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Abstract
In physical sciences, dynamic systems are modeled using their parameters within govern-
ing equations that often form a system of ordinary differential equations (SODE). This 
system consists of multiple equations, each of which relates the time derivative of a sin-
gle parameter to several parameters. A parameter can appear in multiple equations, and 
this parameter potentially links the equations to each other. Although in certain cases the 
SODE can be written by domain experts, it is often unknown. With advances in sensor 
technology, large quantities of data can be sampled from dynamic systems, thus enabling 
the data-driven discovery of closed-form SODEs. State-of-the-art approaches are based 
on sparse single-task learning, which means that each equation from the SODE is learned 
independently. Omitting the coupling features of equations leads to SODEs that weakly 
identify the dynamic system. Furthermore, the convexity of the sparse penalty included 
in the learning criterion gives an SODE that is biased with respect to the true SODE. To 
reduce such a bias, we propose a multitask learning (MTL) based penalty which can learn 
the closed-form SODE with unbiasedness. The purpose of each task is to discover a single 
equation. But discovering an SODE is nontrivial, as dynamic systems are often nonlinear 
and the available data are noisy. Our proposal improves SODE identification by harnessing 
a nonconvex sparse matrix-structured penalty which takes into account the coupling feature 
as well as addresses the bias issue. Experimental results, based on noisy data simulated 
from known SODEs, confirm that, compared to single-task learning, MTL is more effec-
tive for recovering the closed-form SODE, and the proposed nonconvexity ensures that it 
can be estimated with unbiasedness. We also show the benefits of our approach on a real-
world public dataset sampled from a laboratory-based ecological experiment.

Keywords Sparse estimator · Unbiased sparsity · Multitask learning · Data-driven 
identification of dynamics · Multivariate time series

Editors: Krzysztof Dembczynski and Emilie Devijver.

 * Clément Lejeune 
 clement.lejeune@irit.fr

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7671-0920
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06315-y&domain=pdf


1524 Machine Learning (2023) 112:1523–1549

1 3

1 Introduction

Governing equations are mathematical models, such as partial differential equations (e.g. 
Navier–Stokes equation for fluid dynamic modeling) or systems of ordinary differential 
equations (SODEs), which are widely used in science and engineering to model dynamic 
systems (Brunton et al., 2020; Li et al., 2019). A governing equation models the depend-
ency relationships between several parameters like velocity or chemical concentration, 
known as state variables, in a dynamic system. The solution to a governing equation is a 
function depicting the temporal and/or spatial evolution of the state variables that corre-
spond to physical quantities (e.g. current–voltage, motion). Traditionally, governing equa-
tions are derived from principles that have been formalized from general empirical obser-
vations consistent with certain hypotheses, for instance Newton’s laws are based on the 
constant-mass hypothesis (Greiner, 2006). However, in practice it is hard to derive govern-
ing equations from the existing rules, because either the practitioners do not have sufficient 
knowledge or they do not have sufficient time.

In line with the development of sensor technology, data can be sampled from dynamic 
systems. This provides new opportunities to extract knowledge about the physical behavior 
underlying a dynamic system. Consequently, there has been a growing interest over recent 
years in developing data-driven methods for the discovery of governing equations (Brun-
ton et al., 2016; Long et al., 2018; Schaeffer, 2017; Schaeffer & McCalla, 2017; Zhang & 
Schaeffer, 2019).

Indeed, gaining access to the model that governs an unknown dynamic from data sam-
ples can improve our understanding of a physical system and is a challenging task of scien-
tific interest. There is also the practical challenge of obtaining a surrogate model to simu-
late the system of interest in various conditions e.g. for prototype design in engineering (Li 
et al., 2019).

In this paper, we focus on the case where state variables are sampled from a dynamic 
system throughout a scalar variable t ∈ ℝ , that without loss of generality refers to time. 
Thus, the sampled state variable forms a multivariate time series. If we are to discover the 
dynamic relationship between the state variables, we have to assume that the resulting data 
represent the solution of an unknown SODE as proposed by Brunton et al. (2016). In an 
SODE, each equation models the dependency relationship between several scalar-depend-
ent state variables and their first-order time derivatives. Famous SODEs include the Lorenz 
attractor in turbulence atmospheric modeling and the Lotka-Voltera in population dynam-
ics, see (Ramsay & Hooker, 2017) for other examples.

Let us recall how an SODE is formalized. Let f =
[
f1,… , fp

]T
∶ ℝ

p
→ ℝ

p be a continu-
ous map which defines the evolution of a state variable x(t) ∈ ℝ

p assumed first-order dif-
ferentiable, then the SODE is expressed as dx(t)

dt
∶= ẋ(t) = f (x

(
t)
)
 , or equivalently:

Learning an SODE from data samples can be seen as predicting the time derivative of the 
state variables from a combination (often nonlinear) of the state variables. Hence, discov-
ering an SODE signifies learning f in closed form from samples of ẋ and x . An SODE com-
prises multiple equations (as many as state variables) that relate the variables equations 
to others. In other words, the equations are coupled (See Fig. 1, where the occurrence of 

(1)

⎧⎪⎨⎪⎩

ẋ1(t) = f1
�
x1(t),… , xp(t)

�
⋯

ẋp(t) = fp
�
x1(t),… , xp(t)

�
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x3
1
 and x3

2
 within both equations makes the SODE coupled). Our idea is that using multi-

task learning (MTL) to harness this coupling can improve the data-driven discovery of an 
SODE. That is why we hypothesize that in this context, MTL can be better than single-task 
learning.

In Fig.  1 we illustrate the core of the discovery of nonlinear dynamics framework 
with x(t) ∈ ℝ

2 and f polynomial in x(t) : (top) based on data ( Ẋn and �Xn
 ) sampled from 

a dynamic system. We solve the minimization problem involving a data fidelity term 
�(Ẋn,�Xn

�) and a sparse penalty term R(�) (bottom center) leading to the identification 
of an SODE (bottom left). This optimization instantiates the problem with R ∶= ‖ ⋅ ‖1,1 , 
which is convex. Then, the learned SODE is identified through the minimizer �̂ whose 
entries and sparsity heavily rely on the chosen penalty. Thus, when the penalty is convex 
(e.g. LASSO) the nonzero values are statistically biased w.r.t the true unknown values. This 
means that the SODE is not estimated accurately. There exist nonconvex sparse penalties 
(e.g. smoothly clipped sbsolute deviation (Fan & Li, 2001)) to remedy the bias issue but 
they cannot consider the MTL feature. Existing MTL penalties (group-LASSO (Yuan & 
Lin, 2006), sparse-group-lasso (Simon et al., 2013)) are convex and thus result in a biased 
SODE. We propose a specific nonconvex sparse penalty as a mean for learning the matrix 
coefficient that both reduces its bias and takes into account the multitask feature of the 
SODE. As a result, when there is a coupling within the true SODE, its closed-form SODE 
can be better recovered using our penalty.

Our contributions in this paper are as follows:

• We recast the discovery of a closed-form SODE as a multitask problem. We also for-
malize the learning as an optimization problem involving a matrix-structured, sparse 
and nonconvex regularizer to account for task relatedness, sparsity and unbiasedness.

• We highlight the bias of the learned coefficients, induced by the convexity of state-of-
the-art regularizers, on the resulting SODE.

• Using experiments on reference SODEs, we show that learning via our multitask pen-
alty rather than a convex single-task penalty leads to a better recovery of the equations. 
We also demonstrate the benefit of our recasting on a real dataset involving two adver-
sarial biological quantities, and provide an interpretation of the SODE that was discov-
ered.

Fig. 1  (From top to center to bottom left) Generic workflow of the data-driven discovery of an SODE (here 
two-dimensional) with linear regression. Top: based on samples of estimated state variable time derivatives 
( Ẋn ’s columns), and resulting from nonlinear transformations of the state variable samples (columns of the 
dictionary �Xn

 ), a linear model is assumed for the two sets of samples. Center: the SODE is discovered 
by minimizing a learning criterion inducing sparsity in the minimizer. Bottom left: the SODE is identified 
using the learned coefficient matrix �̂
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The paper is organized as follows: We start by defining our notation in Table 1. in Sect. 2 
we introduce the data-driven discovery of an SODE as a sparse regression problem (sin-
gle-task and multitask) and then highlight the drawbacks of the state-of-the-art regular-
izers. In Sect. 3, we introduce our contribution, a regularizer that is multitask-based and 
involves unbiasedness. Then, we present a generic algorithm from the literature which 
solves the regression problem and can be used for all the regularizers introduced in the 
paper. Through numerical experiments on synthetic and real datasets, in Sect. 4 we show 
the benefit of learning an SODE with such a regularizer. We conclude and propose some 
perspectives in Sect. 5.

2  Related work

Extracting information from noisy data resulting from physical experiments with standard 
machine learning algorithms can lead to irrelevant, or at worst, incorrect conclusions. This 
is because the scientist does not consider the physical feature of the solution in the learn-
ing objective. Recently thare has been increasing research on physics-informed methods to 
incorporate a physical prior into the learning process (Raissi et al., 2017; Raissi & Karni-
adakis, 2018; Brunton et al., 2016; Bhat & Rawat, 2019; Champion et al., 2019). Gener-
ally, these methods formulate a learning objective by leveraging a model from the physical 
sciences. In Raissi et al. (2017) the authors proposed a method to predict a state variable 
with Gaussian processes in which the covariance function derives from a known partial 
differential equation (PDE). Another line of research is about dynamic mode decomposi-
tion in which the goal is to learn both a linear operator and the associated eigenspace from 
time series and/or spatial data (Rowley et al., 2009). Several dynamic mode decomposition 

Table 1  Notations

Notation Description

ℝ
n Set of n-vectors with real number elements

[a; b] Closed subset of ℝ
ℝ

n×p Set of n × p matrices with real number elements

w ∶=
[
w1,… ,wn

]T An element of ℝn (lowercase bold letter)

W ∶=
[
w∙1,… ,w∙p

]
An element of ℝn×p (uppercase letter)

w∙j j-th column of matrix W
wi∙ i-th row of matrix W

x(t) ∶=
[
x1(t),… , xp(t)

]T p dimensional state variable x at time t

x∙k ∶=
[
xk(t1),… , xk(tn)

]T k-th dimension of x sampled at t1 < … < tn

Xn ∶=
[
x∙1,… , x∙p

]
Input data matrix of ( n × p ): n samples (row 

concatenation) of the sampled state variable 
x∙k

ẋ(t) ∶=
[ dx1(t)

dt
,… ,

dxp(t)

dt

]T First-order time derivative of x

Ẋn
n samples (row concatenation) of ẋ at t1,… , tn

‖w‖q ∶= (
∑

i �wi�q)1∕q �q norm ( q ≥ 1 ) of w

‖W‖q,r ∶=
�∑n

i=1
‖wi∙‖q

�1∕r �q,r matrix norm ( q, r ≥ 1 ) of W
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variants have been proposed, but the most popular and recent variants rely on the Koop-
man operator, which provides information on the growth rates and the frequencies of the 
long-term dynamics (Williams et  al., 2015; Yeung et  al., 2019; Kawahara, 2016). In Li 
et al. (2020), the authors assumed that a closed-form PDE can be recovered as a sparse plus 
low-rank combination of nonlinear terms of precomputed dictionary. Their approach relies 
on the robust principal component analysis of Candès et al. (2011). Our work is similar to 
the one of Li et al. (2020) in the sense that we attempt to discover a closed-form model, but 
here an SODE is based on a dictionary computed from noisy data.

Learning an SODE from data samples can be traced back to the seminal work of 
Schmidt and Lipson (2009). Schmidt and Lipson proposed a combinatorial approach based 
on genetic programming to select the parsimonious model that best recovers the data from 
among a large set of candidate models. As mentioned in Brunton et  al. (2016), genetic 
programming methods do not scale to large datasets and tend to overfit. To remedy this, in 
Brunton et al. (2016) Brunton et al. recast learning an SODE as a sparse regression prob-
lem, referred to as the sparse identification of nonlinear dynamics in the literature. Our pro-
posal is formalized according to this framework, which we introduce in the next section.

2.1  Sparse single‑task learning of an SODE

State-of-the-art methods for discovering an SODE, Brunton et  al. (2016); Rudy et  al. 
(2019), implicitly assume that each of ẋ1,… , ẋp in Equation  (1) are uncorrelated targets 
which can be predicted by a sparse combination of elements included in a given dictionary 
of candidate functions. An example of a dictionary �Xn

 and a two-dimensional SODE is 
given in Fig. 1. The dictionary is built by the user with linear and nonlinear candidate func-
tions from the samples Xn of x . This dictionary reflects the prior knowledge of the observed 
phenomenon and is possibly overcomplete. In Brunton et al. (2016); Schaeffer and McCa-
lla (2017); Rudy et al. (2019), f is assumed to be linear with respect to the dictionary ele-
ments. The linear assumption on f with respect to the dictionary elements makes it easy to 
learn and interpret. Next f1,… , fp are learned separately with a sparsity-promoting algo-
rithm e.g. LASSO (Tishbirani, 1996) or elastic-net (Zou & Hastie, 2005).

2.1.1  Discovering an SODE using sparse linear regression

Starting from n noisy samples of a p-dimensional state variable stored as Xn and the asso-
ciated time derivative samples Ẋn (often estimated from Xn , e.g. with finite-difference, 
spline-based methods), we first build a dictionary of m arbitrary candidate functions, for 
instance one chooses to include linear and quadratic monomials, and one cosine term, then, 
�Xn

e.g.
=

[
x∙1, x∙2,… , x2

∙1
, x2

∙2
,… , cos x∙1,…

]
∈ ℝ

n×m . Then from the linear assumption on 
f, i.e.  Ẋn = f

(
Xn

)
= �Xn

� with � ∈ ℝ
m×p wherein the q-th row refers to the coefficient 

vector associated with the candidate functions of the q-th SODE component, we can find a 
sparse estimate �̂ by minimizing a data fidelity plus a sparsity term:

where 𝜆 > 0 is the sparsity amount. We learning of � in Fig.  1 with a two-dimensional 
SODE. We present Algorithm.1 to solve Equation (2) when the loss is quadratic and when 
R is convex or nonconvex with a specific property in Sect. 3.

(2)�̂ ∶= arg min
�∈ℝm×p

{
�(Ẋn,�Xn

�) + 𝜆R(�)
}
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In Brunton et al. (2016); Rudy et al. (2019); Schaeffer (2017) Equation (2) is instanti-
ated with R ∶= R

𝓁1,1
= ‖ ⋅ ‖1,1 i.e.  �̂ is a sparse estimate of the following problem:

which is a special case of Equation  (2) with 𝓁(⋅, ⋅) being the quadratic loss. Since 
� =

[
�∙1,⋯ , �∙p

]
 , and R

�1,1
 acts independently on each entry of � , solving Equation  (3) 

reduces to p independent LASSO (Tishbirani, 1996) subproblems where each estimates �∙k 
from 

(
ẋ∙k, x∙k

)
 , for k = 1… p , with the �1 penalty. Hence, the SODE is discovered using a 

single-task learning approach.

2.2  Background and limitations of sparse convex single‑task regularizers

In Schaeffer (2017), the authors formalized the discovery of nonlinear dynamics using par-
tial differential equations, thus their dictionary is built differently from our �Xn

 . The learn-
ing criterion used by the author is formalized similarly as in Equation (3) for an SODE. 
Since Equation  (3) is convex in � , it can be solved by the Douglas-Rachford algorithm 
(Combettes & Pesquet, 2011) which is a proximal-type algorithm (Parikh & Boyd, 2013). 
Proximal operators are at the core of sparse learning, hence our proposal. In our context, 
we use these operators to solve Equation  (2) (see Algorithm.1 in Sect. 3). We recall the 
general definition.

Definition 2.1 (proximal operator (Parikh & Boyd, 2013)) The proximal operator associ-
ated with a closed, proper and convex function in a Hilbert space, h ∶ H → ℝ , is defined 
for any y ∈ H , with 𝜆 > 0 as:

Remark 2.2.1 Here H reduces either to ℝp or ℝn×p . If h is strongly convex, the minimizer in 
H is unique and prox�h(u) is single-valued (Parikh & Boyd, 2013). If h is not convex (but 
remains closed and proper), the proximal operator is still defined well. In this case, since 
the minimizer set may not reduce to a singleton, the proximal operator can be multivalued.

When h is also separable, that is for any vector or matrix W , h(W) =
∑

i,j hij(wij) with 
hij ∶ ℝ → ℝ , computing prox�h(W) reduces to compute the proximal operator of hij for 
every i, j and then to concatenate 

{
prox�hij (wij)

}
i≤n,j≤p

 according to the dimensions of W . In 
the case of a separable (i.e. single-task) vector or matrix regularize, evaluating the proxi-
mal operator for a given element is equivalent to evaluating the proximal operator for each 
of the separable parts. As the �1,1 norm is separable, with hij(wij) = |wij| , we have 
prox�|⋅|(wij) = sign (wij)max (0, |wij| − �) , which is known as the soft-thresholding opera-
tor (Tishbirani, 1996).

2.2.1  Single‑task limitation of a separable regularizer

The proximal operator of R
�1,1

 serves as a shrinkage operator, assigning zero to coefficients 
in � that do not sufficiently decrease the data fidelity. However, R

�1,1
 is separable and hence 

does not account for any matrix structure. Indeed, we can permute any element within the 

(3)�̂ = arg min
�∈ℝm×p

�1
2
‖Ẋn −�Xn

�‖2
2,2

+ 𝜆‖�‖1,1
�

prox�h(y) ∶= argmin
u∈H

�1
2
‖y − u‖2

H
+ �h(u)

�
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coefficient matrix � for the purposes of learning, and the resulting R
�1,1

 remains unchanged. 
Therefore, for MTL, separability across tasks is not desirable. Consequently, the regular-
izer acts as if � were a vector in ℝmp . More generally, if a vector structure is considered for 
� using a fully separable norm regularizer rather than a matrix-structured regularizer, then 
the task relatedness i.e. correlations between columns 

[
�∙1,⋯ , �∙p

]
 is omitted.

2.2.2  The bias induced by a convex regularizer

Definition 2.2 Let 𝛽 be an estimate of the ground-truth coefficient � , the bias is the expectation 
over the distribution of 𝛽 of the estimation error thus defined as bias(𝛽) = �(|𝛽 − 𝛽|).1

Using triangle inequality, one can show that a regularizer inducing a norm in ℝm×p is 
convex and thus induces a bias toward zero in the learned coefficients [(Boyd & Vanden-
berghe, 2004), p. 73], which in our context degrades the SODE identification.

Example 2.2.1 Let us consider the proximal operator of the �1,1 norm. An estimate of a true 
coefficient �ik is 𝛽n

ik
= prox𝜆|⋅|(ŵn

ik
) = sign (ŵn

ik
)max(0, |ŵn

ik
| − 𝜆) , where ŵn

ik
 is an unregu-

larized estimate of �ik (i.e. preceding the proximal step, see Algorithm.1) from n samples. 
Hence as n → ∞:

• for |�ik| ∈ [0;�] , bias(𝛽n
ik
) → 𝛽ik,

• for |�ik| ∈]�;∞] , bias(𝛽n
ik
) → 𝜆.

Consequently, if the i-th candidate function is relevant to the k-th equation of the SODE, 
the estimate 𝛽n

ik
 is necessarily biased. In Fig. 2 (right), it is clear that the soft-thresholding 

operator never reaches the identity function and, therefore, always returns a bias estimate 
of �ik . Correcting the bias with � is equivalent to applying the hard-thresholding operator 
(Donoho & Johnstone, 1994), which is the proximal operator of the �0 penalty (the nonzero 
indicator), and thus is unbiased, but makes the objective function of Equation (2) NP-hard 
since instantiating R(� ik) ∶= I(�ik ≠ 0) makes the objective function discontinuous.

2.3  A nonconvex separable regularizer

Here we introduce the single-task version of a nonconvex regularizer: the smoothly clipped 
sbsolute deviation (SCAD) (Fan & Li, 2001) which induces unbiasedness for large coef-
ficients and serves as a building block for our proposed regularizer that we introduce in 
Sect. 3.

Definition 2.3 Let 𝜆 > 0 and 𝜃 > 2 be hyperparameters that operate as the level of sparsity 
and unbiasedness, respectively; the SCAD is defined for w ∈ ℝ as:

1 This is not the conventional definition of estimation bias, which is �(𝛽) − 𝛽 , but note that from Jensen 
inequality, our definition is an upper bound of the latter quantity.
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Remark 2.3.1 rSCAD
�,�

 is semiconcave (i.e. concave with respect to |w|).
• For |w| ≤ � , the SCAD penalty behaves as �1.
• For 𝜆 < |w| ≤ 𝜃𝜆 , the SCAD interpolates quadratically between �1 and �0 and the tran-

sition between them is controlled by �.
• For |w| > 𝜃𝜆 , the penalty level is constant, thus the SCAD behaves as �0.

SCAD is illustrated in Fig. 2 (left).

Remark 2.3.2 lim�→∞ rSCAD
�,�

(w) = �|w| , thus the SCAD induces �1 sparsity as the upper 
limit with respect to �.

Remark 2.3.3 lim�→2,|w|≤2� rSCAD�,�
(w) = �|w| and lim𝜃→2,|w|>2𝜆 rSCAD𝜆,𝜃

(w) = 𝜆I(w ≠ 0) , thus 
the SCAD induces �1 sparsity for small |w| and �0 sparsity (unbiased but discontinuous) for 
large |w| , as the lower limit with respect to �.

For any w ∈ ℝ , proxrSCAD
�,�

(w) is known analytically (Fan & Li, 2001) (see the Appendix 
2) and, as plotted in Fig. 2 (right), since it reaches the identity line, induces less bias than 
prox�|⋅|(w) for large coefficients, i.e. as |w| > 2𝜆.

(4)rSCAD
𝜆,𝜃

(w) =

⎧
⎪⎨⎪⎩

𝜆�w� if �w� ≤ 𝜆

−
𝜆2−2𝜃𝜆�w�+w2

2(𝜃−1)
if 𝜆 < �w� ≤ 𝜃𝜆

(𝜃+1)𝜆2

2
if �w� > 𝜃𝜆

Fig. 2  Left: The (convex) LASSO ( R
�1,1

 , blue) and (nonconvex) SCAD ( RSCAD
�,�

 , red) regularizers, with 
� = 1, � = 2.01 . Right: Their associated proximal operator as a function of a coefficient �ij . In the right plot, 
we can see hat the soft-thresholding operator prox�R

�1,1

(�ij) (blue) induces a bias since it thresholds �ij 
toward zero and away from the identity (gray dotted lines), which represents the best unbiasedness for a true 
nonzero coefficient. In contrast, proxrSCAD

�,�
(�ij) (red), continuously reaches the identity as |�ij| increases, 

meaning that SCAD induces less bias than the LASSO, as a true coefficient is high (Color figure online)
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The matrix-extended version of the SCAD (4) is RSCAD
�,�

(W) =
∑

i

∑
j r

SCAD
�,�

(wij) , which is 
also separable. Hence, proxRSCAD

�,�
(W) is the concatenation of 

{
proxrSCAD

�,�
(wij)

}
i≤n,j≤p

 along the 

dimensions of W . However, as a separable regularizer cannot account for task relatedness, 
the only benefit of learning with RSCAD

�,�
 over R

�1,1
 is unbiasedness. Indeed, the two sum-

mands in RSCAD
�,�

 act similarly at the row and column levels of � , and therefore, do not 
resolve the shortcomings mentioned in Sect. 2.1.

2.4  Building block for MTL in linear regressions

MTL consists of learning p functions 
[
f1,⋯ , fp

]
 jointly by assuming that they share a com-

mon set of features (Argyriou et al., 2008). For the k-th task, a dataset {yik;zik}i≤nk of nk 
samples with m features is given. Therefore, the p regression coefficient vectors can be 
represented in a matrix � ∈ ℝ

m×p . The task similarity is reflected in the learning criterion 
by a regularizer R applied to this matrix. For p linear regressions, MTL is formulated as:

where R may account for task relatedness. Equation (5) is a special case of Equation (2) and 
can be solved with Algorithm.1. Note that when nk = n and R = R

�1,1
 , Equation (5) reduces 

to Equation (3). Thus, by choosing a regularizer that is more appropriate than the �1,1 norm 
for considering task relatedness, discovering an SODE can be formulated as MTL.

2.4.1  Considering task relatedness

To account for task relatedness, the regularizer has to be matrix-structured, for instance, 
solving Equation (5) with R

�2,1
(�) ∶= ‖�‖2,1 = ∑m

i
‖� i∙‖2 (i.e. group-lasso (Yuan & Lin, 

2006)), makes � row-sparse i.e. some rows are identically nonzero and all the others are 
null (Obozinski et  al., 2010), due to the nonseparability with respect to � i∙ and sparsity 
with respect to �∙j . To discover an SODE, R

�2,1
 forces all the equations to share the same 

candidate functions of �Xn
 . The proximal operator associated with R

�2,1
 is given in the 

Appendix 2.

2.4.2  Considering task‑specific elements

Although an SODE shares some candidate functions across its equations, it is sufficiently 
flexible to allow specific candidate functions for each equation. This can be achieved by 
taking a convex combination of two norms i.e.  R

�2,1+�1,1,�
(�) ∶= �‖�‖2,1 + (1 − �)‖�‖1,1 

with � ∈ [0, 1] (Simon et  al., 2013). For 𝛼 > 0.5 , a greater level of importance is given 
to commonality in candidate functions across equations compared to specificity, and con-
versely, for 𝛼 < 0.5 . In practice, � is chosen by cross validation. The proximal operator 
associated with R

�2,1+�1,1,�
 is given in Appendix 2. For the sake of clarity, we omit the index 

� in the notation and write R
�2,1+�1,1

.

(5)�̂ = arg min
�∶=[�∙1,⋯,�∙p]

{ p∑
k=1

nk∑
i=1

1

2nk
(zik − yT

ik
�∙k)

2 + 𝜆R(�)
}
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2.4.3  Limitations of sparse convex MTL regularizers

Despite being able to select relevant candidate functions, the convexity of R
�2,1

 and R
�2,1+�1,1

 
induces a bias, similarly to R

�1,1
 , in �̂ through their associated proximal operator (Simon 

et al., 2013).
In Sects. 2.1 and  2.4, task relatedness and nonconvexity are shown as being two important 

weaknesses that cannot be addressed by the �1,1 regularizer. Our contribution harnesses both 
the nonconvexity and the task relatedness within a single regularizer to improve the discovery 
of an SODE.

3  A nonconvex matrix‑structured regularizer

In this section, we introduce our proposal, a regularizer, which jointly accounts for task relat-
edness, sparsity and unbiasedness. Then we introduce a generative, iterative, thresholding 
learning algorithm (Gong et al., 2013) that can be instantiated with all the regularizers pre-
sented in this paper.

3.1  A nonconvex nonseparable regularizer

We propose to “un-separate” RSCAD
�,�

 to unharness both from the nonseparability and the non-
convexity of the SCAD. The key technique is to replace the second summation in RSCAD

�,�
 by 

rSCAD
�,�

(‖wi∙‖1):

In this way, as the regularizer acts on the coefficient vector of the i-th candidate function 
using the SCAD of the �1 norm, RSCAD−�1

�,�
 forces wi∙ to be sparse, unbiased and correlated 

across the p tasks. Another way of understanding the rationale behind our proposal is to 
see the hierarchical sparsity. The first level (the “highest”) is the task-level: we enforce 
the set of nonzero coefficients to be the same across each task. Such a sparsity level is 
somehow a group sparsity and enforces the learning to be multitask. The second level (the 
“lowest”) is the component level: for a given task, we allow some (small) coefficients to be 
both nonzero and specific to each task. It is important to note the analytical similarity with 
R
�2,1

=
∑m

i=1
‖wi∙‖2 (Sect. 2.4), which does not allow each equation of the SODE to have 

a specific candidate function. Contrary to R
�2,1

 , our proposal jointly enforces unbiasedness 
and sparsity in each wi∙ , and thereby enables the equations of the SODE to have specific 
candidate functions.

Despite RSCAD−�1 being nonconvex, it is closed and proper by construction. Thus the image 
of the proximal operator of our regularizer is nonempty and we can compute it analytically as 
follows: for any W ∈ ℝ

m×p , 𝜆 > 0 , 𝜃 > 2 and (i, q) ∈
{
1,… ,m

}
×
{
1,… , p

}
 , let w̃iq be the 

element of the i-th row and q-th column of the matrix W̃ returned by the proximal operator,

(6)R
SCAD−�1

�,�
(W) ∶=

m�
i=1

rSCAD
�,�

�‖wi∙‖1
�
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with B1
i
∶= 2� − ‖wi∙,−q‖1 , B2

i
∶= �� − ‖wi∙,−q‖1 and wi∙,−q denotes all the elements except 

the q-th of the vector wi∙ . Knowing this proximal operator is a computational benefit in 
solving Equation (2). We give a proof detailing the computational steps to obtain the above 
closed form in the Appendix 1.

Remark 3.1.1 In the first part, ( ≤ B1
i
 ), prox

R
SCAD−𝓁1
�,�

(⋅) equals proxR
𝓁1,1

(⋅) (soft-thresholding 

operator). In the second part, prox
R
SCAD−𝓁1
�,�

(⋅) acts as a (group) soft-thresholding operator but 
with a rate �−1

�−2
 which is greater than 1, thus outputs unbiased coefficient vectors. In the 

third part, prox
R
SCAD−𝓁1
�,�

(⋅) acts as a (group) hard-thresholding operator, returning w̃i∙ 
identically.

Remark 3.1.2 Since B1
i
 and B2

i
 are only row dependent, each row of prox

R
SCAD−�1
�,�

(W) can be 
computed in parallel.

3.2  MTL with a nonconvex regularizer

We instantiate the general iterative shrinkage thresholding algorithm (GISTA) (Gong et al., 
2013) in Algorithm 1 to perform learning. The GISTA can be instantiated with regularizers 
either convex, or nonconvex and expressed as a difference of two convex (DC) functions, 
see (Gasso et al., 2009; Rakotomamonjy et al., 2016; Le Thi et al., 2021) for examples of 
such regularizers. It generalizes FISTA (Beck & Teboulle, 2009) whose convergence is 
guaranteed when minimizing quadratic plus convex regularizers functions. Despite the 
nonconvexity of DC functions, convergence guarantees to a stationary point in finite time 

(7)

w̃iq

∶=

⎧⎪⎨⎪⎩

sign (wiq)max(0, �wiq� − 𝜆) if �wiq� ≤ B1
i
,

𝜃 − 1

𝜃 − 2
sign (wiq)max(0, �wiq� − 𝜃𝜆

𝜃 − 1
) if B1

i
< �wiq� ≤ B2

i
,

wiq if �wiq� > B2
i
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of the GISTA are established in Gong et al. (2013). RSCAD−�1 and RSCAD enjoy the DC prop-
erty, thus we can use the GISTA to learn with any regularizers presented in this paper. 
Convergence is not ensured for other nonconvex penalties, such as the group bridge penalty 
R
�q,r

(0 < q, r < 1) , since their associated proximal operator does not give rise to a closed-
form expression. Hence, to compute the proximal operator the bridge penalty in Algo-
rithm 1, an inner nonconvex optimization procedure is necessary and is likely to affect the 
convergence of GISTA.

GISTA consists of two nested loops. The outer loop (lines 4–12) consists of a loss gradi-
ent descent step (line 9) followed by a proximal step (line 10) that set to zero the coeffi-
cients that insignificantly decrease the loss term. The inner loop (lines 5–8) consists of the 
backtracking line search to compute the gradient step size � , that given the current descent 
direction, ensures a sufficient decrease (Boyd & Vandenberghe, 2004). The value 
0.8 (line 7) is typical and corresponds to the ’slow-rate’ parameter (Boyd & Vandenberghe, 
2004). To limit the cost of one iteration, we precomputed �T

Xn
�Xn

 and �T
Xn
Ẋn (line 2). A 

detailed complexity analysis of proximal gradient algorithms, such as GISTA, is given in 
Beck (2017).

4  Numerical experiments

4.1  Experimental setting

4.1.1  Synthetic datasets generated from known SODEs

We evaluated our approach on three SODEs (i.e. ground-truth) known from the literature 
(Schaeffer & McCalla, 2017; Brunton et al., 2016; Mangan et al., 2017): the damped oscil-
lator with cubic dynamic (DOC) used to model the nonlinear pendulum in mechanics, the 
Lotka-Volterra (LV) system used as prey-predator interaction model and the Lorenz attrac-
tor (LAT) used to model atmospheric turbulence. Each one of these SODEs has common 
functions as well as specific other functions across their equations.

We base our experiments on those in Schaeffer and McCalla (2017).
Simulation of the state variables
We generated the state variables, x1,… , xp , along time (i.e. multivariate time series) 

by numerically solving the true SODEs with an implicit backward differentiation formula 
method of order five, implemented in the Scipy library (Oliphant et  al., 2001). For each 
SODE, the resulting time series has n = 5 × 103 time steps.

In a real life scenario the data are noisy so we added white noise to the clean time series. 
We experimented with Gaussian noise, by varying the variance level in terms of logarith-
mic signal-to-noise ratio (log-SNR). The log-SNR is defined as:

where �2
ground−truth,k

 is the variance in the k-th state variable (without noise) and �2
noise

 is 
the variance in the noise. This enables a comparison of the results across synthetic data-
sets with an equal amount of noise w.r.t the variance in the ground-truth. The lower the 
log-SNR, the higher the noise variance. In our experiments, for each SODE we fixed the 

(8)log-SNR ∶= 10 log10
�∑p

j=1
�2
ground−truth,k

�2
noise

�
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log-SNR to {20, 30, 40, 50} and then deducted �2
noise

 . Samples of the clean and noisy time 
series (for a log-SNR equal to 30) are plotted in Fig. 3 for each SODE. Since the noise may 
contain outliers in real life, we also experimented with a Student-t noise with five degrees 
of freedom (maximum kurtosis) i.e. the tail distribution is the heaviest.

Building the dictionary
The dictionary of candidate functions was built sufficiently large, involving both mono-

mial and interaction terms ( x1x2, x21x2 ) that can span polynomials up to degree three. It was 
computed from the noisy time series, hence the regression covariates were also corrupted.

Fig. 3  Left: the ground-truth SODEs used in our experiments. Center: the numerical solution (black), i.e. 
the state variables x1,… , xp plotted w.r.t time. The training data (blue) corresponds to a noisy version (in 
these plots the noise is Gaussian) of the numerical solution. Right: same data as in the center plotted as one 
state variable w.r.t the other(s) to visualize their correlation (Color figure online)
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Estimation of the derivative
We experimented with three methods to estimate the time derivative of the state varia-

bles from the noisy time series: the finite-difference (FD) method, the spectral (SP) method 
and the B-spline (BSP) method.

The FD method is the most basic derivative estimation method as it consists approxi-
mating the derivative pointwisely as follows ẏ(tj) =

y(tj+1)−y(tj−1)

2
 . It is computationally inex-

pensive but sensitive to noise [(Ramsay & Hooker, 2017), ch. 5].
The SP method relies on the following property: let Fy(f ) be the Fourier transform (FT) 

of the differentiable function y at frequency f ∈ ℝ , then F dy

dt

(f ) = 2�ifFy(f ) . In other 
words, the derivative can be estimated by taking the inverse FT of the original time series 
multiplied by a linear factor. Thus, by using this property, it benefits from the low compu-
tational cost of the inverse Fast FT algorithm (Cooley & Tukey, 1965) for estimating the 
derivative from the raw data. Since noise measurement resides in high frequencies, the FT 
spectrum is low-pass filtered before computing its inverse transform. We experimented 
three filter sizes.

The BSP method, widely used in functional data analysis (Ramsay & Silverman, 2006), 
consists of two steps. First, approximate the time series with a weighted linear combination 
of BSPs i.e. piecewise polynomial functions, usually of degree three or four. The weights 
are computed by minimizing standard least-square criteria as the data fidelity term. To bal-
ance between smoothness and data fitting error, the minimization is stopped when the error 
reaches a fixed amount s (the higher, the smoother the approximation). We experimented 
with six values of s ∈ {5, 10, 50, 100, 500, 1000, 5000} . Second, knowing the analytical 
form of each BSP, the derivative is computed from the approximated function as a lin-
ear combination of the BSPs’ derivative. See [(Ramsay & Silverman, 2006), ch. 4,5] and 
Lejeune et al. (2020) for a detailed explanation of penalized curve smoothing and an appli-
cation to outlier detection in functional data analysis, respectively.

4.1.2  Real data

As an example of a real-world application, we applied our approach to discover the dynam-
ics of a laboratory-based ecological phenomenon whose SODE is unknown (Becks et al., 
2010). In this system, algae of genus Chlorella is grown in a large glass test tube (chemo-
stat) to which a nutrient-rich medium is continuously added, and from which the contents 
are removed (including the algae) at a constant rate. The growth of the algae population 
is limited by nutrition in the ecology and by predation by the rotifer, Brachionus, a genus 
of microscopic animals. The rotifers reproduce according to how much algae they con-
sume, and die either from natural causes or when they are removed from the tank. Hence, 
there might be a predator–prey dynamic between these two quantities (Ramsay & Hooker, 
2017). The goal is to discover the SODE that governs the dynamics underlying the growth 
rate of the algae and the rotifers.

The dataset (abbreviated Chemostat data) consists of a bivariate time series with 108 
daily time steps. The first state variable, x1 , is the Chlorella concentration, and the sec-
ond state variable, x2 , is the Brachionus concentration. As recommended in the analysis of 
Ramsay and Hooker (2017), we preprocessed the time series by approximating them with 
103 cubic BSP (using the R packages FDA (Ramsay et al., 2020)). Then we reconstructed 
the time series by evaluating the approximation function on a regular grid of 5 × 103 time 
steps in the interval [7; 114]. The resulting reconstruction can be considered nonnoisy, so 



1537Machine Learning (2023) 112:1523–1549 

1 3

we estimate the derivative with the FD method. We built the dictionary with monomial 
functions up to degree five, with first, second and third order interactions x1x2, x21x2, x

3
1
x2.

4.2  Setting for the GISTA

We followed the settings of the original GISTA paper (Gong et al., 2013). We initialized 
the algorithm with �0 = 0 and set the step size � = 2 . We stopped the outer loop (lines 4-11 
Algorithm.1) when the iteration number exceeded 103 . We stopped the inner loop when the 
objective function of Equation (2) was below its quadratic approximation or the number of 
inner iterations exceeds 10. The hyperparameters � , � (for RSCAD−�1

�,�
 and RSCAD

�,�
 ) and � (for 

R
�2,1+�1

 ) were selected with a time based five fold cross validation: each training/testing 
fold consists in successive samples of the state-variables (for a given fold, the last training 
sample “immediatly preceeds” the first testing sample). The training folds are of increas-
ing size (25%, 40%, 55%, 70% and 85% of the whole dataset) and, the testing folds do not 
overlap and have a fixed size (15% of the whole dataset). Moreover, this strategy enables to 
asses the effect of the number of training time steps on the SODE recovery.

4.3  Comparison with baselines

We compare our proposal RSCAD−�1

�,�
 to four baselines R

�1,1
 , R

�2,1
 , R

�2,1+�1,1
 and RSCAD

�,�
 . To 

fairly compare the effects of the baseline regularizers on the learned SODEs, all were 
instantiated them within GISTA.

We compared the learned SODEs with three metrics: 𝜖𝛽 =
‖�̂−�∗‖2

2,2

‖�∗‖2
2,2

 , 𝜖T =

∑n

i=1
‖x̂(ti)−x∗(ti)‖22∑n

i=1
‖x∗(ti)‖22

2 and 𝜖MIS =

∑
i,j I(𝛽ij≠𝛽

∗
ij
)

∑
i,j I(𝛽

∗
ij
≠0)

.

�� measures the relative bias w.r.t the ground-truth coefficient matrix �∗ . �T measures the 
relative squared error, along t, of the numerical solution for the learned SODE w.r.t to the 
numerical solution of the ground-truth SODE. �MIS measures the rate of misidentified can-
didate functions. The lower �� , �T and �MIS are, the better the recovery of the SODE. Since 
the SODE is unknown for the Chemostat, note that only �T , wherein x∗ refers to the learn-
ing data (preprocessed), can be computed.

4.4  Implementation

The GISTA was implemented in the Python library Lightning (Blondel & Pedregosa, 
2016) which is a Scikit-LeARn compatible interface for linear regression and classification. 
The experiments were run in parallel on a cluster equiped with 24 Intel Xeon-Gold-6136 
3GHz processors, each one holding 192Go RAM. The whole process, i.e. building the dic-
tionary, derivative estimation, hyperparametrs selection and earned SODE simulation, is 
implemented within the Python API pySinDy (Kaptanoglu et al., 2022).3

2 x̂(ti) is the solution to the learned SODE at ti and x∗(ti) is the solution to the ground-truth SODE at ti.
3 The code is accessible from https:// github. com/ Clej/ Unbia sed- SODE- disco very.

https://github.com/Clej/Unbiased-SODE-discovery
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4.5  Results

4.5.1  Synthetic datasets

For each of these SODEs, we repeated the experiment five times. In Figs. 4, 5 and 6 we 
report the average and standard deviations of �� , �T and �MIS . We see that for all the experi-
ments the bias is reduced with RSCAD and our proposal RSCAD−�1 (see purple curves and ver-
tical bars for �� ). (given in the supplementary material as it results in many figures)

Effect of the derivative estimation methods
As can be seen in Figs.  4,  5 and 6, the variations in the three error metrics are high 

when the derivative is estimated with the FD method. That (unsurprisingly) tells us that 
this method is highly sensitive to noise. The SP method gives the worst results, which we 
explain with the non-stationarity of the time series resulting from the SODE. Indeed, only 
a part of the signal is seen during the time based cross validation, thus the Fourier spec-
trum of the training part might be a poor estimate of the whole ground-truth. The filter size 
selection is noise sensitive, and consequently, in the Fourier sepctrum, some ground-truth 

Fig. 4  Results (average over five 
trials in percentage, standard 
deviation was computed and 
lower than 10−4 hence invisible in 
the plots) of the learning errors 
of the DOC SODE with four 
baseline regularizers and our pro-
posal RSCAD−�1 . Each subfigure 
title (’FD’, ’spectral’ or ’spline’) 
indicates the name of the deriva-
tive estimation method used. a 
Training data are contaminated 
by a Gaussian noise whose vari-
ance level is varied according to 
the log-SNR between 20 (high 
noise level) and 50 (low noise 
level), or by b a Student-t noise 
that results in a log-SNR ≈ 40 . 
�� measures unbiasedness of the 
SODE coefficients. �MIS measures 
the misidentification error of the 
learned SODE. �T measures the 
error of the numerical solution 
of the learned SODE w.r.t the 
clean ground-truth (Color figure 
online)
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frequencies which are close to the noise frequencies might be abnormally removed, result-
ing in a poor derivative estimate. Therefore, the SP method is unreliable for derivative esti-
mation used with (nonstationary) time based cross validation. When using BSP instead, 
the errors are quite stable against noise. This makes it a good candidate for inferring the 
derivative when the practitioner does not have prior knowledge about the noise measure-
ment level.

Effect of the noise level and type
We observe that for low log-SNR values, learning with RSCAD−�1 in conjunction with 

the FD method is similar to learning with the baseline regularizers. The same observa-
tion holds when using the BSP method. However, as the log-SNR increases (i.e. the noise 
level decreases), the error decays are the highest with RSCAD−�1 whereas the decay is lower 
(or remains constant) with the convex regularizers. Also, note that with the BSP method, 
learning with convex regularizers increases �MIS w.r.t the log-SNR whereas with the non-
convex RSCAD and RSCAD−�1 , it remains constant. Overall the Gaussian noise experiments 
suggest that with both the FD and BSP methods, and for moderate log-SNR levels ≥ 30 , 
(that means when dealing with high-quality samples of the state variables), the SODEs are 

Fig. 5  Results of the learning 
errors of the LV SODE. Detailed 
comments in Fig. 4 (Color figure 
online)
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best recovered with our proposal. The experiments with the Student-t noise partially con-
firm our observations made about the effect of the derivative estimation method. Since for 
the convex regularizers and RSCAD , the errors are quite variable across the three SODEs, the 
FD method is not robust against noise (here heavy-tailed). Indeed, the errors are low with 
the LV SODE (see the first row of Fig. 5 ) and high with the DOC and LAT SODEs. Note 
however that, RSCAD−�1 is more robust than the baselines against the Student-t noise. The 
three errors are almost the highest with the SP method for the three SODEs, hence we con-
firmed that it is not suited to derivative estimation for SODE discovery. When the SODE 
is learned with the nonconvex regularizers, the BSP method gives much better results than 
both the FD and SP methods. Overall, the Student-t noise experiments suggest that the 
SODEs are better recovered with nonconvex regularizers.

Effect of the multitask consideration
We now compare the results of the multitask based regularizers ( R

�2,1
 , R

�2,1+�1,1
 , 

RSCAD−�1 ) w.r.t the single-task-based ones ( R
�1,1

 , RSCAD ). First, we analyze the results of 
DOC experiments, in which the SODE has the same terms across across its equations 
(see (a) Fig.  3). Hence, among the baselines, since R

�2,1
 enforces the equations to share 

Fig. 6  Results of the learn-
ing errors of the LAT SODE 
with five baseline regularizers. 
Detailed comments in Fig. 4 
(Color figure online)
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the same terms, it should better recover the ground-truth SODE than the single-task-based 
ones. This is confirmed by our results since the single-task-based regularizers (blue and 
red in Fig. 4) are outperformed by R

�2,1
 and RSCAD−�1 (orange and purples curves). We note 

however that the decay of �T with R
�2,1

 is similar to RSCAD−�1 , and the latter gives lower 
errors. Similarly, we analyze the results of the LV experiments, in which the SODE (see 
(b) Fig. 3) has one common and one specific term across its two equations. In this con-
text, we expect R

�2,1+�1,1
 to recover the ground-truth SODE well. This is partly confirmed 

by our results, we see that R
�2,1+�1,1

 performs similarly to R
�1,1

 , but both are outperformed 
by RSCAD−�1 (blue and green in Fig. 5). The decays of �T are also similar and RSCAD−�1 is 
slightly better. Finally and equivalently, we analyze the results of the LAT experiments in 
which the SODE has approximately the same number of shared and specific terms (see (c) 
Fig. 3). For this kind of SODE, we again expect R

�2,1+�1,1
 to perform best. This is clearly not 

the case as both RSCAD and RSCAD−�1 behave similarly (red and purple in Fig. 6), the former 
being slightly better. As for the LV SODE, R

�2,1+�1,1
 and RSCAD−�1 show similar results and 

Fig. 7  Test errors of the five 
cross validation folds for the 
three synthetic SODEs. Remind 
that the size of the training set 
increases along the folds but the 
size of the test set is fixed. Same 
legend as in Fig. 4

Fig. 8  Test errors of the five 
cross validation folds for the LV 
SODEs



1542 Machine Learning (2023) 112:1523–1549

1 3

R
�2,1

 gives the worst results. Overall, we see that task relatedness is an important feature 
in SODE discovery and that our proposal improves it. Although R

�2,1+�1,1
 was designed to 

trade off between task relatedness and task specificity, the balance is driven by a hyperpa-
rameter whose selection is sensitive. Contrarily, by construction, our proposal is shown by 
our experiments to be adaptive to the balance between task relatedness and task specificity.

Effect of the number of training time steps
We remind that in time based cross validation, each training/testing fold consists 

in successive samples of the observed time series, the training folds are of increasing 
size and the size of the testing folds is fixed. Hence, the number of training time steps 
increases w.r.t the fold index. The testing folds do not overlap but the training ones do. 
Consequently, as mentioned in Sect. 4.2, time based cross validation enables to assess 
the relationship between the recovery errors and the number of training time steps. We 
assess this effect on the three synthetics SODEs with a log-SNR value of 30. For that, 
we train the models (one for each regularizer) on each (training) fold and then we com-
pute the three errors metrics on the associated testing folds. We report the results on 
Figs. 7, 8, 9. From these figures, we confirm that as the fold number index increases, the 
errors decrease or remain stationary, with an exception for the spectral derivative esti-
mator. We note that the highest error decays occur with RSCAD−�1 and RSCAD . The convex 
baselines are similar.

Fig. 9  Test errors of the five 
cross validation folds for the 
LAT SODEs

Table 2  Mean rank of each 
regularizer w.r.t the three error 
metrics

First  row, in parenthesis, is the critical distance, see (Demsar, 2006) 
for details. Bold refers to the best rank

Regularizer �� (0.40) �
MIS

(0.40) �
T
(0.40)

R
�1,1

3.66 3.33 3.26
R
�2,1

3.35 4.04 3.02
R
�2,1+�1,1

3.46 3.31 3.51
RSCAD 2.33 2.41 2.75
RSCAD−�1 2.17 2.10 2.54
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Statistical assesment of the experimental results 
We assess the relevance of our conclusion with a two step statistical hypothesis test. 

We apply the method of Demsar (2006). The first step aims to confirm that not all the 
regularizers are similar, i.e. at least one is different w.r.t the other ones. This step is 
accomplished with the non-parametric Friedman test. If the latter concludes that at leat 
one regularizer is different from the others, then in the second step all the regularizers 
are compared pairwisely through their mean rank: if the difference between two average 
ranks is greater than what is called a “critical distance” statistic, the two regularizers 
are said to be different. The second step is done with the Nemenyi post-hoc test. See 

Fig. 10  a Training/test data and numerical solution the SODEs learned with the four baseline regularizers 
and our proposal from the Chemostat dataset. b Analytic form of the learned SODEs

Table 3  �
T
 for the Chemostat 

SODE learned with the four 
baseline regularizers and our 
proposal RSCAD−�

1

Bold values indicates the lowest error

Regularizer �
T

R
�1,1

35.0
R
�2,1

30.0
R
�2,1+�1,1

30.0
RSCAD 20.0
RSCAD−�1 4.6
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(Demsar, 2006) for more details. For any hypothesis tests, we set the p-value to 5%. 
We repeat the whole procedure for each one of the three error metrics on all the results 
(derivative estimator, log-SNR value, etc). The null hypothesis of the Friedman test is 
rejected with probability of error 10−40 for �� , 10−86 for �MIS and 10−14 for �T , thus there is 
a difference between the regularizers. We report the mean ranks in Table 2. It confirms 
our empirical comparisons made in the previous paragraphs.

4.5.2  Chemostat dataset

We show the numerical solution, as well as the analytic form, of the SODEs learned for 
each regularizer in Fig. 10a, b respectively. As for the synthetic datasets, the results show 
that learning with RSCAD−�1 improves the recovery performance (smallest �T in Table  3) 
compared to RSCAD and the convex baselines.

We interpret the dynamics of the underlying biological phenomenon by examining the 
closed-form SODE discovered with RSCAD−�1 (Fig. 10b last column). Based on the analysis 
carried out in Ramsay and Hooker (2017) and noting the strong similarity with the LV 
model (i.e. only linear and same first-order interaction terms in the two equations), we can 
interpret the discovered SODE as a predator–prey model as follows: within both equations, 
we observe the presence of a first-order interaction term x1x2 that models the rate (decreas-
ing or increasing depending on the coefficient sign) at which the Chlorella, x1 , and the 
Brachionus, x2 , meet in the chemostat. Note that among the five SODEs displayed, only 
RSCAD−�1 enabled the discovery of this interaction term in both equations, which empha-
sizes the importance of considering the SODE coupling using MTL. The linear terms in 
the two equations can be interpreted as the exponential reproduction of each ”species”. 
This exponential dynamic reproduction is limited by the species interaction and is only true 
for the experimental time frame.

5  Conclusion and future work

We recast the discovery of a closed-form SODE as an MTL problem. We proposed a pen-
alty that (i) accommodates the coupling within an SODE and (ii) provides unbiased coef-
ficients. The learning was conducted by instantiating GISTA (Gong et al., 2013). Numeri-
cal experiments on synthetic and real datasets confirmed that harnessing both MTL and 
nonconvexity outperforms learning with state-of-the-art MTL-based convex regularizers.

Scientific data analysts also face the case where an experiment has been repeated under 
various experimental designs and they have to deal with multiple datasets. In future work, 
we will address the joint discovery of SODEs from multiple multivariate time series. We 
also plan to extend our work to partial differential equations to discover dynamics from 
spatiotemporal data, and thereby understand both time and spatial dynamics.

Appendix 1

Proof of the results in Eq. 7 We detail the steps to obtain the closed form of the proximal 
operator of RSCAD−�1

 , defined for any W ∈ ℝ
m×p as:
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We first note that RSCAD−�1 is row-separable. We compute proxRSCAD
�,�

(⋅) according to the 
bounds � and �� . We denote the subdifferential of a function g at u ∈ ℝ

p as 
𝜕g(u) = {y, g(z) ≥ g(u) + y⊤(z − �), where z is in the domain of g} . By abuse of notation, 
the sign function is used equivalently for vectors and scalars.

For the first bound, the optimization problem is:

From the first-order optimality condition, we have the necessary conidition:

Which is separable in p scalar problems. For zj ≠ 0 , we have �‖z‖1 = sign z , thus we have:

Thus, on the first hand we have |xj| > 𝜆 and sign zj = sign xj and we also have:

Thus for zj ≠ 0 , the q-th component of the minimizer is z∗
q
= xq − � sign xq if 

𝜆 < �xq� ≤ 2𝜆 −
∑

j≠q �xj − 𝜆 sign xj� . For zj = 0 we have:

And then, putting it all together, for the first bound, the q-th component of the minimizer 
is:

For the second bound, we follow a very similar path and so we write it shorter. The optimi-
zation problem is:

Then, writting the optimality condition, we obtain for zj ≠ 0:

(9)R
SCAD−�1

𝜆,𝜃
(W) =

m�
i=1

rSCAD
𝜆,𝜃

�‖wi∙‖1
�
=

⎧
⎪⎨⎪⎩

𝜆‖wi∙‖1 if ‖wi∙‖1 ≤ 𝜆

−
𝜆2−2𝜃𝜆‖wi∙‖1+‖wi∙‖21

2(𝜃−1)
if 𝜆 < ‖wi∙‖1 ≤ 𝜃𝜆

(𝜃+1)𝜆2

2
if ‖wi∙‖1 > 𝜃𝜆

z∗ arg min
z∈ℝp

1

2
‖x − z‖2

2
+ �‖z‖1

0 ∈ ∇‖x − z‖2
2
+ ��‖z‖1

0 = zj − xj + � sign zj

⟺ zj = xj − � sign zj

‖z‖1 ≤ � ⟺ ‖x − � sign x‖1 ≤ �

⟺

�
j

�xj − � sign xj� = �xq − � sign xq� +
�
j≠q

+�xj − � sign xj� ≤ �

⟺ �xq� − � ≤ �xq − � sign xq� ≤ � −
�
j≠q

�xj − � sign xj�

⟺ �xq� ≤ 2� −
�
j≠q

�xj − � sign xj�

0 ∈ −xj + [−�, �] ⟺ |xj| ≤ �

(10)z∗
q
= sign xq max(|xq| − �, 0) if |xq| ≤ 2� −

∑
j≠q

|xj − � sign xj|

z∗ = arg min
z∈ℝp

1

2
‖x − z‖2

2
−

�2 − 2��‖z‖1 + ‖z‖2
1

2(� − 1)
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And so we have |zj| > 𝜆𝜃

𝜃−1
 and sign zj = sign xj , which, by again using the boundedness of 

z , 𝜆 < ‖z‖1 ≤ 𝜆𝜃 and separating the sum, lead to:

with Aq =
∑

j≠q �xj − � sign xj� . Finally, for the third bound, the result is trivial since the 
second term in the optimization problem is a constant, thus the minimizer is necessarily 
z∗
q
= xq . Now by gathering (10)(11) and the last term, we obtain the q-th component wq of 

the output of the proximal operator evaluated on, wi∙ , the i-th row of W:

  ◻

Appendix 2

For reproducibility, we give the formulaes of the proximal operators associated with the 
four baseline regularizers used in our experiments. W ∈ ℝ

n×p , wi∙ denotes the i-th row 
(vector) of W , 𝜆 > 0 and 𝜃 > 2.

2.1 LASSO

R
�1,1

(W) =
∑

i

∑
j �wij�

for any entry wij of W (Tishbirani, 1996).

2.2 Group‑LASSO

R
�2,1

(W) =
∑

i ‖wi∙‖2

for any row-vector wi∙ of W (Yuan & Lin, 2006).

zj =
� − 1

� − 2
xj −

��

� − 2
sign zj

(11)z∗
q
=

𝜃 − 1

𝜃 − 2
sign xq max(|xq| − 𝜆𝜃

𝜃 − 2
, 0) if 2𝜆 − Aq < |xq| ≤ 𝜆𝜃 − Aq

⎧⎪⎪⎨⎪⎪⎩

sign (wq)max(0, �wq� − 𝜆) if �wq� ≤ 2𝜆 − ‖wi∙,−q‖1,
𝜃 − 1

𝜃 − 2
sign (wq)max(0, �wq� − 𝜃

𝜃 − 1
𝜆)

if 2𝜆 − ‖wi∙,−q‖1 < �wq� ≤ 𝜃𝜆 − ‖wi∙,−q‖1,
wq if �wq� > 𝜃𝜆 − ‖wi∙,−q‖1,

prox�R
�1,1

(W)ij = sign (wij)max (0, |wij| − �)

prox�R
�2,1

(W)i∙ = wi∙

�
1 −

�

max(�, ‖wi∙‖2)
�
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2.3 Sparse‑Group‑LASSO

R
�2,1+�1,1

(W) = �
∑

i ‖wi∙‖2 + (1 − �)
∑

i

∑
j �wij�

for � ∈ [0, 1] and a row-vector wi∙ of W . It corresponds to applying the “outer” proximal 
operator of R

�1,1
 entrywisely on the vector output by the “inner” proximal operator of R

�2,1
 

(Simon et al., 2013).

2.4 SCAD

RSCAD
�,�

for any entry wij of W (Fan & Li, 2001).
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(W)i∙ = prox(1−�)�R
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(prox��R
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proxRSCAD
𝜆,𝜃

(wij) =

⎧
⎪⎨⎪⎩

sign (wij)max(0, �wij� − 𝜆) if �wij� ≤ 2𝜆

sign (wij)
𝜃−1

𝜃−2
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