
Vol.:(0123456789)

Machine Learning (2023) 112:1693–1732
https://doi.org/10.1007/s10994-023-06301-4

1 3

PAC‑learning with approximate predictors

Andrew J. Turner1 · Ata Kabán1 

Received: 2 March 2022 / Revised: 2 January 2023 / Accepted: 11 January 2023 /  
Published online: 8 February 2023 
© The Author(s) 2023

Abstract
Approximate learning machines have become popular in the era of small devices, including 
quantised, factorised, hashed, or otherwise compressed predictors, and the quest to explain 
and guarantee good generalisation abilities for such methods has just begun. In this paper, 
we study the role of approximability in learning, both in the full precision and the approxi-
mated settings. We do this through a notion of sensitivity of predictors to the action of 
the approximation operator at hand. We prove upper bounds on the generalisation of such 
predictors, yielding the following main findings, for any PAC-learnable class and any given 
approximation operator: (1) We show that under mild conditions, approximable target con-
cepts are learnable from a smaller labelled sample, provided sufficient unlabelled data; (2) 
We give algorithms that guarantee a good predictor whose approximation also enjoys the 
same generalisation guarantees; (3) We highlight natural examples of structure in the class 
of sensitivities, which reduce, and possibly even eliminate the otherwise abundant require-
ment of additional unlabelled data, and henceforth shed new light onto what makes one 
problem instance easier to learn than another. These results embed the scope of modern 
model-compression approaches into the general goal of statistical learning theory, which in 
return suggests appropriate algorithms through minimising uniform bounds.

Keywords Statistical learning · Generalisation error bounds · Model-compression · 
Approximate learning algorithms

1 Introduction

The last decade has seen a tremendous increase of interest in complex learning problems, 
such as deep neural networks, and learning in very high dimensional spaces. This results 
in a large number of parameters which need to be learned from the data. This is typically 
very resource-intensive in terms of memory, computation, and labelled training data; and 
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consequently infeasible to deploy on devices with limited resources such as mobile phones, 
wearable devices, and the Internet of Things. Therefore, a plethora of model-compression 
and approximation techniques have been proposed, such as quantisation, pruning, factorisa-
tion, random projection, hashing, and others (Choudhary et al., 2020). Rather intriguingly, 
many empirical findings on realistic benchmark problems seem to indicate that, despite 
a drastic compression of the complex model, such techniques often perform impressively 
well, with predictive accuracy comparable to that of full precision models. Below we men-
tion just a few illustrative landmarks.

Quantisation of the weights of deep neural networks was proposed in BinaryConnect 
(Courbariaux et  al., 2015), where a neural network with weights constrained to a single 
bit ( ±1 ) was proposed and empirically demonstrated to achieve comparable results to a 
full precision network of the same size. These results were further refined by the Quan-
tised Neural Networks (QNN) training algorithm (Hubara et al., 2017), and the idea was 
also extended to convolutional networks in Xnor-net (Rastegari et al., 2016). Another com-
pression scheme introduced in Han et  al. (2016), called Deep Compression, employed a 
combination of pruning, quantisation, and Huffman coding to achieve similar results to the 
original network, with a significant reduction in memory usage.

Factorisation of the weights into low-rank matrices has been another common technique 
to reduce the size of a deep neural network (DNN), see Denil et al. (2013, 2014) for details. 
Recent survey articles on a variety of model-compression techniques specific to deep neu-
ral networks may be found in Choudhary et al. (2020), Cheng et al. (2017) and Menghani 
(2021).

In a related work (Ravi, 2019), the author proposes to learn the high and low complexity 
networks simultaneously through a joint objective function that minimises not only their 
individual sample errors but also their disagreement. They found experimentally that this 
approach improves accuracy of both models, regardless of the model-compression tech-
nique employed. While a theoretical explanation remains elusive, this was among the first 
attempts to shift focus from the compressed model back to the fuller picture of the original 
model, and consider these objectives in tandem.

Theoretical studies of model-compression are much scarcer, and the interplay between 
model approximation and generalisation is not very well understood. Work taking an infor-
mation theoretic approach (Gao et  al., 2019) studied the trade-off between the compres-
sion granularity (rate) and the change it induces in the empirical error, using rate distortion 
theory. Follow-on work (Bu et al., 2021) extended their analysis to show that it is possible 
(on occasion) for compressed versions of pre-trained models to generalise even better than 
the original.

Another line of research exploited a notion of compression (Arora et  al., 2018; Zhou 
et al., 2019). In Arora et al. (2018), a new compression framework was introduced for prov-
ing generalisation bounds, and their analysis indicated that resilience to noise implies a bet-
ter generalisation for deep neural networks. A PAC-Bayes bound was then proposed to give 
a non-vacuous generalisation bound on the compressed network in Zhou et al. (2019). This 
was further built upon in Baykal et al. (2019), and has inspired a new algorithm along with 
a generalisation bound for the fully connected network.

In Suzuki et  al. (2020b), compression-based bounds on a new pruning method for 
DNN was established, and more recently the authors also gave bounds for the full net-
work (Suzuki et  al., 2020a). This latter work allows the compression-based bound to be 
converted into a bound for the full network, using the local Rademacher complexity of the 
Minkowski difference between the loss class of the full networks and the loss class of the 
compressed networks. This is therefore another instance, entirely complementary of the 
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work of Ravi (2019), where the performance of the approximate model is linked back in 
some way to that of the full model, albeit a joint treatment has not been attempted.

In Ashbrock and Powell (2021), a stochastic Markov gradient decent was introduced to 
learn in memory limited setting directly in the discrete parameter space. They provide con-
vergence analysis for their optimisation algorithm, but generalisation is only demonstrated 
experimentally.

The general trend and focus on compressing deep neural networks (DNNs) is remarka-
ble. However, we conjecture a more fundamental connection between approximability and 
generalisation that is not specific to deep networks. Contrary to the increasingly sophisti-
cated and specialised tools being developed for DNNs, our aim here is to study the connec-
tion between approximability and generalisation from first principles. To do this, we want 
to ensure generalisation guarantees for learning with approximate models in general.

We also hypothesise that target concepts that have low sensitivity to approximation may 
represent a benign trait of learning problems in general, which would imply easier learn-
ability of the full precision model too. To substantiate this, we shall seek learning algo-
rithms whose generalisation ability depends on the approximability of the target concept, 
irrespective of the form of the learned predictor being used in the full or approximated 
setting.

1.1  Contributions

In the following roadmap we summarise the main contributions and findings of this paper:

• We define a notion of approximability of a predictor, which quantifies the average 
extent of sensitivity of its predictions when subjected to a given approximation opera-
tor (Sect. 2.1). This quantity will feature heavily in our generalisation bounds.

• In Sect.  2.2 we show that low sensitivity target functions may require less labelled 
training data, provided we have access to an independent unlabelled set of sufficient 
size (Theorem 1). This sets the stage for approximability to be viewed as a benign trait 
for learning.

• In Sect. 2.3 we develop a practical theory, showing that a constrained empirical risk 
minimisation algorithm with a modified loss function, which enforces approximability 
up to a given threshold, learns a predictor that is guaranteed to generalise well both in 
its full precision and its approximate forms (Proposition  2.4). Furthermore, we con-
struct an objective function that also implicitly optimises the trade-off managed by the 
sensitivity threshold (Proposition 2.5). These results then give rise to a learning algo-
rithm that is able to take advantage of additional unlabelled data without the require-
ment for it to be independent from the labelled set (Theorem 2).

• For learning a good approximate predictor, we also give two variants of our algorithm 
that allows the user to control the above trade-off directly (Theorem 3, Remark 2.6). 
This may be useful in certain settings, for example when low memory requirements 
prevail over prediction accuracy.

• Section  3 is devoted to studying our unlabelled data requirements. We show that, 
while the worst case unlabelled sample size requirement is necessarily large (Proposi-
tion 3.1), natural examples of structure may arise from the data source interacting with 
the model, which may reduce, or may even eliminate the requirement for additional 
unlabeled sample (Propositions 3.3, 3.4). This analysis is independent of the hypothesis 
class employed, and leads to some general conditions under which sensitivity estima-
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tion enjoys favourable convergence (Theorem 4). In addition, we also point out that, 
the structural restrictions of the hypothesis class in itself can bring further insights – in 
particular, for generalised linear models, the weight sensitivity turns out to be sufficient 
for dimension-independent learning (Proposition 3.5).

• We discuss implications of our theoretical results related to real problems, including 
binarisation with depth-indepedent error bounds and on-device deep network classifica-
tion in Sect. 4.

Throughout the exposition of the main sections, we only consider deterministic approxima-
tion operators, keeping the reasoning and the formalism simple, and rooted in first prin-
ciples. We discuss extensions in Sect.  4, including the use of stochastic approximation 
operators.

1.2  Related work

We have already highlighted two existing studies that considered both sides of model-com-
pression, namely the approximate predictor as well as the full predictor. Below we further 
discuss these in the light of our aims, approach, and findings, along with existing works 
that relate to ours in terms of either high-level ideas or technical aspects.

In a similar spirit to Ravi (2019), our inquiry concerns simultaneously both the approx-
imate model and the full precision model. However, contrary to the empirical approach 
taken in Ravi (2019), where the heuristic nature of the algorithms make a theoretical 
understanding somewhat elusive, our approach is analytic. We employ Rademacher com-
plexity analysis of the generalisation error (Bartlett & Mendelson, 2002) to give algorithm-
independent uniform bounds on the generalisation for both approximate and approximable 
function classes. The uniform nature of these bounds justifies algorithms that minimise 
them. Therefore, our algorithms come with guarantees of good generalisation. Our frame-
work is general, and can be used to analyse the approximability and generalisation in tan-
dem for any PAC-learnable machine learning problem.

Our findings are consistent with those found in Suzuki et al. (2020a), with a difference 
in the approach, resulting in a different and more general angle. In particular, their focus 
is on translating already known bounds on compressed neural networks to the full uncom-
pressed class. In contrast, we focus on showing that having good approximability (i.e. low 
sensitivity to approximation) improves generalisation bounds in PAC-learnable classes. In 
addition, we pursue a joint treatment of learning both the approximate and the full predic-
tor simultaneously.

The works in Arora et al. (2018) and Zhou et al. (2019), based on the idea of compres-
sion and resilience to noise, are also somewhat related to our work, on a high-level. How-
ever, in both Arora et al. (2018) and Zhou et al. (2019) the generalisation bounds are for 
the compressed model only; whereas, our treatment provides both sides of the coin—algo-
rithms that learn a predictor that generalises both in its full precision and its approximate 
form. In Arora et al. (2018), the focus is on bounding the classification error of the com-
pressed predictor with the �-margin loss (with 𝛾 > 0 ) of the full model for multi-class clas-
sification. This corresponds to our general bounded Lipschitz loss function. Moreover, in 
Zhou et al. (2019) a PAC-Bayes approach is taken and so numerical tightness comes from 
data-dependent quantities in the bound that do not necessarily identify or shed light on 
structural traits of the problem responsible for good generalisation. In contrast, by employ-
ing Rademacher analysis we are able to highlight structural properties responsible for low 
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complexity and good generalisation, so our approach and findings are complementary to 
these works.

Our starting point in Sect. 2.2 is the semi-supervised framework of Bǎlcan and Blum 
(2010), where our approximability, or sensitivity of functions to approximation plays the 
role of an unlabeled error, and we replace VC entropy with Rademacher complexity to 
facilitate the use of our bounds outside the classification setting. However, from Sect. 2.3 
onward we depart from this framework in favour of simpler and more straightforwardly 
implementable bounds that fit our specific goals at the expense of a negligible additive 
term. In return, we obtain some advantages: (1) for our purposes, the unlabelled data need 
not be independent from the labelled set, (2) the sensitivity threshold is optimised implic-
itly and automatically by our algorithm without appeal to structural risk minimisation, and 
(3) we are able to study structural regularities that reduce or even eliminate the need of 
unlabelled data, which was not attempted in the previous work.

2  Generalisation through approximability

2.1  Notations and preliminaries

Consider the input domain X ⊆ ℝ
d , where d denotes the dimensionality of the feature rep-

resentation, and output domain Y ⊆ ℝ . Let m ∈ ℕ and consider a sample S ∈ (X × Y)m of 
size m drawn i.i.d. from an unknown distribution D. Let H be the hypothesis class; this is a 
set of functions mapping from X  to Y . We consider a loss function � ∶ Y × Y → ℝ+ . Then 
we define the generalisation and empirical error of a function f ∈ H as

The best function in the class will be denoted as f ∗∶= argmin f∈H{ err (f )}.
We let HA be the set of approximate functions from X  to Y . Note HA needs not be a 

subset of H . We define an approximation operator A ∶ H → HA , which maps a hypoth-
esis to its approximation. Here A is considered to be deterministic; extension to stochastic 
approximate algorithms is discussed later in Sect. 4.

Definition 2.1 (Approximation-sensitivity of a function) Fix p ≥ 1 . Given a sample S ∈ Xm 
of size m drawn i.i.d. from the marginal distribution Dx , we define the true and empirical 
sensitivity as

The choice of p-norm will be left to the user in our forthcoming bounds. Formally, 
it is sufficient to work with p = 1 , as by Jensen’s inequality, for all p ≥ 1 , we have 
D1

A
(f ) ≤ D

p

A
(f ) and D̂

1

A
(f ) ≤ D̂

p

A
(f ) , for all f ∈ H . So the forthcoming bounds will be tight-

est with the choice p = 1 . However, sometimes the user might like to specify a constraint 
on the sensitivity of functions in terms of the more familiar Euclidean norm ( p = 2 ), or 
some other member of the family of p-norms. Our results apply to any specification of p, 
so we will state results for general p-norms. An example where p = 2 is advantageous will 

err (f )∶=� (x,y)∼D[�(f (x), y)], and êrr (f )∶=
1

m

∑

(x,y)∈S

�(f (x), y).

D
p

A
(f )∶=� x∼Dx

[|f (x) − Af (x)|p]
1

p , and D̂
p

A
(f )∶=

(
1

m

∑

x∈S

|f (x) − Af (x)|p
) 1

p

.
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be encountered later in Theorem 4. When the choice of p is arbitrary, we may omit the 
upper index in our notation.

The approximating class HA is typically chosen to be much smaller than the original 
class H , implying a reduced complexity term in our generalisation bounds, at the expense 
of a larger empirical error, and the appearance of an additional sensitivity term DA(f ) . We 
can think of HA as a compressed model class whose elements occupy less memory, yet 
still expressive enough to represent the essence of H . Examples include quantisation and 
other model-compression schemes. The granularity of approximation that we can afford is 
considered to be fixed. In memory-constrained settings this is constrained by the available 
hardware.

We now define sensitivity-restricted hypothesis classes

We also define the class of sensitivities to be

We begin by stating the assumptions that we employ throughout the remainder of the 
paper. The first assumption is that the loss function is bounded and Lipschitz. These allow 
us to invoke the theory of Rademacher complexity, as well as make the connection between 
the generalisation error and the sensitivity of a function.

Recall, for a sample S of size m, the empirical Rademacher complexity of the class H is 
defined as

where � ∈ {−1, 1}m is a Rademacher variable, i.e. distributed uniformly on {−1, 1} . The 
Rademacher complexity is

A classic result (Bartlett & Mendelson, 2002), Theorem  8 [see also Mohri et  al. 
(2018), Lemma 3.3] shows that the generalisation gap scales as the Rademacher complex-
ity – that is, we have with probability at least 1 − � that

We make two assumptions that let us leverage the theory of Rademacher complexities. The 
first one is standard.

Assumption 1 � ∶ Y × Y → ℝ+ is a bounded and �-Lipschitz loss function. That is, there 
exists B > 0 such that

Ht∶={f ∈ H ∶ DA(f ) ≤ t} and Ĥt∶={f ∈ H ∶ D̂A(f ) ≤ t}.

DAH∶={x ↦ |f (x) − Af (x)| ∶ f ∈ H}.

R̂S(H)∶=� � sup
f∈H

1

m

m∑

k=1

�kf (xk),

Rm(H)∶=� SR̂S(H).

| err (f ) − êrr (f )| ≤ 2Rm(H) +

√
ln(

2

�
)

m
, and

| err (f ) − êrr (f )| ≤ 2R̂S(H) + 3

√
ln(

2

�
)

m
.

�(x, y) ≤ B and |�(x, y) − �(z, y)| ≤ �|x − z|,
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for all x, z ∈ X, y ∈ Y . By re-scaling we may assume without loss of generality that B = 1.

Assumption 1 lets us bound the empirical Rademacher complexity of the loss class 𝓁◦H 
with that of H using Talagrand’s contraction lemma (Mohri et al., 2018), Lemma 5.7, that 
is R̂S(𝓁◦H) ≤ �R̂S(H) . Classic examples of Lipschitz loss functions include the (clipped) 
hinge loss, and the logistic loss ( � = 1 for both). The 0-1 loss for ±1 valued classifiers also 
satisfies Assumption 1 ( � = 1∕2 ), and indeed we have R̂S(l01◦H) =

1

2
R̂(H) by Mohri et al. 

(2018), Lemma 3.4.
The second assumption we make is the uniform boundedness of the sensitivities. This 

will let us extend Rademacher analysis to the class of sensitivities DA(H) , which then 
allows us to shift the complexity terms from the full models to the approximate models.

Assumption 2 The set of sensitivities, DAH , is uniformly bounded. That is, there exists 
C > 0 such that,

for all f ∈ H.

Assumption 2 is weaker than assuming that the functions in H and HA are bounded. 
The latter is often assumed in analyses, either by constraining the norms of parameters and 
taking X  to be bounded, or by passing linear outputs through a bounded nonlinearity—for 
instance, a sigmoidal function, or a threshold function—in the case of classification.

We start by giving a lemma that compares the true and empirical sensitivity. This is 
where our estimates for the size of the unlabeled sample are derived. We explore this topic 
further in Sect. 3.

Lemma 2.2 With probability at least 1 − � we have

for all f ∈ H.

Proof By classic Rademacher bounds (Bartlett & Mendelson, 2002), Theorem 8, it holds 
with probability at least 1 − � that

as required.   ◻

We now relate the generalisation error of the full model with the generalisation error of 
the approximate model through our notion of approximation sensitivity. The following is a 
key lemma as it allows us to shift from the complexity of the full precision models to the 
low precision models.

‖f − Af‖∞ ≤ C

|D1
A
(f ) − D̂

1

A
(f )| ≤ 2R̂S(DAH) + 3C

√
ln(

2

�
)

2m
,

|D1
A
(f ) − D̂

1

A
(f )| =

|||||
� x∼Dx

[|f (x) − Af (x)|] − 1

m

∑

x∈S

|f (x) − Af (x)|
|||||

≤ 2R̂S(DAH) + 3C

√
ln(

2

�
)

2m
,
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Lemma 2.3 Fix t ≥ 0 . We have the following bound

for all f ∈ Ht.

Proof Let f ∈ Ht . Then, by Jensen’s inequality and using the Lipschitz property of � we 
have

This completes the proof.   ◻

2.2  Learning of low approximation‑sensitive predictors

Learning in high dimensional settings or complex model classes requires enormous training 
sets in general, or some fairly specific prior knowledge about the problem structure. However, 
many real-world problems possess benign traits that are hard to know in advance. Inspired by 
the practical success of approximate algorithms created by various model-compression meth-
ods, in this section we investigate approximability as a potential benign trait for learning, by 
quantifying its effect on the generalisation error. More precisely, we elaborate on our intui-
tion that, if a relatively complex target concept admits a simpler approximation that makes 
little alteration to its predictive behaviour, then it should be learnable from smaller training set 
sizes.

The rationale is easy to see, as follows. Fix some approximation operator A and associ-
ated sensitivity threshold t ≥ 0 . Then by the classic Rademacher bound (Bartlett & Men-
delson, 2002), Theorem 8, for any 𝛿 > 0 , with probability at least 1 − � over the draw of the 
training sample, we have for all f ∈ Ht that

Let f ∗
t
= argmin f∈Ht

{ err (f )} . To learn this function, we consider a hypothetical Empir-
ical Risk Minimiser (ERM) in the restricted class Ht – that is, we define the following 
minimum:

Applying (1) to the function f̂  from (2) with a failure probability of at most 2�∕3 , we note 
that �err (f̂ ) ≤ �err (f ∗

t
) by definition of f̂  , and further note that êrr (f ∗

t
) ≤ err (f ∗

t
) +

√
log(3∕�)

2m
 

with probability at least 1 − �∕3 by Hoeffding’s inequality. Combining these with the use of 
a union bound yields that, with probability at least 1 − � , f̂  satisfies

Clearly, since Ht ⊆ H , then by a property of Rademacher complexities (Bartlett & Men-
delson, 2002), Theorem 12 part 1 we have R̂S(Ht) ≤ R̂S(H) . So, whenever the concept we 

| err (f ) − err (Af )| ≤ �D1
A
(f ),

| err (f ) − err (Af )| ≤ � (x,y)∼D[|�(f (x), y) − �(Af (x), y)|]
≤ �� x∼Dx

[|f (x) − Af (x)|] = �D1
A
(f ).

(1)err (f ) ≤ êrr (f ) + 2�R̂S(Ht) + 3

√
log(2∕�)

2m
.

(2)f̂∶= argmin f∈Ht
{ �err (f )}.

(3)err (f̂ ) ≤ err (f ∗
t
) + 2𝜌�RS(Ht) + 4

√
log(3∕𝛿)

2m
.
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try to learn is actually in Ht (i.e. a low-sensitivity target function) then, depending on t ≥ 0 , 
we can have a tighter guarantee compared to that of an empirical risk minimiser over the 
larger class H.

Unfortunately, the minimisation in (2) is not implementable, because the specification 
of the function class Ht depends on the sensitivity function DA , which in turn depends on 
the true marginal distribution of the input data. It is often much easier to specify a larger 
function class H independent of the distribution, but this would ignore the sensitivity prop-
erty and consequently lose out on the tighter guarantee.

The first approach that we consider will be based on observing that the sensitivity func-
tion only depends on inputs and is independent of the target values. Hence, we can make 
use of additional unlabelled data to estimate it, which is typically more widely available in 
applications. To this end, our first line of attack is similar in flavour with a classic semi-
supervised framework proposed in Bǎlcan and Blum (2010). In that work, the authors aug-
mented the standard PAC model with a notion of compatibility to encode a prior belief 
about the target function in terms of an expectation over the marginal distribution. As a 
first approach, we will instantiate their compatibility notion with our notion of approxima-
tion-sensitivity. Similarly to Bǎlcan and Blum (2010), this approach also allows us to use 
structural risk minimisation (SRM) to adapt the threshold parameter t. Therefore, balanc-
ing between the reduced complexity of the class and the potentially increased error of the 
best function on this reduced class yields the following result.

Theorem 1 Fix an approximation operator A. Suppose we have an independent i.i.d. unla-
belled sample S�

x
∼ D

mu

x  of size mu , and let 𝜖u > 0 s.t. supf∈H |DA(f ) − D̂A(f )| ≤ �u with 
probability at least 1 − �∕2 with respect to the random draw of S′

x
 . Take an increasing 

sequence (tk)k∈ℕ ⊂ ℝ+ , and for each k ∈ ℕ define f ∗
k
∶= argmin f∈Htk

{ err (f )} . Let 
w ∶ ℕ → ℝ be such that for all k ∈ ℕ , wk ≥ 0 and 

∑
k∈ℕ wk ≤ 1 . Then, for all k ∈ ℕ and all 

f ∈ Ĥtk+𝜖u
 , with probability at least 1 − � , we have:

Furthermore, for each f ∈ H define k̂(f )∶=min{k ∈ ℕ ∶ �DA(f ) ≤ tk + 𝜖u} , and consider 
the following algorithm

Then, with probability at least 1 − � we have

Before giving the proof, we make a few comments. Firstly, we see that, with a large 
enough mu (i.e. sufficient additional unlabelled data), we have by Lemma 2.2 with proba-
bility 1 − �∕2 that, the magnitude of �u ≤ 2R̂S�

x
(DAH) + 3

√
log(4∕�)

2mu

 can be made arbitrarily 
small – this is the only role of S′

x
 . A detailed account of the possible ranges of magnitude of 

this quantity will be discussed in Sect.  3, along with some natural factors that make it 

(4)err (f ) ≤ �err (f ) + 2𝜌�RS(Ĥtk+𝜖u
) + 3

√
log(1∕wk)

2m
+ 3

√
log(4∕𝛿)

2m
.

(5)f̂∶= argmin f∈H

⎧
⎪
⎨
⎪⎩

�err (f ) + 2𝜌�RS

�
Ĥtk̂(f )+𝜖u

�
+ 3

�
log

�
1∕wk̂(f )

�

2m

⎫
⎪
⎬
⎪⎭

.

(6)err (f̂ ) ≤ min
k∈ℕ

{
err (f ∗

k
) + 2𝜌�RS(Ĥtk+𝜖u

) + 4

√
log(1∕wk)

2m

}
+ 3

√
log(6∕𝛿)

2m
.
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small. For now, let us point out that, by construction, whenever both H and HA are PAC-
learnable, and without further conditions, the complexity of our sensitivity class is deter-
mined by the complexities of H and HA [see discussion around (29)]. By contrast, the gen-
eral setting of semi-supervised learning in Bǎlcan and Blum (2010) allows arbitrarily 
complex compatibility classes, which, in a worst case scenario can backfire and blow up 
the required labelled data size (Bǎlcan & Blum, 2010), Theorem 22.

The objective of the minimisation algorithm in (5) follows the idea of minimising the 
uniform bound (4). It finds a good predictor along with the appropriate subclass of H to 
which it belongs. The sequence of sensitivity threshold candidates (tk)k∈ℕ , and the associ-
ated weights (wk)k∈ℕ , with wk ≥ 0 for all k ∈ ℕ and 

∑
k∈ℕ wk ≤ 1 , must be chosen before 

seeing any data (for instance, wk ∶= 2−k ), with wk representing an a-priori belief in a par-
ticular tk.

As a further observation, the function classes Ĥtk+𝜖u
 that feature in the high prob-

ability guarantee (6) are dependent on the unlabelled data. This dependence can 
be removed if desired, by noting that, with high probability, D̂

1

A
(f ) ≤ t + �u implies 

D1
A
(f ) ≤ t + 2�u for all f ∈ Ĥtk+𝜖u

 – hence we have Ĥtk+𝜖u
⊆ Htk+2𝜖u

 , which in turn implies 
�RS(Ĥtk+𝜖u

) ≤ �RS(Htk+2𝜖u
) with high probability. In fact, the failure probability of this 

bound is already accounted for in the proof of (6), so replacing �RS(Ĥtk+𝜖u
) by R̂S(Htk+2�u

) 
in (6) holds with the same probability as the stated.

Lastly, but most importantly, since Ĥtk+𝜖u
⊆ H , we have �RS(Ĥtk+𝜖u

) ≤ �RS(H) . The 
extent of this reduction of complexity depends on several factors even for specific approxi-
mation choices, including the sensitivity the unknown target function, the magnitude of �u 
and the threshold estimate tk + �u , the original class H , and the data distribution. For the 
sake of intuition, suppose that availability of unlabelled data is not a barrier, so the poten-
tial gain is down to the interaction between the unknown data distribution and the unknown 
target function. A low sensitivity asserts that, for the particular approximation A, only a 
small mass fraction of the input points is affected by subjecting a predictor to A. If the tar-
get function satisfies this, and the marginal distribution is such that most functions of H do 
not satisfy this, then Ht (i.e. the remaining set of functions that have low sensitivity) will 
be small. Let us consider some informal examples.

Example 1. We can think of a model approximation as a perturbation of the model. In 
classification, this induces a perturbation of the decision boundary. If the true classes are 
well separated by a large margin, then there is leeway for such perturbation. Hence, just as 
in the framework in Bǎlcan and Blum (2010), dense classes separated by a large margin 
will rule out all functions that cut across dense regions, leaving a handful few – especially 
if H was a simple class, such as linear predictors.

Furthermore, in the extreme case of zero sensitivity we can use the simpler class HA 
instead of H , as in the following.

Example 2. Consider a relatively complex parametric class H , and a coarse quantisation 
as A. Then HA simply becomes a finite hypothesis class. If the target function is insensitive 
to this approximation, then it is enough to work with HA and have the guarantees enjoyed 
by the finite class.

Example 3. Suppose the functions in H have a large number of parameters so H has 
high complexity, but the data distribution is supported in a simple restricted set that makes 
much of the representational capacity of H remain dormant. Then the effect of a model-
compression will spread out among both relevant and irrelevant parameters, making less of 
a noticeable difference to the function values.

While these examples are both simplistic and informal, ample empirical evidence in the 
literature demonstrates that many model approximation methods do work surprisingly well 
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in practice. In the next section we aim to develop an approach that helps to untangle and 
shed more light onto the various contributing factors that influence the error when learning 
involves approximate predictors. But first we prove Theorem 1.

Proof of Theorem  1 For a fixed t ≥ 0 , by the definition of �u , with probability 
1 − �∕2 , we have that f ∈ Ht implies f ∈ Ĥt+𝜖u

 . We shall pursue SRM by exploit-
ing the independent unlabelled sample to define a nested sequence of function classes 
Ĥt1+𝜖u

⊆ Ĥt2+𝜖u
⋯ ⊆ Ĥtk+𝜖u

⊆ Ĥtk+1+𝜖u
⊆ ⋯ ⊆ H where k ∈ ℕ . These classes depend on 

the unlabelled sample, but not on the labelled sample. For any fixed k ∈ ℕ , the classic 
Rademacher bound (Bartlett & Mendelson, 2002), Theorem 8 implies with probability at 
least 1 − (wk�∕2) that all f ∈ Ĥtk+𝜖u

 satisfy

Since k ∈ ℕ is arbitrary, and the non-negative weights satisfy 
∑

k∈ℕ w(k) ≤ 1 , we take a 
union bound and it follows with probability at least 1 − �

2
 that, uniformly for all k ∈ ℕ and 

all f ∈ Ĥtk+𝜖u
 we have

This proves (4).
To obtain (6) for f̂  defined in (5), we apply (4) to f̂  . By construction, f̂ ∈ Ĥtk̂(f̂ )+𝜖u

 . 
Recall also that with probability at least 1 − �

2
 we have f ∗

k
∈ Ĥtk+𝜖u

 as f ∗
k
∈ Htk

 . Therefore, 
with probability at least 1 − �∕3,

for all k ∈ ℕ . In the last inequality we used the definition of f̂  noting that the right hand 
side of (7) is minimised by f̂  . In addition, by Hoeffding’s inequality, we also have 
êrr (f ∗

k
) ≤ err (f ∗

k
) +

√
log(6∕(wk�))

2m
 with probability at least 1 − (wk�)∕6 . Combining with (8) 

and using the union bound, it follows with probability at least 1 − � that

for all k ∈ ℕ . Finally, choosing k to minimise the bound concludes the proof.   ◻

2.3  A joint approach to sensitivity and generalisation

The conceptually straightforward approach of the previous subsection implies that a tar-
get concept that is robust to the effects of approximation by a low-complexity predictor, 

err (f ) ≤ �err (f ) + 2𝜌�RS(Ĥtk+𝜖u
) + 3

√
log(4∕(𝛿wk))

2m
.

err (f ) ≤ �err (f ) + 2𝜌�RS(Ĥtk+𝜖u
) + 3

√
log(1∕wk)

2m
+ 3

√
log(4∕𝛿)

2m
.

(7)err (f̂ ) ≤ �err (f̂ ) + 2𝜌�RS(Ĥtk̂(f̂ )+𝜖u
) + 3

√
log(1∕wk̂(f̂ ))

2m
+ 3

√
log(2 ⋅ 3∕𝛿)

2m

(8)≤ �err (f ∗
k
) + 2𝜌�RS(Ĥtk+𝜖u

) + 3

√
log(1∕wk)

2m
+ 3

√
log(6∕𝛿)

2m
,

err (f̂ ) ≤ err (f ∗
k
) + 2𝜌�RS(Ĥtk+𝜖u

) + 4

√
log(1∕wk)

2m
+ 3

√
log(6∕𝛿)

2m
,
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may require less labelled examples to be learned. In particular, the regularised ERM 
algorithm defined in (5) can accomplish this learning task, the regulariser being the 
empirical Rademacher complexity of the restricted class Ĥtk̂(f )

 , along with a penalty for 
estimating k̂(f ) . In effect, this algorithm adaptively trims the original function class to 
the relevant subset of low-sensitivity predictors, and consequently returns a low-sensi-
tivity element of an otherwise potentially much larger function class.

The appeal of this finding lies not only to serve as a possible explanation towards 
the question of what makes some instances of a learning problem easier than others. 
Also, by the low-sensitivity property, such predictor should be usable in its approxi-
mated form in memory-constrained settings. Indeed, for any t ≥ 0 , if f̂ ∈ Ht , then by 
Lemma 2.3 we have

In other words, for a predictor with low approximation-sensitivity, using Af̂  instead of f̂  
will only incur an additive error of up to �t . This additional term is the price to pay for 
predicting with the simplified function Af̂  instead of the full-precision function f̂  – it will 
not improve with more data, but t is small precisely when the target function we try to learn 
has a low-sensitivity.

In this section we are interested in a more practical formulation of the tandem of 
learning an approximate predictor as well as a full precision predictor. The approach 
presented so far, beyond its conceptual elegance, has some practical drawbacks: (1) 
it requires an additional independent unlabelled data set; and (2) it requires comput-
ing the empirical Rademacher complexity of the restricted class. Computing empirical 
Rademacher complexities is known to be typically a hard combinatorial optimisation 
problem for interesting hypothesis classes (Bartlett & Mendelson, 2002), as it amounts 
to computing an empirical risk minimiser under the 0–1 loss.

To get around these limitations, we shall take a different approach. We start by modi-
fying the loss function to explicitly encode the fact that we are interested in a good low-
complexity approximate predictor. More precisely, for a given threshold value t ≥ 0 , we 
start by defining the minimiser of the following constrained function:

This is defined for the purpose of theoretical analysis, it is not computable, since checking 
f ∈ Ht would require knowledge of the data distribution.

The following result shows that the function f̂t in (10) achieves two different func-
tionalities simultaneously, as it not only produces a good approximate predictor with 
quantified error guarantee, including the price to pay for the approximation, but f̂t itself 
is a good predictor whenever the problem admits an approximable target function.

Proposition 2.4 Fix an approximation operator A and t ≥ 0 . Define f ∗
t
∶= argmin f∈Ht

{ err (f )} 
and g∗

t
∶= argmin g∈AHt

{ err (g)} . Then, with probability at least 1 − � , the function f̂t from (10) 
satisfies all of the following simultaneously:

(9)err (Af̂ ) = err (f̂ ) +
(
err (Af̂ ) − err (f̂ )

)
≤ err (f̂ ) + 𝜌DA(f̂ ) ≤ err (f̂ ) + 𝜌t.

(10)f̂t∶= argmin f∈Ht
{ �err (Af )}

(11)err (Af̂t) ≤ min{ err (Af ∗
t
), err (g∗

t
)} + 2𝜌�RS(HA) + 4

√
ln(

9

𝛿
)

2m
,



1705Machine Learning (2023) 112:1693–1732 

1 3

We note that �t → 0 as t → 0 ; however, as t decreases, the choice of predictors in Ht 
decreases too, and so err (f ∗

t
) would be expected to increase. That is, the choice of t bal-

ances the trade-off between the sensitivity term �t , and the error term, err (f ∗
t
).

Proposition 2.4 allows us to view learning and model-compression as two sides of the 
same coin. Eq. (13) suggests that low-sensitivity target functions are easier to learn, and 
a constrained ERM algorithm is able to learn it up to a constant factor of its sensitivity. 
Indeed, suppose f ∗ = f ∗

t
 , i.e. the target function has sensitivity below t. Then the error of f̂t 

is guaranteed to be much smaller than the worst case error of finding f ∗ in the whole class 
H . At the same time, (12) provides a guarantee for the approximate predictor Af̂  that can 
potentially be deployed in low-memory settings by paying the additive term �t proportional 
to the extent of approximability. Remarkably, both of these two seemingly different goals 
are accomplished by the same function f̂t defined in (10). Moreover (11) gives guarantees 
for Af̂t relative to both Af ∗

t
 (the approximation of the best predictor in H with sensitivity of 

at most t) and g∗
t
 (the best approximate predictor in AHt).

Proof of Proposition 2.4 By Rademacher bounds (Bartlett & Mendelson, 2002), Theorem 8 
and Talagrand’s contraction lemma (Mohri et al., 2018), Lemma 5.7, we have with prob-
ability at least 1 − 2�

9
 , that

By definition of f̂t we have �err (Af̂t) ≤ min{ �err (Af ∗
t
), �err (g∗

t
)} . Using this together with 

Hoeffding’s inequality, with probability 1 − �

9
 both

hold separately. Therefore, by the union bound and the fact that R̂S(AHt) ≤ R̂S(HA) we 
have with probability at least 1 − 4�

9
 , that (11) holds. Similarly, as �err (Af̂t) ≤ �err (Af ∗

t
) and 

by Lemma 2.3, we have with probability at least 1 − �

9
 , that

(12)err (Af̂t) ≤ err (f ∗
t
) + 𝜌t + 2𝜌�RS(HA) + 4

√
ln(

9

𝛿
)

2m

(13)err (f̂t) ≤ err (f ∗
t
) + 2𝜌t + 2𝜌�RS(HA) + 4

√
ln(

9

𝛿
)

2m
.

(14)
err (Af̂t) ≤ �err (Af̂t) + 2�RS(𝓁◦AHt) + 3

√
ln(

2⋅9

2𝛿
)

2m

≤ �err (Af̂t) + 2𝜌�RS(AHt) + 3

√
ln(

9

𝛿
)

2m
.

�err (Af̂t) ≤ �err (Af ∗
t
) ≤ err (Af ∗

t
) +

√
ln(

9

𝛿
)

2m
, and

�err (Af̂t) ≤ �err (g∗
t
) ≤ err (g∗

t
) +

√
ln(

9

𝛿
)

2m

(15)�err (Af̂t) ≤ �err (Af ∗
t
) ≤ err (Af ∗

t
) +

√
ln(

9

𝛿
)

2m
≤ err (f ∗

t
) + 𝜌D1

A
(f ∗
t
) +

√
ln(

9

𝛿
)

2m
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Combining the above three inequalities and the fact that R̂S(AHt) ≤ R̂S(HA) we have with 
probability at least 1 − 2�

9
 , that

This proves (12). The second part follows by using Lemma 2.3, Jensen’s inequality and 
f̂t ∈ Ht , so we have

Taking the union bound for each of the equations completes the proof.

Next, we show that in this formulation we can relax the fixed parameter t that con-
strains the function class, without the use of SRM. To avoid clutter, here we suppose 
the functional form of f ↦ DA(f ) is known – this can be estimated from an independent 
unlabelled data set as in the previous section. 

To this end, consider the minimiser of the following (hypothetical) objective func-
tion, used for theoretical analysis.

Here the first term is our modified loss function as before, and the second term acts as a 
regulariser that implicitly constrains the function class. The following result shows that f̂  
from (18) behaves as the previous minimiser from (10), while it also automatically adapts 
the class-constraining sensitivity threshold t.

Proposition 2.5 Fix an approximation operator A. For t ≥ 0 , let f ∗
t
∶= argmin f∈Ht

{ err (f )} . 
For the function f̂  defined in (18), with probability at least 1 − � we have both of the 
following

simultaneously.

Proof of Proposition 2.5 Using Lemma 2.3 and Rademacher bounds (Bartlett & Mendelson, 
2002), Theorem 8, we have with probability at least 1 − �

4
 , that

(16)≤ err (f ∗
t
) + �t +

√
ln(

9

�
)

2m
.

(17)err (Af̂t) ≤ err (f ∗
t
) + 2𝜌t + 2𝜌�RS(HA) + 4

√
ln(

9

𝛿
)

2m
.

err (f̂t) ≤ 𝜌D1
A
(f̂t) + err (Af̂t) ≤ 𝜌DA(f̂t) + err (Af̂t) ≤ 𝜌t + err (Af̂t).

(18)f̂∶= argmin f∈H{ �err (Af ) + 𝜌DA(f )}

(19)err (Af̂ ) ≤ min
t≥0

{
err (f ∗

t
) + 2𝜌t

}
+ 2𝜌�RS(HA) + 4

√
ln(

8

𝛿
)

2m
, and

(20)err (f̂ ) ≤ min
t≥0

{
err (f ∗

t
) + 2𝜌t

}
+ 2𝜌�RS(HA) + 4

√
ln(

8

𝛿
)

2m
,

(21)err (f̂ ) ≤ err (Af̂ ) + 𝜌D1
A
(f̂ )
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Let g∶= argmin t≥0{ err (f
∗
t
) + 2�D1

A
(f ∗
t
)} . Then by the definition of f̂  and the Hoeffding 

bound we obtain with a probability of at least 1 − �

8
 , that

Then, by Lemma 2.3 and definition of g we have

for all t ≥ 0 . Hence, err (Ag) + �D1
A
(g) ≤ mint≥0{ err (Af

∗
t
) + 2�D1

A
(f ∗
t
)} , and substituting 

into (23) yields

with probability at least 1 − �

8
 . By the Talagrand contraction lemma (Mohri et al., 2018), 

Lemma 5.7 we have R̂S(𝓁◦HA) ≤ �R̂S(HA) , and so combining with (22) and then by a 
union bound we have with probability at least 1 − �

2
 that

Noting that DA(f
∗
t
) ≤ t completes the proof of (20). Eq. (19) also follows, with probability 

at least 1 − �

2
 , since err (Af̂ ) is upper bounded by the right hand side of (21), by adding the 

non-negative term �DA(f ).

From Proposition 2.5 we see again that, for any fixed approximation function A such 
that HA has smaller complexity than H , if the target function has a low sensitivity (i.e. 
DA(f

∗) is small), then it is learnable from fewer labels than an arbitrary target from H 
would be. Of course, there may be learning problems where f ∗ has low error but high 
sensitivity for the pre-defined A, but the minimiser in (18) is a function that automati-
cally balances between generalisation error and sensitivity.

It is now straightforward to use an estimate of DA(f ) , giving rise to a learning algo-
rithm that is an implementable version of the construct analysed in Proposition 2.5.

Theorem 2 (Joint learning of full and approximate predictors) Fix an approximation oper-
ator A, and consider the following algorithm.

Let 𝜖u > 0 be such that supf∈H |DA(f ) − D̂A(f )| ≤ �u with probability at least 1 − �

2
 with 

respect to Dmu

x  where mu ≥ m . For t ≥ 0 , let f ∗
t
∶= argmin f∈Ht

{ err (f )} . Then with prob-
ability at least 1 − � , the function f̂  satisfies both

(22)≤ �err (Af̂ ) + 𝜌D1
A
(f̂ ) + 2�RS(𝓁◦HA) + 3

√
ln(

2⋅4

𝛿
)

2m
.

(23)�err (Af̂ ) + 𝜌D1
A
(f̂ ) ≤ �err (Ag) + 𝜌D1

A
(g) ≤ err (Ag) + 𝜌D1

A
(g) +

√
ln(

8

𝛿
)

2m
.

err (Ag) + �D1
A
(g) ≤ err (g) + 2�D1

A
(g) ≤ err (f ∗

t
) + 2�D1

A
(f ∗
t
),

�err (Af̂ ) + 𝜌D1
A
(f̂ ) ≤ min

t≥0
{ err (Af ∗

t
) + 2𝜌D1

A
(f ∗
t
)} +

√
ln(

8

𝛿
)

2m
.

err (f̂ ) ≤ min
t≥0

{ err (Af ∗
t
) + 2𝜌D1

A
(f ∗
t
)} +

√
ln(

8

𝛿
)

2m
+ 2𝜌�RS(HA) + 4

√
ln(

8

𝛿
)

2m
.

(24)f̂∶= argmin f∈H{ �err (Af ) + 𝜌�DA(f )}.
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simultaneously.

Proof This follows by the same steps as the proof of Proposition  2.5 combined with 
Lemma 2.2.   ◻

Let us compare Theorem 2 with Theorem 1. With sufficient unlabelled data �u can be 
made arbitrarily small, in both theorems. However, in Theorem 1 the unlabelled sample for 
estimating �u must be independent of the labelled sample; this is because in that construc-
tion the function class depends on the unlabelled data through the sensitivity estimate. By 
contrast, in Theorem 2 we have an implicit adaptation of t, so the function class does not 
depend on the unlabelled sample. This enables us to reuse the labelled points also for esti-
mating the sensitivity, and any additional unlabelled data just contributes to further shrink-
ing �u . Hence, in Theorem  2 whenever �u is already small enough using the m training 
points of S, we do not even require any additional unlabelled points. In later sections we 
will see natural conditions where this is easily the case.

The advantage of the algorithm analysed in Theorem  1 is its statistical consistency, 
since given enough labelled data the generalisation error converges to that of the best pre-
dictor of the class. However, if the goal is to obtain an approximate predictor, we pay the 
price of an additive sensitivity term (9), and Theorem 2 shows that allowing such term ena-
bles a much more implementation-friendly algorithm without sacrificing the essence of the 
theoretical guarantee on generalisation.

Comparing the algorithm from Theorem 2 with that of Theorem 1, observe the differ-
ence in the regularisation term. Regularising with the sensitivity estimate was not justi-
fied in the formulation of Theorem 1, and indeed the authors of Bǎlcan and Blum (2010) 
have pointed out that regularising with their general compatibility estimate was not theo-
retically justified – despite it being used in practice (Chapelle et al., 2006). By contrast, in 
the formulation of Theorem 2, we have been able to justify it within our approximability 
objective.

2.4  Managing the trade‑off between sample error and sensitivity 
for the approximate predictor

The analysis from Proposition 2.5 and Theorem 2 have shown that the associated algorithm 
has an implicit ability to realise the optimal trade-off between the sample error of Af̂  and 
the sensitivity term, t, without any effort or tuning parameter from the user.

However, there may be situations when a different trade-off is desired, and in such 
a case we want to manage this trade-off as a tuning parameter. This is especially rel-
evant for practical applications in memory-constrained settings, where obtaining a good 
approximate predictor Af̂  is the sole interest. For instance, we may only care about 
very low sensitivity functions at the expense of a slightly raised error, or vice-versa. Or 
we might like to explore multiple trade-offs as in a multi-objective approach. Another 

err (Af̂ ) ≤ min
t≥0

{
err (f ∗

t
) + 2𝜌t

}
+ 2𝜌�RS(HA) + (4 + 𝜌)

√
ln(

16

𝛿
)

2m
+ 𝜌𝜖u, and

err (f̂ ) ≤ min
t≥0

{
err (f ∗

t
) + 2𝜌t

}
+ 2𝜌�RS(HA) + (4 + 𝜌)

√
ln(

16

𝛿
)

2m
+ 𝜌𝜖u,
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instance of this is when unlabelled data is also scarce but an analytic upper bound can 
be derived on the sensitivity function up to an unknown constant.

Conceptually, a good way to address this sort of issues would be to take back control 
over the threshold parameter t using the learning algorithm in (10) (with or without 
estimating the sensitivity). However, the constrained optimisation formulation can be 
awkward to perform in practice. Below we suggest a more user-friendly form of the 
algorithm, and show that its solution is close to that of (10).

For each � ≥ 0 consider the following algorithm

Algorithms of this form, including the exploitation of unlabelled data in the regularisa-
tion term, have been in use in practice for a long time (Chapelle et  al., 2006), see also 
(van Engelen & Hoos, 2020). The regularisation parameter � balances the two terms of the 
objective function, and in addition to potential availability of prior knowledge, there is a 
wide range of well-established model selection methods available to set this parameter in 
practice.

To this end, we shall compare the error of f̃𝜆 from algorithm (25) with that for f̂t from 
the algorithm given in (10). The following proposition shows that, for any specification 
of � , there is a value of t ≥ 0 such that the errors of these two predictors are close, up to 
additive terms that decay with the sample size.

Theorem  3 (Balancing sample error & sensitivity) Let 𝜖u > 0 be such that 
supf∈H |DA(f ) − D̂A(f )| ≤ �u with probability at least 1 − �∕4 with respect to Dmu

x  , where 
mu ≥ m . For any 𝜆 > 0 , there exists t > 0 such that with probability at least 1 − � we have

Proof of Theorem 3 Take t ≤ DA(f̃𝜆) . Then from the definition of algorithm (10) we have 
DA(f̂t) ≤ t ≤ DA(f̃𝜆) . Using this, the definition of f̃𝜆 , and Lemma 2.2, it follows with prob-
ability at least 1 − �

4
 that

Rearranging, and using Lemma 2.2 again, we have with probability at least 1 − �∕2 that

This shows that the sample errors of the two predictors are close.
Now, to prove (26) we again use Rademacher bounds (Bartlett & Mendelson, 2002), 

Theorem 8 with probability at least 1 − �∕2 on HA twice, combined with (24) and the union 
bound. We have with probability 1 − �,

(25)f̃𝜆∶= argmin f∈H{ �err (Af ) + 𝜆�DA(f )}.

(26)err (Af̃𝜆) − err (Af̂t) ≤ 4𝜌�RS(HA) + 6

√
ln(

8

𝛿
)

2m
+ 2𝜆𝜖u.

�err (Af̃𝜆) + 𝜆�DA(f̃𝜆) ≤ �err (Af̂t) + 𝜆�DA(f̂t)

≤ �err (Af̂t) + 𝜆DA(f̂t) + 𝜆𝜖u

≤ �err (Af̂t) + 𝜆DA(f̃𝜆) + 𝜆𝜖u.

�err (Af̃𝜆) − �err (Af̂t) ≤ 𝜆(DA(f̃𝜆) −
�DA(f̃𝜆)) + 𝜆𝜖u ≤ 2𝜆𝜖u.
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as required.

The comments we made on Theorem 2 also apply to Theorem 3. In particular, the train-
ing points contribute to estimating the sensitivity also, unlike the approach in Theorem 1 
which required a separate independent unlabelled sample.

As a further remark, let us also address the case when instead of estimating the sensitiv-
ity from unlabelled data we have an analytic upper bound on this function, in the case of 
some specific choice of function class and approximation operator, up to some unknown 
absolute constant. The constant will be subsumed into the tuning parameter �.

Let DA(⋅) be a mapping from H to ℝ+ where there exists c > 0 such that for all f ∈ H , 
we have DA(f ) ≤ c ⋅DA(f ) . Note that, DA(⋅) does not depend on the sample. Now, for each 
� ≥ 0 define the following algorithm

Furthermore, let f̂t be the predictor returned by algorithm (10), and f̆t the predictor from 
a version of the same algorithm (10) that replaces the unknown DA(⋅) with DA(⋅) . Then f̆t 
will have a guarantee of the same form as before in Proposition 2.4 where t is now a thresh-
old on DA(⋅) rather than DA(⋅) . The following remark shows that the error of f � is close to 
that of f̆t.

Remark 2.6 For any 𝜆 > 0 , there exists t > 0 such that with probability at least 1 − � we 
have

Proof Let t ≥ 0 be such that t ≤ DA(f �) . Then DA(f̆t) ≤ DA(f 𝜆) . Consequently, by the defi-
nition of f � , we have

Therefore, �err (Af 𝜆)) ≤ �err (Af̆t) . Using this, we have

err (Af̃𝜆) − err (Af̂t) = ( err (Af̃𝜆) − �err (Af̃𝜆)) + ( �err (Af̃𝜆)) − �err (Af̂t))

+ ( �err (Af̂t) − err (Af̂t))

≤ 2𝜆𝜖u + 2

⎛
⎜
⎜
⎜⎝

2𝜌�RS(HA) + 3

���� ln
�

8

𝛿

�

2m

⎞
⎟
⎟
⎟⎠

,

(27)f �∶= argmin f∈H{ êrr (Af ) + �DA(f )}.

(28)err (Af �) − err (Af t) ≤ 4�R̂S(HA) + 6

√
ln(

8

�
)

2m
.

êrr (Af �) + �DA(f �) ≤ êrr (Af t) + �DA(f t) ≤ êrr (Af t) + �DA(f �).

err(Af̄𝜆) − err(Af̆t) = (err(Af̄𝜆) − �err(Af̄𝜆)) + (�err(Af̄𝜆)) − �err(Af̆t))

+ (�err(Af̆t) − err(Af̆t)) ≤ 2

⎛
⎜
⎜
⎜⎝

2𝜌�RS(HA) + 3

���� ln

�
8

𝛿

�

2m

⎞
⎟
⎟
⎟⎠

.
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with probability at least 1 − � , by applying the usual Rademacher bounds (Bartlett & Men-
delson, 2002), Theorem 8 to the class HA twice.   ◻

We should note that Theorem 3 and Remark 2.6 require that � is specified before seeing 
the data. However, we can use SRM to allow an exploration of a countable number of dif-
ferent values for this parameter before making this choice for a small additional error term. 
Specifically, take a sequence of candidate values {�k}k∈ℕ weighted by {wk}k∈ℕ with ∑

k∈ℕ wk ≤ 1 . Then the same bounds hold for all �k , where k ∈ ℕ , simultaneously at the 
expense of an additional term of 3

√
log(1∕wk)

2m
.

3  Rademacher complexity of the class of sensitivities

The generalisation bounds of Sect. 2 that include estimated values of the sensitivity, rely 
on the empirical Rademacher complexity of the class of sensitivities DAH . In Theorem 1 
this was estimated on a separate unlabelled set independent of the labelled sample, while in 
Theorems 2 and 3 it was estimated on the input points of the labelled training set, possibly 
augmented with further unlabelled data. To unify notations, in this section we will write 
S for a (generic) sample in both cases, and m for its cardinality – with a view that, if the 
empirical Rademacher complexity of DAH converges sufficiently fast with the cardinality 
of the labelled sample m, then the labelled data S may actually be sufficient.

However, arguably, the complexity of the sensitivity class, R̂S(DAH) , can be at least as 
large as that of the original function class H in the worst case, so one may wonder whether 
the bounds are actually useful. In this section we look at this quantity more closely. Indeed, 
using a property of the empirical Rademacher complexities (Bartlett & Mendelson, 2002), 
Theorem 12, part 7 gives

Moreover, this bound is tight, since equality holds when the approximating class HA is 
a singleton—however, the use of a singleton HA is quite contrived, and far from what 
approximate algorithms are designed for.

For a fixed (possibly unlabelled) sample S, the set of interest in this section is the restric-
tion of DAH to S,

We use Rp∶= supf∈H D̂
p

A
(f ) for the worst sensitivity in the chosen p-norm on the sample S. 

Note that from Assumption 2 we have Rp ≤ C for all p > 0 . We shall also use the shorthand

Note that DAH|S ⊆ Bp(0,m
1∕pRp) for all p ≥ 1 , where Bp(c, r) denotes the p-ball centered 

at c with radius r.
We start by putting a crude magnitude bound on R̂S(DAH) , which holds irrespective 

of the choices of H and HA , and is tight up to a constant factor. The following proposition 
shows that, whenever Rp is small, the empirical Rademacher complexity of the sensitivity 

(29)R̂S(DAH) ≤ R̂S(H) + R̂S(HA).

DAH�S∶=
⎧
⎪
⎨
⎪⎩

⎛
⎜
⎜⎝

�f (x1) − Af (x1)�
⋮

�f (xm) − Af (xm)�

⎞
⎟
⎟⎠
∶ f ∈ H

⎫
⎪
⎬
⎪⎭

uk = u(xk) = |f (xk) − Af (xk)| and u = (uk)k∈[m].
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class must be small in magnitude, and this bound is also tight up to a constant factor, for all 
choices of p ≥ 1 . This magnitude bound will not imply a decay as m increases, as we make 
no assumptions beyond an i.i.d. sample at this point. However this magnitude bound will 
be a useful reference in our later subsections, and it can also be taken in conjunction with 
other bounds, since one can always take the minimum of all upper bounds.

Proposition 3.1 (Crude magnitude bound) For any p ≥ 1 , we have R̂S(DAH) ≤ Rp . More-
over, a lower bound of the same order holds as follows. Given p as chosen above, sup-
pose that DAH|S nearly fills the p-ball of radius Rpm

1∕p , in the sense that the convex hull 
of DAH|S contains the p-ball of radius m

1∕p

2
Rp intersected with the positive orthant. Then 

there exists a constant Cp > 0 that only depends on the choice of the p-norm, such that 
R̂S(DAH) ≥ Cp ⋅ Rp.

Proof By Hölder’s inequality,

for all p ∈ [1,∞) . This proves the upper bound.
We denote by K+ the positive orthant, and let B+

p

(
0,

m1∕p

2
Rp

)
∶= K+ ∩ Bp

(
0,

m1∕p

2
Rp

)
 . To 

prove the lower bound, we recall Moreau’s decomposition theorem (Moreau, 1965) (see 
also (Wei et al., 2019), Sec. 2.1 & Sec. 3.1.5), which is the following: Given a closed con-
vex cone K ⊂ ℝ

m , denote its polar cone by K∗ = {u ∈ ℝ
m ∶ ⟨u, u�⟩ ≤ 0 for all u� ∈ K} . 

Then, every vector v ∈ ℝ
m can be decomposed as

where ΠK(u)∶= argmin u�∈K‖u − u�‖2 is the orthogonal projection of u into K. Hence we 
have

R̂S(DAH) =
1

m
� � sup

f∈H

m∑

k=1

�k|f (xk) − Af (xk)|

≤
1

m
sup
f∈H

m∑

k=1

|f (xk) − Af (xk)|

≤ sup
f∈H

(
1

m

m∑

k=1

|f (xk) − Af (xk)|p
) 1

p

,

= sup
f∈H

D̂
p

A
(f ) = Rp

(30)v = ΠK(v) + ΠK∗ (v) such that ⟨ΠK(v),ΠK∗ (v)⟩ = 0,

(31)R̂S(DAH) =
1

m
� � sup

f∈H

m∑

k=1

�k|f (xm) − Af (xm)|

(32)=
1

m
� � sup

u∈conv(DAH|S)

m∑

k=1

�kuk

(33)≥
1

m
� � sup

u∈B+
p

(
0,

m1∕p

2
Rp

)

m∑

k=1

�kuk
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where p′ is the Hölder conjugate of p, i.e. 1∕p + 1∕p� = 1 . In line (34) we applied (30) 
to � , and (35) follows from the fact that u is in the positive orthant K+ so ⟨u,ΠK∗

+
(�)⟩ ≤ 0 

and because the supremum equality is attained when u is a nonnegative scalar multiple of 
ΠK+

(�) – in which case ⟨u,ΠK∗
+(�)

⟩ = 0 . This completes the proof of the lower bound.  
 ◻

The lower bound highlights the fact that one cannot tighten the complexity bound by 
more than a constant factor without making extra assumptions. In addition, we also see that 
non-negativity of the elements of DAH only affects this constant. Therefore in the next few 
sections we set out to find and exploit other structures in order to gain more transparency 
and insight on the effective magnitude of this quantity in some natural settings. Specifi-
cally, we shall discuss examples of some non-restrictive structural models from which one 
can read off benign conditions that give better bounds on R̂S(DAH) . A lower magnitude of 
this complexity implies a smaller unlabelled data set size requirement for accurate estima-
tion of the sensitivity, and in the case of our bounds in Sects. 2.3 and 2.4 this may even 
permit solving the learning problem without the need of an additional unlabelled sample.

3.1  Exploiting structural models of the sensitivity set

Throughout this section we make no assumption about either the function class H or the 
approximating class HA . So the results of this section are equally relevant to very rich 
classes like deep neural networks, all the way to very restricted ones like linear classes. 
We also make no assumption about the form of the approximating function, and indeed 
the approximating class is not required to be of the same architectural type as the original 
class.

We demonstrate the benign effects of some structural traits that the set DAH may nat-
urally exhibit regardless of the linear or nonlinear nature of the actual predictors. Such 
benign structures will manifest themselves by explaining a reduced complexity R̂S(DAH)

—which in turn allow the bounds of Sect.  2 to provide a better understanding of what 
makes some instances of a learning problem easier than others.

Our strategy in the next subsections will be to study the complexity of the set DAH 
restricted to the sample S (as it appears in the empirical Rademacher bounds presented 
in Sect. 2) by inscribing it into various parametrised geometric shapes. These include 
natural structures such as the points of DAH|S being near-sparse, or exhibiting clusters, 

(34)=
1

m
� � sup

u∈B+
p

(
0,

m1∕p

2
Rp

) u
T (ΠK+

(�) + ΠK∗
+
(�))

(35)=
1

m
⋅
m1∕p

2
Rp ⋅ � �‖ΠK+

�‖p�

(36)=
1

m
⋅
m1∕p

2
Rp ⋅

(
m

2

)1∕p�

(37)= m1∕p+1∕p�−1
⋅ 2−1−1∕p ⋅ Rp =

Rp

2
p
√
2
.
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or having some structured sparsity type model. For this we will not actually impose 
any extra conditions, instead our strategy is to use these constructs to reveal how the 
Rademacher complexity depends on the parameters of these models. In other words, 
our bounds will always hold with some parameter values, as in the worst case we just 
recover the crude magnitude bound in Proposition 3.1, while at the same time the effects 
of parameters convey more insight.

3.1.1  Near‑sparse sensitivity set

A very natural situation is when some points in S have little effect on the sensitivity of 
the approximation, or in other words the approximation has little effect on the predic-
tions for part of the points of S. For instance in classification, points that are far from 
the boundary will often have the approximating function Af predict in agreement with 
the original f.

A simple way to model this situation is by having the vectors in DAH|S lie near the 
axes corresponding to the points in S which are less affected by the approximation, such 
as taking a shape of an axis-aligned ellipsoid in some Minkowski norm, defined as

for p ≥ 1 , where �∶=(�1,… ,�m) ∈ (0,∞)m are the semi-axes of the ellipsoid.
Note, this model is not restrictive, since we have DAH|S ⊂ Bm

p
(0,Rpm

1∕p) , therefore 
�k ≤ Rpm

1∕p for all k ∈ [m] . However, the added flexibility of this model allows us to 
infer the effect of the magnitudes of the semi-axes, yielding some simple and natural 
conditions that improve on the worst-case magnitude guarantee in Proposition 3.1.

The following lemma gives the exact expression for the Rademacher complexity of 
an ellipsoid in any p-norm.

Lemma 3.2 Let � ∈ (0,∞)m and p ≥ 1 , and consider Ep(�) as defined in (38). Then,

Proof Using Hölder’s inequality, �k ∈ {−1, 1} , and the definition of Ep(�) we have

(38)Ep(�)∶=

{
x ∈ ℝ

m ∶

m∑

k=1

|uk|p

�
p

k

≤ 1

}
,

R̂S(Ep(�)) =
‖�‖ p

p−1

m
.

(39)R̂S(Ep(�)) =
1

m
� � sup

u∈Ep(�)

m∑

k=1

�kuk

(40)=
1

m
� � sup

u∈Ep(�)

m∑

k=1

(�k�k)
uk

�k

(41)=
1

m
� � sup

u∈Ep(�)

(
m∑

k=1

|�k�k|p
�

) 1

p�
(

m∑

k=1

|uk|p

�
p

k

) 1

p
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where p′ is the Hölder conjugate of p, i.e. 1∕p + 1∕p� = 1 . The identities (41) and (42) hold 
due to the supremum. This completes the proof.   ◻

For more intuition, consider the case when p = 2 , which corresponds to the usual 
Euclidean norm ellipsoid, and we can relate the right hand side of the bound in Lemma 3.2 
to the volume of the ellipsoid. Indeed, using the relation between the arithmetic and geo-
metric mean,

where Cm > 0 is a constant depending only on m. Hence, for a fixed sample size m, if the 
quadratic mean of the �k ’s is small then the ellipsoid has a small volume.

If DAH|S ⊆ Ep(𝜇) , then in the worst case �k = Rpm
1∕p for all k ∈ [m] , and so

Hence it is clear that the bound in Lemma 3.2 recovers the bound in Proposition 3.1 in 
the worst case. Thus, if DAH|S ⊆ Ep(𝜇) , then Lemma 3.2 is already an improvement on 
Proposition 3.1.

As a model of the sensitivity set, an ellipsoid with high excentricity posits that most 
sensitivity vectors reside in a linear subspace of ℝm . Interesting to note that this has no 
implication on the form of the predictors. Indeed, even with highly nonlinear predictors 
(nonlinear classification boundaries for example), the fraction of points for which the pre-
dictions are distorted under the action of approximation may be expected to be small.

However, it might be unrealistic to expect of all good functions of H that the approxi-
mation should change the prediction for the same points and should leave alone the same 
points. Hence, instead of assuming that DAH is contained in a single ellipsoid, for a more 
realistic model, we consider a union of multiple axes-aligned ellipsoids that cover DAH|S . 
This allows the set of points for which predictions are relatively unaffected by the approxi-
mation of some f ∈ H be different for all f ∈ H.

The following proposition shows that in this model the Rademacher complexity of 
DAH|S is bounded by the Rademacher complexity of the largest ellipsoid from the union 
and, remarkably, it does not depend on the number of ellipsoids in the union – we can have 
countably many in this model, so the diversity of sensitivity profiles of the predictors of H 
in the span of the sample is accounted for at no expense. The vector of axis lengths for the 
i-th ellipsoid will be denoted by �i . We refer to individual components of this vector by 
adding a second index, for example �i,k for the kth semi-axis of the ith ellipsoid.

Proposition 3.3 (Complexity of near-sparse sensitivity set) Let S ⊆ X  be an i.i.d. unlabeled 
sample drawn from Dx , of size m. Let l ∈ ℕ , suppose that there exist �i ∈ (0,∞)m, i ∈ [l] 
with �i,k ≤ Rpm

1∕p , and DAH�S ⊂
⋃l

i=1
Ep(𝜇i) for ellipsoids Ep(�i) . Then we have the fol-

lowing bound

(42)=
1

m

(
m∑

k=1

�
p�

k

) 1

p�

,

1

m
‖�‖2 =

1√
m

�
1

m

m�

k=1

�2
k

� 1

2

≥
1√
m

�
m�

k=1

�k

� 1

m

= CmVol(E2(�))
1

m ,

‖�‖ p

p−1

m
≤

1

m

�
�

k∈[m]

(Rpm
1∕p)

p

p−1

� p−1

p

= Rp.
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The proof makes use of similar steps as the proof of Lemma 3.2, but it does not apply 
the result of Lemma 3.2, as it turns out that a direct approach yields the exact Rademacher 
complexity of the union of axis-aligned ellipsoids.

Proof of Proposition 3.3 As DAH�S ⊂
⋃l

i=1
Ep(𝜇i) , then using the fact that for two bounded 

sets A and B we have sup(A ∪ B) = max{supA, supB} , taking absolute value, the Hölder 
inequality, �k ∈ {−1, 1} , and the definition of Ep(�i) give

where p′ is the Hölder conjugate of p. The equality in (46) is due to the symmetry of the set ⋃l

i=1
Ep(�i) around each axis, and in (48) Hölder’s inequality holds with equality due to the 

supremum.

We remark that the above proposition is true for a countably infinite number of ellip-
soids by noticing that the sequence

is non-decreasing in l. Thus, by the monotone convergence theorem we have

R̂S(DAH) ≤
1

m
max

i
‖�i‖ p

p−1

.

(43)R̂S(DAH) ≤ R̂S

(
l⋃

i=1

Ep(�i)

)

(44)=
1

m
� � sup

u∈
⋃l

i=1
Ep(�i)

m�

k=1

�kuk

(45)=
1

m
� � max

i
sup

u∈Ep(�i)

m∑

k=1

�kuk

(46)=
1

m
max

i
sup

u∈Ep(�i)

m∑

k=1

|uk|

(47)=
1

m
max

i
sup

u∈Ep(�i)

m∑

k=1

�i,k

|uk|
�i,k

(48)=
1

m
max

i
sup

u∈Ep(�i)

(
m∑

k=1

�
p�

i,k

) 1

p�
(

m∑

k=1

|uk|p

�
p

i,k

) 1

p

(49)=
1

m
max

i

(
m∑

k=1

�
p�

i,k

) 1

p�

,

�
sup

u∈
⋃l

i=1
Ep(�i)

m�

k=1

�kuk

�

l∈ℕ
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Thus Proposition 3.3 is true for countably infinite ellipsoids.
It may be interesting to note that the model of a union of axis-aligned ellipsoids has an 

intuitive meaning of near-sparsity of sensitivities. This may also be interpreted as a kind-of 
near-compression bound, since Proposition 3.3 tells us that, when fewer points are affected by 
the approximation, the guarantee on the sensitivity estimation quality will be tighter, hence the 
generalisation bound will be tighter as well.

However, beyond the intuitive meaning above, our structural modelling approach has 
potential to reveal additional benign conditions that might be harder to find by intuition alone. 
To see this, we shall modify Proposition 3.3 to get an upper bound for a non-axis aligned 
union of ellipsoids. As long as the ellipsoids share the same center (for instance, at the origin), 
the upper bound will still be independent of the number of ellipsoids in the union.

To this end, in addition to the axis-length parameters, for each ellipsoid in the union, take 
a rotation matrix Vi ∈ ℝ

m×m where VT
i
Vi = ViV

T
i
= Im for i ∈ [l] . The columns of Vi are the 

principal directions for the i-th ellipsoid. We will refer to the k-th column of Vi by (Vi)k , and 
(Vi)k,k� will denote its (k, k�)-th element. The i-th ellipsoid is then defined as

By a change of variables, we have that u ∈ EVi

p
(�i) is equivalent to VT

i
u ∈ Ep(�i) . Let Λi be 

the diagonal matrix with elements �i,k ∈ (0,∞) for k ∈ [m] , so Λ−1
i
VT
i
u ∈ Bp(0, 1).

We no longer have symmetry around the axes, so (46) becomes an inequality, and we have

R̂S

(
∞⋃

i=1

Ep(�i)

)
= lim

l→∞
R̂S

(
l⋃

i=1

Ep(�i)

)

= lim
l→∞

1

m
max
i∈[l]

(
m∑

k=1

�
p�

i,k

) 1

p�

=
1

m
sup
i∈ℕ

(
m∑

k=1

�
p�

i,k

) 1

p�

.

(50)EVi

p
(�i)∶=

{
u ∈ ℝ

m ∶

m∑

k=1

|(Vi)
T
k
u|p

�
p

i,k

≤ 1

}
.

(51)R̂S(

l⋃

i=1

EVi

p
(�i)) =

1

m
� � max

i∈[l]
sup

u∈E
Vi
p (�i)

m∑

k=1

�kuk

(52)≤
1

m
max

i
sup

u∈E
Vi
p (�i)

m∑

k=1

|uk|

(53)=
1

m
max

i
sup

u∈E
Vi
p (�i)

‖u‖1

(54)=
1

m
max

i
sup

u∈E
Vi
p (�i)

‖(ViΛi)(Λ
−1
i
VT
i
u)‖1
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Equation (55) used the assumption that Λi and Vi are full rank square matrices. The last line 
(56) holds by the definition of ‖ ⋅ ‖p→1 , called the operator norm (or induced matrix norm) 
with domain p and co-domain 1. Such norms can only be computed explicitly in a few spe-
cial cases. In particular, 

1. Whenever Vi = Im , then ‖ViΛi‖p→1 = ‖�i‖ p

p−1

 , since Λi is the diagonal matrix with ele-
ments �i,k . This recovers precisely the axis-aligned setting.

2. With p = 1 ,  the expression of the induced norm is known to be 
‖ViΛi‖1→1 = maxk∈[m] �i,k‖(Vi)k‖1.

We see, the non-axis alignment has led to somewhat less intuitive expressions, but nev-
ertheless the main quantity that governs the empirical Rademacher complexity remains 
some notion of size of the largest ellipsoid. To interpret this in the context of interest 
here, it is enough if the sensitivities mainly reside in linear subspaces of DAH|S ⊂ ℝ

m 
for the Rademacher complexity of DAH to be small. Equivalently, for the estimation of 
sensitivities this means to require less unlabelled points and still getting accurate sensi-
tivity estimates (not to be confused with small sensitivity values).

3.1.2  Clustered sensitivity set

In this section we consider another natural structure, namely when the elements of 
DAH|S form clusters. A cluster is a subset of H with similar sensitivity profile on the 
sample S. We can model each cluster with a p-norm ellipsoid, each having its own 
center as the following

The components of the vector �i are the semi-axes, and the vector ci is the center of the 
i-th cluster. This model is again non-restrictive, as there exist worst case parameter values 
( ci = 0 , �i = Rpm

1∕p , Vi = Im for all i ∈ [l] ) that recover the ball Bp(0,Rpm
1∕p) used previ-

ously in the crude bound of Proposition 3.1.
The following proposition shows that in this model, R̂S(DAH) is bounded by the 

Rademacher complexity of the largest cluster plus an additive term that grows logarithmi-
cally with the number of clusters and linearly with the largest displacement of a cluster 
from the origin.

Proposition 3.4 (Complexity of clustered sensitivity set) Let S ⊂ X  be an unlabeled sample 
of size m drawn i.i.d. from Dx . Let l ∈ ℕ , suppose that there exist �i ∈ (0,∞)m, ci ∈ ℝ

m and 
Vi ∈ ℝ

m×m such that �i,k ≤ Rpm
1∕p , and VT

i
Vi = ViV

T
i
= Im with DAH�S ⊆

⋃l

i=1
Ep(ci,𝜇i,Vi) 

for p-ellipsoids. Then,

(55)=
1

m
max

i
sup

Λ−1
i
VT
i
u∈Bp(0,1)

‖(ViΛi)(Λ
−1
i
VT
i
u)‖1

(56)=
1

m
max

i
‖ViΛi‖p→1.

Ep(ci,�i,Vi)∶=

{
u ∈ ℝ

m ∶

m∑

k=1

|(Vi)
T
k
(u − ci)|p

�
p

i,k

≤ 1

}
.
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where Λi is the diagonal matrix with elements �i,k ∈ (0,∞) for k ∈ [m].

This cluster model highlights a trade-off about the effect of large sensitivities: If a 
cluster only contains functions whose approximation leads to large sensitivity values, 
then the first term of the bound can still be small, but a penalty is incurred in the second 
term if not all function fit in the same cluster.

Proof Let c ∶ DAH → {c1,… , cl} be defined as the function that sends u ∈ DAH to its best 
fitting ellipsoid, c(u) ∶= argmin ci∶i∈[l]

∑
k∈[m](Vi)

T
k
(u − ci)∕�k . Ties are broken arbitrarily.

Now, adding and subtracting c(uk) and noting that, by construction, 
{c(u) ∶ u ∈ DAH} = {c1,… , cl} , we have

We proceed by bounding the above two terms separately.
We bound the first term by applying Proposition  3.3, or its extension, Eq.  (56). To 

bound the second term, we use Massart’s lemma to get

since Vi is a rotation matrix, so ‖VT
i
ci‖2 = ‖ci‖ . Combining the two bounds together com-

pletes the proof.

R̂S(DAH) ≤
1

m
max

i
‖ViΛi‖p→1 +max

i
{‖ci‖2}

√
2 ln l

m
.

(57)R̂S(DAH) ≤ R̂S

(
l⋃

i=1

Ep(ci,�i,Vi)

)

(58)=
1

m
� � sup

u∈
⋃l

i=1
Ep(ci ,�i,Vi)

m�

k=1

�kuk

(59)=
1

m
� � max

i∈[l]
sup

u∈Ep(ci,�i,Vi)

m∑

k=1

�kuk

(60)

≤
1

m
� � max

i∈[l]
sup

u∈Ep(ci ,�i,Vi)

m∑

k=1

�k(Vi)
T
k
(u − ci)

+
1

m
� � max

i∈[l]
sup

u∈Ep(ci,�i,Vi)

m∑

k=1

�k(Vi)
T
k
ci

(61)

=
1

m
� � max

i∈[l]
sup

VT
i
(u−ci)∈Ep(0,�i)

m∑

k=1

�k(Vi)
T
k
(u − ci)

+
1

m
� � max

i∈[l]

m∑

k=1

�k(Vi)
T
k
ci.

1

m
� � max

i∈[l]

m�

k=1

�k(Vi)
T
k
ci ≤ max

i∈[l]
{‖ci‖2}

√
2 ln l

m
,
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This bound is similar in flavour to that of the complexity of a union given in Golowich 
et al. (2020), Lemma 7.4 in the sense that there is a logarithmic price to pay for the number 
of clusters. However, by contrast, here we have an explicit constant in the second term with 
clear relation to the position of the ellipsoids, and our bound reduces to that from Proposi-
tion 3.3 if all ci = 0 for all i ∈ [l] . Therefore, the above bound gives more information as to 
what helps decrease the Rademacher complexity. More specifically, the benign structures 
identified are: small number of clusters, cluster centers close to the origin, and highly con-
centrated (low volume) clusters. We will summarise these positive findings and discuss 
their implications in Sect. 4.1.

3.2  Effect of the structural form of predictors

Our analysis so far was completely independent of the specification of H and HA , and 
applies to any PAC-learnable hypothesis class. From the crude bound in (29) we know 
that a low complexity H always implies a low complexity DAH . In this section we give a 
worked example of how this effect plays out in the case of hypothesis classes that are linear 
in the parameters. Linear models represent a well-weathered object of study at the foun-
dation of machine prediction (Vapnik, 1998), whose high-dimensional / low sample size 
version has been of much interest for the puzzle of over-parameterisation, see e.g. Bartlett 
et al. (2020). These models also allow for nonlinearity effortlessly through a feature map or 
a kernel.

Let ℍ be a reproducing kernel Hilbert space with reproducing kernel k ∶ X × X → ℝ 
associated with the feature map Φ ∶ X → ℍ , so for any x1, x2 ∈ X  , we have 
k(x1, x2) = ⟨Φ(x1),Φ(x2)⟩ℍ . Then our hypothesis class is

The familiar Euclidean space setting corresponds to Φ being the identity map and ℍ = ℝ
d.

We define our approximation operator to be A ∶ H → HA defined by 
Afw(x) = ⟨Q(w),Φ(x)⟩

ℍ
 where fw(x) = ⟨w,Φ(x)⟩

ℍ
 and Q ∶ ℍ → ℍ is some approximation 

of the weights w of the predictor fw.

Proposition 3.5 Let m ∈ ℕ and S = {x1,… , xm} ⊂ X  . Then we have the following bound

This is of course upper bounded by the sum of familiar bounds for linear classes H and 
HA by the triangle inequality, as already implied indeed by the crude bound (29); however, 
the important observation from the special-case analysis of Proposition 3.5 is that (62) does 
not explicitly depend on the norm of the weight vectors, but instead it only depends on how 
the approximation A (through Q) distorts the weights. In other words, we do not need the 
norms ‖w‖

ℍ
 for R̂S(DAH) to be bounded as long as the weight sensitivity ‖w − Q(w)‖

ℍ
 is 

bounded for the chosen operator Q.
Therefore the finding we conclude from Proposition 3.5 is that, in the generalised-linear 

model class considered, small weight-sensitivity is sufficient for dimension-independent 
learning when the approximating class HA has dimension-free complexity. This is in con-
trast with existing dimension-free bounds that required a bounded norm constraint.

H∶={x ↦ ⟨w,Φ(x)⟩
ℍ
∶ w ∈ ℍ}.

(62)R̂S(DAH) ≤
supw∈ℍ ‖w − Q(w)‖

ℍ√
m

����
m�

k=1

k(xk, xk).
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We have not found an analogous property for other hypothesis classes, and it 
remains an open question as to whether analyses of the sensitivity class tailored to spe-
cific classes would unearth additional insights.

Proof of Proposition 3.5 Since �k are uniform on {−1, 1} , we can remove the absolute value, 
and by the linearity of inner products, and the Cauchy-Schwarz inequality we have

Finally it is know that (Mohri et al., 2018), Theorem 6.12

This completes the proof.

4  Discussion of implications, and potential extensions

In this section we elaborate on the significance of our theoretical results. The next 
Sect. 4.1 shows how to use our analysis of the sensitivity set to obtain a natural and 
very general structural condition that yields favourable convergence rates on the sen-
sitivity estimation error. Hence, under this condition, the generalisation error bounds 
in our previous sections become dominated by the complexity of the reduced approxi-
mate class, irrespective of the form or size of the original class.

In Sect. 4.2 we discuss consequences related to real problems by revisiting the orig-
inal motivation of understanding model compression in deep networks. In particular, 
we consider a concrete case of approximation by weight-binarisation, as in BinaryCon-
nect (Courbariaux et al., 2015), or parameter quantisation in deep network classifiers 
(Hubara et  al., 2017), where applying our results yields a depth-independent bound. 
We also discuss a potential way to relate our approach to a previously successful but 
theoretically unjustified on-device deep net approach, Neural Projections (Ravi, 2019), 
which brings insights into its working.

Finally, in Sect. 4.3 we describe how our framework can be extended to stochastic 
approximation schemes.

R̂S(DAH) =
1

m
𝔼 � sup

f∈H

m�

k=1

�k�f (xk) − Af (xk)�

=
1

m
𝔼 � sup

w∈ℍ

m�

k=1

�k(⟨w,Φ(xk)⟩ℍ − ⟨Q(w),Φ(xk)⟩ℍ)

=
1

m
𝔼 � sup

w∈ℍ

⟨w − Q(w),

m�

k=1

�kΦ(xk)⟩ℍ

≤
1

m
sup
w∈ℍ

‖w − Q(w)‖
ℍ
𝔼 �

�����

m�

k=1

�kΦ(xk)
�����ℍ

.

𝔼 �

‖‖‖‖‖

m∑

k=1

�kΦ(xk)
‖‖‖‖‖ℍ

≤

[
m∑

k=1

k(xk, xk)

] 1

2

.
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4.1  Favourable rates for sensitivity estimation in approximable hypothesis classes

We already commented that whenever the target function admits a small sensitivity 
threshold t, this can usefully restrict the hypothesis class in favourable data distribu-
tions. Here we show that a uniformly small t, with approximation sensitivity specified in 
the p = 2 norm, can even obtain a speed-up of the convergence rate of sensitivity esti-
mation, based on the findings of Sect. 3.

First, we extract the fortuitous conditions that arose from our analysis in Sect. 3 that 
enable a fast convergence of the Rademacher complexity of the class of sensitivities. 
More precisely, if the sample sensitivity set DAH|S resides in a countable union of near-
sparse sets and a finite number l ∈ ℕ of dense clusters, then the Rademacher complexity 
of the sensitivity set decays at a fast rate 1/m, up to a logarithmic factor.

Condition 4.1 (Structured sensitivity condition) Suppose that DAH�S ⊂
�⋃∞

i=1
Ep(𝜇i)

�⋃
�⋃l

i=1
Ep(c̃i, �̃�i,Vi)

�
 , where Ep(c̃i, �̃�i,Vi) are ellipsoids centered at c̃i having side-lengths concat-

enated in the vector �̃�i and orientation Vi ; and Ep(�i), i ≥ 1 , are ellipsoids centered at the origin, 
having side-lengths concatenated in �i . Let Λi be a diagonal matrix with elements �̃�i,k ∈ (0,∞) 
for k ∈ [m] . If there are constants �, �1, �2 ≥ 0 , independent of m, such that maxi≥1 ‖�i‖2 ≤ � , 
maxi ‖ViΛi‖2→1 ≤ �1 and maxi{‖c̃i‖2} ≤ 𝜅2 , we say that the sensitivity set DAH|S is structured, 
with parameters �, �1 and �2.

Lemma 4.2 If DAH|S satisfies Condition 4.1 with parameters �, �1 , and �2 , then we have

Proof In the near-sparse subset of DAH|S that resides in 
⋃

i=1 Ep(�i) , we have by Proposi-
tion 3.3 that R̂S(DAH) ≤ �∕m.

In the remaining subset that resides in the elliptic clusters 
⋃l

i=1
Ep(c̃i, �̃�i,Vi) , we have by 

Proposition 3.4 that R̂S(DAH) ≤ (�1 + �2
√
log l)∕m . The union has complexity no larger 

than the sum of complexities of its constituent subsets.   ◻

This implies the following for the estimation of sensitivities.

Theorem 4 (Sensitivity estimation bound for uniformly approximable classes) Let S ∈ Xm 
be a sample drawn i.i.d. from the marginal distribution Dx of size m. Suppose there exists 
t ≥ 0 such that D2

A
(f ) ≤ t for all f ∈ H . Then, with probability at least 1 − � , we have

Furthermore, if Condition 4.1 holds, then �RS(DAH) = Õ(1∕m).

Proof First note that from Assumption 2 we have ‖f − Af‖∞ < C and we have the follow-
ing bound on the variance of the function f − Af ,

(63)R̂S(DAH) ≤
� + �1 + �2

√
log l

m
= O

�√
log(l)∕m

�
.

(64)sup
f∈H

|D1
A
(f ) − D̂

1

A
(f )| ≤ 6R̂S(DAH) + t

√
2 ln(

1

�
)

m
+

6C ln(
1

�
)

m
.
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where the last line is due to Jensen’s inequality. The result then follows from Bartlett et al. 
(2005), Theorem 2.1 by setting � =

1

2
 . The second statement is proved in Lemma 4.2.  

 ◻

Theorem  4 bounds the deviation between the true sensitivity and its sample estimate 
in terms of the global sensitivity threshold t of functions in H . Whenever t is sufficiently 
small, then the last term will dominate the t-dependent term, which in turn decays with m 
at a faster rate.

The observation that the sensitivity threshold t acts as a variance to control the rate 
could also be further refined using localisation to replace the global sensitivity threshold 
with the sensitivities of individual functions and relax the requirement that the entire class 
H is well approximable, at the expense of a more involved machinery of local Rademacher 
complexities (Bartlett et al., 2005), which we do not pursue here, and which would likely 
need a specialised treatment to bound the local complexity for particular choices of H , 
similarly to the approach taken in Suzuki et al. (2020a).

The key difference from the approach of Suzuki et al. (2020a) is the following. Their 
bounds depend on the local Rademacher complexity of the Minkowski difference between 
the loss classes of the full and the approximate predictors, which they are able to bound for 
some specific hypothesis classes; whereas, our bounds depend on the Rademacher com-
plexity of the set of sensitivities of predictors from the hypothesis class. The Minkowski 
difference loses the coupling between the full and approximate predictor pairs which, in 
our approach is the key to taking advantage of structure in the set of sensitivities. These 
structures that we identified and exploited are not specific to the form of functions in the 
hypothesis class chosen, and instead uncover new general insights, as well as tighten our 
bounds effortlessly, with elementary tools.

Indeed, we highlighted that even in the simple global analysis of Theorem 4, from the 
findings of Sect. 3 we were able to readily extract some general favourable rate conditions 
for sensitivity estimation. Note that Lemma 4.2 is general, and holds for any PAC-learnable 
class. It says that whenever the target function admits a small t and the interplay of data 
and model satisfies Condition 4.1, the error from sensitivity estimation becomes negligible 
very quickly (even without any additional unlabelled data), hence the dominant term of our 
generalisation bounds (Theorems 1, 2, 3) now becomes the complexity of the approximate 
class, regardless of how big the original class H was.

4.2  Implications related to real problems

In this section we discuss the significance of our theoretical results by revisiting some of 
our motivating examples related to real problems.

4.2.1  From BinaryConnect to a depth‑independent bound

We consider a specific example. Take H to be the class of L-layer feed-forward neural 
network classifiers with ReLu activations in the hidden layers and binary output. Let |W| 

Var X[f (X) − Af (X)] = � X[(f (X) − Af (X))2] − � X[f (X) − Af (X))]2

≤ � X[(f (X) − Af (X))2]

≤ (D2
A
(f ))2 = t2,
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be the total number of parameters (including all weights and bias terms). It was shown 
in Bartlett et al. (2019) that the VC dimension of this class is O(|W|L log(|W|)) , and this 
is near-tight with a lower bound of Ω(|W|L log(|W|∕L)) . A well-known relation between 
Rademacher complexity and VC dimension (Bartlett & Mendelson, 2002), Theorem 6 
implies that for this class we have

Let us consider the approximation operator A of parameter binarisation – that is, we retain 
only the signs of all parameters while keeping the same architecture, as it has been done 
in practice in BinaryConnect (Courbariaux et al., 2015). Hence HA is a finite class of car-
dinality |HA| = 2|W| . By Massart’s finite lemma (Mohri et  al., 2018), Theorem  3.7 the 
Rademacher complexity of this class of approximate classifiers is

Observe, this is independent of the network depth L. The same reasoning holds if quan-
tisation in pursued into q bins, since then |HA| = q|W| . By contrast, the complexity of the 
original class H grows with L. Applying our Theorem 2 combined with Lemma 4.2 under 
condition 4.1, we obtain the following depth-independent error bound for both the full-pre-
cision and the binarised network (i.e. a guarantee on max{ err (Af̂ ), err (f̂ )} ). Condition 4.1 
in this setting is implied whenever the number of points on which the binarised network 
disagrees with the full-precision network is of constant order with respect to the training 
set size.

Corollary 4.3 (Learning with binarised deep nets) Let H be the class of arbitrary 
depth neural network classifiers having |W| parameters, ReLu activations in the hid-
den layers, 0–1 outputs, and 0–1 loss. Let the approximation operator A be param-
eter binarisation. Suppose the structured sensitivity condition 4.1 holds. For t ≥ 0 , let 
f ∗
t
∶= argmin f∈Ht

{ err (f )} , and let t∗ ∶= argmin t≥0{ err (f
∗
t
) + 2t} . Then, with probability 

at least 1 − � , the network f̂  trained by minimising (24) on a labelled sample of size m 
satisfies

where c > 0 is a constant depending only on the parameters of condition 4.1.

Proof In Theorem 2 we use mu = m , replace (66) for R̂S(HA) , use Lemma 4.2 for �u , and 
� = 1 .   ◻

We included in Appendix a numerical illustration of algorithm (24) with binarised 
deep nets as in Corollary 4.3.

(65)R̂S(H) = O

(√
|W|L log(|W|)

m

)
.

(66)R̂S(HA) ≤

√
max
f∈HA

1

n

∑

i∈[n]

f 2(xi)

√
|W log(2)|

m
= O

(√
|W|
m

)

max{ err (Af̂ ), err (f̂ )} ≤ err (f ∗
t∗
) + 2t∗ + 2

√
|W|
m

+ 5

√
ln(

16

𝛿
)

2m

+
c

m
+ t∗

√
2 ln(

2

𝛿
)

m
+

6C ln(
2

𝛿
)

m
,
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Here we would like to discuss a potential interpretation of the result of Corollary 4.3. Bina-
ryConnect and quantised deep nets are known empirically to be successful from the previous 
literature (Courbariaux et al., 2015; Hubara et al., 2017), e.g. in image classification problems. 
Our theory suggests that there must be something fortuitous about many natural data sources 
that, in our context, makes the complex function class of deep nets behave as a low complexity 
class. We can only speculate on this and to this end we identified Condition 4.1. It is intriguing 
that the same condition also turned out to explain depth independence of error in this exam-
ple. There have been many attempts to depth independent error bounds for deep nets in the 
literature, by making various assumptions, for instance by imposing norm constraints on the 
weights (Golowich et al., 2020). Our above interpretation provides a complementary view on 
this, simply as a byproduct of our general pursuit to understand approximate predictors.

4.2.2  Towards understanding neural projections

Having developed an analytic approach to the twofold problem of learning a good full-preci-
sion predictor and a good approximate predictor, it may now be interesting to relate the train-
ing objective function we obtained in (25) to the training objective of Neural Projections pro-
posed in Ravi (2019). The latter has been a practical approach to on-device deep networks. 
It has no theoretical backing, however ample empirical evidence demonstrated its impressive 
success in real world image classification problems (Ravi, 2019). It minimises a weighted sum 
of three terms – the empirical errors of full and approximate models plus their disagreement 
– with the ultimate goal to deploy the approximate model on-device.

Take any � ∈ [0, 1] . Our training objective can be written as the following.

where �1 = 1∕� − 1 ≥ 0, �2 = 1∕� − 1 + 2�∕� ≥ 0.
Now, if we relax Af in HA , i.e. replace it with some g ∈ HA , then we arrive precisely at 

the training objective of Neural Projections. Indeed, in Ravi (2019) this modified objective is 
minimised in the parameters of f and g along with tuning both �1 and �2 independently. Thus, 
we may interpret the training objective function of Neural Projections as an approximate ver-
sion of our objective function (25). While this has no theoretical justification, our objective 
function has a similar flavour, and it follows from a rigorous theory. Hence, while we reckon 
this is not a complete explanation of why Neural Projections (Ravi, 2019) are so effective in 
practice, nevertheless we believe this interpretation still brings some insights into its working.

4.3  Potential extensions to stochastic approximate predictors

The approximation schemes assumed so far were deterministic. Many approxima-
tion schemes are in fact stochastic in nature, therefore, in this section we discuss how to 
straightforwardly adapt our framework to stochastic approximation schemes.

êrr (Af ) + �D̂A(f ) =
�

2
êrr (Af ) +

1 − �

2
êrr (Af ) + �D̂A(f )

≤
�

2
êrr (f ) +

�

2
�D̂A(f ) +

1 − �

2
êrr (Af ) + �D̂A(f )

=
�

2
êrr (f ) +

1 − �

2
êrr (Af ) +

1 − � + 2�

2
D̂A(f )

∝ êrr (f ) + �1 êrr (Af ) + �2D̂A(f ),
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Let (Ω,F,ℙ) be a probability space. Then we define a Stochastic approximation 
scheme by A ∶ Ω ×H → HA , where HA∶={A�f ∶ � ∈ Ω and f ∈ H} . Then for a fixed 
� ∈ Ω we have an approximation operator A� ∶ H → H� where H�∶={A�f ∶ f ∈ H} ; 
that is, for a fixed � we have one approximation operator. Thus, when |Ω| = 1 we reduce 
to the deterministic setting. Also, for a fixed f ∈ H we have the collection of possible 
approximations to f the set{A�f ∶ � ∈ Ω}.

Now we define D�(f )∶=DA�
(f ) , and then for a fixed arbitrary � ∈ Ω we have with 

probability at least 1 − � , that

for all f ∈ H . This uniform bound follows directly from Lemma  2.3 combined with a 
standard Rademacher bound, and for fixed � the first two terms on its right hand side cor-
respond to the objective function of the Algorithm (18) in Sect. 2.3.

We can make this independent of a particular random instance, e.g. by considering 
expectation. Although we cannot take expectation on both sides as this would incur a 
union bound over infinitely many sets, we can simply write

Now applying Jensen’s inequality, we have

and the argument of the expectation can be bounded in terms of the Rademacher com-
plexity Rm(H�) . Thus, we have the following uniform bound expressed in terms of the 
expected sensitivity, the expected Rademacher complexity of the small approximating 
class, and a new empirical error term that, due to the expectation may be interpreted as a 
data augmentation loss. That is, we have, with probability at least 1 − � , the following

Minimising the first two terms on its right hand side could be used to justify a regularised 
data augmentation algorithm in analogy with our previous algorithm in (18).

Likewise, one can introduce estimates of the expected distortion D�(f ) from unla-
beled data. Alternatively, if the approximation operator A satisfies a variance condition, 

namely that 
�
� �‖Awf − f‖2

L2

� 1

2

≤ �C(f ) for all f ∈ H , where C(f ) is some property of 
f ∈ H , then we have, by Jensen’s inequality and the variance condition, 

� �[D�(f )] ≤ � �[D�(f )
2]

1

2 =
�
� � � x∼Dx

�A�f (x) − f (x)�2
� 1

2 =
�
� �‖A�f − f‖2

L2

� 1

2

≤ �C(f ) . 
So we see this variance condition on A provides another instance where the need for 
additional unlabelled data is eliminated in the case of stochastic approximation opera-
tors. A similar condition, formulated on the level of parameters, is frequently 

(67)
err (f ) ≤ êrr (A�f ) + �D�(f ) + 2�R̂S(H�) + 3

√√√√ ln
(

2

�

)

2m
,

err (f ) = err (f ) − � � err (A�f ) + � � err (A�f )

≤ �� �D�(f ) + � � err (A�f ) − � � êrr (A�f ) + � � êrr (A�f )

≤ �� �D�(f ) + sup
f∈H

[
� � err (A�f ) − � � êrr (A�f )

]
+ � � êrr (A�f ).

sup
f∈H

[
� � err (A�f ) − � � êrr (A�f )

]
≤ � � sup

f∈H

[
err (A�f ) − êrr (A�f )

]
,

(68)
err (f ) ≤ � � êrr (A�f ) + �� �D�(f ) + 2�� �Rm(H�) +

√√√√ ln
(

1

�

)

2m
.



1727Machine Learning (2023) 112:1693–1732 

1 3

encountered in the literature of quantisation for learning and optimisation, such as in 
stochastic rounding (Alistarh et al., 2017; Wen et al., 2017).

5  Conclusions

We end our study with a high-level summary. Inspired by the recent surge of interest in 
model-compression and approximate learning algorithms in the context of small device 
settings, we studied the role of approximability in generalisation, both in the full precision 
and in the approximated settings. Our main findings can be summarised as follows: (1) 
For any given PAC-learnable problem, and any approximation scheme, target concepts that 
have low sensitivity to the approximation can be learned from a smaller labelled sample, 
provided sufficient unlabelled data. This is achieved by using approximation to modify the 
loss function and isolating a sensitivity term in the generalisation error. The modified loss 
function has a lower complexity in comparison with the original, pushing the complexity 
of the learning problem onto the class of sensitivity functions – which in turn only requires 
unlabeled data for estimation whenever the original loss is Lipschitz. (2) Our analysis 
yielded algorithms showing that it is possible to learn a good predictor whose approxima-
tion has the same generalisation guarantee as the full precision predictor. Owing to the gen-
erality of our approach, such provably accurate approximate predictors can be used with 
a variety of model-compression and approximation schemes, and potentially deployed in 
memory-constrained settings. (3) Our algorithms use unlabelled data to estimate the sensi-
tivity of predictors to the given approximation operator, and this needs not be independent 
from the labelled training set. Moreover, while the required unlabelled sample complexity 
can be large in general, we highlighted several examples of natural structure in the class of 
sensitivities that significantly reduce, and possibly even eliminate, the need of additional 
unlabelled data. At the same time, structural properties of the sensitivity class shed new 
light onto the question of what makes certain instances of learning problems easier than 
others.

Several open questions remain. As our upper bounds highlighted structural traits that 
explain good performance in model-compression settings, it will be interesting to develop 
lower bounds under the same structural traits, to assess the tightness of our bounds. From 
the practical perspective, it will be interesting to develop efficient implementations, and 
study their computational complexity. Another line of interesting future work is to explore 
adversarial settings (Chowdhury et al., 2022; Montasser et al., 2019), where the approxi-
mation operator A is in the hands of an adversary, and the learner needs to find a predictor 
that is robust to it. Furthermore, it would be interesting to study model-compression and 
approximate algorithms in other learning theory frameworks such as PAC-Bayes, and per-
haps even non-uniform frameworks.

Appendix 1: Numerical illustration

We presented a theory for learning with model approximation / model compression. Our 
algorithm (24), and its refinement (25), were of theoretical interest in that pursuit, and we 
should note that, for certain choices of approximation—such as weight-binarisation or 
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quantisation—our minimisation objective is not differentiable. However, it may still be 
interesting to illustrate its working in numerical experiments, which we do in this section.

Appendix 1.1: A multi‑objective optimisation approach

We employ a general-purpose assumption-free method, known as NSGA-II, a multi-objec-
tive evolutionary algorithm based on non-dominated sorting (Deb et al., 2002). This is an 
iterative population-based heuristic approach that has had many successful applications in 
practice. Its computation complexity is of order O(MN2) per iteration, where M is the num-
ber of objectives (in our case, M = 2 ), and N is the population size. The latter is a param-
eter representing the number of candidate solutions at any given iteration. NSGA-II returns 
a set of non-dominated solutions (classifiers in our case) that estimate the Pareto front, 
each solution representing a different tradeoff between the objectives.

NSGA-II was previously demonstrated to work well in regularised machine learning 
problems (Chen & Yao, 2010), as it alleviates the need for tuning the balance between 
competing terms. The user can choose from the returned solutions a-posteriori—for 
instance based on validation errors, or some other criteria depending on the application 
context.

Our objective function breaks up naturally in two components, which we will minimise 
simultaneously:

We shall demonstrate the working of this approach with the approximation operator A 
taken to be weight-binarisation, as in BinaryConnect (Courbariaux et al., 2015) – a non-
differentiable problem.

Appendix 1.2: Implementation and parameter setup

Our implementation is based on the Python package PyMOO1 (Blank & Deb, 2020). The 
candidate predictors are fully connected 3-layer feed-forward neural network classifiers 
with ReLu activation on the hidden nodes, thresholded sigmoid on the output node, and no 
regularisation (other than the implicit effect of the approximation operator). We employ the 
0–1 loss directly, since the optimiser allows non-differentiable objectives.

We have set the population size to N = 100 , following (Chen & Yao, 2010), and we 
stop when the change in both objectives becomes less than 10−3 for 100 consecutive itera-
tions, or when the allotted computing time is exhausted. We use default settings (simu-
lated binary crossover, and polynomial mutation) with default parameters, with two addi-
tions2 that enhance efficiency for our problem, as follows. Firstly, we added a constraint to 
ensure the sample error êrr (Af ) shrinks throughout iterations to no larger than 0.3. This 
speeds up the process in our experience, as new candidates are then able to explore more 
promising regions of the hypothesis space. Secondly, at each iteration, we eliminate can-
didates with identical objective values, even if they are different in the parameter space, 

E1 ≡ êrr (Af ) and E2 ≡ D̂A(f )

1 https:// pymoo. org/
2 credit to Yangfan Peng

https://pymoo.org/
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breaking ties randomly. This encourages diversity of the candidate set, leading to a better 
coverage of the Parento front.

Appendix 1.3: Data sets and protocol

We created a 2D synthetic data set (Synth) by sampling two 0-mean axis-aligned Gaussians 
with variances (1, 0.3) and (0.3, 1) respectively, following the ‘Bumpy’ data set descrip-
tion from (Chen & Yao, 2010). The training set has 600 points, of which we used half for 
validation, and the independent test set has another 300 points. The validation set is only 
used to select one classifier from the non-dominated set of solutions returned by the multi-
objective optimiser.

The second data set we use is MNIST. This consists of 28 × 28 pixel images of hand-
written numerals, of which we took two classes representing ‘0’ versus ‘1’. We have 
4702 + 5430 images in these two classes for training, a further 2533 for validation, and an 
independent test set of size 2115. No pre-processing was applied to either data sets.

We use the same number of hidden nodes in all candidate classifiers which, in the 
reported experiments, we set to 10 per hidden later in the case of Synth, and to 100 per hid-
den layer in the case of MNIST.

Appendix 1.4: Results

In Fig.  1 we show the estimated Pareto fronts (blue curves) obtained on Synth and on 
MNIST after one full run (300 iterations) of the algorithm. The markers on these curves 
represent the two objective values of the non-dominated solutions found in the last gen-
eration. As we can see from the figure, each of these classifiers exhibit a different tradeoff 
between their sample error and sensitivity. For each of these classifiers f̂  , we then com-
puted the validation-set accuracy of their weight-binarised version, Af̂  (vertical lines). The 
specific tradeoff at which the validation accuracy is highest is data set dependent, and this 
is one of the reasons that a multi-objective approach capable of capturing multiple trade-
offs is well suited. Indeed in the case of MNIST, the highest validation accuracy happens to 

Fig. 1  Estimated Pareto fronts (blue curves) obtained in a typical run of the multi-objective minimiser on 
Synth and MNIST. Each marker on the curve represents one non-dominated classifier obtained. For each of 
these, we also show the validation accuracy of Af (vertical lines) on the scale on the right axis
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correspond to the classifier that also has the lowest sample error (second plot of Fig. 1)—in 
contrast, for Synth (first plot of Fig. 1, which has overlapping classes, the highest validation 
accuracy occurs in a classifier with relatively high sample error but relatively low sensitiv-
ity—so here a lower sensitivity in fact appears to help prevent overfitting.

From the non-dominated classifiers obtained (as in Fig. 1), we select the one with the 
highest validation accuracy for Af̂  , and take the corresponding f̂  forward for evaluation on 
the independent test set. We performed 5 independent repetitions of this entire procedure, 
and report the average and standard deviation of test set accuracy in Table 1. As predicted 
from our theory, we see that f̂  and Af̂  perform very similarly. For reference and compari-
son, following the experiment protocol in Courbariaux et al. (2015), we also trained a clas-
sic, differentiable version of the full-precision network, having the same 2-hidden layer 
architecture, but with sigmoid output, cross-entropy loss, and L2-weight decay, using Adam 
(Kingma & Ba, 2015). From Table 1 we see the performances are very similar, and our 
weight-binarised Af̂  performs on-par with the classic full-precision network. These experi-
mental findings are similar to those in Courbariaux et al. (2015), but in contrast our algo-
rithm has a principled theoretical foundation.

Appendix 1.5: Computing effort

The main computational burden is at the training phase. While the per-iteration compu-
tational complexity is polynomial, convergence can take a large number of iterations on 
larger data sets. However, the test-time computation speed is not hindered; the binarised 
network runs at the same speed as BinaryConnect (Courbariaux et al., 2015) at test time. 
One can devise more efficient optimisation procedures, for instance by exploiting paralleli-
sation, or by developing specialised optimisation methods for particular model-approxima-
tion schemes.
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Table 1  Test accuracy (%) results for our trained full-precision classifier ( f̂  ) and its weight-binarised ver-
sion ( Af̂  ), compared with classic training of a full-precision network using Adam Kingma and Ba (2015)

Averages and standard deviations are reported from 5 independent repetitions. Note that Af operates with 
parameter values of ±1 , yet it performs comparably

Dataset Hidden layers Af̂ f̂ Classic

Synth {10, 10} 80.27 ± 1.67 80.13 ± 1.15 80.00 ± 1.01
MNIST (0 vs. 1) {100,100} 99.89 ± 0.04 99.80 ± 0.12 99.91 ± 0.03
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