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Abstract
Class imbalance occurs when the class distribution is not equal. Namely, one class is under-
represented (minority class), and the other class has significantly more samples in the data 
(majority class). The class imbalance problem is prevalent in many real world applica-
tions. Generally, the under-represented minority class is the class of interest. The synthetic 
minority over-sampling technique (SMOTE) method is considered the most prominent 
method for handling unbalanced data. The SMOTE method generates new synthetic data 
patterns by performing linear interpolation between minority class samples and their K 
nearest neighbors. However, the SMOTE generated patterns do not necessarily conform 
to the original minority class distribution. This paper develops a novel theoretical analy-
sis of the SMOTE method by deriving the probability distribution of the SMOTE gener-
ated samples. To the best of our knowledge, this is the first work deriving a mathematical 
formulation for the SMOTE patterns’ probability distribution. This allows us to compare 
the density of the generated samples with the true underlying class-conditional density, 
in order to assess how representative the generated samples are. The derived formula is 
verified by computing it on a number of densities versus densities computed and estimated 
empirically.
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1  Introduction

The class imbalance problem arises in various real world applications such as: medical 
diagnosis (Fotouhi et al., 2019), credit card fraud detection (Li et al., 2021), software test-
ing (Balogun et al., 2020), e-commerce (Wu & Meng, 2016), and stock selection (Atiya 
et al., 1997). The unbalanced data problem occurs when one class is under-represented (the 
minority class), while the other class is over-represented in the data (the majority class). 
The class imbalance could be due the data collection process. For example, in medical 
diagnosis, normal cases could be larger than patients suffering from a certain uncommon 
disease (Liu et al., 2022; Fotouhi et al., 2019) although the target is to identify the minority 
class denoting the patients.

Standard machine learning classifiers such as Support vector machines (SVM) (Hearst 
et al., 1998), decision trees (Quinlan, 1996), and K-nearest neighbor (KNN) (Guo et al., 
2003) generally assume at least implicitly an even class distribution. Thus, applying the 
standard approaches without handling the class imbalance could dramatically impact the 
classification performance since classifiers would be biased towards the over-represented 
(majority) class.

There are three major approaches for handling the class imbalance problem: the data 
level approach (Batista et al., 2004; Chawla et al., 2002; Guzmán-Ponce et al., 2021), the 
cost sensitive approach (Devi et al., 2022), and the algorithm level approach (Mullick et al., 
2018; Buda et al., 2018; Ganaie et al., 2021).

The data level approach is the most prevalent paradigm in handling unbalanced data. 
Data level algorithms are sampling methods that apply data pre-processing before clas-
sification, typically by increasing the number of minority class samples which is known 
as over-sampling (Chawla et al., 2002; Koziarski et al., 2021). Conversely, some majority 
class samples could be excluded from the data, which is known as under-sampling (Chen-
nuru & Timmappareddy, 2022; Vuttipittayamongkol & Elyan, 2020). A key advantage of 
the data level approach is its generality since it can be applied to any classifier.

Over-sampling can be performed using two main approaches. The first approach is rep-
licating the original minority class samples such as: random over-sampling (Abd Elrahman 
& Abraham, 2013). However, this approach may result in over-fitting by over-emphasizing 
noisy minority samples. The second approach for increasing the number of minority class 
samples is to generate new synthetic minority class samples (Abd Elrahman & Abraham, 
2013; Chawla et al., 2002; Wan et al., 2017; Goodman et al., 2022).

One of the most popular over-sampling methods is “Synthetic Minority Over-sampling 
Technique (SMOTE)" developed by Chawla et  al. (2002). The SMOTE method gener-
ates synthetic data by applying linear interpolation between a minority class point and 
one of its K nearest neighbors. SMOTE is a powerful over-sampling method that has been 
widely adopted in many applications (Fernández et al., 2018; Ahsan et al., 2018; Kishor 
& Chakraborty, 2021). Furthermore, a plethora of SMOTE extensions have been devel-
oped such as: Borderline SMOTE (Han et al., 2005), Safe-level SMOTE (Bunkhumpornpat 
et al., 2009), ADASYN (He et al., 2008), SVM SMOTE (Nguyen et al., 2011), Localized 
Random Affine Shadowsampling (LoRAS) (Bej et  al., 2021), CDSMOTE (Elyan et  al., 
2021), and Deep SMOTE (Dablain et al., 2022).

Another technique for synthetically generating minority class samples is to estimate the 
underlying minority class probability distribution, and generate samples from it such as: 
PDF oversampling (PDFOS) (Gao et al., 2014) and random walk oversampling (Zhang & 
Li, 2014). However, density estimation in case of scarce data samples would be inaccurate 
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especially for high dimensional data. On the other hand, for high dimensional data such 
as images, Wan et al. (2017) develop a variational autoencoder for generating similar syn-
thetic samples to the original ones.

In this work, we mainly investigate the SMOTE method due to its popularity and com-
petitive performance. Despite the efficacy of the SMOTE over-sampling algorithm (Chawla 
et al., 2002), it has some limitations. For example, SMOTE oversamples noisy examples 
which could magnify the noise impact and degrade the classification performance. In addi-
tion, SMOTE could falsely generate synthetic samples in the majority class region mis-
leading the classifier. Furthermore, SMOTE does not consider minority classes composed 
of several small disjuncts or sub-concepts (Prati et al., 2004). One of the main reasons for 
all of the aforementioned SMOTE pitfalls is the fact that the SMOTE patterns are not gen-
uine as they are not generated from the original minority class distribution. It is important 
to establish that they are true representatives of the underlying class, by showing that they 
obey a similar distribution.

Another concern regarding SMOTE is that it is not sufficiently grounded on a solid 
mathematical theory. As a step towards this goal, this work aims to establish a mathemati-
cal foundation for analyzing the SMOTE algorithm. Specifically, this work derives a math-
ematical formulation for the probability distribution of the SMOTE synthetically gener-
ated samples. The benefit of this analysis is that it allows us to study how relevant are the 
generated samples, or how close are they in distribution to the true ones. Moreover, more 
better-suited SMOTE extensions could be constructed based on the insights gained from 
the theoretical analysis. Also, the analysis will shed some insight into the other SMOTE 
extensions.

The main contributions of this work are summarized as follows:

•	 In this work, we derive a mathematical formulation for the probability distribution of 
the SMOTE generated patterns. The presented theoretical formulation is general, and 
it can be applied to any class-conditional probability distribution. To the best of our 
knowledge, this is the first theoretical analysis deriving the probability density of the 
SMOTE generated patterns.

•	 As a follow-up test, we illustrate the general theoretical analysis by applying it to some 
distributions for verification of the main contribution.

The paper is organized as follows: Section 2 presents a literature review. Then, the math-
ematical derivation of SMOTE probability distribution is introduced in Sect. 3. After that, 
the experimental results are demonstrated in Sect. 4. Finally, Sect. 5 concludes the paper 
and presents some potential future research directions.

2 � Related work

Handling unbalanced data has been extensively studied in the literature (Japkowicz & 
Stephen, 2002; Kamalov et  al., 2022; Wang et  al., 2018; Haixiang et  al., 2017; Wang 
et al., 2021; Kaur et al., 2019). However, there are a few studies that provide theoreti-
cal or empirical analyses of the data sampling methods, in particular SMOTE. In this 
review, we focus primarily on these works. Elreedy and Atiya (2019) derive the expec-
tation and covariance matrix of the SMOTE generated patterns. However, the analy-
sis we present here is not restricted to the moments since we develop a mathematical 
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formulation for the density function itself of the SMOTE generated samples. Another 
key distinction between this work and the work of Elreedy and Atiya (2019) is that the 
previous work assumes some approximations, while the work presented here is an exact 
formula. Studying the density characteristics of the SMOTE patterns could stimulate 
developing density oriented over-sampling methods (Yan et  al., 2022; Mayabadi & 
Saadatfar, 2022). To the best of our knowledge, this is the first analytical formula for 
the density of SMOTE generated samples. We will limit this work on developing the 
analytical formula, rather than a complete analysis of SMOTE, as this is outside of the 
scope of the paper. For a comprehensive analysis of the features of SMOTE refer to the 
work of Elreedy and Atiya (2019).

Another theoretical analysis for resampling algorithms is performed by Moniz and 
Monteiro (2021). In particular, the authors apply no free lunch machine learning theorems 
to imbalanced learning. In addition, they provide a comparative empirical study for dif-
ferent resampling methods which are: random under-sampling, random over-sampling, 
importance sampling, SMOTE, and SMOTE combined with random under-sampling. The 
authors conclude that any two resampling strategies would have the same classification 
performance given no a priori knowledge or data assumptions.

Several empirical studies have been conducted to inspect sampling methods including 
SMOTE. For example, Luengo et  al. (2011) analyze the behavior of different sampling 
methods, including SMOTE, one of its extensions called SMOTE-ENN, and an under-sam-
pling method named EUSCHC (García & Herrera, 2009). The authors measure the impact 
of the different sampling methods on the shape of the processed data after sampling includ-
ing: the overlapping between the different classes, and class separability and its geometri-
cal properties. However, these measures do not consider the distribution of the generated 
examples.

Furthermore, the study introduced by Dudjak and Martinović (2020) develops a com-
parative analysis of the classification performance for diverse SMOTE extensions. The 
study classifies SMOTE extensions into three different categories according to the inter-
polation mechanism. The three categories are: SMOTE-like interpolation, range restricted 
interpolation, and multiple interpolations. SMOTE-like interpolation employs the same 
interpolation mechanism as SMOTE such as: Modified SMOTE (Hu et  al., 2009). The 
range restricted interpolation elects only particular minority class samples for interpolation 
such as: Borderline SMOTE (Han et al., 2005). The multiple interpolations method adopts 
multiple neighbors for the interpolation process like Distance-SMOTE (De La Calleja & 
Fuentes, 2007).

Another piece of work analyzing resampling methods is introduced by García et  al. 
(2010). This study investigates the impacts of the employed classifier and imbalance ratio 
on the classification performance. The authors recommend using over-sampling for low 
and moderate class imbalance ratios. Thabtah et al. (2020) provide another in-depth analy-
sis of imbalance ratio and its effect on classifier accuracy using large scale experimental 
analysis. Moreover, Kamalov et al. (2022) attempt to determine the optimal sampling ratio 
using a large-scale study The study developed by Dubey et  al. (2014) compares among 
different under-sampling methods, over-sampling methods, and combinations of both 
approaches. Their experimental analysis considers random over-sampling, SMOTE, ran-
dom under-sampling, and K-Medoids under-sampling (Dubey et  al., 2014). Their work 
assures that the sophisticated sampling methods such as: SMOTE and K-Medoids surpass 
random sampling methods.

Bolívar et al. (2022) conduct an empirical analysis evaluating the SMOTE performance 
on big data. Specifically, the authors consider high dimensional and sparse data. Their 



4907Machine Learning (2024) 113:4903–4923	

1 3

results indicate that the sparsity is more influential than dimensionality on the SMOTE 
performance on big data.

Several contributions have been devoted to determine the optimal over-sampling rate. 
For example, Weiss and Provost (2003) perform an experimental analysis to find the opti-
mal class ratio from thirteen proposed class distributions by varying the minority class 
percentage in the training set. They conclude that the optimal balance is not necessarily 
achieved at full balance and it is a function of the underlying dataset. Albisua et al. (2013) 
extend the analysis developed by Weiss and Provost (2003) by conducting experiments on 
several sampling methods and different classifiers. Their experiments demonstrate that the 
optimal class balance depends not only on the data, but also on the employed classifier and 
the re-sampling method.

These works provide in-depth analysis of the functionality of SMOTE and other resa-
mpling approaches. These analyses are very useful for guiding the researchers for better 
usage of these algorithms. However, much of this analysis is empirical, and there is little 
theoretical analysis. This paper attempts to fill this void and provides an exact and full 
characterization of the probability density of SMOTE-generated patterns. This will help 
the researchers understand the functioning of SMOTE and find out how the different fac-
tors impact its performance.

3 � SMOTE density analysis

3.1 � SMOTE algorithm

In this section, we briefly describe the SMOTE over-sampling algorithm developed by 
Chawla et al. (2002). The SMOTE over-sampling algorithm proceeds as follows:

Figure  1 demonstrates the SMOTE generation mechanism. It can be noted from 
the figure that the SMOTE patterns lie on the connection lines between the minority 
class samples and their K nearest neighbors. The inward positioning of SMOTE pat-
terns make them more contracted than the original distribution as inferred by Elreedy 
and Atiya (2019). This supports our argument that SMOTE patterns do not necessarily 
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follow the original minority class density. In this work, we analytically derive the prob-
ability density function of the SMOTE generated patterns.

3.2 � Notation

In this section, we define the notation adopted in the theoretical analysis.
Let x0 denote a candidate minority class sample for interpolation by SMOTE, and the 

original probability density of the minority class is denoted as pX(x) . The synthetically 
generated sample created by SMOTE is defined as Z. Let d be the dimension of the class 
pattern.

The total number of minority class samples is defined as N. Let K represent the total 
number of neighbors used in SMOTE where different numbers of neighbors k are used 
each time, with k being randomly generated from 1 to K (Chawla et  al., 2002). The 
Euclidean distance between the minority class sample x0 , and its chosen kth neighbor is 
defined as r.

Let B(x0, r) define the spherical ball centered at x0 with radius r enclosing all up to 
the the kth nearest neighbor of x0 . The integral IB(x0,r) , called the coverage, defines the 
integral of the minority class density on the ball B(x0, r) . The integral IB(x0,r) is computed 
as follows:

The incomplete beta function B(q; a, b) (Dutka, 1981; Al-Sirehy & Fisher, 2013a, b), is 
defined as:

(1)IB(x0,r) = ∫B(x0,r)
pX(x)dx.
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Fig. 1   The SMOTE interpolation mechanism displaying the original minority samples and the SMOTE 
generated patterns



4909Machine Learning (2024) 113:4903–4923	

1 3

3.3 � Theoretical analysis of SMOTE density

In this section, we introduce a mathematical analysis for the SMOTE oversampling method 
developed by Chawla et al. (2002). Specifically, we evaluate the probability density func-
tion of the SMOTE generated patterns pZ(z) for a general minority class density pX(x).

Theorem 1  Let x be a random sample of a random variable X. Let Z be a random variable 
defined as a random linear interpolation between K-nearest neighbors of xk as given in 
Algorithm 1. Then, the probability density of Z is given by:

where B
(
1 − IB(x,r);N − K,K

)
 is the incomplete beta function (Dutka, 1981) defined in Eq. 

(2).

Lemma 1  The conditional probability density function of the SMOTE generated patterns 
given a certain minority class sample x0 , pZ(z|x0) is evaluated as:

This theorem essentially gives a full analytic solution for the probability density of the 
SMOTE generated samples. The formulas are exact and do not rely on any assumptions or 
approximations.

Proof of Theorem 1 and Lemma 1  The SMOTE algorithm first selects one of the minority 
samples x0 randomly. Assume for the moment that this point x0 is fixed or given. Then we 
select a neighbor (say xk ) randomly out of the K nearest neighbors of x0 . Then we pick a 
point z randomly from the line joining that neighbor xk and x0 . This is given by the linear 
interpolation formula:

where w is a uniform random number in [0, 1].
Consider a two-dimensional case for illustration and consider a probability mass located 

at area A in Fig. 2 which denotes an infinitesimal area element around the chosen neighbor 
xk , at distance r from x0 . After applying SMOTE, namely Eq. (3), the probability mass 
is mapped into the yellow shaded area B, which is an infinitesimal circle sector reaching 
out till the k nearest neighbors of x0 . Then, the probability mass at area C, which is an 

(2)B(q;a, b) = ∫
q

t=0

ta−1(1 − t)b−1 dt

pZ(z) = (N − K)

�
N − 1

K

�

∫x

pX(x)∫
∞

r=‖z−x‖
pX

�
x +

(z − x)r

‖z − x‖

��
rd−2

‖z − x‖d−1

�

× B

�
1 − IB(x,r);N − K − 1,K

�
dr dx

pZ(z�x0) = (N − K)

�
N − 1

K

�

∫
∞

r=‖z−x0‖
pX

�
x0 +

(z − x0)r

‖z − x0‖

��
rd−2

‖z − x0‖d−1

�

× B

�
1 − IB(x0,r);N − K − 1,K

�
dr

(3)z = (1 − w)x0 + wxk
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infinitesimal area element around the SMOTE generated pattern z (somewhere between xk 
and x0 according to the value of w) can be evaluated as:

where r denotes the euclidean distance between x0 and its chosen neighbor xk , as defined in 
Sect. 3.2. The division by r is because the mass of A gets spread out to a region of length r, 
thus, diluting the density by that amount. Essentially, the probability mass that is concen-
trated in area A will become spread out to the whole circle sector B by the randomized lin-
ear interpolation procedure (Eq. 3). Thus, the density will be divided by r, due to the target 
area being bigger by that amount.

The division by ‖z−x0‖
r

 is because the area at C is smaller than the area of A by that 
amount (due to the ratio of arc lengths: the arc length for C is ‖z − x0‖d� (radius times d� ), 
while for A it is rd� ), so the probability mass gets more concentrated by that amount. This 
analysis can be generalized to the d-dimensional case as follows:

According to the SMOTE method’s geometry and as shown in Fig. 2, Z lies in the line con-
necting between x0 and its the chosen neighbor x. Then:

The previous analysis assumes that the kth neighbor is fixed and at a distance r from x0 , i.e. 
the probability density computed is conditioned on this assumption. Next step is to assume 
that r is random and take the expectation over r:

(4)p(z ∈ C) =
p(z ∈ A)

r
‖z−x0‖

r

(5)p(z ∈ C) = p(z ∈ A)
rd−2

‖z − x0‖d−1

(6)r = ‖x − x0‖ ≥ ‖z − x0‖

B

A

C
 x

z

x0

Fig. 2   SMOTE density mapping clarification, where x0 is the minority class pattern on which SMOTE is 
applied, xk denotes the randomly chosen neighbor, and z is the SMOTE generated sample
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 Note that we used r = ‖z − x0‖ as the lower limit of the integral because this is implied 
in Eq. (6): the distance ‖z − x0‖ of the interpolated point is always smaller than or equal to 
the distance of the kth neighbor r. The term p(r|x0) represents the probability density that a 
kth nearest neighbor of x0 is located at distance r away from x0 . This term will be evaluated 
later. Substituting from Eq. (5) into Eq. (7):

where S(x0, r) denotes a spherical shell around x0 with radius r. The first quotient ( pX 
divided by the integral over the spherical shell) represents the probability density of a point 
at the location xk , given that it occurs at a distance r from x0 . This means that the kth neigh-
bor (the point that is the target of the interpolation) is at distance r away from x0 . This quo-
tient is obtained by straightforward application of Bayes probability rule, as follows:

 Note that the point xk is written as x0 +
(z−x0)r

‖z−x0‖
 according to Eq. (3) and enforcing the fact 

that it is a distance r away from x0 (in other words that x ∈ S(x0, r) according to Eq. (9). 
The reason for writing it this way is that it has to be expressed in terms of z. So, xk is writ-
ten as x0 plus the unit vector in the direction of z: (z−x0)‖z−x0‖

 multiplied by r so that it lands on 
the shell that is distance r away from x0.

In summary, the derivation proceeds in several steps. In the first step we assume that 
the kth neighbor is at a fixed distance r away from x0 , and evaluate the probability density 
(given r). Next step is to obtain the probability density of z given that the neighbor is a dis-
tance r away. If the neighbor is r distance away, then this means that the neighbor is located 
on a spherical shell of radius r. Using Bayes formula we obtain the quotient indicated in 
the formula. Next step we take the expectation over r, using the probability that the kth 
neighbor is distance r away.

Evaluating p(r|x0) in Eq. (7):
According to the work of Fukunaga and Hostetler (1973), the coverage u of the k nearest 

neighbors is denoted as:

where B(x0, r) is the ball around x0 enclosing up to the kth nearest neighbor of x0 and pX(x) 
represents the probability density function of the underlying distribution (from which the k 
neighbors are drawn).

Furthermore, according to the work of Fukunaga and Hostetler (1973), u follows a Beta 
distribution such that u ∼ Beta(u;k,N − k) . Then, the density pU(u) is defined as:

(7)pZ(z�x0, k) = ∫
∞

r=‖z−x0‖
pZ(z�x0, r, k)p(r�x0)dr

(8)
pZ(z�x0, k) = �

∞

r=‖z−x0‖

pX

�
x0 +

(z−x0)r

‖z−x0‖

�

∫
S(x0,r)

pX(x)dx

�
rd−2

‖z − x0‖d−1

�
p(r�x0)dr

(9)pX(x|x ∈ S(x0, r)) =
pX(x, x ∈ S(x0, r))

p(x ∈ S(x0, r))
=

pX(x)

∫
S(x0,r)

pX(x)dx

(10)u = G(r) = ∫B(x0,r)

pX(x) dx
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Using the theory of transformation of random variables (Magdon-Ismail & Atiya, 2002; 
Venkatesh, 2013), the probability density of r, the distance from x0 to the kth neighbor is 
given by:

Using Eq. (10), then Eq. (12) could be written as:

where G�(r) is the first derivative of G(r).
Substitute from Eq. (11) into Eq. (13) yields:

Substituting from Eqs. (10) and (11) into Eq. (14), then the conditional probability density 
of r given a minority sample x0 , p(r|x0) is evaluated as:

 where G�(r) equals the integral over the shell of radius r: ∫
S(x0,r)

pX(x)dx because changing 
r to r + dr in Eq. (10) will yield this integral over the shell. Substituting from Eq. (15) into 
Eq. (8) produces the following:

Then, Eq. (16) can be simplified into:

So far we have assumed that we will take a fixed neighbor k. Since we select a neighbor at 
random among the K neighbors with probability 1

K
 next step we will take the expectation 

over this random selection over k. This results in the following:

(11)pU(u) =
(N − 1)!uk−1(1 − u)N−k−1

(k − 1)!(N − k − 1)!

(12)p(r|x0) = pU(u)
||
du

dr
||

(13)p(r|x0) = pU(u)G
�(r)

(14)p(r|x0) = (N − 1)

(
N − 2

k − 1

)
Gk−1(r)(1 − G(r))N−k−1G�(r)

(15)

p(r|x0) = (N − 1)

(
N − 2

k − 1

)(

∫B(x0,r)

pX(x)dx

)k−1(
1 −

(

∫B(x0,r)

pX(x)dx

))N−k−1

× ∫S(x0,r)

pX(x)dx

(16)

pZ (z|x0, k) =(N − 1)
(

N − 2
k − 1

)

∫

∞

r=‖z−x0‖

(

∫B(x0,r)
pX(x)dX

)k−1

×
(

1 −
(

∫B(x0,r)
pX(x)dX

))N−k−1[

∫S(x0,r)
pX(x)dx

]
pX

(

x0 +
(z−x0)r
‖z−x0‖

)

∫S(x0,r) pX(x)dx

×
(

rd−2

‖z − x0‖d−1

)

dr

(17)
pZ (z|x0, k) =(N − 1)

(

N − 2
k − 1

)

∫

∞

r=‖z−x0‖

(

∫B(x0,r)
pX(x)dx

)k−1

×
(

1 −
(

∫B(x0,r)
pX(x)dx

))N−k−1

pX

(

x0 +
(z − x0)r
‖z − x0‖

)(

rd−2

‖z − x0‖d−1

)

dr
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Let IB(x0,r) = ∫
B(x0,r)

pX(x)dx . Then:

Define J(x0, r) as follows:

Equation (20) can be written as:

From Eq. (21), J(x0, r) is a cumulative probability function F(IB(x0,r),N − 2,K − 1) for the 
Binomial distribution B(N − 2, IB(x0,r)).

The cumulative probability function F(y, N, k) (Wadsworth, 1960) can be expressed as:

Thus, F(IB(x0,r),N − 2,K − 1) is evaluated as follows:

However, Eq. (23) can be expressed in terms of the incomplete beta function 
B(1 − IB(x0,r);N − K − 1,K) (Dutka, 1981), and defined in Eq. (2). From Eq. (23), J(x0, r) 
can be formulated as:

Substitute from Eqs. (20) and (24) into Eq. (19):

(18)
pZ (z|x0) =

K
∑

k=1

N − 1
K

(

N − 2
k − 1

)

∫

∞

r=‖z−x0‖

(

∫B(x0,r)
pX(x)dx

)k−1

×
(

1 −
(

∫B(x0,r)
pX(x)dx

))N−k−1

pX

(

x0 +
(z − x0)r
‖z − x0‖

)(

rd−2

‖z − x0‖d−1

)

dr

(19)
pZ(z�x0) =

N − 1

K ∫
∞

r=‖z−x0‖

K�

k=1

�
N − 2

k − 1

�
Ik−1
B(x0,r)

�
1 − IB(x0,r))

�N−k−1

×pX

�
x0 +

(z − x0)r

‖z − x0‖

��
rd−2

‖z − x0‖d−1

�
dr

(20)J(x0, r) =

K∑

k=1

(
N − 2

k − 1

)
Ik−1
B(x0,r)

(
1 − IB(x0,r))

)N−k−1

(21)J(x0, r) =

K−1∑

m=0

(
N − 2

m

)
Im
B(x0,r)

(
1 − IB(x0,r))

)N−m−2

(22)F(y,N, k) = (N − k)

(
N

k

)

∫
1−y

t=0

tN−k−1(1 − t)k dt

(23)F(IB(x0,r),N − 1,K − 1) = (N − K − 1)

(
N − 2

K − 1

)

∫
1−IB(x0,r)

t=0

tN−K−2(1 − t)K−1 dt

(24)

J(x0, r) = F(IB(x0,r),N − 1,K)

= (N − K − 1)

(
N − 2

K − 1

)
B

(
1 − IB(x0,r);N − K − 1,K

)

(25)

pZ(z�x0) =
N − 1

K
(N − K)

�
N − 2

K − 1

�

∫
∞

r=‖z−x0‖
pX

�
x0 +

(z − x0)r

‖z − x0‖

��
rd−2

‖z − x0‖d−1

�

× B

�
1 − IB(x0,r);N − K − 1,K

�
dr



4914	 Machine Learning (2024) 113:4903–4923

1 3

Simplifying Eq. (25) results in:

Accordingly, Eq. (26) proves Lemma 1.
Finally, taking expectation over x0 yields the density of the SMOTE generated patterns 

p(Z).

	�  ◻

Consequently, Eq. (27) proves Theorem 1.

4 � Experiments and results

In this section, we present the results of the numerical experiments conducted in sup-
port of our derived theoretical analysis presented in Sect. 3. To this end, we estimate the 
SMOTE patterns density p(Z) using the developed theoretical analysis, and also evaluate 
the SMOTE density p(Z) empirically. Then, we compare the two density estimates for 
verification.

In our experiments, we adopt two different distributions: multivariate uniform distribu-
tion over a disk, and multivariate Gaussian distribution. The uniform distribution is taken 
over a two-dimensional disk centered at the origin. The disk radius is set to 3, so the den-
sity equals 1

9�
 for x2

1
+ x2

2
≤ 3 and zero otherwise.

We use a two-dimensional zero mean multivariate Gaussian distribution of the minority 
class samples, � = [0, 0] , and we have examined different covariance matrices: the identity 

matrix Σ = �2 , Σ =

[
1 0.8

0.8 4

]
 , and and Σ =

[
2 0

0 1.5

]
.

We perform the empirical density estimation of SMOTE patterns p(Z) according to 
Algorithm 1 above. We have examined two different values for the number of original pat-
terns for applying SMOTE at a single run, specifically, we tried N = 30 and N = 50 to 
mimic the scarcity of minority class patterns when applying SMOTE. For the K param-
eter in the K nearest neighbor applied in SMOTE, we have adopted two values: K = 3 and 
K = 5 . The number of generated SMOTE patterns for the empirical density estimation is 
set to M = 5 × 107 in order to obtain an accurate density estimate.

To implement the theoretically derived formula, we use a two-dimensional grid for inte-
gration. For display, we often hold one feature or dimension to be constant and evaluate 
the density of the other feature. This facilitates the presentation of the theoretical versus 
empirical densities on the same plots, as it may be hard to visualize two two-dimensional 
densities in a single plot.

(26)

pZ(z�x0) = (N − K)

�
N − 1

K

�

∫
∞

r=‖z−x0‖
pX

�
x0 +

(z − x0)r

‖z − x0‖

��
rd−2

‖z − x0‖d−1

�

× B

�
1 − IB(x0,r);N − K − 1,K

�
dr

(27)
pZ(z) = (N − K)

�
N − 1

K

�

∫x

pX(x)∫
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r=‖z−x‖
pX

�
x +

(z − x)r

‖z − x‖

��
rd−2

‖z − x‖d−1

�

× B

�
1 − IB(x,r);N − K − 1,K

�
dr dx
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We tested both results of the Theorem and the Lemma in the experiments. The first 
experiments, described this paragraph, verify the accuracy of pZ(x) , while the next experi-
ments verify the conditional distribution pZ(z|x0) . Figures 3 and 4 represent the marginal 
density of SMOTE generated patterns pZ(z) as given in Theorem 1 for the multivariate uni-
form distribution over a disk. The figures show the theoretical density estimated using the 
presented analysis, the empirical density, and the true original minority class density. As 
mentioned, these are one-dimensional sections in the 2-D for visualization purposes. The 
figures demonstrate the closeness between the theoretical and empirical density estimates 
which verifies the proposed analysis. Moreover, it can be noted from Figs. 3 and 4 that both 
of the theoretical and empirical SMOTE densities are close to the original minority class 
density in case of the multivariate uniform distribution over a disk. In other words, these 
results imply that the SMOTE patterns are adequate representatives for the original minor-
ity class in case of uniform distribution original density.

Figures 5 and 6 depict the SMOTE patterns density given a certain original data point 
x0 (i.e. pZ(z|x0) ) empirically and theoretically for the multivariate Gaussian distribu-
tion (as given in Lemma 1). The figures show the conformity between the the theoreti-
cal and empirical density estimates which confirms our introduced theoretical analysis. In 
these figures, the true density can not be plotted as we evaluate the conditional density of 
SMOTE samples given a particular original minority sample x0.
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Fig. 3   Empirical versus theoretical densities of SMOTE patterns pZ(z) for 2-dimensional disk for z1 = 0.2 
using N = 30 and K = 3
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Figure  7 demonstrates the two-dimensional density for SMOTE patterns estimated 
using the presented analysis. Similarly, Fig. 8 shows the SMOTE density estimated empiri-
cally. In order to obtain smooth results for the empirical estimation of the 2-dimensional 
density, we adopt the Parzen window density estimation (Parzen, 1962; Rosenblatt, 1956). 
We use Gaussian kernel, and the kernel width h is set to 0.05.

It could be observed from Figs. 7 and 8 that the SMOTE density is concentrated around 
x0 . This is reasonable as the SMOTE method places the synthetic patterns inwards around 
the minority class samples as presented in Fig.  1. These results are consistent with the 
argument of the contracteness behavior of the SMOTE oversampling method as raised by 
Elreedy and Atiya (2019). Specifically, the figures show that the SMOTE density estimates 
either theoretically or empirically are centered around the original minority sample x0 on 
which SMOTE is applied.

In the next experiment we test whether the proposed formulas provide accurate esti-
mates for the case of classification. Of course, obtaining the correct density is the building 
block of any further classification method, and therefore should guarantee accurate compu-
tation of any classification-based outcome such as classification accuracy. We considered a 
simple two-class classification problem, where the minority class is a uniform distribution 
over a two-dimensional disk centered at the origin, where the disk radius is set to 3, so the 
density equals 1

9�
 for x2

1
+ x2

2
≤ 3 and zero otherwise. The majority class also has a uniform 

density over a disk of radius 3, but centered around a mean vector � = (a, a)T , where a is 
a number that we vary. We considered a linear discriminant function classifier and applied 
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Fig. 4   Empirical versus theoretical densities of SMOTE patterns pZ(z) for 2-dimensional disk for z1 = 0 
using N = 50 and K = 5
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our theoretical formulas versus the empirical way of generating SMOTE samples. We 
computed the geometric mean (G-mean) (Barandela et al., 2003), defined in Eq. (28) for 
both methods for several values of a. Table 1 shows the G-mean result. One can observe 
that both theoretical and empirical approaches produce very close numbers, indicating the 
accuracy of the developed formula.

The sensitivity and specificity metrics are defined in Eqs. (29) and (30), respectively:

(28)Gmean =
√
Sensitivity × Specificity
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Fig. 5   Conditional empirical versus theoretical densities of SMOTE patterns pZ(z|x0) for 2-dimensional 
Gaussian original distribution, x0 = [0.5, 1] and z2 = 1.3 for pX(x) ∼ N([0, 0], [1 0.8;0.8 4]) using N = 50 
and K = 3
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Fig. 6   Conditional empirical versus theoretical densities of SMOTE patterns pZ(z|x0) for 2-dimensional 
Gaussian original distribution, x0 = [−0.2, 0.2] and z1 = −0.3, pX(x) ∼ N([0, 0], [2 0;0 1.5]) using N = 50 
and K = 5
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5 � Conclusions and future work

In this paper, we develop a theoretical analysis of one of the most dominant over-sam-
pling methods: the Synthetic Minority over-sampling TEchnique (SMOTE) method. The 
SMOTE algorithm is a very powerful over-sampling method for generating artificial 
minority class samples in order to balance the class distribution. However, the synthetic 
data generated by SMOTE may not exactly follow the original minority class distribu-
tion, which could impact the classification performance. Thus, this work theoretically ana-
lyzes the distribution of the synthetically generated patterns. Specifically, we introduce a 
full derivation of the probability density function of the SMOTE generated patterns. We 
applied the developed analysis to some distributions and verified correctness of the pre-
sented theoretical analysis by comparing with the empirical density estimates. The goal 
here has been to focus on deriving a complete and exact formula. Providing a theoretical 
formula would lay the groundwork for further analysis and guide further modifications of 
SMOTE in the future in the direction that improves its functionality. This is how this could 
potentially lead to improving the efficiency of classifiers and providing a better understand-
ing of SMOTE. For example, this can lead to optimal formulas that set different weight to 
the original samples versus the weight given to the generated samples, in any classification 
scheme. Analyzing the behavior of SMOTE or quantifying the deviation of SMOTE from 
the true density could be performed in future work. Another potential future research direc-
tion could be investigating more complex minority class distributions such as multi-modal 
distributions, which present significant challenge for SMOTE in particular.
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(29)Sensitivity =
True Positive

True Positive + False Negative

(30)Specificity =
True Negative

TrueNegative + False Positive

Table 1   Theoretical and 
empirical Gmean values for 
different values of parameter 
a determining the mean of the 
majority class where � = (a, a)T

a Gmean-theoretical (%) Gmean-empirical (%)

2 78.90070 78.90819
2.5 85.22475 85.22682
3 90.92420 90.92419
4 99.19205 99.18744
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