
Vol.:(0123456789)

Machine Learning (2024) 113:1885–1901
https://doi.org/10.1007/s10994-022-06295-5

1 3

Learning state importance for preference‑based
reinforcement learning

Guoxi Zhang1  · Hisashi Kashima1,2

Received: 30 May 2022 / Revised: 28 July 2022 / Accepted: 19 September 2022 /
Published online: 9 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Preference-based reinforcement learning (PbRL) develops agents using human preferences.
Due to its empirical success, it has prospect of benefiting human-centered applications.
Meanwhile, previous work on PbRL overlooks interpretability, which is an indispensa-
ble element of ethical artificial intelligence (AI). While prior art for explainable AI offers
some machinery, there lacks an approach to select samples to construct explanations. This
becomes an issue for PbRL, as transitions relevant to task solving are often outnumbered
by irrelevant ones. Thus, ad-hoc sample selection undermines the credibility of explana-
tions. The present study proposes a framework for learning reward functions and state
importance from preferences simultaneously. It offers a systematic approach for selecting
samples when constructing explanations. Moreover, the present study proposes a perturba-
tion analysis to evaluate the learned state importance quantitatively. Through experiments
on discrete and continuous control tasks, the present study demonstrates the proposed
framework’s efficacy for providing interpretability without sacrificing task performance.

Keywords  Interpretable reinforcement learning · Preference-based reinforcement learning ·
Human-in-the-loop reinforcement learning · Interpretability artificial intelligence

1  Introduction

Preference-based reinforcement learning (PbRL) (Akrour et al., 2011; Fürnkranz et al.,
2012) is a reinforcement learning (RL) setting that develops agents using human prefer-
ences. Christiano et al. (2017) reported remarkable empirical results for tasks without
reward functions–they were solved with less than 1% of interactions annotated. Besides,

Editors: Yu-Feng Li, Prateek Jain.

 *	 Guoxi Zhang
	 guoxi@ml.ist.i.kyoto-u.ac.jp

	 Hisashi Kashima
	 kashima@i.kyoto-u.ac.jp

1	 Graduate School of Informatics, Kyoto University, Yoshida‑Honmachi, Kyoto 606‑8501, Japan
2	 RIKEN Guardian Robot Project, Kyoto, Japan

http://orcid.org/0000-0001-8154-6985
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06295-5&domain=pdf

1886	 Machine Learning (2024) 113:1885–1901

1 3

due to its ability to comply with humans, PbRL is promising for human-centered tasks such
as value alignment (Fisac et al., 2020) or shared autonomy (Reddy & Dragan, 2018).

The present study argues for interpretability as another first principle for PbRL. As
pointed out by Glass et al. (2008), interpretability is crucial for earning users’ trust. With-
out the ability to explain behaviors, an agent will appear to be an inaccessible contrived
blackbox instead of something that admits interaction. Interpretability is even manda-
tory for ethical AI. Since 2017, the European Parliament and European Commission
have launched a series of actions emphasizing the role of interpretability in intelligent
systems. In April 2021, the European Commission released a new proposal for regulat-
ing AI systems that prescribes an obligatory requirement for transparency in high-risk sys-
tems. Moreover, interpretability facilitates developing agents. For example, with imperfect
reward functions, Pan et al. (2022) observed that agents might learn unintended behaviors.
In this case, an interpretable agent will allow practitioners to track down problems agilely.

Notwithstanding its significance, the previous framework for deep PbRL (Christiano
et al., 2017; Brown et al., 2019; Shin et al., 2021) overlooks interpretability. It learns a
deep reward function from human preferences and uses it in policy optimization. Although
it is the core quantity that extracts knowledge from human preferences, the learned reward
function remains a blackbox.

At first glance, general techniques for explainable AI (Linardatos et al., 2021), such as
saliency maps, suffice for explaining reward functions. However, explanations are often
generated using some samples. There lacks a systematic approach for sample selection,
which compromises the credibility of explanations. For instance, suppose an agent needs
to navigate through a maze. Then it is better to focus on paths leading to the goal posi-
tion rather than paths leading to dead ends. Yet, a randomly selected sample is likely to
be part of the latter. Explanations based on such a sample are thus not representative or
meaningful.

The present study overcomes the sample selection issue with a novel reward learning
framework, which simultaneously learns a reward function and a weighting network for
states. The weighting network learns the importance of states for modeling preferences,
which can be used for selecting samples to construct explanations. The key assumption is
that in a long state sequence, only a few states are critical to preferences. Figure 1 shows an
example for critical and non-critical states for the Atari game BeamRider. To be competi-
tive, an agent needs to destroy enemy spacecrafts, so states containing enemy spacecrafts
are critical. States representing open space, on the contrary, are not critical.

In specific, the proposed framework represents each trajectory as a weighted sum of rep-
resentation vectors for states and uses a weighting network to compute the weights. �1 and
�2 regularizations are imposed to the output of the weighting network to attain the assumed

Fig. 1   Examples for critical and non-critical states for the game BeamRider. An agent controls a spacecraft
(shown at the bottom) in this game and fights with enemies. Case (a) is an example of critical states, as it
shows an enemy that needs to be destroyed. Case (b) is an example of non-critical states, as no action needs
to be taken when the agent is flying in open space (Color figure online)

1887Machine Learning (2024) 113:1885–1901	

1 3

sparsity. The proposed framework then models trajectory returns as inner products between
a reward vector and trajectory representation vectors. Parameters of the entire model are
learned by maximizing the likelihood of collected preferences.

A remaining question is how to evaluate the importance of states. In literature,
approaches for interpretability are evaluated either with demonstrations or user studies.
The former illustrates insights obtained from explanations, while the latter confirms if
explanations are comprehensible. However, neither of them can answer whether the expla-
nations are representative in a quantitative aspect. To address this drawback, the present
study proposes a perturbation analysis. The core idea is to remove samples that appear to
be important from expert demonstrations and train behavioral cloning (BC) agents on the
remaining data. Then the performance drop of BC agents serves as an evaluation metric for
sample importance.

The present study proceeds with experiments on 17 offline RL datasets. Firstly, a quali-
tative categorization of important states identified for the game BeamRider illustrates how
the proposed framework helps to explain reward functions. Interestingly, the results indi-
cate that the learned reward function was (a) uncertain about the exact start of events and
(b) unable to discriminate temporally associated states. Both insights shed light on how
one can improve PbRL agents. Moreover, the results for the proposed perturbation analysis
confirm that, when compared to reward values, the inferred state weights are more indica-
tive of critical states. Finally, there is a concern about the tradeoff between performance
and interpretability (Puiutta & Veith, 2020). Our results show no significant performance
loss for the proposed framework was observed, which corroborates its feasibility for com-
plex control problems. The contributions of the present study are summarized as follows.

1.	 To address the interpretability of PbRL and overcome the sample selection issue in
particular, the present study proposes a novel framework for PbRL that learns rewards
and state importance simultaneously.

2.	 A perturbation analysis is proposed to evaluate the importance of states quantitatively.
3.	 With a categorization of identified critical states, the present study confirms the efficacy

of the proposed framework for explaining reward functions. It then evaluates the learned
state importance using the proposed perturbation analysis. Finally, it verifies the task
performance of the proposed framework.

The rest of this paper is organized as follows. Section 2 summarizes prior art for reward
learning from human preferences, followed by Sect. 3 that formalizes the reward learning
problem in an offline setting. Section 4 describes the proposed framework, and Sect. 5 pre-
sents empirical evaluations. Section 6 concludes this paper.

2 � Related work

Learning from preference-based feedback has been a topic of reinforcemeng learning
since last decade (Akrour et al., 2011; Fürnkranz et al., 2012; Wirth & Fürnkranz,
2013; Busa-Fekete et al., 2014). Wirth et al. (2017) presented a comprehensive survey
for early algorithms. Recently, deep PbRL has demonstrated empirical success in Atari
games (Christiano et al., 2017; Ibarz et al., 2018), locomotion tasks (Lee et al., 2021a)
and navigation tasks (Shin et al., 2021). It is especially useful for human-in-the-loop
applications such as value alignment (Fisac et al., 2020) or shared autonomy (Reddy &

1888	 Machine Learning (2024) 113:1885–1901

1 3

Dragan, 2018) that requires adaptation to human feedback. Based on the Bradley-Terry
(BT) model (Bradley & Terry, 1952), existing PbRL approaches relate preferences to
trajectory returns via either trajectory features (Novoseller et al., 2020; Wirth et al.,
2016) or sums of predicted rewards (Christiano et al., 2017; Ibarz et al., 2018).

Several approaches combine PbRL with other ideas. To name a few, Ibarz et al.
(2018) proposed to combine PbRL with behavioral cloning. Lee et al. (2021b) sug-
gested diversifying collected experience using intrinsic reward, and Brown et al.
(2020) combined PbRL with Bayesian modeling and self-supervised pretraining.
Besides, adaptive query selection also receives attention in literature (Sadigh et al.,
2017; Biyik & Sadigh, 2018; Wilde et al., 2020; Biyik et al., 2020). However, inter-
pretability receives little attention for PbRL. As the only exception, Bewley and Lecue
(2022) proposed to use tree-based functions for reward functions, but this approach
does not scale to complex high-dimensional tasks. In a separate line of work, Icarte
et al. (2018) proposed to learn finite-state machines for reward functions, which was
later extended to noisy reward setting (Corazza et al., 2022) and vision-based con-
trol (Camacho et al., 2021). Nevertheless, such a representation is not directly applica-
ble to preference-based setting.

In general, one may interpret reward functions using similar techniques for inter-
preting policies, such as saliency maps (Atrey et al., 2020). Nevertheless, the issue of
sample selection remains. Chances are that explanations are not representative of the
agent’s knowledge, if samples used by the explanations are selected arbitrarily. More-
over, the evaluation methods also do not cover sample importance aspect. In litera-
ture, approaches for interpretability are either illustrated with few examples (Bewley
& Lecue, 2022; Beyret et al., 2019; Greydanus et al., 2018) or evaluated with user
study (Madumal et al., 2020; Sequeira & Gervasio, 2020). Neither of them assesses
the importance of samples used for explanations. The present study overcomes the two
issues mentioned above with a novel reward learning framework and a perturbation
analysis.

3 � Problem setting

3.1 � Markov decision process without reward

The present study models a task as a Markov decision process without reward (MDP/R)
⟨S,A, P, �⟩ . S and A are the sets of states and actions, respectively. With slight abuse
of terminology, throughout this paper states and observations are used interchangeably.
P is the distribution of next state after taking some action at a state, and � ∈ (0, 1) is a
discount factor.

MDP/R prescribes the following interaction protocol. As step t, the agent observes
current state st ∈ S and selects at according to a policy � ∶ S → A . Based on (st, at) , the
environment decides next state st+1 . Such interactions generate alternating sequences
of states and actions � = (s1, a1, s2, a2,…) , which are called trajectories.

Unlike a Markov decision process, there is no reward function in MDP/R. The pre-
sent study considers learning a reward function from human preference as follows,
which enables one to apply off-policy learning algorithms.

1889Machine Learning (2024) 113:1885–1901	

1 3

3.2 � The reward learning problem

A reward function R ∶ S → ℝ provides an agent with feedback for its decisions. Follow-
ing previous works for PbRL (Ibarz et al., 2018; Brown et al., 2019), actions are omit-
ted in R. This is a valid assumption for many tasks whose ground truth reward is also
a function of states. For other tasks, extension for including actions is straightforward.
With R, an agent can learn policies via maximizing the expected cumulative reward in a
trajectory (i.e. return) �[

∑∞

t=1
� t−1rt].

An agent is provided with a collections of N trajectories {�j}Nj=1 and a set of M prefer-
ences Y. A preference sample y(i) ∈ Y can be written as y(i) = (�

(i)

1
, �

(i)

2
, c(i)) , where � (i)

1

and � (i)
2

 are two trajectories being compared, and c(i) is the preference label. c(i) = 1 if � (i)
1

is preferred over � (i)

2
 , and c(i) = 0 otherwise. In human-in-the-loop applications, prefer-

ences can be generated by human annotators. One may present annotators with pairs of
trajectories and ask them to select the ones that are more favorable.

This setting differs from the existing PbRL setting (Christiano et al., 2017) in that
the agent is not allowed to collect new trajectories or preferences. As a form of offline
RL (Lange et al., 2012), it eliminates the need for online data acquisition. Moreover,
this setting enables one to collect preferences at scale before reward learning. In the
existing setting, the agent generates trajectories during policy learning, which means
annotators have to be alongside the agent and provide preferences once trajectories are
generated. On the contrary, in our setting all the preferences can be generated prior to
reward learning using techniques such as crowdsourcing. This separation of preference
collection and reward learning lowers the requirement for annotators and makes PbRL
more accessible.

Meanwhile, in the online PbRL setting reward functions are re-trained once new
preferences are obtained. The agent is in fact repeatedly solving the learning problem
considered here with a growing set of preferences. Thus, algorithms for the problem
considered here also applies to the online setting.

The reward learning problem can be summarized as:

•	 Input: N trajectories {�j}Nj=1 and M preferences Y = {y(i)}M
i=1

;
•	 Output: A reward function R.

4 � Proposed approach

This section introduces how the proposed framework learns a reward function and a
weighting network for states from the provided preferences. After that, it explains how
the proposed analysis evaluates the importance of states.

4.1 � Modeling preferences

Given y(i) , the proposed framework first encodes the states of both trajectories as vectors
in ℝd with fe ∶ S → ℝ

d , where d is the dimension of this vector space. For tasks with
image input, fe can be parameterized with convolutional neural networks followed by
fully-connected layers; for continuous input fe may consist of several fully-connected
layers. A weighting network fw ∶ ℝ

d
→ ℝ takes as input state representations and

1890	 Machine Learning (2024) 113:1885–1901

1 3

outputs the weights of states. fw is parameterized with fully-connected layers. Using fe
and fw , a trajectory � is encoded as fc(�) as:

The return of � , G(�) , is the inner product between a vector �R ∈ ℝ
d and fc(�):

The larger ∣ fw(fe(s)) ∣ is, the more important state s is for fc(�) and G(�) . Similarly, the
reward of a state s is the inner product between �R and the representation for s, multiplied
by state importance: R(s) = �

⊺

R
fw(fe(s))fe(s).

The proposed framework utilizes the BT model for modeling preferences. Specifically, the
label in y(j) takes value one with probability:

In other words, the larger G(� (i)
1
) − G(�

(i)

2
) is, the higher probability that � (i)

1
 is preferred.

4.2 � Learning rewards and weights

In the proposed framework, fe , fw and �R are learned by minimizing the following objective
function:

where �1 ∈ ℝ and �2 ∈ ℝ are hyper-parameters. Lce is the cross entropy loss:

By minimizing Lce , the proposed framework can learn a reward function that best explains
the provided preferences. L1 and L2 are introduced to realize the assumption made for state
importance–only few states are critical for preferences. L1 penalizes the absolute values of
state weights:

In consequence, only states that are relevant to preferences have weights deviate from zero.
Irrelevant states will have weights close to zero. Meanwhile, L1 treats each state indepen-
dently. In many tasks of interests, critical states span multiple time steps. For example,
in the example shown in Fig. 1a, it takes several time steps for the enemy spacecraft to
approach the agent’s ship. L2 is proposed to capture this temporal structure.

(1)fc(�) =
∑

s∈�

fw(fe(s))fe(s).

(2)G(�) = �
⊺

R
fc(�).

(3)Pr(c(i) = 1;�
(i)

1
, �

(i)

2
) =

exp(G(�
(i)

1
))

exp(G(�
(i)

1
)) + exp(G(�

(i)

2
))
.

(4)L = Lce + �1L1 + �2L2,

(5)

Lce = −
1

M

∑

(�
(i)

1
,�

(i)

2
,c(i))∈Y

[
c(i) log(Pr(c(i) = 1;�

(i)

1
, �

(i)

2
))

+(1 − c(i)) log(Pr(c(i) = 0;�
(i)

1
, �

(i)

2
))
]
.

(6)L1 =
1

M

∑

(�
(i)

1
,�

(i)

2
,c(i))∈Y

∑

s∈�
(i)

1
,�

(i)

2

∣ fw(fe(s)) ∣ .

1891Machine Learning (2024) 113:1885–1901	

1 3

This term penalizes the difference between weights of adjacent states. With both L1 and L2 ,
only the states whose adjacent states are also critical have non-zero weights.

Preliminary experiments showed that when trained from scratch, optimizing Eq. 4
resulted in almost zero weights for most states. A possible reason is that the initial output
of fw is within a small range around zero since network parameters are initialized with
random numbers close to zero. In this case, imposing L1 and L2 further restricts the output
of fw . The proposed framework overcomes this issue with a warming procedure for �1 and
�2 . When optimizing Eq. 4, the values of �1 and �2 are linearly increased to their final val-
ues. Initially, the values of �1 and �2 are small, so the reward network has full capacity for
learning from preferences. As their values increase, the reward network is forced to prune
away the contribution of some states in trajectory returns while maintaining modeling pref-
erences. As a result, fw learns to assign weights deviated from zero to critical states for
preferences.

As a remark, the l2-norm is not the only choice in Eq. 7. One may instead minimize the
l1-norm or the huber loss. In practice, for a specific application, the best choice depends on
the structure of the ground-truth reward and should be chosen empirically. For illustration
purpose, the present study uses the l2-norm in Eq. 7.

4.3 � Evaluating state weights

A remaining question is how to evaluate the state importance learned from preferences.
As mentioned above, neither demonstrations nor user studies can answer if explanations
are representative. To comprehensively evaluate the learned state importance, the present
study proposes a new perturbation study for evaluating state importance.

First of all, it is worth discussing the notion of state importance. One candidate is the
frequency of states. For two states s, s� ∈ S , s is more important than s′ if s appears more
often in training trajectories. In consequence, explanations based on s better characterize
patterns in data than those generated using s′ . This perspective, however, lacks considera-
tion for task performance. Often, RL agents are supposed to reach some particular states
(e.g. the goal in a maze) or visit them as often as possible (e.g. destroying more enemy
spacecrafts in BeamRider). It is these particular states that are critical to task performance,
though they might be outnumbered by the non-critical ones. Explanations based on such
states will reveal how a reward function facilitates the agent to solve the corresponding
task.

However, collecting such critical states requires expertise for the corresponding task and
massive annotation. Both requirements are infeasible in practice. As a surrogate, the pre-
sent study considers a state of being important if it is indispensable for expert demonstra-
tions. Then, removing such states should cause performance drop for behavioral-cloning
agents. By measuring the performance drop, one can evaluate state importance from the
perspective of task solving.

In specific, let h ∶ S ×A → [0,+∞) be an arbitrary function that maps states and
actions to non-negative values. The higher h(s, a) is, the more important this state-action
pair is. The proposed analysis rolls out into several rounds. Firstly, rank state-action pairs
in decreasing order according to h(s, a). Then at each round, remove the top-k state-action
pairs, and train a BC agent on the remaining. To prevent creating artificial transitions, after

(7)L2 =
1

M

∑

(�
(i)

1
,�

(i)

2
,c(i))∈Y

∑

st ,st+1∈�
(i)

1
,�

(i)

2

(fw(fe(st)) − fw(fe(st+1)))
2

1892	 Machine Learning (2024) 113:1885–1901

1 3

removing a pair (st, at) , set its preceding pair (st−1, at−1) as a terminating pair. The present
study reports result for removing up to 40% of data, 10% each round.

As for alternative methods, the present study reports results for random removal and
absolute-reward (AR) removal. With random removal, state-action pairs are removed uni-
formly at random. Its results illustrate to what extent training data size affects agents’ per-
formance. With AR removal, state-action pairs are removed according to the absolute value
of rewards inferred from preferences.

With the same amount of data removed, the poorer BC agents perform, the better a
method is in characterizing state importance. Moreover, the fewer data are removed for the
same performance drop, the better the method is.

4.3.1 � Remarks

•	 As a BC agent learns a mapping from states to actions in data, using it eliminates the
effect of reward functions on task performance. Besides, this choice avoids potential
influences from data removal on temporal structures.

•	 While the proposed reward learning algorithm applies to general trajectories, this per-
turbation analysis is limited to expert demonstrations. This is because it utilizes the
drop in performance as a measure for state importance. Meanwhile, general trajectories,
especially imperfect ones, contain ”wrong” decisions. Removing these decisions might
improve performance in regardless of state importance. In consequence, these ”wrong”
decisions complicates the discussion of the results, as one will not be able to attributes
changes in performance to importance of removed states.

5 � Experiments

5.1 � Overview

Experiments proceed in three steps. Firstly, this section reports findings and insights from
a case study on BeamRider, which illustrates how the proposed framework helps to explain
reward functions. Then, it uses the proposed analysis to evaluate whether the inferred
weights correlated with the importance of states quantitatively, which complements the
first evaluation. Finally, this section evaluates the task performance of the proposed frame-
work, demonstrating its practical applicability.

5.2 � Datasets

The present study utilizes the ”medium” and ”expert” version of trajectories collected for
four continuous control tasks in the D4RL (Fu et al., 2020) datasets: Hopper, Walker2d,
Halfcheetah and Ant. For each task, the ”medium” version (labeled with ”-m”) contains
trajectories collected by an online RL agent, and the ”expert” version (labeled with ”-e”)
contains expert demonstrations.

In addition, this study utilizes the DQN replay dataset (Agarwal et al., 2020). The data
for nine games are included: BeamRider, Enduro, Hero, Pong, Seaquest, Alien, Boxing,
Assault and BattleZone.

For each task (game), 5000 preference queries are generated as follows. First of all, 250
trajectories are sampled uniformly at random. Following the practice proposed by Ibarz

1893Machine Learning (2024) 113:1885–1901	

1 3

et al. (2018) and Brown et al. (2019), queries for preferences are made up with subse-
quences of trajectories. From each trajectory three subsequences of length 60 are sampled,
yielding a pool of 750 subsequences. Then 5000 queries are randomly selected from them.
Three labels are generated using the Bradley-Terry model and ground-truth rewards for
each query.

5.3 � Experiment design

5.3.1 � Visualizing identified states

This part of the experiments presents an analysis for state weights. Figure 2 illustrates the
distribution of states weights of the 750 training subsequences and 750 new subsequences.

Figures 3, 4 and 5 present in-depth qualitative analysis of state weights of 60 subse-
quences. These subsequences are sampled from the first ten trajectories for BeamRider.
Half of them are used in reward learning, and the other half are unseen ones. In particu-
lar, Figs. 4 and 5 present a categorization of critical states identified from the same 60
subsequences. From each subsequence, the state with the largest ∣ fw(fe(s)) ∣ is visualized,
together with the immediately preceding state and subsequent state. Then the authors
inspected these visualizations and summarized seven success cases (Fig. 4) and three fail-
ure cases (Fig. 5). As will be clear later, these states form example-based explanations
themselves, and they can be used to construct other types of explanations if necessary.

5.3.2 � Task performance

This part of experiments compares task performance of the proposed framework with other
reward learning methods. It utilizes the average test return of the same policy learning
algorithm on inferred rewards as evaluation metric. For continuous control tasks, it utilizes
the behavioral-regularized actor-critic algorithm (Wu et al., 2019), and for Atari games, it
uses the quantile-regression DQN algorithm (Dabney et al., 2018).

The first reward learning method to compare is the one proposed by Christiano et al.
(2017), which uses the sum of rewards as the return of a trajectory. As it is a direct utili-
zation of the BT model for preferences, it is referred to as BT in the sequel. The second

Fig. 2   Boxplots for state weights. The median, first quantile, and third quantile are in [−0.1, 0.1] on every
dataset, indicating many of the weights are very small. This confirms the effect of the L1 term in Eq. 4 for
selecting states

1894	 Machine Learning (2024) 113:1885–1901

1 3

method is T-REX (Brown et al., 2019) which utilizes the ranking over entire trajectories in
reward learning. As the goal is to analyze performance for reward learning, approaches that
combine PbRL with BC or intrinsic rewards are not included. Note that it is straightfor-
ward to combine the proposed framework with these ideas.

5.4 � Technical details

For Atari games, the input to agents contains game scores. To prevent exploiting such
information, game scores are masked out during reward learning and reward inference.

�1 and �2 control the level of sparsity. They are selected using grid search over
{0.1, 0.01, 0.001} and 10% of preferences as validation sets. After that, reward functions are
trained with the selected hyperparameters and all of the preferences.

Experiments are repeated five times, and the average values of metrics and standard
errors are reported. Details for hyper-parameters, including implementations, are available
on our website.1

Fig. 3   Left: A heatmap for state weights on BeamRider, which confirms the effect of L2 . Upper right: an
example for states with large absolute weights, in which the agent is close to an incoming missile (circled
in green) in the presence of enemies (circled in blue). Its weights are the three cells starting from the 3rd
row from the top and the 10th column from the right. Middle right: an example for states with weights close
to zero, in which the agent launch missiles (circled in yellow) in open space. Its weights are the three cells
starting from the 21st row from the bottom and 32nd row from the right. Bottom right: an example for tran-
sitioning from states with large absolute weights to states with small absolute weights, in which the agent
lose a life (circled in red). Its weights are the three cells starting from 5th column from the right and the 5th
column from the bottom (Color figure online)

1  https://​altri​aex.​github.​io/​ident​ify-​criti​cal-​states/.

https://altriaex.github.io/identify-critical-states/

1895Machine Learning (2024) 113:1885–1901	

1 3

5.5 � Results

5.5.1 � Visualizing identified states

Figure 2 shows box plots for state weight on all of the 17 datasets. The first and third quan-
tile of state weights on all datasets are covered in [−0.1, 0.1] . This means that the weights
of many states are very small, which confirms the effect of L1 . Figure 3 shows a heatmap
for state weights and visualizations of states for BeamRider. Each row in the heatmap cor-
responds to a trajectory subsequence, and each cell in a row corresponds to the weight of
a state. The left part of Fig. 3 shows that many consecutive states have similar weights,
which confirms the effect of L2 in smoothing state weights. The right part of Fig. 3 shows

Fig. 4   Examples of identified critical states for BeamRider. Cases (a)–(d) are taken from different trajecto-
ries. Together, they depict critical behaviors required for this game: the agent needs to destroy enemies with
its missiles. Case (e) covers the situation of losing a life, which is also critical to this game. Case (f) and
case (g) cover complex situations where the agent needs to launch missiles while dodging enemy missiles
(Color figure online)

1896	 Machine Learning (2024) 113:1885–1901

1 3

examples of consecutive states. The top three form an example whose weights deviate from
zero, in which the agent is close to an incoming missile in the presence of enemies. This
is indeed critical for this game, as the agent loses a life once hit by the missile. The middle
part illustrates an example for states with weights close to zero. In this case the agent has
launched a missile in open space, which is an irrelevant behavior for the game. The bot-
tom part illustrates a transition from a state with large absolute weight to a state with small
absolute weight. This example corresponds to the process of losing a life.

Figures 2 and 3 demonstrate that the proposed framework can select some states that
are indeed critical. To further illustrate how the proposed framework facilitate interpreting
reward functions, the present study reports a categorization of 60 identified states in Fig-
ures 4 and 5. All of the visualizations, as well as the related videos, can be found on our
website.

Figure 4 shows the seven cases that are indeed critical. In case (a) there are incoming
enemies. This case constitutes 11.6% of visualizations. Case (b) contains 3.3% of visualiza-
tions in which both incoming enemies and enemy missiles are present. Meanwhile, in case
(c), the agent has launched missiles in the presence of enemies, and in case (d), an enemy
is destroyed. They constitute 16.7% and 11.6% of the visualizations, respectively. Case (e)
is the largest category (25%) in which the agent’s ship is destroyed. Case (f) and case (g)
are two more complex cases in which the agent has launched missile (f) and destroyed an
enemy (g) in the presence of enemies and enemy missiles. Both of them constitute 3.3% of
the visualizations. From simple situations to complex ones, these 74.8% of visualizations
present a variety of states that are critical to the corresponding task. These states serve as
example-based explanations that confirm the ability of the proposed framework for identi-
fying critical states.

Meanwhile, Fig. 5 shows three failure cases. In these cases, the states have large abso-
lute weights, but they are not important to the task from the authors’ point of view. In case
(a) (5%), the agent has launched a missile in open space. In case (b) (11.7%), the agent’s
ship is flying in open space. Both of them are not critical. Case (c) contains 8.3% of visu-
alizations from which only screen flickering is observed.

Fig. 5   Examples of identified states that are not critical. In case (a) and (b) the agent is in open space. Its
behaviors are not critical to the game. Case (c) covers a case where the screen is flickering, and it consti-
tutes 8.3% of samples in qualitative analysis. This error case might be explained by its resemblance with
case (d) and (e) in Fig. 4

1897Machine Learning (2024) 113:1885–1901	

1 3

Together, Figs. 4 and 5 show that critical states identified by the proposed method serve
as sample-based explanations for reward functions. The following insights can be obtained
by examining these samples, which shed light on how reward learning can be improved.

•	 The starts of events are not modeled accurately. For example, in case (e) of Fig. 4 the
remaining lives decreased by one. It is more desirable that the reward function assigns
high weights to the state in which enemy missiles just hit the agent.

•	 Temporal associations are not handled correctly. As shown in case (d) and (e) of Fig. 4,
screen flickering is associated with the destruction of the agent’s ship or enemies. This
explains why case (c) in Fig. 5 is considered as important.

5.5.2 � Evaluating state weights

Figure 6 shows results for the proposed perturbation analysis on the four continuous con-
trol tasks. As the Atari replay dataset does not provide expert demonstrations, results for
Atari games are not included. A point (x, y) in these figures means that BC agents’ test
return after removing the x ratio of data is y, and the error bars are standard errors.

Initially, consider the performance of random removal (shown in orange). For Halfchee-
tah, Walker2d and Hopper, even with only 60% of expert demonstrations, the BC agents
do not have performance loss. For Ant, removing 40% of data causes about 10% of per-
formance drop. These results can be dissected from two aspects. The fact that BC agents
remain competitive even with 60% of data eliminates the possibility of contributing perfor-
mance drop to reduced training data sizes. Moreover, these results confirm that construct-
ing explanations with random samples can be misleading, as the sampled states are likely
to be irrelevant.

Now consider results for AR, which is shown as blue curves. For Halfcheetah and Walk-
er2d, removing data according AR has little effect. It becomes effective on Hopper only after
20% of data are removed. Recall that AR uses the absolute values of inferred rewards as a
score for state importance. These results mean that states with either large positive or negative
rewards are not indispensable for the corresponding tasks. As our analysis only uses expert
demonstrations, a possible explanation is that such states represent task accomplishment and
are not part of decision sequences that lead to task accomplishment. Hence, constructing

Fig. 6   Results for the perturbation analysis. The x-axis is the ratio of data removed using some method. The
y-axis is the test return of BC agents. Lower test return indicates that the removed data are critical to the
corresponding task, which means the corresponding method characterizes state importance better. Random
removal has a negligible effect on agent performance. When compared to random removal, AR is effective
only on Halfcheetah and Walker2d. Meanwhile, removing states using the proposed framework significantly
affects the performance on all of the datasets (Color figure online)

1898	 Machine Learning (2024) 113:1885–1901

1 3

explanations using such states is not likely to provide meaningful information on how agents
solve tasks.

Meanwhile, removing samples using the proposed framework (shown in green) is effective
for all four tasks. For Halfcheetah, Walker2d and Hopper, the performance of BC agents drops
significantly even when only 10% of data are removed. This means that the proposed frame-
work can accurately identify the critical states for these tasks.

5.5.3 � Task performance

A remaining question is how an RL agent performs when trained on rewards learned with
the proposed framework. Table 1 answers this question. On these 17 datasets, the proposed
framework outperforms BT on Enduro, Hero, Pong, Boxing, Assault, BattleZone, Hopper-e,
Ant-e and Halfcheetah-m. Among the rest eight datasets, it has small performance gaps against
BT except for Seaquest, Hopper-m, Walker2d-e and Ant-m. These results indicate that the pro-
posed framework might perform worse than BT when the ground-truth reward is dense, which
means the sparsity assumption might need revision. Nevertheless, these results mean that the
proposed framework does not incur performance loss on a wide range of tasks while providing
interpretability.

Table 1   Test return of PbRL agents on 17 datasets. The proposed framework outperforms BT on nine data-
sets. Among the rest eight datasets, its performance gap against BT is small except for Seaquest, Hopper-m,
Walker2d-e and Ant-m. Numbers shown in bold indicate the corresponding method outperforms others

Task Proposed BT T-REX

BeamRider 4438.18 ± 796.92 4681.45 ± 949.61 305.00 ± 128.74
Enduro 915.13 ± 167.41 628.44 ± 135.80 56.94 ± 31.72
Hero 4397.80 ± 2046.37 1043.79 ± 543.10 770.22 ± 421.79
Pong −19.86 ± 0.71 −19.89 ± 1.03 − 20.88 ± 0.04
Seaquest 107.78 ± 49.38 155.82 ± 33.57 51.32 ± 26.33
Alien 164.14 ± 67.37 166.06 ± 33.11 317.13 ± 77.25
Boxing 21.06 ± 13.77 − 9.08 ± 4.51 − 8.25 ± 2.67
Assault 133.34 ± 57.32 84.10 ± 44.49 126.91 ± 89.24
BattleZone 4727.37 ± 1733.43 4175.15 ± 859.19 4194.85 ± 1655.48
Hopper-m 1589.10 ± 126.70 1729.52 ± 17.42 1731.06 ± 40.98
Hopper-e 3604.00 ± 8.27 3515.32 ± 38.06 3577.56 ± 25.57
Walker2d-m 3404.37 ± 54.85 3426.19 ± 59.82 3270.97 ± 41.99
Walker2d-e 4963.82 ± 6.12 4971.17 ± 7.71 3977.50 ± 892.78
Ant-m 3110.78 ± 115.75 3287.12 ± 111.55 3441.29 ± 169.01
Ant-e 5208.21 ± 103.82 4951.52 ± 172.17 4941.51 ± 155.29
Halfcheetah-m 5374.33 ± 29.16 5123.57 ± 17.28 5247.13 ± 11.15
Halfcheetah-e 11299.84 ± 148.04 11252.16 ± 176.39 11492.95 ± 21.43

1899Machine Learning (2024) 113:1885–1901	

1 3

6 � Conclusion

While PbRL demonstrates good empirical performance with a limited amount of anno-
tation, little attention has been paid to the interpretability of learned reward functions.
In particular, due to the immense size of training data, explanations based on ad-hoc
samples might not represent the whole data distribution. The present study addresses
the interpretability of PbRL and the sample selection issue in particular. A framework is
proposed to jointly learn a reward function and a weighting network for states from pref-
erences, which can be used to select samples for explanation purposes. Structural spar-
sity is imposed on the output of the weighting network to identify states that are highly
relevant to preferences. On BeamRider, an Atari game, a categorization of 60 identi-
fied states illustrates how the proposed framework help to interpret reward functions.
Moreover, previous works on explainable RL evaluate methods with demonstrations on
a few examples or user studies. Neither of them is capable of illustrating whether the
explanations are representative. The present study proposes a new perturbation analysis
to evaluate such an aspect quantitatively. Our results show that the weights inferred by
the proposed framework are more effective as an indicator than reward values for state
importance. Last but not least, through experiments on 17 datasets, the present study
also shows that no significant performance loss is observed for the proposed framework
on most datasets, which demonstrates its applicability.

As for future direction, it is of interest to combine the proposed framework with other
forms of human supervision in training RL agents. Improving its performance on tasks
with dense rewards is also worth investigating.

Author Contributions  All the authors contributed to the study conception. The design and analysis were by
Guoxi Zhang. The first draft of the manuscript was written by Guoxi Zhang, and all the authors commented
on previous versions of the manuscript. All the authors read and approved the final manuscript.

Funding  Hisashi Kashima is supported by the JST CREST (Grant No.: JPMJCR21D1).

Data availability  This work utilizes data published by previous work, and the sources are clearly cited.

Code availability  This work utilizes implementations released by existing research, and the sources are
clearly cited. The implementation of the proposed method is released.

Declarations 

Conflict of interest  Not Applicable.

Ethics approval  Not Applicable.

Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

1900	 Machine Learning (2024) 113:1885–1901

1 3

References

Agarwal, R., Schuurmans, D., & Norouzi, M. (2020). An optimistic perspective on offline reinforce-
ment learning. In Proceedings of the thirty-seventh international conference on machine learning.
PMLR, pp. 104–114.

Akrour, R., Schoenauer, M., & Sebag, M. (2011). Preference-based policy learning. In Machine learning
and knowledge discovery in databases. Berlin, Heidelberg, Athens, Greece, pp. 12–27.

Atrey, A., Clary, K., & Jensen, D. (2020). Exploratory not explanatory: Counterfactual analysis of sali-
ency maps for deep reinforcement learning. In Proceedings of the international conference on
learning representations. Virtual.

Bewley, T., & Lecue, F. (2022). Interpretable preference-based reinforcement learning with tree-struc-
tured reward functions. In Proceedings of the twenty-first international conference on autonomous
agents and multiagent systems. International Foundation for Autonomous Agents and Multiagent
System, Virtual, pp. 118–126.

Beyret, B., Shafti, A., & Faisal, A. A. (2019). Dot-to-dot: Explainable hierarchical reinforcement learn-
ing for robotic manipulation. In 2019 IEEE/RSJ international conference on intelligent robots and
systems. IEEE, Macau, China, pp. 5014–5019.

Biyik, E., & Sadigh, D. (2018). Batch active preference-based learning of reward functions. In Proceed-
ings of the second conference on robot learning. PMLR, Auckland, New Zealand, pp. 519–528.

Biyik, E., Huynh, N., Kochenderfer, M. J., et al. (2020). Active preference-based gaussian process
regression for reward learning. In Robotics: Science and Systems XVI, Virtual.

Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4), 324–345.

Brown, D., Goo, W., Nagarajan, P., et al. (2019). Extrapolating beyond suboptimal demonstrations via
inverse reinforcement learning from observations. In Proceedings of the thirty-six international
conference on machine learning. PMLR, Long Beach, CA, USA, pp. 783–792.

Brown, D., Coleman, R., Srinivasan, R., et al. (2020). Safe imitation learning via fast Bayesian reward
inference from preferences. In Proceedings of the thirty-seventh international conference on
machine learning. PMLR, Virtual, pp. 1165–1177.

Busa-Fekete, R., Szörényi, B., Weng, P., et al. (2014). Preference-based reinforcement learning: Evolu-
tionary direct policy search using a preference-based racing algorithm. Machine Learning, 97(3),
327–351.

Camacho, A., Varley, J., Zeng, A., et al. (2021). Reward machines for vision-based robotic manipulation. In
Proceedings of the 2021 IEEE international conference on robotics and automation, Xi’an, China, pp.
14284–14290.

Christiano, P. F., Leike, J., Brown, T., et al. (2017). Deep reinforcement learning from human preferences.
In Advances in neural information processing systems 30. Curran Associates, Inc., Long Beach, CA,
USA, pp. 4302–4310.

Corazza, J., Gavran, I., & Neider, D. (2022). Reinforcement learning with stochastic reward machines. In
Proceedings of the thirty-sixth AAAI conference on artificial intelligence. AAAI Press, Virtual, pp.
6429–6436.

Dabney, W., Rowland, M., Bellemare, M. G., et al. (2018). Distributional reinforcement learning with quan-
tile regression. In Proceedings of the thirty-second AAAI conference on artificial intelligence. AAAI
Press, New Orleans, Louisiana, USA, pp. 2892–2901.

Fisac, J. F., Gates, M. A., Hamrick, J. B., et al. (2020). Pragmatic-pedagogic value alignment. In Proceed-
ings of the eighteenth international symposium on robotics research. Springer International Publish-
ing, Puerto Varas, Chile, pp 49–57.

Fu, J., Kumar, A., & Nachum, O., et al. (2020). D4rl: Datasets for deep data-driven reinforcement learning.
arXiv:​2004.​07219.

Fürnkranz, J., Hüllermeier, E., Cheng, W., et al. (2012). Preference-based reinforcement learning: A formal
framework and a policy iteration algorithm. Machine Learning, 89(1), 123–156.

Glass, A., McGuinness, D. L., & Wolverton, M. (2008). Toward establishing trust in adaptive agents. In
Proceedings of the thirteenth international conference on intelligent user interfaces. Association for
Computing Machinery, Gran Canaria, Spain, pp. 227–236.

Greydanus, S., Koul, A., Dodge, J., et al. (2018). Visualizing and understanding Atari agents. In Proceed-
ings of the thirty-fifth international conference on machine learning. PMLR, Stockholm, Sweden, pp.
1792–1801.

Ibarz, B., Leike, J., Pohlen, T., et al. (2018). Reward learning from human preferences and demonstrations
in Atari. In Advances in neural information processing systems. Curran Associates Inc., Montréal,
Canada, pp. 8022–8034.

http://arxiv.org/abs/2004.07219

1901Machine Learning (2024) 113:1885–1901	

1 3

Lange, S., Gabel, T., & Riedmiller, M. (2012). Batch reinforcement learning. In Reinforcement learning:
State-of-the-art. Springer, Berlin, Heidelberg, Germany, pp. 45–73.

Lee, K., Smith, L., Dragan, A., et al. (2021a). B-pref: Benchmarking preference-based reinforcement learn-
ing. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks,
Virtual.

Lee, K., Smith, L. M., Abbeel, P. (2021b). Pebble: Feedback-efficient interactive reinforcement learning via
relabeling experience and unsupervised pre-training. In Proceedings of the thirty-eighth international
conference on machine learning. PMLR, Virtual, pp. 6152–6163.

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2021). Explainable AI: A review of machine learn-
ing interpretability methods. Entropy, 23(1), 18.

Madumal, P., Miller, T., Sonenberg, L., et al. (2020). Explainable reinforcement learning through a causal
lens. In Proceedings of the thirty-fourth AAAI conference on artificial intelligence. AAAI Press, New
York, NY, USA, pp. 2493–2500.

Novoseller, E., Wei, Y., Sui, Y., et al. (2020). Dueling posterior sampling for preference-based reinforce-
ment learning. In Proceedings of the thirty-sixth conference on uncertainty in artificial intelligence.
PMLR, Virtual, pp. 1029–1038.

Pan, A., Bhatia, K., & Steinhardt, J. (2022). The effects of reward misspecification: Mapping and mitigat-
ing misaligned models. In Proceedings of the International conference on learning representations.
Virtual.

Puiutta, E., Veith, E. M., et al. (2020). Explainable reinforcement learning: A survey. In Machine learning
and knowledge extraction. Springer International Publishing, Dublin, Ireland, pp. 77–95.

Reddy, S., Dragan, A. D., & Levine, S. (2018). Shared autonomy via deep reinforcement learning. In Pro-
ceedings of the robotics: Science and systems XIV. Pittsburgh, PA, USA.

Sadigh, D., Dragan, A. D., Sastry, S., et al. (2017). Active preference-based learning of reward functions. In
Proceedings of robotics: Science and systems XIII. Cambridge, MA, USA.

Sequeira, P., & Gervasio, M. (2020). Interestingness elements for explainable reinforcement learning:
Understanding agents’ capabilities and limitations. Artificial Intelligence, 288(103), 367.

Shin, D., & Brown, D. (2021). Offline preference-based apprenticeship learning. In Workshop on human-AI
collaboration in sequential decision-making at the thirty-eighth international conference on machine
learning. Virtual.

Icarte, R. T., Klassen, T., Valenzano, R., et al. (2018). Using reward machines for high-level task specifica-
tion and decomposition in reinforcement learning. In Proceedings of the thirty-fifth international con-
ference on machine learning. PMLR, Stockholm, Sweden, pp. 2112–2121.

Wilde, N., Kulic, D., & Smith, S. L. (2020). Active preference learning using maximum regret. In IEEE/
RSJ international conference on intelligent robots and systems. IEEE, Las Vegas, NV, USA, pp.
10952–10959.

Wirth, C., & Fürnkranz, J. (2013). A policy iteration algorithm for learning from preference-based feedback.
In Advances in intelligent data analysis XII. Springer Berlin Heidelberg, London, UK, pp. 427–437.

Wirth, C., Fürnkranz, J., Neumann, G. (2016). Model-free preference-based reinforcement learning. In Pro-
ceedings of the thirtieth AAAI conference on artificial intelligence. AAAI Press, Phoenix, AZ, USA,
pp. 2222–2228.

Wirth, C., Akrour, R., Neumann, G., et al. (2017). A survey of preference-based reinforcement learning
methods. Journal of Machine Learning Research, 18(136), 1–46.

Wu, Y., Tucker, G., & Nachum, O. (2019). Behavior regularized offline reinforcement learning. arXiv pre-
print arXiv:​1911.​11361.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/1911.11361

	Learning state importance for preference-based reinforcement learning
	Abstract
	1 Introduction
	2 Related work
	3 Problem setting
	3.1 Markov decision process without reward
	3.2 The reward learning problem

	4 Proposed approach
	4.1 Modeling preferences
	4.2 Learning rewards and weights
	4.3 Evaluating state weights
	4.3.1 Remarks

	5 Experiments
	5.1 Overview
	5.2 Datasets
	5.3 Experiment design
	5.3.1 Visualizing identified states
	5.3.2 Task performance

	5.4 Technical details
	5.5 Results
	5.5.1 Visualizing identified states
	5.5.2 Evaluating state weights
	5.5.3 Task performance

	6 Conclusion
	References

