-art tree-based algorithms such as
LightGBM and CatBoost is also worth to study.

Author contributions RG, GIW, CB and DS; Methodology: RG and CB; Software: RG and DS; Formal
analysis and investigation: RG and CB; Writing - original draft preparation: RG; Writing - review and edit-
ing: RG, GIW, CB and DS; Supervision: GIW, CB and DS.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. This work was
supported by the Australian Research Council under grant DE190100045, a Facebook Statistics for Improv-
ing Insights and Decisions research award and Monash University Graduate Research funding.

Data availability All experimental datasets are publicly available at https:// github. com/ raksh itha1 23/
SETAR_ Trees/ tree/ master/ datas ets. All experimental results are mentioned and explained in the manuscript.

Code availability All implementations of our work are publicly available at https:// github. com/ raksh itha1 23/
SETAR_ Trees

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Consent for publication The paper is the authors’ original work and has not been published nor has been
submitted simultaneously elsewhere. All the authors have checked the manuscript and have agreed to the
submission.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Athanasopoulos, G., Hyndman, R. J., Song, H., & Wu, D. C. (2011). The tourism forecasting competition.
International Journal of Forecasting, 27(3), 822–844.

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. The Annals of Statistics, 47(2),
1148–1178.

https://github.com/rakshitha123/SETAR_Trees/tree/master/datasets
https://github.com/rakshitha123/SETAR_Trees/tree/master/datasets
https://github.com/rakshitha123/SETAR_Trees
https://github.com/rakshitha123/SETAR_Trees
http://creativecommons.org/licenses/by/4.0/

2588 Machine Learning (2023) 112:2555–2591

1 3

Aznarte, J. L., & Benítez, J. M. (2010). Equivalences between neural-autoregressive time series models and
fuzzy systems. IEEE Transactions on Neural Networks, 21(9), 1434–1444.

Aznarte, J. L., Benítez, J. M., & Castro, J. L. (2007). Smooth transition autoregressive models and fuzzy
rule-based systems: Functional equivalence and consequences. Fuzzy Sets and Systems, 158(24),
2734–2745.

Aznarte, J. L., Medeiros, M. C., & Benítez, J. M. (2010). Linearity testing for fuzzy rule-based models.
Fuzzy Sets and Systems, 161(13), 1836–1851.

Bandara, K., Bergmeir, C., Campbell, S., Scott, D., & Lubman, D. (2020). Towards accurate predictions and
causal ’what-if’ analyses for planning and policy-making: A case study in emergency medical services
demand. In International Joint Conference on Neural Networks.

Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent
neural networks on groups of similar series: A clustering approach. Expert Systems with Applications,
140, 112896.

Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., & Seaman, B. (2019). Sales demand forecast
in e-commerce using a long short-term memory neural network methodology. In 26th International
Conference on Neural Information Processing, pp. 462–474.

Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation.
Information Sciences, 191, 192–213.

Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL
decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312.

Bergmeir, C., Triguero, I., Molina, D., Aznarte, J. L., & Benítez, J. M. (2012). Time series modeling and
forecasting using memetic algorithms for regime-switching models. IEEE Transactions on Neural Net-
works and Learning Systems, 23(11), 1841–1847.

Bojer, C. S., & Meldgaard, J. P. (2020). Kaggle forecasting competitions: An overlooked learning opportu-
nity. International Journal of Forecasting, 37(2), 587–603.

Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40(3–4), 318–335.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and

control. John Wiley and Sons.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Breusch, T. S., & Pagan, A. R. (1980). The lagrange multiplier test and its applications to model specifica-

tion in econometrics. The Review of Economic Studies, 47(1), 239–253.
Cerqueira, V., Torgo, L., Pinto, F., & Soares, C. (2019). Arbitrage of forecasting experts. Machine Learning,

108(6), 913–944.
Chen, T. & Guestrin, C. (2016). XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, New York,
NY, pp. 785–794. Association for Computing Machinery.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou,
T., Li, M., Xie, J., Lin, M., Geng, Y., & Li, Y. (2020). xgboost: Extreme gradient boosting. R pack-
age version 1.2.0.1.

Coulombe, P. G. (2020). The macroeconomy as a random forest. CoRR, abs/2006.12724.
Coulombe, P. G. (2021). To bag is to prune. CoRR, abs/2008.07063.
da Rosa, J. C., Veiga, A., & Medeiros, M. C. (2008). Tree-structured smooth transition regression mod-

els. Computational Statistics and Data Analysis, 52(5), 2469–2488.
Dutang, C., & Guibert, Q. (2022). An explicit split point procedure in model-based trees allowing for a

quick fitting of GLM trees and GLM forests. Statistics and Computing, 32(1), 6.
Epprecht, C., & Veiga, A. (2012). Evaluating the predictability of stock market returns via STARX-Tree

models. China-USA Business Review, 11, 1–21.
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via

coordinate descent. Journal of Statistical Software, 33(1), 1–22.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of

Statistics, 29(5), 1189–1232.
García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced non-parametric tests for multiple

comparisons in the design of experiments in computational intelligence and data mining: Experi-
mental analysis of power. Information Sciences, 180(10), 2044–2064.

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Ana-
lytical methods for social research. Cambridge University Press.

Ghosh, H., Sunilkumar, G., & Prajneshu. (2006). Self exciting threshold autoregressive models for
describing cyclical data. Calcutta Statistical Association Bulletin, 58(1–2), 115–132.

Godahewa, R., Bandara, K., Webb, G. I., Smyl, S., & Bergmeir, C. (2021). Ensembles of localised mod-
els for time series forecasting. Knowledge-Based Systems, 233, 107518.

2589Machine Learning (2023) 112:2555–2591

1 3

Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J., & Montero-Manso, P. (2021). Monash
time series forecasting archive. In Neural Information Processing Systems Track on Datasets and
Benchmarks.

Godahewa, R., Bergmeir, C., Webb, G. I., & Montero-Manso, P. (2022). An accurate and fully-auto-
mated ensemble model for weekly time series forecasting. International Journal of Forecasting.
https:// doi. org/ 10. 1016/j. ijfor ecast. 2022. 01. 008

Godahewa, R., Deng, C., Prouzeau, A., & Bergmeir, C. (2022). A generative deep learning framework
across time series to optimise the energy consumption of air conditioning systems. IEEE Access,
10, 6842–6855.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Google. (2017). Web traffic time series forecasting. https:// www. kaggle. com/c/ web- traffi c- time- series-

forec asting.
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Global models for time series forecasting: A

simulation study. Pattern Recognition, 124, 108441.
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series fore-

casting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427.
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference

framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R.

Journal of Statistical Software, 27(3), 1–22.
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International

Journal of Forecasting, 22(4), 679–688.
Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential

smoothing: The state space approach. Springer.
Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., & Callot, L.

(2020). Criteria for classifying forecasting methods. International Journal of Forecasting, 36(1),
167–177.

Januschowski, T., Wang, Y., Torkkola, K., Erkkilä, T., Hasson, H., & Gasthaus, J. (2021). Forecasting
with trees. International Journal of Forecasting, 38(4), 1473–1481.

Ju, Y., Sun, G., Chen, Q., Zhang, M., Zhu, H., & Rehman, M. (2019). A model combining convolu-
tional neural network and LightGBM algorithm for ultra-short-term wind power forecasting. IEEE
Access, 7, 28309–28318.

Kaggle. (2015). Rossmann store sales. http:// www. kaggle. com/c/ rossm ann- store- sales.
Kaggle. (2018). Corporación favorita grocery sales forecasting. https:// www. kaggle. com/c/ favor ita-

groce ry- sales- forec asting.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. (2017). LightGBM: A

highly efficient gradient boosting decision tree. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, NIPS’17, Red Hook, NY, pp. 3149–3157. Curran
Associates Inc.

Ke, G., Soukhavong, D., Lamb, J., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.
Y. (2020). lightgbm: light gradient boosting machine. R Package Version, 3(1), 1.

Koning, A. J., Franses, P. H., Hibon, M., & Stekler, H. O. (2005). The M3 competition: Statistical tests
of the results. International Journal of Forecasting, 21(3), 397–409.

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer.
Kuhn, M. & Quinlan, R. (2022). Cubist: rule- and instance-based regression modeling. R package ver-

sion 0.4.0.
Lefakis, L., Zadorozhnyi, O., & Blanchard, G. (2019). Efficient regularized piecewise-linear regression

trees. CoRR, abs/1907.00275.
Loh, W. Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica

Sinica, 12(2), 361–386.
Loh, W. Y. (2011). Classification and regression trees. WIREs Data Mining and Knowledge Discovery,

1(1), 14–23.
Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197,

287–289.
Makridakis, S., & Hibon, M. (2000). The M3-competition: Results, conclusions and implications. Inter-

national Journal of Forecasting, 16(4), 451–476.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). The M4 competition: Results, findings, con-

clusion and way forward. International Journal of Forecasting, 34(4), 802–808.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). The M5 accuracy competition: Results, find-

ings and conclusions. International Journal of Forecasting, 38(4), 1346–1364.

https://doi.org/10.1016/j.ijforecast.2022.01.008
https://www.kaggle.com/c/web-traffic-time-series-forecasting
https://www.kaggle.com/c/web-traffic-time-series-forecasting
http://www.kaggle.com/c/rossmann-store-sales
https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://www.kaggle.com/c/favorita-grocery-sales-forecasting

2590 Machine Learning (2023) 112:2555–2591

1 3

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261, 459–467.
Medeiros, M. C., & Veiga, A. (2000). A hybrid linear-neural model for time series forecasting. IEEE

Transactions on Neural Networks and Learning Systems, 11(6), 1402–1412.
Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., & Talagala, T. S. (2020). FFORMA: Feature-

based forecast model averaging. International Journal of Forecasting, 36(1), 86–92.
Montero-Manso, P., & Hyndman, R. J. (2021). Principles and algorithms for forecasting groups of time

series: Locality and globality. International Journal of Forecasting, 37(4), 1632–1653.
Narayan, P. K. (2006). The behaviour of US stock prices: Evidence from a threshold autoregressive

model. Mathematics and Computers in Simulation, 71(2), 103–108.
Narzo, A. F. D., Aznarte, J. L., & Stigler, M. (2022). tsDyn: nonlinear time series models with regime

switching. R package version, 10–1, 2.
Noble, W. (2009). How does multiple testing correction work? Nature Biotechnology, 27, 1135–1137.
Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2020). N-BEATS: Neural basis expansion

analysis for interpretable time series forecasting. In 8th International Conference on Learning Rep-
resentations (ICLR).

Petropoulos, F., Hyndman, R. J., & Bergmeir, C. (2018). Exploring the sources of uncertainty: Why
does bagging for time series forecasting work? European Journal of Operational Research, 268(2),
545–554.

Pippenger, M. K., & Goering, G. E. (1998). Exchange rate forecasting: Results from a threshold autore-
gressive model. Open Economies Review, 9, 157–170.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased
boosting with categorical features. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, & R. Garnett (Eds.), Advances in Neural Information Processing Systems. (Vol. 31). Cur-
ran Associates Inc.

Quinlan, J. R. (1992). Learning with continuous classes. In 5th Australian Joint Conference on Artificial
Intelligence, pp. 343–348. World Scientific.

Rambharat, B. R., Brockwell, A. E., & Seppi, D. J. (2005). A threshold autoregressive model for whole-
sale electricity prices. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(2),
287–299.

Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting
with autoregressive recurrent networks. International Journal of Forecasting, 36(3), 1181–1191.

Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time
series forecasting. International Journal of Forecasting, 36(1), 75–85.

Smyl, S. & Kuber, K. (2016). Data preprocessing and augmentation for multiple short time series fore-
casting with recurrent neural networks. In 36th International Symposium on Forecasting.

Spiliotis, E. (2022). Decision trees for time-series forecasting. Foresight : The International Journal of
Applied Forecasting, 64, 30–44.

Suilin, A. (2017). kaggle-web-traffic. https:// github. com/ Artur us/ kaggle- web- traffi c.
Sun, X., Liu, M., & Sima, Z. (2020). A novel cryptocurrency price trend forecasting model based on Light-

GBM. Finance Research Letters, 32, 101084.
Terasvirta, T. (1994). Specification, estimation and evaluation of smooth transition autoregresive models.

Journal of the American Statistical Association, 89(425), 208–218.
Therneau, T. & Atkinson, B. (2019). rpart: recursive partitioning and regression trees. R package version

4.1-15.
Tong, H. (1978). On a threshold model. Pattern Recognition and Signal Processing, 575–586.
Tong, H. (1993). Non-linear time series: A dynamical system approach. Oxford: Clarendon Press.
Torgo, L. & Oliveira, M. (2014). Ensembles for time series forecasting. In Asian Conference on Machine

Learning, pp. 360–370.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.
Weng, T., Liu, W., & Xiao, J. (2020). Supply chain sales forecasting based on lightGBM and LSTM combi-

nation model. Industrial Management & Data Systems, 120(2), 265–279.
Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computa-

tional and Graphical Statistics, 17(2), 492–514.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://github.com/Arturus/kaggle-web-traffic

2591Machine Learning (2023) 112:2555–2591

1 3

Authors and Affiliations

Rakshitha Godahewa1 · Geoffrey I. Webb1 · Daniel Schmidt1 · Christoph Bergmeir1

 Geoffrey I. Webb
 geoff.webb@monash.edu

 Daniel Schmidt
 daniel.schmidt@monash.edu

 Christoph Bergmeir
 christoph.bergmeir@monash.edu

1 Department of Data Science and AI, Monash University, Melbourne, VIC, Australia

http://orcid.org/0000-0002-1333-7249

	SETAR-Tree: a novel and accurate tree algorithm for global time series forecasting
	Abstract
	1 Introduction
	2 Related work
	2.1 Threshold autoregressive models
	2.2 Global time series forecasting
	2.3 Tree-based forecasting models

	3 Methodology
	3.1 Self exciting threshold autoregressive models
	3.2 Terminology of global forecasting models
	3.3 SETAR-Tree model
	3.3.1 Finding optimal lags and thresholds
	3.3.2 Statistical linearity test
	3.3.3 Error reduction in node splitting
	3.3.4 Training with covariates

	3.4 SETAR-Forest model

	4 Experimental framework
	4.1 Datasets
	4.2 Error metrics
	4.3 Benchmarks and variants
	4.4 Statistical testing of the results

	5 Results
	5.1 Main accuracy results
	5.1.1 Comparison of SETAR-Tree and SETAR-Forest variants
	5.1.2 Comparison of proposed models with benchmarks
	5.1.3 Analysis of SETAR-Forest size

	5.2 Statistical testing results
	5.3 Computational performance

	6 Conclusions and future research
	References

