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Abstract
Deep models trained by using clean data have achieved tremendous success in fine-grained 
image classification. Yet, they generally suffer from significant performance degradation 
when encountering noisy labels. Existing approaches to handle label noise, though proved 
to be effective for generic object recognition, usually fail on fine-grained data. The reason 
is that, on fine-grained data, the category difference is subtle and the training sample size 
is small. Then deep models could easily overfit the noisy labels. To improve the robustness 
of deep models on noisy data for fine-grained visual categorization, in this paper, we pro-
pose a novel learning framework named ProtoSimi. Our method employs an adaptive label 
correction strategy, ensuring effective learning on limited data. Specifically, our approach 
considers the criteria of exploring the effectiveness of both global class-prototype and 
part class-prototype similarities in identifying and correcting labels of samples. We evalu-
ate our method on three standard benchmarks of fine-grained recognition. Experimental 
results show that our method outperforms the existing label noisy methods by a large mar-
gin. In ablation studies, we also verify that our method is non-sensitive to hyper-parameters 
selection and can be integrated with other FGVC methods to increase the generalization 
performance.

Keywords  Label noise · Fine-grained visual categorization · Deep learning

Jialiang Shen, Yu Yao and Tongliang Liu have contributed equally to this work.

Editors: Yu-Feng Li, Prateek Jain.

 *	 Jialiang Shen 
	 jshe9143@uni.sydney.edu.au

 *	 Yu Yao 
	 yyao0814@uni.sydney.edu.au

 *	 Tongliang Liu 
	 tongliang.liu@sydney.edu.au

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7475-5770
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06313-0&domain=pdf


1904	 Machine Learning (2024) 113:1903–1920

1 3

1  Introduction

Fine-grained visual categorization (FGVC) aims at recognizing subordinate categories such 
as species of animals (Wah et al., 2011) and models of aircraft (Maji et al., 2013). Since the 
category difference is subtle, data labeling usually requires expert-level knowledge, with-
out which, labeling error easily appears. Although existing deep ConvNets have made great 
improvements of performance in FGVC, this success is limited to cases of training with 
clean data. when training data contain label noise, these models can have poor generaliza-
tion ability because deep ConvNets try to fit all data points during training, including noisy 
labels. This issue is also discussed by Arpit (Arpit et al., 2017) for deep models.

To against label noise, existing mainstream approaches use model predictions to extract 
confident examples (whose labels are likely to be correct) (Han et al., 2018; Yu et al., 2019; 
Li et al., 2020) by exploiting the memorization effect (Arpit et al., 2017; Wei et al., 2020). 
These methods are demonstrated effective in coarse-grained object recognition, but it is 
hard to employ them for fine-grained recognition. It is because that modern deep neural 
networks used for fine-grained tasks are usually trained via fine-tuning. The parameters 
of the final classification layer are trained on the target dataset from scratch, and they are 
much more sensitive to label noise, while their former counterparts are quite robust. (Bai 
et al., 2021). As illustrated in Fig. 1, we visualize representations before and after the final 
linear layer by t-SNE (Van der Maaten & Hinton, 2008). It shows that, by comparing with 
the clusters of the representations after the final linear layers shown in Fig. 1a, c, the clus-
ters of the representations after the final linear layers shown in Fig. 1b, d are more noisy.

Furthermore, existing methods merely apply global-level information in images to deal 
with label noise. The part-level features which characterize the critical discriminative 
information in recognizing fine-grained objects are ignored. Last but not least, fine-grained 
datasets are usually small in scale. Existing approaches to extracting confident examples 
reduce the number of training samples, further exacerbating the data scarcity and overfit-
ting during model training. As a result, existing methods to extract confident examples are 
therefore unreliable.

To tackle the label noise problem on the FGVC task, in this paper, we propose a novel 
class-prototype similarity-based learning framework. Specifically, during the training 
phase, training data is divided into two categories: confident examples and unconfident 
examples (whose labels are likely to be incorrect). To select confident examples and to 
correct unconfident examples, we exploit the presentations extracted before the final linear 
layer (feature-level information) rather than model predictions. Specifically, global-class 

(a) Symmetric 60% (b) Symmetric 60% (c) Pairwise-flip 45% (d) Pairwise-flip 45%

Fig. 1   Figures are generated by using t-SNE visualisation. ResNet-18 pretrained on ImageNet is fine-tuned 
on noisy FashionMNIST dataset. The dataset is split to training set and validation set. The validation set is 
used for model selection. The different colors represent different clean labels. a, c Visualise the representa-
tions before the final linear layer, respectively. b, d Visualise the representations after the final linear layer, 
respectively
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and part-class prototypes calculated by averaging the global and part features of training 
examples from the same class are employed as references. The confident examples are 
identified with high similarities to their corresponding class prototypes; while unconfident 
examples are corrected with new possible clean labels according to their similarity to class 
prototypes, which address the data scarcity issue.

We extensively evaluate the proposed method on fine-grained datasets under different 
settings of label noise, i.e., symmetric and pairwise-flip label noise with various levels of 
noise rates. The experimental results show that our approach outperforms all the baselines, 
making significant improvements in generalization performance. We also show that our 
selection process of confident examples is non-sensitive to hyper-parameters. These results 
validate the robustness and the reliability of the proposed method. Moreover, our learning 
framework is flexible and can be regarded as a general component in the FGVC to tackle 
the label-noise issue. Our contribution is summarized as follows:

•	 By exploiting feature-level information to identify confident examples in the noisy fine-
grained dataset, we propose a novel prototype similarity-based approach named Proto-
Simi. By considering characteristics of fine-tuned models, the method largely increases 
the reliability of identifying confident examples and alleviates the impacts of memori-
zation effects in ConvNets.

•	 As a response to data scarcity in fine-grained problems, we explore the feasibility of 
revising incorrect labels by jointly referencing global and part class-prototypes simi-
larities, performing in a semi-supervised learning style.

•	 We establish the first benchmark of fine-grained classification with close-set synthe-
sised label noise on three popular datasets. Our approach obviously improves the gener-
alization performance by gradually increasing the clean-label ratio of training datasets 
via the proposed label-correction strategy.

The rest of this paper is organized as follows. In Sect.  2, we briefly review the current 
popular label-noise algorithms and the FGVC algorithms. Section  3 introduces the pro-
posed approach in detail, which is then experimentally compared with other baselines as 
discussed in Sect. 4. Section 5 presents the ablation study on the CUB-200-2011 dataset to 
comprehensively analyse the principle of our proposed method and the hyper-parameters 
settings. Section 6 concludes the current work.

2 � Related work

In this section, we briefly review the related literature with fine-grained visual categoriza-
tion and label noise.

2.1 � Fine‑grained visual categorization

Fine-grained recognition has been an active research topic in recent years. This task is diffi-
cult as the critical information to distinguish categories usually hides in subtle part regions. 
To meet this challenge, the early literature includes a series of part-based pipelines that 
localize the object parts based on strongly supervised learning (Huang et al., 2016).

Considering the expensive cost of acquiring part annotations, some techniques (Zhang 
et al., 2016; Zheng et al., 2017; Sun et al., 2018; Zheng et al., 2019) attempt to learn part 
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features in a weakly-supervised manner. For example, Zhang et al. (2016) first picked dis-
tinctive filters which were then used to learn part detectors through an iteratively alter-
nating strategy. MA-CNN (Zheng et al., 2017) obtained part regions by clustering feature 
maps of intermediate convolutional layers. Yet, the performance of these methods remains 
limited because of the insufficient training data for this task. Recent works (Chen et  al., 
2019; Zhuang et al., 2020) try to ease this limitation by consolidating the data enhancement 
mechanisms into their learning frameworks. For instance, Zhang et al. (2019) progressively 
cropped out the discriminative regions to generate diversified data sets for training net-
work experts. Chen et  al. (2019) destructed the images into part regions and designed a 
region alignment network to restore the original spatial layout of the part regions. Huang 
et  al. (2022) designed a few-shot based algorithm by employing the intra-class variance 
and inter-class fluctuations.

Although these methods have achieved promising performance on fine-grained tasks, 
the label-noise issue existing in real applications can easily degrade the model’s effective-
ness. In this work, we propose a new learning framework that optimizes the learning of 
deep modes on noisy fine-grained data.

2.2 � Label noise

The research on label noise in various computer vision tasks has been promoted by deep 
learning-based approaches. However, these approaches generally surfer from the overfitting 
issue on noisy examples due to the memorization effects of ConvNets. This issue could 
be relieved by dropouts, data-augmentation (Zhang et al., 2017), regularization paradigms 
(Liu et al., 2020; Xia et al., 2021), specially designed loss functions Huang et al. (2020), 
novel optimizer (Foret et al., 2020), loss correction (Patrini et al., 2017; Song et al., 2019), 
etc.

The sample selection strategy is developed to discard all unconfident examples and only 
train a model on the remained confident examples (Malach & Shalev-Shwartz, 2017; Jiang 
et al., 2018; Han et al., 2018; Yu et al., 2019; Liu et al., 2021). These methods reduce the 
number of training samples unfortunately aggravates the data scarcity problem for FGVC 
with label noise. Zhang et al. (2020) and Sun et al. (2021) use a sample selection strategy 
which discards unconfident examples on web fine-grained datasets and treats the remaining 
as confident examples to help generalization ability of a learning model. The label cor-
rection methods (Li et  al., 2020) are developed to efficiently mine the information from 
abandoned some unconfident examples and then give pseudo labels to them, which is a 
complement strategy of sample selection. Gong et al. (2023) tackles the noisy labels in a 
class-wise way to ease the entire noise correction task. However, all mentioned methods 
are generally based on the small-loss criterion, the effectiveness directly depends on the 
reliability of the model predictions, whereas the model predictions are not reliable in the 
FGVC task. Han  (Han et  al., 2019) firstly adopted a class-prototype concept to estimate 
pseudo labels. However, the method is not specifically designed for FGVC, i.e., it uses 
multiple examples as prototypes in each class to capture geometry information. CleanNet 
(Lee et al., 2018) also adopted a class-prototype concept, but it requires an extra clean sam-
ple to produce prototypes, which increases labeling costs.

Statistic consistency can also be exploited to alleviate the label noise issue, which aims 
to infer the clean class posterior distribution by using the noisy class posterior and a label 
noise transition matrix (Liu & Tao, 2015; Yao et al., 2020; Li et al., 2021). However, this 
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group of methods suffers from the magnified estimation error of the transition matrix, 
especially when the number of classes increases.

Several works are designed to relieve label noise problem by leveraging self-learning 
techniques such as contrastive learning that could adaptively prevent the noisy information 
from dominating the network optimization. (Yang et al., 2022b, 2021, 2022a)

However, all the existing methods do not consider part-level features which usually 
characterize the critical discriminative information in recognizing fine-grained objects and 
are important for improving generalization performance.

3 � Our approach

In this section, we propose a novel prototype similarity-based label-correction (ProtoSim) 
framework which employs both global-level and part-level features for FGVC. Our algo-
rithm can be divided into two stage. At the first stage, the global-level and part-level fea-
tures are extracted by exploiting feature maps trained on a target fine-grained dataset. Then 
a self-adaptive sample selection and label-correction strategy is proposed to increase the 
quality of training data. An illustration of the learning framework is given in Fig. 2, and the 
algorithm description is given in Algorithm 1.

3.1 � Global‑level and part‑level feature extraction

To generate global-level features, feature maps learned from a target fine-grained dataset 
are employed. Specifically, let D = {(xi, yi)}

n
i=1

 be the target fine-grained dataset. Let GΦ̄ 
be an extractor for feature maps fine-tuned on a target noisy dataset. Let GΦ̄(x) ∈ ℝ

k×h×w 
be the feature maps of an instance x , which are outputs of the last convolutional block, 
where k, h, w are the number of channels, height and width of feature maps, respectively. 
By applying global average pooling (GAP) operation on feature maps, a feature vector Φ

x
 

is obtained, which we called a global-level feature of the instance x.
To further improve the robustness of our algorithm, the part-level features are also 

important and can not be ignored. Specifically, because the intra-class variation is sub-
tle for fine-grained datasets, the labels are usually determined by small regions of images. 
Thereby, to increase the diversity of features and their discrimination, we introduce part-
level features which are extracted from discriminative regions of the input image. The 

Fig. 2   The overview of ProtoSimi training paradigm
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part-level features can be consider as auxiliary semantic information for the global-level 
features GΦ̄(x).

To generate part-level features, class activation mapping (CAM) method (Zhou et al., 
2016) is employed. The workflow is illustrated in Fig. 3. Specifically, let GΦ̄(x)

j be the j-th 
feature map, and wy ∈ ℝ

d is the classifier weight vector corresponding to a label y. Then 
we can obtain the class activation map CAM(x) as:

Here, we ignore the bias term which could be contained in the weight vector and by includ-
ing additional feature maps with all ones to GΦ̄(x) . After normalizing CAM(x) , the result 
can be seen as an attention map that describes which position is focused by the model 
with respect to a particular class. We then apply element-wise multiplication between the 
normalized CAM(x) and each feature map to extract the classification-aware discrimina-
tive regional feature maps, which is followed by a GAP operation. In this way, the final 
part-level features are dominant to the class characteristics, and therefore can be used for 
validating whether the label is correct.

3.2 � Self‑adaptive sample selection and label‑correction strategy

We propose a class-prototype similarity-based method which exploits the feature-level 
information in sample selection. In a nutshell, after fine-tuning on the dataset D, we meas-
ure the similarities of all examples to their class prototypes. The details of our sample 
selection method are explained in the following paragraph.

To obtain c-th global class-prototype Qc
global

 , we average all the global-level features in 
c-th class, i.e.,

where n is the number of examples in c-th class. To obtain global similarity Sglobal(x, y) 
between a example (x, y) and its global class-prototype Qy

global
 , cosine similarity is 

employed, i.e.,

CAM(x) =

k∑

j=0

w
j
y
GΦ̄(x)

j.

Qc
global

=
1

n

∑

x,y=c

Φ
x
,

Sglobal(x, y) =
Φ

x
⋅ Q

y

global

‖Φ
x
‖2 ⋅ ‖Q

y

global
‖
2

.

Fig. 3   The process of generating part-level feature by CAM
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The part class prototype Qc
part

 and the part similarity Spart(x, y) are calculated in the same 
fashion as the global class prototype and the global similarity, respectively.

The (1 − �) examples in each class with the highest similarities are selected as confi-
dent examples, where � is the noise rate of the target dataset and can be estimated from 
noisy data (Liu & Tao, 2015; Yao et  al., 2020). To take both part-level features and 
global-level features into consideration for sample selection, we propose a score S(x, y) 
that linearly combines part similarly Sypart and global similarly Sy

global
 , i.e.,

where � ∈ [0, 1] is a hyper-parameter to balance the contributions between part similarity 
and global similarity.

In fine-grained datasets, the number of examples in each class is usually limited. Dur-
ing the phase of sample selection, a large number of unconfident examples could be dis-
carded, which further reduces the number of training examples. This will significantly 
reduce the generalization performance of the data-hungry Modern ConvNets. Therefore, 
the problem that how to sufficiently use unconfident examples to improve the generali-
zation performance is essential in the FGVC task. To solve this problem, we propose a 
self-adaptive label-correction strategy that performs in a semi-supervised manner.

Specifically, after the global and part feature-based sample selection, unconfident 
examples can be obtained, which are regarded as unlabeled data. Then we approximate 
their clean labels based on the score S, i.e., given an instance x , the class with the high-
est score is the approximated clean label y of the instance. Formally,

where C is the total number of classes. In such a way, a new dataset is generated by com-
bining all the confident and unconfident examples and is used to train a new model. The 
new model then is employed to select new confident examples and correct the label of new 
unconfident examples.

 where �ce is the cross-entropy loss function, and h� is a learning model parameterized 
by a learnable parameter � . For the set of confident examples Dl , the original labels are 
employed to train the model; For the set of unconfident examples Du , the approximated 
clean labels are employed to train the model.

With the help of sample selection and label correction strategy, the trained model 
will receive correct label information from refined training data, thus the latter learnt 
feature representation may further increase the precision of sample selection and label 
correction strategy in next round. Therefore, we repeat this strategy every interval 
epochs.

Furthermore, the extra computational cost for calculating feature similarities is not 
expensive, which is linear. Specifically, for c classes and n examples, the time com-
plexity to get the both local and global class-prototype is O(n).The time complexity of 

(1)

S(x, y) = (1 − �)Spart(x, y) + �Sglobal(x, y)

= (1 − �)
�
x
⋅ Q

y

part

‖�
x
‖2 ⋅ ‖Q

y

part‖2
+ �

Φ
x
⋅ Q

y

global

‖Φ
x
‖2 ⋅ ‖Q

y

global
‖
2

,

(2)ŷ = argmax
i∈{1,…,C}

S(x, i),

(3)h𝜃 ∗= argmin
h𝜃

1

‖Dl‖
�

(x,y)∈Dl

�ce(h𝜃 , x, y) +
1

‖Du‖
�

(x,ŷ)∈Dl

�ce(h𝜃 , x, ŷ),
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calculating the local and global similarity between n samples and class-prototypes is 
O(2c ∗ n) . The total time complexity is O((2c + 1)n).

4 � Experiments

In this section, we illustrate the generalization ability of our methods on different datasets 
with different types of noise.

4.1 � Experimental settings

We verify the effectiveness of our approach on three benchmark datasets, i.e., fine-grained 
benchmarks including CUB-200-2011 (Wah et  al., 2011), Stanford-Cars (Krause et  al., 
2013), and FGVC-aircraft (Maji et  al., 2013). We conduct experiments on the widely 
used noise types. Specifically, we use symmetric noise (Han et al., 2018) with noise rates 
20% , 40% , and 60% ; pairwise-flip noise with noise rates 20% and 40% . Since conventional 
label noise methods are applied without bounding boxes or part annotations, this exter-
nal auxiliary information is excluded in our experiments. We compare our method with 
the fine-grained approaches that only need class labels. For fairness of comparison, we 
re-implement all the competitors by fine tuning. The training phase employs regular data 
augmentation in the fine-grained settings. The input images are first resized into 512 ×
512 and then randomly cropped to 448 × 448, followed by random horizontal flipping. All 
experiments are repeated 3 times.

4.2 � Implementation details

ResNet-50 (He et al., 2016) is used as the backbone network, and the GAP output of the last 
convolutional block is a 2048-dimensional feature vector. The learning rate is initialized as 
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0.01 for the classification layer and 0.001 for all other layers, and then it decayed by 0.5 
in every 30 epochs. The SGD optimizer with momentum 0.9 is utilized to optimize the 
model. The model is trained for 50 epochs with a fixed batch size of 16, and then tested on 
clean data to compute the top-1 classification accuracy. The � is the noise rate which can 
be estimated from the noisy data (Liu & Tao, 2015). The weight � for balancing the global 
and part similarity scores is set to 0.7 in all datasets. The stride � is set to 15 for the CAR 
dataset with 60% symmetric noise and 5 for all other experiments. The way of perturbing 
clean labels remains the same as Han et al. (2018).

4.3 � Baselines

To make a sufficient comparison, we adopt 12 different methods as the competitors includ-
ing both label noise and fine-grained approaches. Specially, Cross-Entropy (He et  al., 
2016) follows basic ResNet-50 training process. Mixup (Zhang et al., 2017), Early Learn-
ing Regularization (ELR) (Liu et  al., 2020), Self-Adaptive Training with Cross-Entropy 
(SAT-CE) (Huang et  al., 2020) and Sharpness-Aware Minimization (SAM) (Foret et  al., 
2020) are proposed to alleviate overfitting effects. Co-teaching (Han et al., 2018) and Co-
teaching+ (Yu et al., 2019) are two classical sample selection methods with small-loss cri-
terion. Especially, recent work Advanced-Softly-Update-Drop (ASUD) (Liu et al., 2021), 
they propose a model prediction based sample selection method for fine-grained classi-
fication against label noise. Re-weighting (Liu & Tao, 2015) is an important statistically 
consistent method. DCL (Chen et al., 2019), MGE-CNN (Zhang et al., 2019) and API-Net 
(Zhuang et al., 2020) are representative SOTA part-based weakly-supervised methods in 
FGVC.

4.4 � Classification accuracy

The results are illustrated in Table 1. ProtoSimi outperforms all the baselines for most of 
the experiments and achieves a large margin improvement in generalization performance. 
Specifically, the baseline methods Mixup, ELR, SAT-CE, and SAM have limited improve-
ments in the fine-grained task. The performance of ASUD, Co-teaching and Co-teaching+ 
also degenerate significantly in the case of high noise rate. Compared with the part-based 
fine-grained methods DCL, MGE-CNN and API-Net, we have a clear advantage when the 
noise rate is large.

5 � Ablation study on CUB dataset

5.1 � Small‑loss and feature based sample‑selection criteria

The sample-selection criterion based on sample selection is a popular way to select con-
fident examples (Li et  al., 2021), it considers that the examples having small losses are 
more likely to be clean examples in model training, and therefore, they should be selected 
as confident examples. By contrast, our method employs both global-level and part-level 
features to select confident examples. In Fig. 4, we compare the clean ratio obtained by 
utilizing small-loss and feature-based sample-selection methods for different types of label 
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noise. It shows that, by utilizing the feature-level information, the clean ratio of selected 
examples is higher than the sample-selection method based on sample selection.

5.2 � Investigation on class‑prototype similarity

We investigate that how global and part similarities contribute to the model perfor-
mance. Specifically, we compare three different settings, including only part similar-
ity, only global similarity, and the combined class-prototype similarity with balancing 
weight � = 0.7 . Table 2 shows that the combined class-prototype similarity performs the 
best among three settings. Furthermore, both only global similarity and only part simi-
larity achieve better performance than training with naive

5.3 � Impacts on label correction stride �

We compare the performance of different � values, as illustrated in Fig. 5. The experi-
ments are conducted in the case of symmetric noise with 40% noise rate. Figure  5a, 
b show the clean ratio of training examples and test accuracy for each epoch, respec-
tively. The best test accuracy can be observed when � = 5 . The highest clean ratio in the 
training set is achieved when � = 3 , while � = 5 has a similar clean ratio. Both metrics 
degenerate severely when � = 10 , and the model tends to overfit noisy labels.

Fig. 4   ResNet-50 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) is fine-tuned on synthetic-
noise CUB-200-2011 dataset (Wah et al., 2011). After each training epoch, we rank the similarity scores 
in descending order and the loss values in ascending order. We choose the first 60% examples in each class, 
and then calculate the clean ratio of all the selected examples

Table 2   Generalization 
performance comparison 
between different class-prototype 
similarity modes

All the best experimental results are marked in bold

Methods Symmetric noise Pairwise-flip 
noise

20% 40% 60% 20% 40%

Only global prototype 81.28 74.99 60.65 79.29 61.34
Only part prototype 80.53 74.87 59.53 79.02 62.65
Combined ��.�� ��.�� ��.�� ��.�� ��.��
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5.4 � Impacts on biased noise rate �

In previous experiments, we assume the noise rate � is known. However, the actual noise 
rate is always biased in real applications, and the estimation error may be noticeable. In 
this section, we investigate that how a biased noise rate affects the model performance. The 
actual symmetric noise rate is 40% . We manually add bias to the actual noise rate, which 
yields a set of biased noise rates { 20% , 30% , 35% , 45% , 50% , 60% }. Figure 6 shows the 
influence of biased noise rate on the generalization ability of our method is not large. It 
indicates that our approach is not sensitive to the noise rate estimation, and therefore, the 
class-prototype similarity criteria is robust to label noise.

5.5 � Significant testing on weight ̨

In Table 3, we use the one-sided Wilcoxon signed rank test to check whether using a com-
bination of part-level and global-level features has significant performance gain. The oppo-
nent is using global-level features along, where results have been shown in Table 2. The 
smaller p value indicates the result is more significant. We underline the p values which are 

(a) Clean ratio (b) Test accuracy

Fig. 5   The comparison of different � , a is clean ratio of confident examples, and b is the test accuracy of 
each epoch

Fig. 6   The comparison of noise 
rate � with estimation error
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smaller than the 0.05. It shows that when � = 0.7 , the performance gain of combing both 
part-level and global-level features is significant compared with using global-level features 
along.

5.6 � Integration with other methods

We examine whether the proposed learning framework could improve the robustness of 
existing methods. We employ MGE-CNN and API-Net as base methods. Specifically, since 
all these approaches use ResNet-50 as the backbone, we extract the global feature represen-
tation before feeding it to the dedicated network. Considering that the last convolutional 
features of those models have different semantic meanings, we omit the computation of the 
part class-prototype similarity. To be explicit, we only use the global class-prototype simi-
larity to improve the above FGVC models.

The results are listed in Table 4, the integrated methods produce noticeable performance 
improvement on symmetric label noise, and a small improvement on pairwise-flip noise. It 
is noted that in the case of 40% noise rate, our strategy yields a large improvement. In the 
case of API-Net on 60% symmetric noise, the strategy fails because the basic architecture is 
too vulnerable to provide discriminative features. In summary, our learning framework can 
be used as a general component to increase the robustness of learning models.

Table 3   One-sided Wilcoxon signed significant tests on CUB dataset, which shows that our method is 
robust with different � values

Bold indicates our results are significant in one-sided Wilcoxon signed ranktest

noise type 0.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sym-40% 74.87% 76.29% 76.01% 76.19% 76.16% 76.49% 75.92% 75.74%

p = 1.0 p = 0.21 p = 0.21 � = �.�� � = �.�� � = �.�� p = 0.21 p = 0.82

Sym-60% 59.53% 61.45% 61.87% 63.19% 63.51% 63.07% 63.66% 63.38%

p = 1.0 p = 0.82 p = 0.59 � = �.�� � = �.�� � = �.�� � = �.�� � = �.��

Pair-40% 62.65% 61.65% 62.09% 62.57% 62.67% ��.��% 62.05% 61.53%

p = 0.52 p = 0.92 p = 0.73 � = �.�� � = �.�� � = �.�� � = �.�� p = 0.45

Table 4   Performance 
comparison with original model 
and combined model in CUB 
dataset, symbol ’−’ means the 
label correction strategy is not 
work

All the best experimental results are marked in bold
Significant testing is not necessary for this experiment, because the 
performance hugely depends on the training of basic fine-grained 
model. If the model is too vulnerable to label noise, ProtoSimi not 
always has obviously positive effects on these methods

Methods Symmetric noise Pairwise-flip 
noise

20% 40% 60% 20% 40%

ProtoSimi 81.83 76.00 62.68 78.31 62.49
MGE-CNN 82.01 68.19 44.62 78.83 56.79
MGE-CNN + ProtoSimi ��.�� ��.�� ��.�� ��.�� ��.��

API-Net 66.57 44.34 26.33 67.66 44.41
API-Net + ProtoSimi ��.�� ��.�� − ��.�� ��.��



1917Machine Learning (2024) 113:1903–1920	

1 3

5.7 � Investigation on extreme noisy data

We have compared the classification accuracy of our method with Deep Self-learning and 
SAT-CE under the extreme noisy data settings, the noise rate is set to 80% for symmetric 
noise and 45% for pairwise-flip noise, respectively. Deep Self-learning has the similar phi-
losophy to generate pseudo labels by referencing class-prototypes and SAT-CE has the best 
performance among all baselines, therefore we only compare these two algorithms with 
ours to investigate the model performance.

In Table 5, our algorithm outperforms a large margin in both Sym-80% and Pair-45% 
situations, this result strongly shows that the power of global and part combined prototype-
based label correction strategy also has competitive advantages in tackling extreme noisy 
labels. Deep Self-Learning also exploits the prototypes information for the robust training, 
however, the prototypes are poorly estimated when the training sample contains too much 
noise, thus the generated pseudo labels lead to a worse generalization ability.

5.8 � Investigation on real‑world web dataset

We further investigate the performance of ProtoSimi on recently released real-world dataset 
“Web-Bird” (Sun et al., 2021). The experiments settings are same as the settings on CUB 
dataset. In Table 6, we illustrate the accuracies obtained by employing naive cross-entropy, 
only global class-prototype, and combination of both part and global class-prototypes. It 
shows that combing both part and global class-prototypes produces the best results.

6 � Conclusion

In this paper, we propose a novel class-prototype similarity-based learning framework 
to tackle the label noise problem on the FGVC task. This approach takes advantage of 
the global and part similarities between sample features and class prototypes. The learn-
ing process can improve the clean ratio of the training examples by identifying confident 
examples and correcting labels on unconfident examples. As a result, we can alleviate the 
data scarcity problem in the FGVC task and reduce overfitting during learning. Extensive 
experiments validate the superiority of our model compared with the current state-of-the-
art methods. Ablation studies indicate that features are much more robust on label noise 
than model predictions, and the proposed model is insensitive to hyper-parameter settings.

Table 5   Test accuracy on CUB 
dataset with extreme noise rate

All the best experimental results are marked in bold

ProtoSimi Deep self-learning SAT-CE

Sym-80% 25.60 ± 0.20 16.10 ± 0.73 23.56 ± 0.05

Pair-45% 54.31 ± 0.07 48.67 ± 0.76 47.36 ± 0.30

Table 6   Test accuracy on Web-
Bird dataset with reported 0.35 
noise rate (Sun et al.,2021)

All the best experimental results are marked in bold

Cross-entropy Only global prototype Combined

Web-Bird 65.53 ± 0.18 71.40 ± 0.53 73.48 ± 0.04
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