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Abstract
Preference-based reinforcement learning (PbRL) develops agents using human preferences. 
Due to its empirical success, it has prospect of benefiting human-centered applications. 
Meanwhile, previous work on PbRL overlooks interpretability, which is an indispensa-
ble element of ethical artificial intelligence (AI). While prior art for explainable AI offers 
some machinery, there lacks an approach to select samples to construct explanations. This 
becomes an issue for PbRL, as transitions relevant to task solving are often outnumbered 
by irrelevant ones. Thus, ad-hoc sample selection undermines the credibility of explana-
tions. The present study proposes a framework for learning reward functions and state 
importance from preferences simultaneously. It offers a systematic approach for selecting 
samples when constructing explanations. Moreover, the present study proposes a perturba-
tion analysis to evaluate the learned state importance quantitatively. Through experiments 
on discrete and continuous control tasks, the present study demonstrates the proposed 
framework’s efficacy for providing interpretability without sacrificing task performance.

Keywords  Interpretable reinforcement learning · Preference-based reinforcement learning · 
Human-in-the-loop reinforcement learning · Interpretability artificial intelligence

1  Introduction

Preference-based reinforcement learning (PbRL)  (Akrour et  al., 2011; Fürnkranz et  al., 
2012) is a reinforcement learning (RL) setting that develops agents using human prefer-
ences.  Christiano et  al. (2017) reported remarkable empirical results for tasks without 
reward functions–they were solved with less than 1% of interactions annotated. Besides, 
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due to its ability to comply with humans, PbRL is promising for human-centered tasks such 
as value alignment (Fisac et al., 2020) or shared autonomy (Reddy & Dragan, 2018).

The present study argues for interpretability as another first principle for PbRL. As 
pointed out by Glass et al. (2008), interpretability is crucial for earning users’ trust. With-
out the ability to explain behaviors, an agent will appear to be an inaccessible contrived 
blackbox instead of something that admits interaction. Interpretability is even manda-
tory for ethical AI. Since 2017, the European Parliament and European Commission 
have launched a series of actions emphasizing the role of interpretability in intelligent 
systems. In April 2021, the European Commission released a new proposal for regulat-
ing AI systems that prescribes an obligatory requirement for transparency in high-risk sys-
tems. Moreover, interpretability facilitates developing agents. For example, with imperfect 
reward functions, Pan et al. (2022) observed that agents might learn unintended behaviors. 
In this case, an interpretable agent will allow practitioners to track down problems agilely.

Notwithstanding its significance, the previous framework for deep PbRL   (Christiano 
et  al., 2017; Brown et  al., 2019; Shin et  al., 2021) overlooks interpretability. It learns a 
deep reward function from human preferences and uses it in policy optimization. Although 
it is the core quantity that extracts knowledge from human preferences, the learned reward 
function remains a blackbox.

At first glance, general techniques for explainable AI (Linardatos et al., 2021), such as 
saliency maps, suffice for explaining reward functions. However, explanations are often 
generated using some samples. There lacks a systematic approach for sample selection, 
which compromises the credibility of explanations. For instance, suppose an agent needs 
to navigate through a maze. Then it is better to focus on paths leading to the goal posi-
tion rather than paths leading to dead ends. Yet, a randomly selected sample is likely to 
be part of the latter. Explanations based on such a sample are thus not representative or 
meaningful.

The present study overcomes the sample selection issue with a novel reward learning 
framework, which simultaneously learns a reward function and a weighting network for 
states. The weighting network learns the importance of states for modeling preferences, 
which can be used for selecting samples to construct explanations. The key assumption is 
that in a long state sequence, only a few states are critical to preferences. Figure 1 shows an 
example for critical and non-critical states for the Atari game BeamRider. To be competi-
tive, an agent needs to destroy enemy spacecrafts, so states containing enemy spacecrafts 
are critical. States representing open space, on the contrary, are not critical.

In specific, the proposed framework represents each trajectory as a weighted sum of rep-
resentation vectors for states and uses a weighting network to compute the weights. �1 and 
�2 regularizations are imposed to the output of the weighting network to attain the assumed 

Fig. 1   Examples for critical and non-critical states for the game BeamRider. An agent controls a spacecraft 
(shown at the bottom) in this game and fights with enemies. Case (a) is an example of critical states, as it 
shows an enemy that needs to be destroyed. Case (b) is an example of non-critical states, as no action needs 
to be taken when the agent is flying in open space (Color figure online)



1887Machine Learning (2024) 113:1885–1901	

1 3

sparsity. The proposed framework then models trajectory returns as inner products between 
a reward vector and trajectory representation vectors. Parameters of the entire model are 
learned by maximizing the likelihood of collected preferences.

A remaining question is how to evaluate the importance of states. In literature, 
approaches for interpretability are evaluated either with demonstrations or user studies. 
The former illustrates insights obtained from explanations, while the latter confirms if 
explanations are comprehensible. However, neither of them can answer whether the expla-
nations are representative in a quantitative aspect. To address this drawback, the present 
study proposes a perturbation analysis. The core idea is to remove samples that appear to 
be important from expert demonstrations and train behavioral cloning (BC) agents on the 
remaining data. Then the performance drop of BC agents serves as an evaluation metric for 
sample importance.

The present study proceeds with experiments on 17 offline RL datasets. Firstly, a quali-
tative categorization of important states identified for the game BeamRider illustrates how 
the proposed framework helps to explain reward functions. Interestingly, the results indi-
cate that the learned reward function was (a) uncertain about the exact start of events and 
(b) unable to discriminate temporally associated states. Both insights shed light on how 
one can improve PbRL agents. Moreover, the results for the proposed perturbation analysis 
confirm that, when compared to reward values, the inferred state weights are more indica-
tive of critical states. Finally, there is a concern about the tradeoff between performance 
and interpretability (Puiutta & Veith, 2020). Our results show no significant performance 
loss for the proposed framework was observed, which corroborates its feasibility for com-
plex control problems. The contributions of the present study are summarized as follows. 

1.	 To address the interpretability of PbRL and overcome the sample selection issue in 
particular, the present study proposes a novel framework for PbRL that learns rewards 
and state importance simultaneously.

2.	 A perturbation analysis is proposed to evaluate the importance of states quantitatively.
3.	 With a categorization of identified critical states, the present study confirms the efficacy 

of the proposed framework for explaining reward functions. It then evaluates the learned 
state importance using the proposed perturbation analysis. Finally, it verifies the task 
performance of the proposed framework.

The rest of this paper is organized as follows. Section 2 summarizes prior art for reward 
learning from human preferences, followed by Sect. 3 that formalizes the reward learning 
problem in an offline setting. Section 4 describes the proposed framework, and Sect. 5 pre-
sents empirical evaluations. Section 6 concludes this paper.

2 � Related work

Learning from preference-based feedback has been a topic of reinforcemeng learning 
since last decade  (Akrour et  al., 2011; Fürnkranz et  al., 2012; Wirth & Fürnkranz, 
2013; Busa-Fekete et al., 2014).  Wirth et al. (2017) presented a comprehensive survey 
for early algorithms. Recently, deep PbRL has demonstrated empirical success in Atari 
games (Christiano et al., 2017; Ibarz et al., 2018), locomotion tasks (Lee et al., 2021a) 
and navigation tasks  (Shin et al., 2021). It is especially useful for human-in-the-loop 
applications such as value alignment (Fisac et al., 2020) or shared autonomy (Reddy & 
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Dragan, 2018) that requires adaptation to human feedback. Based on the Bradley-Terry 
(BT) model (Bradley & Terry, 1952), existing PbRL approaches relate preferences to 
trajectory returns via either trajectory features  (Novoseller et  al., 2020; Wirth et  al., 
2016) or sums of predicted rewards (Christiano et al., 2017; Ibarz et al., 2018).

Several approaches combine PbRL with other ideas. To name a few,  Ibarz et  al. 
(2018) proposed to combine PbRL with behavioral cloning.  Lee et  al. (2021b) sug-
gested diversifying collected experience using intrinsic reward, and Brown et  al. 
(2020) combined PbRL with Bayesian modeling and self-supervised pretraining. 
Besides, adaptive query selection also receives attention in literature  (Sadigh et  al., 
2017; Biyik & Sadigh, 2018; Wilde et  al., 2020; Biyik et  al., 2020). However, inter-
pretability receives little attention for PbRL. As the only exception, Bewley and Lecue 
(2022) proposed to use tree-based functions for reward functions, but this approach 
does not scale to complex high-dimensional tasks. In a separate line of work,  Icarte 
et  al.  (2018) proposed to learn finite-state machines for reward functions, which was 
later extended to noisy reward setting  (Corazza et  al., 2022) and vision-based con-
trol (Camacho et al., 2021). Nevertheless, such a representation is not directly applica-
ble to preference-based setting.

In general, one may interpret reward functions using similar techniques for inter-
preting policies, such as saliency maps (Atrey et al., 2020). Nevertheless, the issue of 
sample selection remains. Chances are that explanations are not representative of the 
agent’s knowledge, if samples used by the explanations are selected arbitrarily. More-
over, the evaluation methods also do not cover sample importance aspect. In litera-
ture, approaches for interpretability are either illustrated with few examples  (Bewley 
& Lecue, 2022; Beyret et  al., 2019; Greydanus et  al., 2018) or evaluated with user 
study  (Madumal et  al., 2020; Sequeira & Gervasio, 2020). Neither of them assesses 
the importance of samples used for explanations. The present study overcomes the two 
issues mentioned above with a novel reward learning framework and a perturbation 
analysis.

3 � Problem setting

3.1 � Markov decision process without reward

The present study models a task as a Markov decision process without reward (MDP/R) 
⟨S,A, P, �⟩ . S and A are the sets of states and actions, respectively. With slight abuse 
of terminology, throughout this paper states and observations are used interchangeably. 
P is the distribution of next state after taking some action at a state, and � ∈ (0, 1) is a 
discount factor.

MDP/R prescribes the following interaction protocol. As step t, the agent observes 
current state st ∈ S and selects at according to a policy � ∶ S → A . Based on (st, at) , the 
environment decides next state st+1 . Such interactions generate alternating sequences 
of states and actions � = (s1, a1, s2, a2,…) , which are called trajectories.

Unlike a Markov decision process, there is no reward function in MDP/R. The pre-
sent study considers learning a reward function from human preference as follows, 
which enables one to apply off-policy learning algorithms.
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3.2 � The reward learning problem

A reward function R ∶ S → ℝ provides an agent with feedback for its decisions. Follow-
ing previous works for PbRL (Ibarz et al., 2018; Brown et al., 2019), actions are omit-
ted in R. This is a valid assumption for many tasks whose ground truth reward is also 
a function of states. For other tasks, extension for including actions is straightforward. 
With R, an agent can learn policies via maximizing the expected cumulative reward in a 
trajectory (i.e. return) �[

∑∞

t=1
� t−1rt].

An agent is provided with a collections of N trajectories {�j}Nj=1 and a set of M prefer-
ences Y. A preference sample y(i) ∈ Y  can be written as y(i) = (�

(i)

1
, �

(i)

2
, c(i)) , where � (i)

1
 

and � (i)
2

 are two trajectories being compared, and c(i) is the preference label. c(i) = 1 if � (i)
1

 
is preferred over � (i)

2
 , and c(i) = 0 otherwise. In human-in-the-loop applications, prefer-

ences can be generated by human annotators. One may present annotators with pairs of 
trajectories and ask them to select the ones that are more favorable.

This setting differs from the existing PbRL setting  (Christiano et  al., 2017) in that 
the agent is not allowed to collect new trajectories or preferences. As a form of offline 
RL  (Lange et  al., 2012), it eliminates the need for online data acquisition. Moreover, 
this setting enables one to collect preferences at scale before reward learning. In the 
existing setting, the agent generates trajectories during policy learning, which means 
annotators have to be alongside the agent and provide preferences once trajectories are 
generated. On the contrary, in our setting all the preferences can be generated prior to 
reward learning using techniques such as crowdsourcing. This separation of preference 
collection and reward learning lowers the requirement for annotators and makes PbRL 
more accessible.

Meanwhile, in the online PbRL setting reward functions are re-trained once new 
preferences are obtained. The agent is in fact repeatedly solving the learning problem 
considered here with a growing set of preferences. Thus, algorithms for the problem 
considered here also applies to the online setting.

The reward learning problem can be summarized as:

•	 Input: N trajectories {�j}Nj=1 and M preferences Y = {y(i)}M
i=1

;
•	 Output: A reward function R.

4 � Proposed approach

This section introduces how the proposed framework learns a reward function and a 
weighting network for states from the provided preferences. After that, it explains how 
the proposed analysis evaluates the importance of states.

4.1 � Modeling preferences

Given y(i) , the proposed framework first encodes the states of both trajectories as vectors 
in ℝd with fe ∶ S → ℝ

d , where d is the dimension of this vector space. For tasks with 
image input, fe can be parameterized with convolutional neural networks followed by 
fully-connected layers; for continuous input fe may consist of several fully-connected 
layers. A weighting network fw ∶ ℝ

d
→ ℝ takes as input state representations and 
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outputs the weights of states. fw is parameterized with fully-connected layers. Using fe 
and fw , a trajectory � is encoded as fc(�) as:

The return of � , G(�) , is the inner product between a vector �R ∈ ℝ
d and fc(�):

The larger ∣ fw(fe(s)) ∣ is, the more important state s is for fc(�) and G(�) . Similarly, the 
reward of a state s is the inner product between �R and the representation for s, multiplied 
by state importance: R(s) = �

⊺

R
fw(fe(s))fe(s).

The proposed framework utilizes the BT model for modeling preferences. Specifically, the 
label in y(j) takes value one with probability:

In other words, the larger G(� (i)
1
) − G(�

(i)

2
) is, the higher probability that � (i)

1
 is preferred.

4.2 � Learning rewards and weights

In the proposed framework, fe , fw and �R are learned by minimizing the following objective 
function:

where �1 ∈ ℝ and �2 ∈ ℝ are hyper-parameters. Lce is the cross entropy loss:

By minimizing Lce , the proposed framework can learn a reward function that best explains 
the provided preferences. L1 and L2 are introduced to realize the assumption made for state 
importance–only few states are critical for preferences. L1 penalizes the absolute values of 
state weights:

In consequence, only states that are relevant to preferences have weights deviate from zero. 
Irrelevant states will have weights close to zero. Meanwhile, L1 treats each state indepen-
dently. In many tasks of interests, critical states span multiple time steps. For example, 
in the example shown in Fig. 1a, it takes several time steps for the enemy spacecraft to 
approach the agent’s ship. L2 is proposed to capture this temporal structure.

(1)fc(�) =
∑

s∈�

fw(fe(s))fe(s).

(2)G(�) = �
⊺

R
fc(�).

(3)Pr(c(i) = 1;�
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1
, �
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2
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1
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(i)

1
)) + exp(G(�

(i)

2
))
.

(4)L = Lce + �1L1 + �2L2,

(5)
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1

M

∑

(�
(i)

1
,�

(i)

2
,c(i))∈Y

[
c(i) log(Pr(c(i) = 1;�

(i)

1
, �

(i)

2
))

+(1 − c(i)) log(Pr(c(i) = 0;�
(i)

1
, �

(i)

2
))
]
.

(6)L1 =
1

M

∑

(�
(i)

1
,�

(i)

2
,c(i))∈Y

∑

s∈�
(i)

1
,�

(i)

2

∣ fw(fe(s)) ∣ .



1891Machine Learning (2024) 113:1885–1901	

1 3

This term penalizes the difference between weights of adjacent states. With both L1 and L2 , 
only the states whose adjacent states are also critical have non-zero weights.

Preliminary experiments showed that when trained from scratch, optimizing Eq.  4 
resulted in almost zero weights for most states. A possible reason is that the initial output 
of fw is within a small range around zero since network parameters are initialized with 
random numbers close to zero. In this case, imposing L1 and L2 further restricts the output 
of fw . The proposed framework overcomes this issue with a warming procedure for �1 and 
�2 . When optimizing Eq. 4, the values of �1 and �2 are linearly increased to their final val-
ues. Initially, the values of �1 and �2 are small, so the reward network has full capacity for 
learning from preferences. As their values increase, the reward network is forced to prune 
away the contribution of some states in trajectory returns while maintaining modeling pref-
erences. As a result, fw learns to assign weights deviated from zero to critical states for 
preferences.

As a remark, the l2-norm is not the only choice in Eq. 7. One may instead minimize the 
l1-norm or the huber loss. In practice, for a specific application, the best choice depends on 
the structure of the ground-truth reward and should be chosen empirically. For illustration 
purpose, the present study uses the l2-norm in Eq. 7.

4.3 � Evaluating state weights

A remaining question is how to evaluate the state importance learned from preferences. 
As mentioned above, neither demonstrations nor user studies can answer if explanations 
are representative. To comprehensively evaluate the learned state importance, the present 
study proposes a new perturbation study for evaluating state importance.

First of all, it is worth discussing the notion of state importance. One candidate is the 
frequency of states. For two states s, s� ∈ S , s is more important than s′ if s appears more 
often in training trajectories. In consequence, explanations based on s better characterize 
patterns in data than those generated using s′ . This perspective, however, lacks considera-
tion for task performance. Often, RL agents are supposed to reach some particular states 
(e.g. the goal in a maze) or visit them as often as possible (e.g. destroying more enemy 
spacecrafts in BeamRider). It is these particular states that are critical to task performance, 
though they might be outnumbered by the non-critical ones. Explanations based on such 
states will reveal how a reward function facilitates the agent to solve the corresponding 
task.

However, collecting such critical states requires expertise for the corresponding task and 
massive annotation. Both requirements are infeasible in practice. As a surrogate, the pre-
sent study considers a state of being important if it is indispensable for expert demonstra-
tions. Then, removing such states should cause performance drop for behavioral-cloning 
agents. By measuring the performance drop, one can evaluate state importance from the 
perspective of task solving.

In specific, let h ∶ S ×A → [0,+∞) be an arbitrary function that maps states and 
actions to non-negative values. The higher h(s, a) is, the more important this state-action 
pair is. The proposed analysis rolls out into several rounds. Firstly, rank state-action pairs 
in decreasing order according to h(s, a). Then at each round, remove the top-k state-action 
pairs, and train a BC agent on the remaining. To prevent creating artificial transitions, after 

(7)L2 =
1

M

∑

(�
(i)

1
,�

(i)

2
,c(i))∈Y

∑

st ,st+1∈�
(i)

1
,�

(i)

2

(fw(fe(st)) − fw(fe(st+1)))
2
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removing a pair (st, at) , set its preceding pair (st−1, at−1) as a terminating pair. The present 
study reports result for removing up to 40% of data, 10% each round.

As for alternative methods, the present study reports results for random removal and 
absolute-reward (AR) removal. With random removal, state-action pairs are removed uni-
formly at random. Its results illustrate to what extent training data size affects agents’ per-
formance. With AR removal, state-action pairs are removed according to the absolute value 
of rewards inferred from preferences.

With the same amount of data removed, the poorer BC agents perform, the better a 
method is in characterizing state importance. Moreover, the fewer data are removed for the 
same performance drop, the better the method is.

4.3.1 � Remarks

•	 As a BC agent learns a mapping from states to actions in data, using it eliminates the 
effect of reward functions on task performance. Besides, this choice avoids potential 
influences from data removal on temporal structures.

•	 While the proposed reward learning algorithm applies to general trajectories, this per-
turbation analysis is limited to expert demonstrations. This is because it utilizes the 
drop in performance as a measure for state importance. Meanwhile, general trajectories, 
especially imperfect ones, contain ”wrong” decisions. Removing these decisions might 
improve performance in regardless of state importance. In consequence, these ”wrong” 
decisions complicates the discussion of the results, as one will not be able to attributes 
changes in performance to importance of removed states.

5 � Experiments

5.1 � Overview

Experiments proceed in three steps. Firstly, this section reports findings and insights from 
a case study on BeamRider, which illustrates how the proposed framework helps to explain 
reward functions. Then, it uses the proposed analysis to evaluate whether the inferred 
weights correlated with the importance of states quantitatively, which complements the 
first evaluation. Finally, this section evaluates the task performance of the proposed frame-
work, demonstrating its practical applicability.

5.2 � Datasets

The present study utilizes the ”medium” and ”expert” version of trajectories collected for 
four continuous control tasks in the D4RL (Fu et al., 2020) datasets: Hopper, Walker2d, 
Halfcheetah and Ant. For each task, the ”medium” version (labeled with ”-m”) contains 
trajectories collected by an online RL agent, and the ”expert” version (labeled with ”-e”) 
contains expert demonstrations.

In addition, this study utilizes the DQN replay dataset (Agarwal et al., 2020). The data 
for nine games are included: BeamRider, Enduro, Hero, Pong, Seaquest, Alien, Boxing, 
Assault and BattleZone.

For each task (game), 5000 preference queries are generated as follows. First of all, 250 
trajectories are sampled uniformly at random. Following the practice proposed by  Ibarz 
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et  al. (2018) and  Brown et  al. (2019), queries for preferences are made up with subse-
quences of trajectories. From each trajectory three subsequences of length 60 are sampled, 
yielding a pool of 750 subsequences. Then 5000 queries are randomly selected from them. 
Three labels are generated using the Bradley-Terry model and ground-truth rewards for 
each query.

5.3 � Experiment design

5.3.1 � Visualizing identified states

This part of the experiments presents an analysis for state weights. Figure 2 illustrates the 
distribution of states weights of the 750 training subsequences and 750 new subsequences.

Figures 3,  4 and  5 present in-depth qualitative analysis of state weights of 60 subse-
quences. These subsequences are sampled from the first ten trajectories for BeamRider. 
Half of them are used in reward learning, and the other half are unseen ones. In particu-
lar, Figs. 4 and  5 present a categorization of critical states identified from the same 60 
subsequences. From each subsequence, the state with the largest ∣ fw(fe(s)) ∣ is visualized, 
together with the immediately preceding state and subsequent state. Then the authors 
inspected these visualizations and summarized seven success cases (Fig. 4) and three fail-
ure cases (Fig.  5). As will be clear later, these states form example-based explanations 
themselves, and they can be used to construct other types of explanations if necessary.

5.3.2 � Task performance

This part of experiments compares task performance of the proposed framework with other 
reward learning methods. It utilizes the average test return of the same policy learning 
algorithm on inferred rewards as evaluation metric. For continuous control tasks, it utilizes 
the behavioral-regularized actor-critic algorithm (Wu et al., 2019), and for Atari games, it 
uses the quantile-regression DQN algorithm (Dabney et al., 2018).

The first reward learning method to compare is the one proposed by Christiano et al. 
(2017), which uses the sum of rewards as the return of a trajectory. As it is a direct utili-
zation of the BT model for preferences, it is referred to as BT in the sequel. The second 

Fig. 2   Boxplots for state weights. The median, first quantile, and third quantile are in [−0.1, 0.1] on every 
dataset, indicating many of the weights are very small. This confirms the effect of the L1 term in Eq. 4 for 
selecting states
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method is T-REX (Brown et al., 2019) which utilizes the ranking over entire trajectories in 
reward learning. As the goal is to analyze performance for reward learning, approaches that 
combine PbRL with BC or intrinsic rewards are not included. Note that it is straightfor-
ward to combine the proposed framework with these ideas.

5.4 � Technical details

For Atari games, the input to agents contains game scores. To prevent exploiting such 
information, game scores are masked out during reward learning and reward inference.

�1 and �2 control the level of sparsity. They are selected using grid search over 
{0.1, 0.01, 0.001} and 10% of preferences as validation sets. After that, reward functions are 
trained with the selected hyperparameters and all of the preferences.

Experiments are repeated five times, and the average values of metrics and standard 
errors are reported. Details for hyper-parameters, including implementations, are available 
on our website.1

Fig. 3   Left: A heatmap for state weights on BeamRider, which confirms the effect of L2 . Upper right: an 
example for states with large absolute weights, in which the agent is close to an incoming missile (circled 
in green) in the presence of enemies (circled in blue). Its weights are the three cells starting from the 3rd 
row from the top and the 10th column from the right. Middle right: an example for states with weights close 
to zero, in which the agent launch missiles (circled in yellow) in open space. Its weights are the three cells 
starting from the 21st row from the bottom and 32nd row from the right. Bottom right: an example for tran-
sitioning from states with large absolute weights to states with small absolute weights, in which the agent 
lose a life (circled in red). Its weights are the three cells starting from 5th column from the right and the 5th 
column from the bottom (Color figure online)

1  https://​altri​aex.​github.​io/​ident​ify-​criti​cal-​states/.

https://altriaex.github.io/identify-critical-states/
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5.5 � Results

5.5.1 � Visualizing identified states

Figure 2 shows box plots for state weight on all of the 17 datasets. The first and third quan-
tile of state weights on all datasets are covered in [−0.1, 0.1] . This means that the weights 
of many states are very small, which confirms the effect of L1 . Figure 3 shows a heatmap 
for state weights and visualizations of states for BeamRider. Each row in the heatmap cor-
responds to a trajectory subsequence, and each cell in a row corresponds to the weight of 
a state. The left part of Fig. 3 shows that many consecutive states have similar weights, 
which confirms the effect of L2 in smoothing state weights. The right part of Fig. 3 shows 

Fig. 4   Examples of identified critical states for BeamRider. Cases (a)–(d) are taken from different trajecto-
ries. Together, they depict critical behaviors required for this game: the agent needs to destroy enemies with 
its missiles. Case (e) covers the situation of losing a life, which is also critical to this game. Case (f) and 
case (g) cover complex situations where the agent needs to launch missiles while dodging enemy missiles 
(Color figure online)
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examples of consecutive states. The top three form an example whose weights deviate from 
zero, in which the agent is close to an incoming missile in the presence of enemies. This 
is indeed critical for this game, as the agent loses a life once hit by the missile. The middle 
part illustrates an example for states with weights close to zero. In this case the agent has 
launched a missile in open space, which is an irrelevant behavior for the game. The bot-
tom part illustrates a transition from a state with large absolute weight to a state with small 
absolute weight. This example corresponds to the process of losing a life.   

Figures 2 and  3 demonstrate that the proposed framework can select some states that 
are indeed critical. To further illustrate how the proposed framework facilitate interpreting 
reward functions, the present study reports a categorization of 60 identified states in Fig-
ures 4 and  5. All of the visualizations, as well as the related videos, can be found on our 
website.

Figure 4 shows the seven cases that are indeed critical. In case (a) there are incoming 
enemies. This case constitutes 11.6% of visualizations. Case (b) contains 3.3% of visualiza-
tions in which both incoming enemies and enemy missiles are present. Meanwhile, in case 
(c), the agent has launched missiles in the presence of enemies, and in case (d), an enemy 
is destroyed. They constitute 16.7% and 11.6% of the visualizations, respectively. Case (e) 
is the largest category (25%) in which the agent’s ship is destroyed. Case (f) and case (g) 
are two more complex cases in which the agent has launched missile (f) and destroyed an 
enemy (g) in the presence of enemies and enemy missiles. Both of them constitute 3.3% of 
the visualizations. From simple situations to complex ones, these 74.8% of visualizations 
present a variety of states that are critical to the corresponding task. These states serve as 
example-based explanations that confirm the ability of the proposed framework for identi-
fying critical states.

Meanwhile, Fig. 5 shows three failure cases. In these cases, the states have large abso-
lute weights, but they are not important to the task from the authors’ point of view. In case 
(a) (5%), the agent has launched a missile in open space. In case (b) (11.7%), the agent’s 
ship is flying in open space. Both of them are not critical. Case (c) contains 8.3% of visu-
alizations from which only screen flickering is observed.

Fig. 5   Examples of identified states that are not critical. In case (a) and (b) the agent is in open space. Its 
behaviors are not critical to the game. Case (c) covers a case where the screen is flickering, and it consti-
tutes 8.3% of samples in qualitative analysis. This error case might be explained by its resemblance with 
case (d) and (e) in Fig. 4
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Together, Figs. 4 and  5 show that critical states identified by the proposed method serve 
as sample-based explanations for reward functions. The following insights can be obtained 
by examining these samples, which shed light on how reward learning can be improved.

•	 The starts of events are not modeled accurately. For example, in case (e) of Fig. 4 the 
remaining lives decreased by one. It is more desirable that the reward function assigns 
high weights to the state in which enemy missiles just hit the agent.

•	 Temporal associations are not handled correctly. As shown in case (d) and (e) of Fig. 4, 
screen flickering is associated with the destruction of the agent’s ship or enemies. This 
explains why case (c) in Fig. 5 is considered as important.

5.5.2 � Evaluating state weights

Figure 6 shows results for the proposed perturbation analysis on the four continuous con-
trol tasks. As the Atari replay dataset does not provide expert demonstrations, results for 
Atari games are not included. A point (x, y) in these figures means that BC agents’ test 
return after removing the x ratio of data is y, and the error bars are standard errors.

Initially, consider the performance of random removal (shown in orange). For Halfchee-
tah, Walker2d and Hopper, even with only 60% of expert demonstrations, the BC agents 
do not have performance loss. For Ant, removing 40% of data causes about 10% of per-
formance drop. These results can be dissected from two aspects. The fact that BC agents 
remain competitive even with 60% of data eliminates the possibility of contributing perfor-
mance drop to reduced training data sizes. Moreover, these results confirm that construct-
ing explanations with random samples can be misleading, as the sampled states are likely 
to be irrelevant.

Now consider results for AR, which is shown as blue curves. For Halfcheetah and Walk-
er2d, removing data according AR has little effect. It becomes effective on Hopper only after 
20% of data are removed. Recall that AR uses the absolute values of inferred rewards as a 
score for state importance. These results mean that states with either large positive or negative 
rewards are not indispensable for the corresponding tasks. As our analysis only uses expert 
demonstrations, a possible explanation is that such states represent task accomplishment and 
are not part of decision sequences that lead to task accomplishment. Hence, constructing 

Fig. 6   Results for the perturbation analysis. The x-axis is the ratio of data removed using some method. The 
y-axis is the test return of BC agents. Lower test return indicates that the removed data are critical to the 
corresponding task, which means the corresponding method characterizes state importance better. Random 
removal has a negligible effect on agent performance. When compared to random removal, AR is effective 
only on Halfcheetah and Walker2d. Meanwhile, removing states using the proposed framework significantly 
affects the performance on all of the datasets (Color figure online)
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explanations using such states is not likely to provide meaningful information on how agents 
solve tasks.

Meanwhile, removing samples using the proposed framework (shown in green) is effective 
for all four tasks. For Halfcheetah, Walker2d and Hopper, the performance of BC agents drops 
significantly even when only 10% of data are removed. This means that the proposed frame-
work can accurately identify the critical states for these tasks.

5.5.3 � Task performance

A remaining question is how an RL agent performs when trained on rewards learned with 
the proposed framework. Table 1 answers this question. On these 17 datasets, the proposed 
framework outperforms BT on Enduro, Hero, Pong, Boxing, Assault, BattleZone, Hopper-e, 
Ant-e and Halfcheetah-m. Among the rest eight datasets, it has small performance gaps against 
BT except for Seaquest, Hopper-m, Walker2d-e and Ant-m. These results indicate that the pro-
posed framework might perform worse than BT when the ground-truth reward is dense, which 
means the sparsity assumption might need revision. Nevertheless, these results mean that the 
proposed framework does not incur performance loss on a wide range of tasks while providing 
interpretability.

Table 1   Test return of PbRL agents on 17 datasets. The proposed framework outperforms BT on nine data-
sets. Among the rest eight datasets, its performance gap against BT is small except for Seaquest, Hopper-m, 
Walker2d-e and Ant-m. Numbers shown in bold indicate the corresponding method outperforms others

Task Proposed BT T-REX

BeamRider 4438.18 ± 796.92 4681.45 ± 949.61 305.00 ± 128.74
Enduro 915.13 ± 167.41 628.44 ± 135.80 56.94 ± 31.72
Hero 4397.80 ± 2046.37 1043.79 ± 543.10 770.22 ± 421.79
Pong −19.86 ± 0.71 −19.89 ± 1.03 − 20.88 ± 0.04
Seaquest 107.78 ± 49.38 155.82 ± 33.57 51.32 ± 26.33
Alien 164.14 ± 67.37 166.06 ± 33.11 317.13 ± 77.25
Boxing 21.06 ± 13.77 − 9.08 ± 4.51 − 8.25 ± 2.67
Assault 133.34 ± 57.32 84.10 ± 44.49 126.91 ± 89.24
BattleZone 4727.37 ± 1733.43 4175.15 ± 859.19 4194.85 ± 1655.48
Hopper-m 1589.10 ± 126.70 1729.52 ± 17.42 1731.06 ± 40.98
Hopper-e 3604.00 ± 8.27 3515.32 ± 38.06 3577.56 ± 25.57
Walker2d-m 3404.37 ± 54.85 3426.19 ± 59.82 3270.97 ± 41.99
Walker2d-e 4963.82 ± 6.12 4971.17 ± 7.71 3977.50 ± 892.78
Ant-m 3110.78 ± 115.75 3287.12 ± 111.55 3441.29 ± 169.01
Ant-e 5208.21 ± 103.82 4951.52 ± 172.17 4941.51 ± 155.29
Halfcheetah-m 5374.33 ± 29.16 5123.57 ± 17.28 5247.13 ± 11.15
Halfcheetah-e 11299.84 ± 148.04 11252.16 ± 176.39 11492.95 ± 21.43
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6 � Conclusion

While PbRL demonstrates good empirical performance with a limited amount of anno-
tation, little attention has been paid to the interpretability of learned reward functions. 
In particular, due to the immense size of training data, explanations based on ad-hoc 
samples might not represent the whole data distribution. The present study addresses 
the interpretability of PbRL and the sample selection issue in particular. A framework is 
proposed to jointly learn a reward function and a weighting network for states from pref-
erences, which can be used to select samples for explanation purposes. Structural spar-
sity is imposed on the output of the weighting network to identify states that are highly 
relevant to preferences. On BeamRider, an Atari game, a categorization of 60 identi-
fied states illustrates how the proposed framework help to interpret reward functions. 
Moreover, previous works on explainable RL evaluate methods with demonstrations on 
a few examples or user studies. Neither of them is capable of illustrating whether the 
explanations are representative. The present study proposes a new perturbation analysis 
to evaluate such an aspect quantitatively. Our results show that the weights inferred by 
the proposed framework are more effective as an indicator than reward values for state 
importance. Last but not least, through experiments on 17 datasets, the present study 
also shows that no significant performance loss is observed for the proposed framework 
on most datasets, which demonstrates its applicability.

As for future direction, it is of interest to combine the proposed framework with other 
forms of human supervision in training RL agents. Improving its performance on tasks 
with dense rewards is also worth investigating.
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