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Abstract
Unsupervised discretization is a crucial step in many knowledge discovery tasks. The 
state-of-the-art method for one-dimensional data infers locally adaptive histograms using 
the minimum description length (MDL) principle, but the multi-dimensional case is far 
less studied: current methods consider the dimensions one at a time (if not independently), 
which result in discretizations based on rectangular cells of adaptive size. Unfortunately, 
this approach is unable to adequately characterize dependencies among dimensions and/
or results in discretizations consisting of more cells (or bins) than is desirable. To address 
this problem, we propose an expressive model class that allows for far more flexible parti-
tions of two-dimensional data. We extend the state of the art for the one-dimensional case 
to obtain a model selection problem based on the normalized maximum likelihood, a form 
of refined MDL. As the flexibility of our model class comes at the cost of a vast search 
space, we introduce a heuristic algorithm, named PALM, which partitions each dimension 
alternately and then merges neighboring regions, all using the MDL principle. Experi-
ments on synthetic data show that PALM (1) accurately reveals ground truth partitions that 
are within the model class (i.e., the search space), given a large enough sample size; (2) 
approximates well a wide range of partitions outside the model class; (3) converges, in con-
trast to the state-of-the-art multivariate discretization method IPD. Finally, we apply our 
algorithm to three spatial datasets, and we demonstrate that, compared to kernel density 
estimation (KDE), our algorithm not only reveals more detailed density changes, but also 
fits unseen data better, as measured by the log-likelihood.
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1 Introduction

Discretization, i.e., the transformation of continuous variables into discrete ones, is part of 
numerous data analysis workflows, making it a crucial step for a wide variety of applica-
tions in knowledge discovery and predictive modeling. However, many different discretiza-
tion methods exist and it is often not easy to determine which method should be used. As 
a result, naïve methods such as equal-length and equal-frequency binning are still widely 
used, often with the number of bins chosen more or less arbitrarily, which can lead to sub-
optimal discretization.

A good discretization strikes a balance between the amount of preserved information 
and the complexity of the representation of the discretized data, so as to avoid discre-
tizations that are either too coarse—resulting in severe loss of information—or too fine-
grained—resulting in a bin per data point in the extreme case.

Achieving an optimal balance has been thoroughly studied for supervised discretiza-
tion, i.e., discretization using additional information from a target variable. Optimal dis-
cretizations have been formalized using (1) statistical quantities, e.g., Pearson’s chi-square 
(Boulle, 2004), (2) information-theoretic scores based on entropy or the minimum descrip-
tion length (MDL) principle (Jin et  al., 2009; Fayyad & Irani, 1993), and (3) Bayesian 
approaches (Boullé, 2006).

In contrast, unsupervised discretization, which does not assume a target variable, has 
long been understudied (Kotsiantis & Kanellopoulos, 2006). It serves a different purpose: 
supervised discretization aims to reduce the loss of information about the distribution of 
the target variable conditioned on the features (Boulle, 2004; Fayyad & Irani, 1993; Ker-
ber, 1992), whereas unsupervised discretization aims to preserve information about the 
probability distribution of the variable to be discretized (Schmidberger & Frank, 2005; 
Biba et al., 2007).

This makes histograms well-suited to unsupervised discretization, and particularly 
adaptive histograms. An adaptive histogram is a probabilistic model that approximates 
probability density by piecewise constant densities, partitioning the data into bins such that 
(1) the probability density within each bin is approximately uniform (otherwise finer bins 
are needed), and (2) probability densities of neighboring bins are significantly different 
(otherwise they should be merged). Kontkanen and Myllymäki (2007) formalized this goal 
for one-dimensional adaptive histograms based on the minimum description length (MDL) 
principle (Rissanen, 1978), which is now considered to be the state-of-the-art univariate 
discretization method (Kameya, 2011; Nguyen et al., 2014; Marx et al., 2021).

The MDL principle (Rissanen, 1978; Grünwald & Roos, 2019) is arguably one of the 
best off-the-shelf approaches for model selection tasks such as selecting a histogram model 
for given data, as it provides a means to naturally trade-off goodness-of-fit with model 
complexity. It achieves this by defining the “best” probabilistic model for given data as 
the model that results in the best compression of data and model together, which has been 
widely used in data mining and machine learning tasks (Galbrun, 2020).

Flexible multi-dimensional discretization. Traditional discretization methods are defined 
for one-dimensional (or univariate) data, and multi-dimensional (or multivariate) data is 
typically discretized by separately and independently discretizing each dimension, which 
ignores any dependencies between the dimensions. Multivariate discretization methods 
aim to take such dependencies into account, but they suffer from two problems. First, most 
methods focus on supervised discretization (Ferrandiz & Boullé, 2005; Bay, 2001; Kwedlo 
& Kretowski 1999; Kurgan & Cios 2004). Second, existing methods produce an adaptive 
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Fig. 1  Distributions of a two-dimensional dataset simulated from a mixture of Gaussian distributions; from 
left to right: (1) true probability density contour, (2) partitioning by IPD (Nguyen et al., 2014), (3) partition-
ing by separately discretizing each dimension with the MDL histogram (Kontkanen & Myllymäki, 2007), 
(4) flexible partitioning by PALM, our algorithm
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grid based on the Cartesian product of the discretization results of individual dimensions. 
This approach ignores that the density of one dimension may change more drastically for 
certain values of another dimension; hence, appropriate binning of one dimension may 
depend on the values of the other dimensions.

For instance, consider a two-dimensional synthetic dataset sampled from a mixture 
of Gaussians as shown in Fig. 1 (leftmost)1. To adequately discretize data from this dis-
tribution, the binning of the x-axis should be different depending on whether y is above 
or below the black dashed line, in order to capture the different density changes for the 
Gaussian distribution (above) and the Gaussian mixture (below). Similarly, the binning of 
the y-axis should be different depending on whether x is left or right to the red dashed 
line. This motivates us to consider partitions that are more flexible than adaptive grids: 
we consider all partitions that can be obtained by clustering the “cells” of a fine-grained 
fixed-grid. The remaining three plots in Fig. 1 show the density plots obtained by (1) IPD 
(Nguyen et al., 2014), the state-of-the-art multivariate unsupervised discretization method, 
(2) the one-dimensional MDL-based histogram method (Kontkanen et al., 1997) applied 
independently on each dimension, and (3) our method. Our method produces the density 
estimation that most resembles the shape of the original contour, as we allow the bins of 
one dimension to depend on the value of another dimension.

Approach and contributions. We consider the problem of learning two-dimensional his-
togram models that enable far more flexible partitions than regular adaptive grids. That is, 
we allow any partition that can be obtained by iteratively merging adjacent cells of a fixed 
grid, which allows for learning models that provide accurate density estimates while not 
having more bins than strictly necessary (thereby avoiding overfitting and providing clear 
region boundaries, i.e., adjacent bins must have different density estimates).

We formalize the two-dimensional histogram construction problem as a model selection 
task using the MDL principle. For this we build on the one-dimensional MDL-based his-
togram selection problem as introduced in the seminal work by Kontkanen and Myllymäki 
(2007), because it is both theoretically elegant and practically fast. Specifically, it adopts 
the normalized maximum likelihood (NML) encoding scheme, a form of refined MDL 
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(Grünwald, 2007; Grünwald & Roos, 2019) that provides minimax regret, and employs a 
fast dynamic programming algorithm to find the optimal solution.

The existing approach for one-dimensional histograms cannot be trivially extended to 
multiple dimensions though, hence we make a number of technical contributions.

First, we solve the challenge of computing the so-called parametric complexity (Grün-
wald & Roos, 2019) for the multi-dimensional case.

Second, we observe that efficiently finding the MDL-optimal two-dimensional histo-
gram is infeasible and propose PALM, a heuristic algorithm for learning two-dimensional 
histograms. PALM combines top-down (partition) and bottom-up (merge) search strate-
gies by (1) first partitioning the data by iteratively splitting regions, and (2) then iteratively 
merging neighboring regions if their densities are similar. In each step, the MDL principle 
is used as decision criterion; as a result, our algorithm requires neither hyper-parameters2 
nor any pre-defined stopping criterion to be specified. It automatically adapts to both local 
density structure, as shown in the example in Fig. 1 and, later, in Sects. 7 and 8.

Third, we make several improvements to the dynamic programming algorithm used for 
the one-dimensional MDL histogram, which we use as a building block for our algorithm. 
Specifically, as described in Sect. 5, we (1) correct a minor theoretic flaw related to com-
puting the code length that is needed to encode the histogram model, and (2) reduce the 
time complexity by simplifying the dynamic programming recursion.

We perform extensive experiments to show that our algorithm (1) accurately recovers 
ground truth histograms, (2) approximates well ground truth partitions that are not within 
the model class, and (3) outperforms IPD (Nguyen et al., 2014), the state-of-the-art algo-
rithm for unsupervised multi-dimensional discretization. Further, case studies on spatial 
data show that, compared to kernel density estimation (KDE), our algorithm not only 
reveals more detailed density changes, but also fits unseen data better, as measured by the 
log-likelihood.

We restrict the scope of this paper to two-dimensional data for three reasons. First, 
two-dimensional discretization methods have many potential applications in the domain 
of spatial data analysis, e.g., using GPS data, where ad-hoc discretization methods are still 
widely used (Cao et al., 2014). The case studies demonstrate that our method can success-
fully reveal interesting patterns from GPS data. Second, as our approach uses more flexible 
partitions than adaptive grids, the search space is very large even for two-dimensional data. 
Our algorithm for the two-dimensional case should be regarded as a step towards solving 
the algorithmic challenge for higher dimensions, but does not solve it completely. Third, 
focusing on the two-dimensional case allows us to more easily examine the results empiri-
cally, e.g., to verify desired properties such as adaptivity to sample size and local density 
structure.

2  Related work

We briefly review previous work concerning discretization methods, histogram models, 
and tree-based models for density estimation.

Unsupervised univariate discretization. Most unsupervised univariate discretization 
methods are rather straightforward and concern equal-width binning, equal-frequency 

2 The precision with which the data is recorded can be used to set the granularity of the initial base grid.
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binning, which in practice usually involve ad-hoc choices for the number of bins or the 
number of frequency in each bin.

Clustering techniques such as k-means (Hastie et  al., 2009) or Bayesian clustering 
(Kontkanen et al., 1997) are also used in discretization; however, they ignore the possible 
heterogeneity within the cluster and choices of hyper-parameters are usually required.

More advanced criteria rely on density estimation and specifically constructing adap-
tive histograms. Apart from the MDL-based histogram (Kontkanen & Myllymäki, 2007) 
already mentioned in Sect. 1, Schmidberger and Frank (2005) proposed to construct adap-
tive histograms by recursive binary partition with cross-validation. A local heuristic is used 
to decide the cut point, and cross-validation is used to choose the number of intervals; in 
contrast, the MDL-based histogram (Kontkanen & Myllymäki, 2007) uses a global score 
with a dynamic algorithm that optimizes the cut points and the number of bins simulta-
neously. Moreover, an adaptive histogram can also be selected as the one whose density 
estimation result is closest to the result of kernel density estimation (Biba et  al., 2007), 
where cross-validation is used to prevent overfitting. As the true density is apparently not 
known, cross-validation is performed by Monte Carlo sampling-based methods. However, 
cross-validation is known to be computationally expensive, and the influence of choosing 
different kernels on discretization is not reported.

Bayesian approaches have been widely used in adaptive histograms (Scricciolo, 2007; 
Liu & Wong, 2014; Van Der Pas & Rocková, 2017; Gasparini, 1996; Lu et  al., 2013). 
These methods treat all possible histograms as the model class and put a prior distribu-
tion on it, and the resulting posterior distribution is directly used for density estimation (by 
calculating the marginal distribution). Therefore, although these Bayesian approaches often 
provide theoretic guarantees as density estimation methods, they do not provide an indi-
vidual adaptive histogram that can be used for discretization.

Unsupervised multivariate discretization. Since discretizing each dimension of multi-
variate data independently will ignore the dependencies among different dimensions, some 
methods attempt to reduce the dependencies by PCA- or ICA-based methods (Mehta et al., 
2005; Kang et al., 2006).3 However, as both methods are based on linear transformation of 
the random vector, they may fail to eliminate nonlinear dependencies. Note that extending 
these methods to nonlinear PCA or nonlinear ICA may not be suitable for unsupervised 
discretization tasks, as the uniform distribution is not invariant under nonlinear transforma-
tion, and hence we cannot obtain an adaptive histogram of the original data by inversely 
transforming the adaptive histogram constructed on the nonlinearly transformed data.

Lud and Widmer (2000) proposed the so-called “relative unsupervised discretization”. 
The core of this method is to perform clustering on an individual dimension, using differ-
ent subsets of values. These different subsets are obtained by filtering the dataset using 
other dimensions, in order to keep the dependency among different dimensions. However, 
this method does not control the information loss about the probability distribution of the 
dimension that is to be discretized.

Further, methods trying to optimize the discretization of all dimensions simultaneously 
exist. One approach is to start from a very fine grid, and merge neighboring subintervals 
for each dimension if the multivariate probabilities of the data within these two consecu-
tive subintervals are similar (Nguyen et  al., 2014; Bay, 2001). These methods are based 
on certain choices of similarity metrics, and require explicit specification of the similarity 

3 Note that the ICA-based method (Kang et  al., 2006) is designed for supervised discretization, but we 
noticed that the ICA transformation there is not restricted to supervised discretization only.
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threshold. We empirically show in Sect. 7 that IPD, the method by Nguyen et al. (2014) 
that is also based on the MDL principle and is considered the state-of-the-art multivariate 
discretization method, does not converge in practice.

Finally, Kameya extended the the one-dimensional MDL-histogram (Kameya, 2011) 
specifically for time series data, who proposed to discretize time series data by iteratively 
adjusting the cut points on each dimension until convergence, using the coordinate descent 
optimization approach.

All these multivariate discretization methods all try to optimize the adaptive grid and 
produce (hyper)rectangular regions. Our method, in contrast, is proposed to produce far 
more flexible segmentation, which allows the binning of one dimension to be dependent on 
the values of other dimensions.

Density estimation tree. Algorithmically, our method is very similar to methods using 
tree models for density estimation (Ram & Gray, 2011; Liu & Wong, 2014; Yang & Wong, 
2014), as partitioning the data space by iteratively partitioning each dimension is identical 
to growing a tree. However, these density estimation trees were developed by adapting the 
scores used in growing, stopping, and pruning (supervised) decision and regression trees. 
That is, while our algorithm employs a consistent MDL-based framework for selecting the 
best model, these density estimation trees use separate optimization scores respectively to 
fit the model and to control the model complexity, often with user-specified hyper-parame-
ters and/or computationally expensive cross-validation.

Moreover, these density estimation trees, as is like most supervised tree models, only 
do binary partitioning in a greedy manner. On the contrary, our method can split a dimen-
sion into multiple bins (from 1 to a pre-determined Kmax ) instead of just two, which is not 
only more flexible, but also more interpretable, as after partitioning on a certain dimen-
sion, within each bin the data points on that dimension can be regarded as approximately 
uniform.

Finally, our method has an additional merging step, which creates much more flexible 
partitions of data, resulting in models that are more informative for pattern mining and 
exploratory data analysis.

Supervised discretization. When discretization is needed for a supervised task such as 
classification, we can use supervised discretization, which means that the target variable 
is used to assess how much information on the target the discretization maintains. Several 
criteria can be put in this category, which are mostly based on statistical hypothesis testing 
or entropy, as summarized in the survey paper by Kotsiantis and Kanellopoulos (2006). 
The MDL principle has also been used for supervised discretization (Fayyad & Irani, 1993; 
Pfahringer, 1995; Zhang et al., 2007; Ferrandiz & Boullé, 2005; Gupta et al., 2010), but all 
of them use the so-called crude MDL principle (Grünwald, 2007), which is theoretically 
suboptimal.

3  Problem statement

Informally, we consider the problem of inferring the best two-dimensional histogram for a 
given sample of continuous data. To make this problem precise, we start off by introducing 
our notation and definitions. Note that all log(⋅) should be read as log2(⋅) unless specified 
otherwise.
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3.1  Notation and definitions of data, model, and model class

Consider as data a vector of length n, i.e., xn = (x1,… , xn) , sampled independently from a 
random variable X.

The sample space of X, denoted as S, is a bounded subset of ℝ2 . Although the sample 
space of a random variable, e.g., a Gaussian, can be infinite in theory, we always assume 
it to be a bounded “box” when dealing with a given dataset. The task of estimating S from 
the data directly is another research topic, usually referred to as “support estimation” in 
statistical literature (Cuevas et al., 1997), and hence is out of the scope of our main focus 
in this article.

Conceptually, a histogram—no matter whether it is one- or multi-dimensional—is a 
partition of the sample space S, denoted by S̃ and parametrized by a vector f = (f1,… , fK) . 
A partition S̃ is defined as a set of disjoint subsets of S, and the union of all these sub-
sets is S itself, i.e., S̃ = {S1, S2,… , SK} , where ∀j ∈ {1,… ,K} , Sj ⊆ S , 

⋃K

j=k
Sj = S , and 

∀j, k ∈ {1,… ,K} , Sj ∩ Sk = � . We also call these subsets, i.e., elements of S̃ , as regions.
Next, we assume that the probability density of X, denoted by f(X), is given by

where 1{⋅}(⋅) is the indicator function. Each fj is a constant and f satisfies 
∑K

i=1
fj�Sj� = 1 , 

where |Sj| denotes the geometric area of Sj , i.e., when X ∈ Sj , f (X) = fj . We refer to any 
partition S̃ as a histogram model that contains a family of probability distributions; i.e., 
∀f ∈ ℝ

K , we denote a single probability distribution by S̃f.
We denote the model class as � , representing all possible partitions with K regions that 

can be obtained by clustering cells of a fixed grid covering S, where K ∈ {1,… ,Kmax} . 
The granularity of the grid, denoted as � , and Kmax are fixed in advance, but note that they 
can be set arbitrarily small and large, respectively.

Geometrically, this is equivalent to drawing inner boundaries within S along the fixed 
grid. In practice, � can represent the precision up to which the data is recorded or that is 
useful for the given task. Although the model class we consider only has inner boundaries 
consisting of line segments, we will show that such a model class is flexible enough to 
approximate curved inner boundaries in Sect. 7.

3.2  Histogram model selection by the MDL principle

We now formally define the task of two-dimensional data discretization as an MDL-based 
model selection task, using histogram models as the model class.

The MDL principle is arguably one of the best off-the-shelf model selection meth-
ods and has been successfully applied to many machine learning tasks (Grünwald, 2007; 
Hansen & Yu, 2001). It has solid theoretical foundations in information theory and natu-
rally prevents overfitting as the optimization criterion always includes the model complex-
ity, defined as the code length (in bits) needed to encode that model (Grünwald, 2007).

The basic idea is to losslessly encode the model and data together, by firstly encoding 
the model and then compressing the data using that model. The model resulting in the 
shortest total code length is defined to be MDL-optimal, i.e.,

(1)f (X) =
∑

j∈{1,…,K}

1Sj
(X)fj,

(2)S̃∗ = argmin
S̃∈�

L(xn, S̃) = argmin
S̃∈�

(L(S̃) + L(xn|S̃)),
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where L(S̃) and L(xn|S̃) are respectively the code length of the model and the code length 
of the data compressed by that model. Note that L(⋅|⋅) denotes the conditional code length 
(Grünwald, 2007); informally, L(A|B) represents the code length of the message a decoder 
needs to receive in order to be able to losslessly reconstruct message A after having already 
received message B.

We will show in Sect.  4 that properly encoding the model and calculating its cor-
responding code length L(S̃) turns out to be very difficult. As a result, we unfortunately 
cannot regard our model selection task simply as an optimization problem.

To alleviate this, we divide the model selection task into two steps, namely (1) parti-
tioning alternately and (2) merging.

First, we alternately split each region within partition S̃ (initially S̃ = {S} ) in one of the 
two dimensions, then update S̃ accordingly, and repeat the process. In other words, in each 
iteration we further split each region within S̃ in one dimension (i.e., horizontally or verti-
cally), which is equivalent to selecting the best set of horizontal or vertical cut lines.

Denote the subset of data points within a certain region S� ∈ S̃ as {xn ∈ S�} . We for-
mally define the task of selecting the set of MDL-optimal cut lines set as

where ℂS′ are all possible sets of cut lines, containing K = {0, 1,… ,Kmax} cut lines, for 
the certain region S� ∈ S̃ in one certain dimension (i.e., horizontal or vertical), and Kmax is 
predetermined a priori to be “large enough” given the task at hand.

In Sect. 5, we will show that searching for the MDL-optimal cut lines for (a subset 
of) two-dimensional data is the same as searching for the MDL-optimal cut points for 
the one-dimensional data that is the projection of the two-dimensional data onto the x- 
or y-axis.

The partitioning step will automatically stop once for each region the MDL-optimal 
set of cut lines is the null set, i.e., no further partitioning is needed.

Second, we search for all possible clusterings of neighboring regions gained in the 
previous partitioning step, in a greedy manner. In other words, we consider all possible 
clustering of regions of the partition gained by the previous partitioning step, which 
is actually a subset of the full model class � as defined in Sect. 3.1. We denoted this 
constrained model class by �c , and we formally define the merging step as selecting the 
MDL-optimal model within �c , i.e.,

Figure 2 shows an illustrative example of the partitioning and merging process.

4  Calculating the code length

We now discuss the details of the code length (in bits) needed to encode the data and the model.
We first show the calculation of code length of data given a histogram model, encoded 

by the normalized maximum likelihood (NML) code (Grünwald, 2007; Grünwald & Roos, 
2019). Specifically, we show that the parametric complexity term in the code length is 

(3)
C∗
S�
= arg min

CS� ∈ℂS�

L({xn ∈ S�},CS� )

= arg min
CS� ∈ℂS�

(L(CS� ) + L({xn ∈ S�}|CS� )),

(4)S̃∗
merge

= arg min
S̃∈�c

L(xn, S̃) = arg min
S̃∈�c

(L(S̃) + L(xn|S̃)).
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independent of data dimensionality, which is an important observation that makes it feasi-
ble to compute the NML code length.

Next, we discuss in detail the difficulties of encoding all possible models S̃ ∈ � if we would 
want to directly optimize over the full model class � using Equation (2), which motivates our 
(more pragmatic) solution of dividing the model selection task into two separate steps.

Finally, we discuss the calculation of the code length of a model in the partitioning and 
merging step respectively, i.e., L(CS� ) and L(S̃) of Equations (3) and (4).

4.1  Code length of the data

Extending the work that was previously done for the one-dimensional case (Kontkanen 
& Myllymäki, 2007), we use the same code—i.e., the Normalized Maximum Likelihood 
(NML) code—to encode the two-dimensional data. This code has the desirable property 
that it is theoretically optimal because it has minimax regret. The code length of the NML 
code consists of two terms, namely the maximum likelihood and the parametric complexity 
(also referred to as regret), and is given by

where P(xn|�S
f̂(xn)) is the probability of the data given �S

f̂(xn) , i.e., the parameters 
f = (f1,… , fK) are estimated by the maximum likelihood estimator given dataset xn , denoted 
as f̂(xn) = (f̂1,… , f̂K) . The term COMP(n, S̃) is the so-called parametric complexity, which 
is defined as

where 
∑

yn∈Sn is the sum over all possible sequences yn within the Cartesian product of 
sample space S that can be generated by the histogram model S̃ , i.e., the order of individual 
values within vector yn does matter.

We will now first describe the calculation of P(xn|�S
f̂(xn)) , and then the calculation of 

COMP(n, S̃).
For any single data point xi ∈ xn , let xi = (xi1, xi2) denote the pair of values for its two 

dimensions. We then have

(5)L(xn|�S) = − log

(

P(xn|�S
f̂(xn))

COMP(n,�S)

)

,

(6)COMP(n,�S) =
∑

yn∈Sn

P(yn|�S
f̂(yn)),

(7)P(xn��S
f̂(xn)) =

n
�

i=1

P(xi��Sf̂(xn)) =

K
�

j=1

⎛

⎜

⎜

⎝

�

xi∈Sj

P(xi��Sf̂(xn))

⎞

⎟

⎟

⎠

,

Fig. 2  An illustration of the partitioning and merging steps. From left to right: alternatively partitioning 
each region until compression cannot be further improved, and finally merging some of the neighboring 
regions to further improve compression
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as the data points are assumed to be independent. Note that K represents the number of 
regions of S̃.

Since we assume our data to have precision � , we can define the probability of the data, 
also referred to as its maximum likelihood, as

The maximum likelihood estimator for the histogram model (Scott, 2015) is

where hj is the number of data points within Sj , and |Sj| is the area of Sj . Thus, following 
Equations (7),(8), and (9),

Next, we describe the calculation of COMP(n, S̃) . Although it may be surprising at first 
glance, we show that

Proposition 1 The parametric complexity COMP(n, S̃) of a histogram model is a function 
of sample size n and the number of bins K. Given n and K, COMP(n, S̃) is independent of 
the dimensionality of the data.

We leave the formal proof to Appendix A, but the proposition is based on the following 
important observations. First, as Kontkanen and Myllymäki (2007) proved, COMP(n, S̃) is 
a function of sample size n and the number of bins K for one-dimensional histograms. The 
remaining question is whether this holds for two (and higher) dimensional histograms as well. 
Observe that the maximum likelihood given a two-dimensional histogram model for any data is 
a function of hj and |Sj|∕�2 , respectively representing the number of data points in each region, 
and the total number of possible positions of data points in each region, which are both some 
form of “counts” and hence are “dimensionality free”. Finally, COMP(n, S̃) , as defined in Equa-
tion (6), is just the sum of maximum likelihoods. Based on these observation, it is trivial to 
prove that COMP(n, S̃) has the same form for one- and multi-dimensional histograms.

Therefore, for both one- and multi-dimensional histogram models, we can denote 
COMP(n, S̃) as COMP(n,K) , and as shown by Kontkanen and Myllymäki (2007),

which turns out to be the same as the parametric complexity for the multinomial model 
(Kontkanen & Myllymäki, 2007). We can calculate COMP(n,K) in linear time (Kontkanen 
& Myllymäki, 2007) by means of the following recursive formula:

(8)P(xi|�Sf̂(xn)) = P(X ∈ [xi1 −
𝜖

2
, xi1 +

𝜖

2
] × [xi2 −

𝜖

2
, xi2 +

𝜖

2
] | �S

f̂(xn)) = f̂j𝜖
2.

(9)f̂j =
hj

n |Sj|
, ∀j,

(10)P(xn|�S
f̂(xn)) =

K
∏

j=1

(f̂j 𝜖
2)hj =

K
∏

j=1

(
hj 𝜖

2

n |Sj|
)hj .

(11)COMP(n,K) =
∑

h1+…+hK=n

n!

h1!… hK!

K
∏

j=1

(
hj

n
)hj ,

(12)COMP(n,K) = COMP(n,K − 1) +
n

K − 2
COMP(n,K − 2).
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4.2  Code length of the model

We first discuss in detail why properly encoding all models in the model class is difficult, and 
then describe the code length of model in the partitioning step and the merging step respectively.

4.2.1  Encoding all models in the model class is difficult

According to Kraft’s inequality, encoding all models in the model class is equivalent to 
assigning a prior probability distribution to all models (Grünwald, 2007). This prior dis-
tribution should reflect the model complexities (Grünwald, 2004), especially when there 
exists some hierarchical structure in the model class. For models with similar model com-
plexity, the prior distribution should be non-informative. Particularly, a common practice 
is to divide the model class into sub-classes according to the hierarchical structure, and 
then assign the prior distribution to each model by first assigning some prior to all the sub-
classes and then assigning a uniform prior to all models within each sub-class.

The model class of all histogram models (i.e., all partitions of S) has an apparent hierar-
chical structure with respect to model complexity. That is, the model class could be divided 
into sub-classes based on a combination of two factors: (1) the number of regions, and (2) 
the number of line segments composing the inner boundaries. Nevertheless, it is extremely 
challenging to assign a proper (or even an intuitively “natural”) prior distribution based on 
this complexity hierarchical structure, because of the following two reasons.

First, it is difficult to specify a joint prior distribution on the number of regions and the 
number of line segments, as they are dependent on each other, though specifying marginal 
prior distributions for each of the factors may be feasible.

Second, given the number of regions, denoted by K, and the number of line segments 
composing the inner boundaries, denoted by T, it is challenging to count the number of 
models with K regions and T line segments. Hence, the prior probability of each model 
(with the uniform prior) within this sub-class is also difficult to obtain. On one hand, 
there is no analytical formula to obtain such count (to the best of our knowledge). On the 
other hand, to count this number algorithmically, we would first need to decide how many 
line segments each region has, i.e., to assign positive integers to {T1,… , TK} such that 
T1 +…+ TK = T  . The number of possible values of {T1,… , TK} grows exponentially as 
K increases. Further, we would need to decide where to put these line segments to form 
K regions. The number of possible positions is enormous if � is reasonably small. Finally, 
we would need to go over all individual cases to check for repeated counting for T, since 
regions can share line segments, which makes the counting computationally infeasible.

4.2.2  Code length of the model in the partitioning and merging steps

As properly encoding all possible models within � turns out to be too difficult, we now 
discuss how to calculate the code length of the model separately for the partitioning and 
merging step.

Partitioning. For a region S� ∈ S̃ , assume that there are E candidate positions for cut 
lines, either horizontally or vertically. To encode the set of cut lines, we first encode the 
number of regions K ∈ {1,… ,Kmax} , where Kmax is predetermined. We assign a uniform 
prior to K, and thus the code length needed to encode K becomes a constant, which has 
no effect on the result of the partitioning step. Given K, we then encode the positions of 
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(K − 1) cut lines, with again a uniform prior to all possible sets of (K − 1) cut lines. The 
code length needed in bits is

Merging. Next we discuss the code length of encoding all models in the constrained model 
class �c , which contains all possible models that can be obtained by merging neighboring 
regions of the partition after the partitioning step.

We argue that we should have a non-informative prior on �c . First, as discussed before, it 
is challenging to specify a joint prior to both the number of line segments and the number of 
regions. Second, if neighboring regions are merged, the partition of the sample space tends 
to have fewer regions but more geometric complexity. Hence, there exists no obvious ways to 
compare model complexities, even in an intuitive manner.

Thus, we treat the model complexities to be roughly equivalent and we assign a uniform 
prior to all models in �c . As a result, the code length of all models within �c is a constant 
and has no effect on the result of the merging step. In other words, we only consider the code 
length of data in the merging step.

5  Revisiting MDL histograms for one‑dimensional data

In this section, we elaborate the link of our work to the MDL-based histograms to one-dimen-
sional data.

We first show that searching for the best cut lines on one certain dimension of given two-
dimensional data is equivalent to searching for the best cut points for the corresponding one-
dimensional data. We then review the algorithm for inferring MDL histograms for one-dimen-
sional data as proposed by Kontkanen and Myllymäki (2007), and describe how we improve it 
both theoretically and practically.

Notation and relation to our problem. To be able to distinguish it from two-dimensional 
data xn , we denote one-dimensional data as zn = (z1,… , zn) , with precision equal to � . Fur-
ther, we define the sample space of zn as [min zn, max zn].

We define the one-dimensional histogram model with K bins as a set of cut points, denoted 
as CK = {C0 = min zn,C1,… ,CK = max zn} ⊆ Ca , with K ∈ {0, 1,… ,Kmax} , where Kmax 
is pre-determined and Ca is defined as

with E = ⌊

max zn−min zn

�
⌋ . Note that we assume all subintervals to be closed on the left and 

open on the right, except that the rightmost subinterval is closed on both sides.
The code length needed to encode the model CK is

which is the same as Equation (13). Further, based on the calculation of maximum likeli-
hood given any histogram model (Sect. 4.1) and Proposition 1, the code length needed to 
encode zn given CK by the NML code is

(13)L(CS� ) = log

(

E

K − 1

)

(14)Ca = {min zn, min zn + �,… , min zn + E ⋅ �, max zn},

(15)L(CK) = log

(

E

K − 1

)

,
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If we compare L(zn|CK) and L(CK) with Equations (10) and (13), we can see that the 
definition of the two-dimensional MDL-optimal cut lines and the one-dimensional 
MDL-optimal cut points only differ by a constant. Thus, given a two-dimensional data-
set xn = {(x11, x21),… , (x1n, x2n)} , the optimization task of searching for the MDL-optimal 
vertical (or horizontal) cut lines is equivalent to the task of searching for the MDL-opti-
mal one-dimensional cut points based on one-dimensional dataset zn = {x11,… , x1n} (or 
zn = {x21,… , x2n} ). That is, zn is the projection of xn on the x- or y-axis.

In other words, the algorithm for constructing MDL-based one-dimensional histo-
grams proposed by Kontkanen and Myllymäki (2007) can be directly applied to the par-
titioning step of our model selection task. We now briefly review this algorithm and 
show how we improve it both theoretically and practically.

Improved one-dimensional MDL-based histograms.  We improve the one-dimen-
sional algorithm proposed by Kontkanen and Myllymäki (2007) in two ways. First, 
in their previous work, the candidate cut points, denoted as C′

a
 , are chosen based on 

the data zn , i.e., C�
a
=
⋃n

i=1
{zi ± �} , and hence the code length of model is calculated 

dependent on given dataset, i.e., L(CK
|zn) is calculated instead of L(CK) , which is theo-

retically sub-optimal, because generally

In practice, this will cause significantly worse results when the sample size is very small. 
In such cases, the size of the set C′

a
 will be very small, and hence the code length of model 

will be significantly underestimated, leading to serious overfitting. We fix this problem by 
encoding the model independent of the data, as defined by Equations (14) and (15).

Further, we show that we do not need to consider all candidate cut points within Ca , 
but just those cut points with a data point near it from left or right, without other cut 
points in between. That is, we have the following.

Proposition 2 For any two cut points Ci,Ck ∈ Ca , suppose Ci < Ck and no data points exist 
in the interval [Ci,Ck] , then any cut point Cj ∈ [Ci,Ck] would not be in the MDL-optimal 
set of cut points, i.e., we can skip all such Cj during the search process.

This reduces the search space to a subset of Ca , and hence reduces the computational 
requirements. We include the proof in Appendix B.

Finally, we simplify the recursion formula for the dynamic programming proposed 
by Kontkanen and Myllymäki (2007) in their original paper, which significantly reduces 
empirical computation time.

Dynamic programming algorithm. Kontkanen and Myllymäki (2007) derived the 
recursion formula based on the total code length L(zn,CK) , i.e.,

(16)

L(zn|CK) = − logP(zn|CK) + logCOMP(n,K)

= − log

K
∏

j=1

(
hj �

n (Cj+1 − Cj)
)hj + logCOMP(n,K).

(17)L(zn,CK) = L(zn|CK) + L(CK) ≠ L(zn|CK) + L(CK
|zn).

(18)
L(zn,CK) = L(zn|CK) + L(CK)

= − log(P(zn|CK) + logCOMP(n,K) + log

(

E

K − 1

)

.
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We show that we can simplify the recursion by only including the probability of the data, 
i.e., P(zn|CK) , instead of L(zn,CK) . Observe that when the number of bins K is fixed, L(CK) 
and COMP(n,K) become constant. Then, for fixed K, minimizing L(zn,CK) is equivalent to 
minimizing {− log(P(zn|CK)} , i.e., maximizing the likelihood.

Therefore, minimizing L(zn,CK) , for all K ∈ {1,… ,Kmax} , can be done in two steps: 
(1) find the maximum likelihood cut points with fixed K, denoted as ĈK , for each K, 
using the following dynamic algorithm; and (2) calculate L(zn|ĈK) for each K, and find 
the K̂ ∈ {1,… ,Kmax} that minimizes L(zn, ĈK) . Then,

Now we describe the dynamic programming algorithm for finding ĈK for each 
K ∈ {1,… ,Kmax} . The (log) probability of zn given any cut points is

where zn
CK

 is a constrained dataset containing all data points smaller than CK , i.e.,

Given the previous, the recursion formula is given by

and hence a dynamic programming algorithm can be applied to search all 
K ∈ {1,… ,Kmax} . In practice, Kmax is pre-determined, and larger Kmax should be investi-
gated if K̂ = Kmax.

The disadvantage of implementing the dynamic programming algorithm based on 
L(zn,CK) , ∀K ∈ {1,… ,Kmax} , is that we would need to calculate the parametric com-
plexity COMP(⋅) for every constrained dataset. Our improved version, in contrast, 
involves only P(zn|CK) , and thus we only need to calculate COMP(⋅) for the full dataset 
zn when calculating L(zn, ĈK) for each K, which will be much faster in practice.

The essential component of the dynamic programming algorithm is to construct the 
constrained dataset zn

CK−1
 , ∀K ∈ {1,… ,Kmax} . These constrained datasets are easy to 

construct in the one-dimensional case with a natural order, but infeasible for two or 
higher dimensional cases. Hence we resort to the heuristic algorithm presented in the 
next section.

(19)ĈK̂ = arg min
K∈{1,…,Kmax},C

K∈Ca

L(zn,CK).

(20)

logP(zn|CK) =

n
∑

i=1

logP(zi|C
K)

=

K
∑

j=1

∑

zi∈[Cj−1,Cj)

logP(zi|C
K)

=

K−1
∑

j=1

∑

zi∈[Cj−1,Cj)

logP(zi|{C
K ⧵ CK}) +

∑

zi∈[CK−1,CK ]

logP(zi|CK)

= logP(zn
CK−1

|{CK ⧵ CK}) +
∑

zi∈[CK−1,CK ]

logP(zi|CK)

(21)zn
CK−1

= {z ∈ zn|z < CK−1}.

(22)

max
CK⊆Ca

logP(zn|CK) = max
CK∈Ca

[ max
{CK⧵CK}⊆Ca

logP(zn
CK−1

|{CK ⧵ CK})

+
∑

zi∈[CK−1,CK ]

logP(zi|CK)]
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6  The PALM algorithm for partitioning and merging

We propose a heuristic algorithm named PALM, which infers histogram models for two-dimen-
sional data by decomposing the overall model selection problem into two steps: (1) partition 
space S alternately based on the discretization result from previous iterations until it stops auto-
matically; and then (2) merge neighboring regions if their densities are very similar. Both steps 
use the MDL principle as the decision criterion, with the code length defined in Sect. 4.

The PALM algorithm is given in Algorithm 1. Specifically, we first initiate S̃ = {S} and 
choose the starting direction (line 1); then we iterate over all regions in S̃ and partition each 
of them by searching for the MDL-optimal cut lines in the chosen direction (lines 3–5), 
and update S̃ accordingly (lines 8–10); then, we keep iterating until S̃ is no longer updated 
(lines 2 and 6–7), which completes the partitioning step.

Next, the merging step searches, in a greedy manner, for the MDL-optimal partition of S 
over all possible partitions that can be obtained by merging any two neighboring regions of 
the partition that is obtained in the partitioning step. That is, we list all the neighboring pairs 
of regions in S̃ , i.e., two regions that share part of their boundaries (line 15); then, we merge 
the pair that compresses the data most (or equivalently, decreases the MDL score most) and 
update the neighboring pairs list (lines 21–23); finally, we stop the merging step when no bet-
ter compression can be obtained by merging any neighboring two pairs in S̃ (lines 19–20).
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Algorithm complexity. We now discuss the worst-case algorithm complexity for the 
partitioning and merging step respectively, and we will show the empirical runtime in 
Sect. 7.6.

For the first iteration of the partitioning step (i.e., when S̃ = {S} ), the algorithm has a 
complexity of O(KmaxE

2) , the same as the one-dimensional case (Kontkanen & Myllymäki, 
2007), where E is the number of possible locations for vertical (or horizontal) lines within 
the whole sample space S, based on the fixed grid with granularity � . The second iteration 
has a worst-case time complexity of O(K2

max
E2) when the first iteration produces exactly 

Kmax regions. Following this line, the worst-case time complexity of the partitioning step is 
O(KI

max
E2) , where I is the number of iterations.

As for the merging step, the time complexity is bounded by KpK0 , where K0 denotes the 
number of regions after the partitioning step, and Kp denotes the number of neighboring 
pairs. That is, we can merge at most (Kp − 1) times, and each merging requires going over 
all the neighboring pairs.

Although the worst-case time cost for the partitioning step is exponential, and K0 and Kp 
could be large in practice, we will show in Sect. 7.6 that the empirical runtime may scale 
much better than exponential growth.

Choosing the hyper-parameter settings. We now briefly discuss how to choose � and 
Kmax in practice. First, we should set � to be the same as the precision of the data by default; 
data is always recorded up to a precision in practice. Further, when prior knowledge exists 
given a specific task, � may be larger than the recording precision, because the domain 
expert or data analyst may decide that the data is only meaningful up to a more coarse 
precision.

Second, theoretically we should set Kmax to be sufficiently large, and hence in practice 
Kmax is a “budget” rather than a hyper-parameter like the threshold or stopping criterion in 
other discretization methods (e.g., Nguyen 2014, Kerber 1992). That is, unlike these hyper-
parameters, which can be either too large or too small and hence need to be carefully tuned, 
Kmax can be simply picked to be as large as possible.

This makes our method practically hyper-parameter-free, in the sense that—given the 
guidelines above—no tedious hyper-parameter tuning should be necessary to obtain the 
best possible results.

7  Experiments

In this section, we investigate the performance of PALM using synthetic data, after which 
we will apply it to real-world data in the next section. We show that PALM can construct 
two-dimensional histograms that are adaptive to both local densities and sample size of the 
data.

We start off by defining the “loss” that we use for quantifying the quality of the 
“learned” partitions. We then present experiment results on a wide variety of synthetic 
data. Although our algorithm relies on heuristics, we show that it has a number of desirable 
properties, as follows.

First, if the data is generated by a histogram model within our model class � , PALM 
is able to identify the “true” histogram given a large enough sample size. The results are 
discussed in Sect. 7.2.

Second, in Sect. 7.3 we show that PALM has the flexibility to approximate histogram 
models outside the model class � . Specifically, we study the behavior of PALM on a 
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dataset generated as follows: we set the sample space S = [0, 1] × [0, 1] , and partition it by 
a sine curve; we then generate data points uniformly distributed above and below the sine 
curve, with different densities.

Third, we study the performance of PALM on data generated by two-dimensional 
Gaussian distributions in Sect. 7.4. We show that it inherits the property of the one-dimen-
sional MDL histogram method (Kontkanen & Myllymäki, 2007) that the bin sizes of the 
histogram are self-adaptive: the two-dimensional bin sizes become smaller locally where 
the probability density changes more rapidly.

Fourth, in Sect. 7.5 we compare PALM with the IPD algorithm (Nguyen et al., 2014), 
using a simple synthetic dataset that is almost identical to what has been used to study the 
performance of IPD (Nguyen et al., 2014).

Note that we always set � = 0.001 , and all simulations are repeated 500 times unless 
specified otherwise.4 The initial partitioning direction is fixed as vertical, to make the visu-
alizations of the inferred partitions comparable.

7.1  Measuring the difference between two‑dimensional histograms

As PALM produces a histogram model and can be regarded as a density estimation method, 
one of the most intuitive “loss” functions is the Mean Integrated Squared Error (MISE) (Scott, 
2015), defined as

where f is the true probability density and f̂  is the histogram model density estimator. We 
report the empirical MISE by calculating the integral numerically, and estimating �[⋅] by 
the empirical mean of results over all repetitions of the simulation.

As MISE cannot indicate whether there are more “bins” than necessary, we also propose 
two “loss” functions that directly quantify the distances between the inner boundaries of the 
learned and true partitions of a sample space S. We first break up the line segments of the 
inner boundaries into pixels with a precision set to 0.01 = 10� (merely to speed up the calcu-
lation). Then we introduce two loss functions based on the idea of Hausdorff distance, consid-
ering false positives and false negatives respectively. Namely, we propose Llearn , based on the 
learned partition, and Ltrue , based on the true partition:

where || ⋅ || denotes the Euclidean distance and P and Q are the sets of pixels on the line 
segments of the learned partition and the true partition, respectively.

The intuition for Llearn is that, for a given pixel on a line segment of the learned partition, 
we find on the line segments of the true partition the pixel closest to it, and measure their 
distance; for Ltrue it is the other way around. Thus, if Llearn is large, the learned partition must 
have unnecessary extra line segments, whereas if Ltrue is large, the learned partition fails to 
identify part of the line segments that actually exist.

(23)MISE(f̂ ) = �[∫S

(f (x) − f̂ (x))2dx],

(24)Llearn =
∑

p∈P

minq∈Q||p − q||2;Ltrue =
∑

q∈Q

minp∈P||p − q||2

4 The code is available at: https:// github. com/ ylinc en/ PALM.

https://github.com/ylincen/PALM
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7.2  Revealing ground truth two‑dimensional histograms

We describe the settings for simulating the data and then our experiment results, to empirically 
show that our algorithm can identify the “true” histogram model if the data is generated by it.

Experiment settings. To randomly generate the “true” partitions, we use a generative pro-
cess that is very similar to the search process of our algorithm: we fix a rectangular region, 
S = [0, 1] × [0, 1] , randomly generate vertical cut lines to split it into K1 regions, and randomly 
generate horizontal cut lines to split each of the K1 regions into (K21,… ,K2,K1

) regions respec-
tively. Then, for each pair of neighboring regions, we merge them with a pre-determined prob-
ability Pmerge.

We set these hyper-parameters as follows:

With these hyper-parameters, our generative process is able to generate a diverse subset 
of � , as Pmerge is chosen delicately to be not too small or too large. Figure 3 shows four 
random examples of the true partitions and learned partitions. These learned partitions are 
produced with the sample size set as 10 000.

After the partition is fixed, we generate “true” density parameters for the histogram 
model using a uniform distribution, i.e.,

and normalize them such that 
∑K

j=1
fj�Sj� = 1 , where K is the number of regions in total and 

|Sj| is the geometric area of Sj . Note that we do not force the fj to be different from each 
other.

Results. Figure 4 shows that MISE is already small for small sample size, and con-
verges to almost 0 as the sample size increases. We also show, in Fig. 5, that Llearn and 
Ltrue converge to almost zero except for some outliers.

The outliers of Llearn are due to sampling variance when generating data points, the 
number of which decreases significantly as the sample size grows.

The outliers of Ltrue , however, are due to the random generation of the density param-
eters fj . As we do not force all fj ’s to be different, they could accidentally turn out to be 
very similar. In that case, some of the “true” inner boundaries are actually unnecessary, 
and our algorithm will “fail” to discover them. Table 1 confirms that this is the cause of 
outliers when the sample size is large ( ≥ 1e5 ): when PALM fails to identify part of the 
“true” inner boundaries and Ltrue > 1 , the learned histogram still estimates the density 
very accurately. The only explanation is then that some regions of the true partition 
accidentally have very similar fj’s.

Moreover, when the sample size is moderate, e.g., 5000, Llearn is already small, mean-
ing that PALM can partly identify the true partition quite precisely, and rarely produces 
unnecessary extra regions. As the sample size increases, Ltrue decreases, indicating that 
the learned partition becomes more and more complex; i.e., it is shown that the model 
selection process is self-adaptive to sample size.

(25)K1 = K21 = K22 = … = K2,K1
= 5;Pmerge = 0.4;� = 0.001.

(26)fj ∼ Uniform(0, 1),∀i = 1, 2,… ,K;
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7.3  Approximating histogram models outside model class �

We now investigate the case where the true model is not within model class � , while the 
data is still generated uniformly within each region.

We show that, although the model class � is based on a grid, it is indeed flexible and 
expressive: in practice, the learned partitions can approximate true partitions outside � , 
and the approximation becomes more and more accurate as the sample size increases.

Experiment settings. As an illustrative example, we partition S = [0, 1] × [0, 1] by 
several sine curves, defined as

and where m is a hyper-parameter.
We randomly generate data from a uniform distribution above and under the sine 

curve, and we set the probability density above g(x) to be twice as large as below g(x), 
i.e., we uniformly sample 2

3
n data points above g(x), and 1

3
n data points below g(x), 

where n is the total sample size.
Results. We empirically show that the learned partitions approximate the sine curves 

quite precisely, though occasionally a few extra undesired regions are produced. Fig-
ure 6 (left) shows the learned partitions on single simulated datasets, with m ∈ {2, 4, 6} 
to control the degree of oscillation, and sample size n ∈ {1e4, 1e5, 1e6} . We see that, as 
the sample size grows, our approximation becomes more and more accurate.

(27)g(x) =
1

4
sin 2m�x +

1

2

Fig. 3  Random examples of true (black solid) and learned partitions (red dashed) of the experiment in 
Sect. 7.2, mainly to show that our experiment settings can produce very flexible partitions of [0, 1] × [0, 1] . 
Note that the sample size is set as 10  000, which is not enough for MISE (Equation  23) to converge to 
almost 0, but the learned partitions by PALM already look promising: it can partly identify the true parti-
tions

0.00

0.01

0.02

0.03

0.04

0.05

5e
+0
3

7e
+0
3

1e
+0
4

3e
+0
4

5e
+0
4

7e
+0
4

1e
+0
5

3e
+0
5

5e
+0
5

7e
+0
5

1e
+0
6

3e
+0
6

5e
+0
6

sample size

M
IS
E

Fig. 4  Sample size versus MISE: MISE converges to almost 0 when the sample size becomes larger than 
100,000. The range between the 5th and 95th percentiles is shown in blue
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However, since our algorithm is greedy in nature, there is no guarantee to find the 
partition with the global minimum score. In practice, PALM will occasionally produce 
undesired, extra line segments. Thus, to investigate the stability of the learned parti-
tions, we repeat the simulation 50 times for each combination of m and n, and plot all 
partition results in one single plot in Fig. 6 (right).

Figure  6 (right) shows that the undesired extra regions are produced more fre-
quently as m increases, but seems independent of sample size n. However, as sample 
size increases, the learned partitions become indeed more stable as they gather around 
the sine curves more closely.

7.4  Gaussian random variables

In this section, we show the performance of our algorithm on data generated from a two-
dimensional Gaussian distribution. Specifically, we consider two of them, i.e., N[(0

0
), (

1 0

0 1
)] 

and N[(0
0
), (

1 0.5

0.5 1
)] of which the key difference is whether the two dimensions are inde-

pendent. We assume S = [−5, 5] × [−5, 5] , as the true Gaussian density outside such S is 
negligible.

Figure 7 shows the learned partitions as well as the learned empirical densities from 
a random simulated dataset with different sample sizes, n ∈ {5 000, 10 000, 50 000} . Note 
that bin size is self-adaptive with regard to sample size and local structure of the probabil-
ity density. We also mention that the empirical runtime for a single dataset generated by 
such Gaussian distributions is at most a few minutes, for all n ≤ 50 000.

To quantify the quality of the learned partitions by PALM, we compare the MISE of 
PALM to the MISE of fixed equally-spaced grid partitions with different granularities. Fig-
ure 8 shows the mean and standard deviation of MISE for different cases, and we conclude 
that, to achieve roughly the same level of MISE with a fixed grid, a fixed grid needs to have 
five times as many regions as a partition learned by PALM.
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Fig. 5  Boxplots showing the sample size versus Llearn and Ltrue as defined in Eq. (24). Note that the y-axis 
has a logarithmic scale. Llearn is generally much smaller than Ltrue , meaning that it is very rare that PALM 
produces unnecessary extra regions. When the sample size is large enough for MISE to converge ( n ≥ 1e5 ), 
outliers of Ltrue are due to sampling variance when generating the true parameters fj defined in Equation 
(26), see Table 1; the number of outliers for Llearn decreases rapidly as the sample size becomes larger, as 
they are due to sampling variance when generating the data
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7.5  Comparison with IPD

Since—to the best of our knowledge—no existing discretization method can produce par-
titions as expressive as PALM, it seems not so meaningful to compare with any existing 
algorithm. However, we do include a comparison with the IPD algorithm (Nguyen et al., 
2014), mainly to show that our algorithm not only can produce more flexible partitions by 
definition, but also beats this state-of-the-art algorithm on a “simple” task, i.e., when the 
“true” partition is an adaptive two-dimensional grid.

We use simple synthetic data, similar to one of the synthetic datasets used to study the 
performance of IPD (Nguyen et al., 2014). The data is generated to be uniform within four 

Table 1  The average MISE of cases when Ltrue > 1 , and the overall mean of MISE. We show that, when 
PALM fails to identify part of the true partitions, the learned histogram model still estimates the probability 
density accurately. The only explanation for these cases is that some neighboring regions in the true parti-
tions have very similar “true” fj as defined in Equation (26), as a result of which PALM does not deem it 
necessary to further partition these regions

Sample size MISE for subgroup: Ltrue > 1 overall MISE

100 000 0.00148 0.00148
300 000 0.00055 0.00074
500 000 0.00051 0.00065
700 000 0.00019 0.00069
1 000 000 0.00023 0.00058
3 000 000 0.00017 0.00055
5 000 000 0.00006 0.00051

Fig. 6  (Left) Sine curve defined in Eq. (27) (red), with m ∈ {2, 4, 6} from left to right on each row, and the 
learned partition by PALM (black). Data is randomly generated by uniforms distribution above and below 
the sine curve, within S = [0, 1] × [0, 1] . Densities above and below the since curve are 2:1. From top to 
bottom, the sample sizes of the simulated data are n ∈ {1e4, 1e5, 1e6} . (Right) 50 partition results of 50 dif-
ferent simulated datasets are plotted together. It shows that PALM is not guaranteed to be absolutely stable, 
as it occasionally produces undesired extra line segments, but the line segments of the learned partitions 
mostly gather around the true sine curve
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regions in S = [0, 1] × [0, 1] . These regions are produced by partitioning S by one vertical 
line x = Vx and one horizontal line y = Hy , where Vx,Hy ∼ Uniform(0, 1) . The number of 
data points within each region is equal.

We compare the loss, as defined in Equation (24), and we show in Fig. 9 that (1) PALM 
has better performance on small datasets, and (2) as the sample size gets larger, PALM 
converges but IPD partitions S into more and more regions, as can be witnessed from an 
increasing Ltrue.

7.6  Empirical runtime

We next discuss the empirical runtime with respect to Kmax , the maximum number of bins 
to search, and E, the number of candidate cut points.

Specifically, we use two-dimensional datasets simulated from independent standard 
Gaussian distributions to examine the relationship between Kmax and runtime, with fixed 
sample size equal to 500 and � = 0.001 . The results are illustrated in Fig. 10, showing that 
the runtime increases linearly with Kmax . Further, to investigate the relationship between 
E and the runtime, we again simulate from two-dimensional Gaussian distributions with 

Fig. 7  Learned partitions and estimated densities by PALM. The data is generated from two-dimensional 
Gaussian distributions, with sample size n ∈ {5 000, 10 000, 50 000} , from left to right. The top and bottom 
row is respectively generated from independent and dependent two-dimensional Gaussian distributions
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different variance �2 to control the E.5 We fixed the sample size to be 1000 and � = 0.001 . 
The results show that, the runtime grows quadratically with E (as shown by the blue dashed 
curve), but the second-order coefficient is quite small (as it is very close to the red dashed 
line with a linear trend). We report the runtime based on 500 repetitions.

8  Case study

We now show the results of applying our algorithm to real-world spatial datasets. We 
start with describing the three datasets we use in Sect.  8.1. Next, we describe our case 
study tasks in Sect. 8.2. Specifically, we inspect the results by visualizing the histograms, 
to illustrate that our method can be used as an explanatory data analysis (EDA) tool. We 
also compare with kernel density estimation (KDE), arguably the most widely used EDA 
method for spatial datasets, both for the visualizations and the goodness-of-fit on unseen 
data. In Sect. 8.3, we report our results and show that (1) PALM can produce partitions that 
characterize more detailed density changes than KDE, and (2) PALM fits better on unseen 
data (i.e., a test dataset), in the sense that the partition of PALM has larger log-likelihood 
on the test dataset than KDE. Finally, we report the runtimes and detailed algorithm set-
tings, respectively in Sects. 8.4 and 8.5.
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Fig. 8  For data generated from a two-dimensional Gaussian distribution, described in Sect. 7.4, the mean and 
standard deviation of MISE is calculated for different partitions: (from left to right) PALM, fixed grid with the 
same number of regions as PALM (denoted as ‘1×’), fixed grid with two times number of regions as PALM 
(denoted as ‘2×’), ..., and fixed grid with the same number of regions before the merging step of PALM 
(denoted as ‘*1×’). We assume S = [−5, 5] × [−5, 5] , as the true Gaussian density outside S is negligible

5 For reproducibility, we first simulate 10 000 data points from N[(0
0
), (

0 �2

�2 0
)] , where �2 = E�∕2 , where E 

is the desired number of candidate cut points. Since the corresponding desired data range with E candidate 
cut points is [−E�∕2,E�∕2] , we next remove the data points outside this desired data range, and we finally 
randomly select 1000 data points from the remaining data points.



2420 Machine Learning (2023) 112:2397–2431

1 3

8.1  Datasets

We consider three diverse real world datasets: locations of Airbnb housing in Amsterdam,6 
GPS locations of destinations of DiDi taxi queries in Chengdu, China,7 and GPS record-
ings of visitors’ movement in an amusement park.8

Visitors movement data in the DinoFun amusement park All visitors at the amuse-
ment park need to carry a device or use a smartphone app to check in at different attractions 
(e.g., roller coasters). Further, the amusement park is segmented into 100 × 100 cells (all 
of them are roughly 5 meters × 5 meters), and each cell has a sensor which can track the 
position of each visitor. The device (or the mobile app), together with the sensors, checks 
the position of the visitor every few seconds and records the position if the visitor moves 

1

2

4

8

16

100 200 300 400 500 600 700 800 900 1000 3000 5000 7000 9000

sample size

lo
g(
lo
ss
+
1)

IPD: Llearn

PALM: Llearn

IPD: Ltrue

PALM: Ltrue

Fig. 9  Comparison of PALM and IPD, using the box-plot and the mean of Llearn and Ltrue , as defined in 
Eq. (24). PALM not only performs better when the sample size is small, but also converges as the sample 
size increases, while IPD does not converge

Fig. 10  Empirical time complexity on simulated two-dimensional Gaussian data, with respect to E, the 
number of candidate cut points, and the runtime, and Kmax , the maximum number of bins we search

6 http:// insid eairb nb. com.
7 https:// gaia. didic huxing. com.
8 http:// vacom munity. org/ VAST+ Chall enge+ 2015.

http://insideairbnb.com
https://gaia.didichuxing.com
http://vacommunity.org/VAST+Challenge+2015
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to another cell. Thus, applying PALM on this dataset will reveal the densities of places 
that people have been in the amusement park. This data has a sample size of 9 078 623 , in 
which every row represents a single position that one individual visitor visited (or passed 
by), with information like visitor’s ID, timestamp, and location.

Amsterdam airbnb locations This data has a sample size of 20 244 , and the location of 
each house is recorded by its longitude and latitude. Applying PALM on this dataset shows 
the distribution of Airbnb housing in Amsterdam.

DiDi taxi data in Chengdu The sample size of the data is 107 573 , which collects the 
longitude and latitude of taxi destinations. Applying PALM on this dataset shows the den-
sities of different regions that people visited by taxi in Chengdu, China.

8.2  Case study tasks

Explanatory data analysis and visualizations We first partition the three two-dimen-
sional datasets by PALM and estimate the densities of all regions, using the full datasets. 
We visualize the densities by the heat maps in Fig.  11, and compare the visualizations 
obtained by two-dimensional kernel density estimation (KDE) (Duong et al., 2007), also 
with the full dataset. We also include the visualization results of the discretization obtained 
by IPD (Nguyen et al., 2014) for comparison, although IPD is not primarily designed for 
two-dimensional datasets. The background of Fig. 11 are the map of the DinoFun amuse-
ment part (provided together with the dataset), and the map of Amsterdam and Chengdu 
(from Google Maps API and the R package “ggmap” (Kahle & Wickham, 2013)).

Comparison of KDE and PALM on the goodness-of-fit Further, to quantitively com-
pare how KDE and PALM fit unseen data, and thus generalize to the underlying data dis-
tribution, we randomly split each dataset into training and testing set, obtain the PALM and 
KDE result from the training set, and compare the log-likelihoods on the testing dataset. 
We repeat the random splitting 100 times.9

8.3  Case study results

We first analyze the result on each dataset respectively, based on which we give our con-
cluding remarks for the case study at the end of this section.

Visitors movement data in the DinoFun amusement park As shown in Fig. 11, both 
KDE and PALM reveal the walking path of the amusement park purely from the movement 
data (i.e., without knowing the map as additional information). Although KDE seems to 
capture more density changes, we show that it fits unseen data much worse than PALM, 
measured by the log-likelihood on the test dataset, shown in Table 2. Thus, we conclude 
that KDE may overfit on this dataset.

Amsterdam airbnb locations The visualizations of PALM and KDE look generally 
similar: if we treat red and orange regions in the center as the “dense region”, the rigid 
boundary between the dense region and the rest obtained by PALM approximates well the 
corresponding curve boundary obtained by KDE. However, note that more density changes 

9 To speed up the process, we randomly sampled a subset of the Chengdu taxi dataset that contains 10% 
of the full sample size; also, for the amusement park movement dataset, we only use the subset of the data 
that is between 4 hours and 5 hours after the opening of the park, with sample size 713,846. Note that this is 
only for the comparison of goodness-of-fit but not for the visualizations and empirical runtime evaluation.
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are captured within the dense region, and PALM revealed two dense spots outside the 
central areas that KDE neglects, respectively on the top right and the bottom right of the 
map.10 Further, as shown in Table 2, the (average) log-likelihood of PALM and KDE on 
the test set is almost the same, which indicates that PALM does not overfit on this dataset, 
i.e., the dense spots revealed by PALM are valid.

DiDi taxi data in Chengdu The visualizations of PALM and KDE lead to different 
understandings of this dataset: while KDE reveals several hot clusters of taxi destinations, 
PALM shows that the density can change drastically within very small range of areas. As 
PALM fits better on the testing dataset, we conclude that PALM does not overfit but KDE 
may over-smooth this dataset.

By default the PALM algorithm always starts by splitting the x-axis. Starting by 
splitting the y-axis leads to slightly different models, and thus somewhat different 
visualizations, but those differences are so minimal that they can be ignored for prac-
tical purposes. That is, the differences mostly appear in sparse regions, with very low 
densities, where no interesting patterns occur. To demonstrate that the differences are 
negligible, we compare the log-likelihoods obtained on unseen data when starting 
splitting on either the x-axis or the y-axis. The log-likelihoods are indeed very similar 
for both starting directions, as shown in Table 2, confirming that the resulting histo-
gram models can only be different in sparse and less important regions; otherwise the 
log-likelihoods would be substantially different.

Based on the analysis above, we conclude that (1) although PALM partitions the dataset 
with rigid boundaries, PALM fits the data better than KDE when the datasets have drastic 
local density changes, such as the Chengdu taxi dataset and the amusement park dataset; 
(2) when we have smoother two-dimensional data such as the Amsterdam housing dataset, 
PALM and KDE fit the data equally well; (3) when we look at the visualizations, PALM 
tends to capture more density changes than KDE, and PALM can reveal dense spots that 
KDE neglects; in other words, KDE tends to over-smooth the dataset.

Last, we include the visualizations of the IPD discretization in Appendix C, in which we 
demonstrate that the discretization results obtained by IPD have much coarser granularity. 
Hence, our discretization results preserve more information from the original datasets.

8.4  Empirical runtime

We examine the empirical runtime on these three datasets in Table 3 (using the full datasets, 
without the split of training and testing set). We conclude that KDE is generally much faster, 
except on the amusement park dataset, which has a very large sample size but small E.

Note that the runtime of KDE highly depends on the number of evaluation points, 
the bandwidth selection methods, and whether to use the binned kernel estimation as an 
approximation to the exact kernel estimation for bandwidth selection and/or density esti-
mation. The runtime we report here is based on the following settings: (1) the number of 
evaluation points is the same as the number of pixels evaluated by PALM, i.e., the pixels 
on the fixed grid with the granularity � ; (2) the binned approximation for the plug-in band-
width selection is used; otherwise it becomes too slow;11 (3) the binned approximation 

10 The top right dense spot is close to the “AMSTERDAM NOORD” text on the map (on the “T”), and bot-
tom right dense spot is near “Amstel Business Park”.
11 It cost more than 10 minutes for the Amsterdam housing data, and more than two days for the amuse-
ment park data, both on the full dataset (no splitting for training and testing set).
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Fig. 11  Estimated densities on three real-world datasets using PALM (left) and KDE (right); from top to 
bottom: DinoFun amusement park, Amsterdam Airbnb housing, and taxi destinations in Chengdu
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for the density estimation is not used. Note that we use these same settings not only for 
the runtime evaluation, but also for visualizations and calculating the log-likelihood on the 
testing datasets.

8.5  Algorithm settings

We now describe some additional algorithm settings for reproducibility for PALM and KDE.
Kernel density estimation (KDE) We choose the Gaussian kernel for KDE, the most 

commonly used kernel by default. We also experiment with several bandwidth selection meth-
ods, including both plug-in methods and cross-validation methods. We find that plug-in meth-
ods are generally both more stable and much faster in these three cases, and we choose the one 
that is specifically designed for two-dimensional cases (Duong & Hazelton, 2003).

Also, we visualize the KDE results by directly plotting the density of each “pixel”; another 
common practice is to use a contour function, which will further smooth the KDE results and 
hence hamper the straightforward comparisons with the PALM results.

PALM We set � = 1 and Kmax = 100 for the amusement park dataset, as the amuse-
ment park is divided into a 100 × 100 grid, so the data is recorded at precision of 1 and the 
maximum number of bins cannot exceed 100. For the other two datasets, the precision of the 
dataset is set as � = 0.001 , which is roughly 100 meters. During the partitioning step, we set 
Kmax = 300 to make sure that K̂ < Kmax.

9  Conclusions

We proposed to discretize two-dimensional data by histograms with far more flexible parti-
tions than adaptive grids, as we observed that the appropriate binning of one dimension may 
depend on the value of the other dimension.

Next, we formalized this task based on the MDL principle. Building upon the one-dimen-
sional MDL histogram, we made several technical contributions so as to extend both the for-
mulation and algorithm to the two-dimensional case. Specifically, we solved the problem of 
calculating the parametric complexity for multi-dimensional cases. Also, we revisited and 

Table 2  The log-likelihood of PALM with partitioning vertically first, lpalm , and with partitioning horizon-
tally first, l′

palm
 , and the log-likelihood of KDE, lkde , on the test set for each of the three datasets

Dataset lpalm l′
palm

lkde (lpalm − lkde)∕lkde

1 Amsterdam housing 29976.36 29983.31 30069.78 -0.00
2 Amusement park 270.56 262.0688 227.22 0.19
3 Chengdu taxi 14904.28 14742.05 14073.42 0.06

Table 3  Empirical runtime (in 
seconds) for the three case study 
datasets

Dataset sample size PALM KDE

1 Amsterdam housing 20 244 106.821 6.73
2 Amusement park 9 078 623 1134.581 2017.215
3 Chengdu taxi 107 573 60977.285 29.197
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improved the algorithm for one-dimensional dataset by (1) correcting a minor flaw related 
to the model encoding, and (2) simplifying the dynamic programming recursion and hence 
improving the time complexity.

Further, we proposed a novel heuristic algorithm PALM, which combines the top-down 
and bottom-up search strategies, and we extensively examined the performance of the PALM 
algorithm on both synthetic and real-world datasets. That is, we verified our algorithm on vari-
ous synthetic datasets, and showed that: (1) PALM reveals the ground-truth histogram and 
converges, in contrast to IPD that produces more and more bins as sample size increases; (2) 
PALM approximates well to the partitions outside the model class; (3) PALM is self-adaptive 
to local density structures and sample sizes.

Finally, we applied our algorithm on three diverse real-world spatial datasets, and dem-
onstrated that PALM not only captures more densities changes than KDE, but also fits the 
unseen data better than KDE, as measured by the log-likelihood.

Appendix A: Proof that COMP(n, S̃) is independent of the number 
of dimensions (Section 4.1, Proposition 1)

Assume S ⊂ ℝ
l , S̃ is any partition of S with K regions, and ∀Sj ∈ S̃ , |Sj| represents the 

(hyper-)volume of Sj ; for any yn that can be generated by S̃ , hj(yn) denotes the number of 
data points in region Sj.

To count the elements in the set {yn ∶ hj(y
n) = hj,∀j} , we observe that the number of pos-

sible ways of distributing (h1,… , hK) data points into each region of S̃ respectively is

As we assume the precision to be � , for any Sj , the number of possible locations for those 
hj(y

n) points is equal to ( |Sj|
�l
)hj . Thus, the number of elements in the set {yn ∶ hj(y

n) = hj,∀j} 
is
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which completes the proof.
Note that for continuous data yn , COMP(n, S̃) becomes an integral over yn ∈ Sn , but by 

the definition of Riemann integral, (which always exists since � cancels out), the result of 
COMP(n, S̃) is the same as Equation (31).

Appendix B: Proof that only searching for cut points that are closest 
to data points is sufficient (Section 6, Proposition 2)

Consider one-dimensional data zn , and a partition of the data space S, by a set of cut points, 
denoted as CK = {C0 = min zn,C1,… ,CK = max zn} , the probability of data is

where hj is the number of data points within the subinterval Sj , and |Sj| is the length of the 
subinterval Sj.

We regard P(xn|CK) as a continuous function of the vector S = (|S1|,… , |SK|) , i.e., 
we forget about the granularity � for now, and clearly all hj ’s are fixed once we fix the 
S.

On the other hand, if we keep all hj ’s fixed, we can still “move” all the cut points to 
change S while keeping the hj ’s fixed, i.e., we can move a cut point Vx within some closed 
interval, denoted as [a, b], within which no data points exist.

We prove that the maximum of P(xn|CK) will always achieved when Vx = a or Vx = b 
as we keep other cut points fixed. By doing this, we also prove that, given candidate cut 
points, we only need to consider cut points that are near to the data points, i.e., if for any 
candidate cut point, it is another two cut points that are closest to it, other than one or more 
data points, we can then skip this candidate cut point.

Since when we move one single cut point, it only affects the subinterval left and right to 
that cut point, while all other |Sj| ’s remain the same, it is sufficient to just prove for the case 
K = 2.

Since now C0 = mini∈[n] xi1 and C2 = maxi∈[n] xi1 , P(xn|C2) becomes a function of C1 , 
and equivalently a function of |S1| , where both C1 and |S1| are bounded as we need to keep 
h1 and h2 fixed, i.e.,
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where we assume |S1| ∈ [a, b] for some certain closed interval [a, b]. As we want to maxi-
mize logP(xn|C2) , it is equivalent to minimizing

as other terms in Equation (33) are constant. Since

by setting F�(|S1|) = 0 , we have

We also have

because (1) the denominator is always positive apparently, and (2) the numerator is a sim-
ple quadratic function which is always negative. The reason is that (1) −(h1 + h2)|S1| < 0 
and (2) the numerator has no real roots, since

Therefore, if |S1|∗ ∉ [a, b] , F(|S1|) is monotonic within [a, b]; if |S1|∗ ∈ [a, b] , |S1|∗ reaches 
the maximum. In both cases, the minimum of F(|S1|) will be either a or b, which completes 
the proof.

Appendix C: IPD visualizations on case study datasets

By applying IPD, we obtain the discretization results of two of the case study datasets 
as shown in Fig. 12 (we fail to obtain the result of IPD on the Amusement Park data 
within four hours).

(34)F(|S1|) ∶= h1 log |S1| + h2 log(|S| − |S1|)

(35)F�(|S1|) =
h1(|S| − |S1|) − h2|S1|
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,

(36)|S1|
∗ =

h1

h1 + h2
L.
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−(h1 + h2)|S1|

2 + 2h1|S||S1| − h1|S|
2
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|S1|

2
< 0

(38)(2h1|S|)
2 − 4(−(h1 + h2))(h1|S|

2) = −4h2h1|S1|
2 < 0.
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Fig. 12  Visualization of the IPD discretization results on the case study datasets



2429Machine Learning (2023) 112:2397–2431 

1 3

Acknowledgements This work is part of the research programme ‘Human-Guided Data Science by Interac-
tive Model Selection’ with Project Number 612.001.804, which is (partly) financed by the Dutch Research 
Council (NWO).

Author Contributions LY contributed to theory development, algorithm design and implementation, con-
ducting the experiments and case studies, and writing the manuscript. MB was involved in developing initial 
ideas, and contributed to the case studies. MvL contributed to problem formalization, algorithm and experi-
ment design, and writing the manuscript. All authors approved the final manuscript.

Funding This work is (partly) financed by the Dutch Research Council (NWO).

Data availability Two of the datasets used in the case studies are publicly available at http://insideairbnb.
com and http://vacommunity.org/VAST+Challenge+2015. The third dataset used in case studies is available 
upon request at https://gaia.didichuxing.com.

Code availability The code is available at: https://github.com/ylincen/PALM.

Declarations 

 Conflict of interest All authors declare that they have no conflict of interest.

 Ethics approval Not applicable.

 Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Bay, S. D. (2001). Multivariate discretization for set mining. Knowledge and Information Systems, 3(4), 
491–512.

Biba, M., Esposito, F., Ferilli, S., Di Mauro, N., & Basile, T. M. A. (2007). Unsupervised discretization 
using kernel density estimation. In Proceedings of the 20th international joint conference on artifi-
cal intelligence (pp. 696–701), Morgan Kaufmann Publishers Inc., San Francisco, IJCAI’07.

Boulle, M. (2004). Khiops: A statistical discretization method of continuous attributes. Machine learn-
ing, 55(1), 53–69.

Boullé, M. (2006). Modl: A Bayes optimal discretization method for continuous attributes. Machine 
Learning, 65(1), 131–165.

Cao, F., Ge, Y., & Wang, J. (2014). Spatial data discretization methods for geocomputation. International 
Journal of Applied Earth Observation and Geoinformation, 26, 432–440.

Cuevas, A., & Fraiman, R. (1997). A plug-in approach to support estimation. The Annals of Statistics, 
25(6), 2300–2312.

Duong, T., & Hazelton, M. (2003). Plug-in bandwidth matrices for bivariate kernel density estimation. 
Journal of Nonparametric Statistics, 15(1), 17–30.

Duong, T. (2007). ks: Kernel density estimation and kernel discriminant analysis for multivariate data in 
R. Journal of Statistical Software, 21(7), 1–16.

http://creativecommons.org/licenses/by/4.0/


2430 Machine Learning (2023) 112:2397–2431

1 3

Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for classifi-
cation learning. In Proceedings of the 13th international joint conference on artificial intelligence 
(IJCAI-93) (pp. 1022–1027)

Ferrandiz, S., & Boullé, M. (2005). Multivariate discretization by recursive supervised bipartition of 
graph. In International workshop on machine learning and data mining in pattern recognition (pp. 
253–264). Springer.

Galbrun, E. (2020). The minimum description length principle for pattern mining: A survey. arXiv pre-
print arXiv: 2007. 14009

Gasparini, M. (1996). Bayesian density estimation via Dirichlet density processes. Journal of Nonpara-
metric Statistics, 6(4), 355–366.

Grünwald, P. (2004). A tutorial introduction to the minimum description length principle. arXiv preprint 
math/0406077

Grünwald, P., & Roos, T. (2019). Minimum description length revisited. arXiv preprint arXiv: 1908. 
08484

Grünwald, P. D. (2007). The minimum description length principle. MIT Press.
Gupta, A., Mehrotra, K. G., & Mohan, C. (2010). A clustering-based discretization for supervised learn-

ing. Statistics & probability letters, 80(9–10), 816–824.
Hansen, M. H., & Yu, B. (2001). Model selection and the principle of minimum description length. 

Journal of the American Statistical Association, 96(454), 746–774.
Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining, 

inference, and prediction (Vol. 2, pp. 1–758). Springer
Jin, R., Breitbart, Y., & Muoh, C. (2009). Data discretization unification. Knowledge and Information 

Systems, 19(1), 1–29.
Kahle, D., & Wickham, H. (2013). ggmap: Spatial visualization with ggplot2. The R Journal, 5(1), 

144–161.
Kameya, Y. (2011). Time series discretization via MDL-based histogram density estimation. In 2011 

IEEE 23rd international conference on tools with artificial intelligence (pp. 732–739). IEEE.
Kang, Y., Wang, S., Liu, X., Lai, H., Wang, H., & Miao, B. (2006). An ICA-based multivariate discre-

tization algorithm. In International conference on knowledge science, engineering and management 
(pp. 556–562). Springer.

Kerber, R. (1992). Chimerge: Discretization of numeric attributes. In Proceedings of the tenth national 
conference on artificial intelligence (pp. 123–128).

Kontkanen, P., & Myllymäki, P. (2007). A linear-time algorithm for computing the multinomial stochas-
tic complexity. Information Processing Letters, 103(6), 227–233.

Kontkanen, P., & Myllymäski, P. (2007). MDL histogram density estimation. In: Meila M, Shen X 
(eds.), Proceedings of the eleventh international conference on artificial intelligence and statistics, 
PMLR, proceedings of machine learning research (Vol. 2, pp. 219–226).

Kontkanen, P., Myllymäki, P., Silander, T., & Tirri, H. (1997). A Bayesian approach to discretization. In 
Proceedings of the European symposium on intelligent techniques. Citeseer

Kotsiantis, S., & Kanellopoulos, D. (2006). Discretization techniques: A recent survey. GESTS Interna-
tional Transactions on Computer Science and Engineering, 32(1), 47–58.

Kurgan, L. A., & Cios, K. J. (2004). Caim discretization algorithm. IEEE Transactions on Knowledge 
and Data Engineering, 16(2), 145–153.

Kwedlo, W., & Kretowski, M. (1999). An evolutionary algorithm using multivariate discretization for 
decision rule induction. In European conference on principles of data mining and knowledge dis-
covery (pp. 392–397). Springer.

Liu, L., & Wong, W. H. (2014). Multivariate density estimation based on adaptive partitioning: Conver-
gence rate, variable selection and spatial adaptation. arXiv preprint arXiv: 1401. 2597

Lu, L., Jiang, H., & Wong, W. H. (2013). Multivariate density estimation by Bayesian sequential parti-
tioning. Journal of the American Statistical Association, 108(504), 1402–1410.

Lud, M. C., Widmer, G. (2000). Relative unsupervised discretization for association rule mining. In Euro-
pean conference on principles of data mining and knowledge discovery (pp. 148–158). Springer.

Marx, A., Yang, L., & van Leeuwen, M. (2021). Estimating conditional mutual information for discrete-
continuous mixtures using multi-dimensional adaptive histograms. In Proceedings of the 2021 
SIAM international conference on data mining (SDM) (pp. 387–395). SIAM.

Mehta, S., Parthasarathy, S., & Yang, H. (2005). Toward unsupervised correlation preserving discretiza-
tion. IEEE Transactions on Knowledge and Data Engineering, 17(9), 1174–1185.

Nguyen, H. V., Müller, E., Vreeken, J., & Böhm, K. (2014). Unsupervised interaction-preserving discre-
tization of multivariate data. Data Mining and Knowledge Discovery, 28(5–6), 1366–1397.

http://arxiv.org/abs/2007.14009
http://arxiv.org/abs/1908.08484
http://arxiv.org/abs/1908.08484
http://arxiv.org/abs/1401.2597


2431Machine Learning (2023) 112:2397–2431 

1 3

Pfahringer, B. (1995). Compression-based discretization of continuous attributes. In Machine Learning 
Proceedings 1995 (pp. 456–463). Elsevier.

Ram, P., & Gray, A. G. (2011). Density estimation trees. In Proceedings of the 17th ACM SIGKDD 
international conference on Knowledge discovery and data mining (pp. 627–635).

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.
Schmidberger, G., & Frank, E. (2005). Unsupervised discretization using tree-based density estimation. In 

European conference on principles of data mining and knowledge discovery (pp. 240–251). Springer.
Scott, D. W. (2015). Multivariate density estimation: theory, practice, and visualization. Wiley.
Scricciolo, C. (2007). On rates of convergence for Bayesian density estimation. Scandinavian Journal of 

Statistics, 34(3), 626–642.
Van Der Pas, S., & Rocková, V. (2017). Bayesian dyadic trees and histograms for regression. arXiv preprint 

arXiv: 1708. 00078
Yang, K., & Wong, W. H. (2014). Density estimation via adaptive partition and discrepancy control. arXiv 

preprint arXiv: 1404. 1425
Zhang, X. H., Wu, J., Lu, T. J., & Jiang, Y. (2007). A discretization algorithm based on gini criterion. In 

2007 international conference on machine learning and cybernetics (Vol. 5, pp. 2557–2561). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/1708.00078
http://arxiv.org/abs/1404.1425

	Unsupervised discretization by two-dimensional MDL-based histogram
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	3.1 Notation and definitions of data, model, and model class
	3.2 Histogram model selection by the MDL principle

	4 Calculating the code length
	4.1 Code length of the data
	4.2 Code length of the model
	4.2.1 Encoding all models in the model class is difficult
	4.2.2 Code length of the model in the partitioning and merging steps


	5 Revisiting MDL histograms for one-dimensional data
	6 The PALM algorithm for partitioning and merging
	7 Experiments
	7.1 Measuring the difference between two-dimensional histograms
	7.2 Revealing ground truth two-dimensional histograms
	7.3 Approximating histogram models outside model class 
	7.4 Gaussian random variables
	7.5 Comparison with IPD
	7.6 Empirical runtime

	8 Case study
	8.1 Datasets
	8.2 Case study tasks
	8.3 Case study results
	8.4 Empirical runtime
	8.5 Algorithm settings

	9 Conclusions
	Appendix A: Proof that  is independent of the number of dimensions (Section 4.1, Proposition 1)
	Appendix B: Proof that only searching for cut points that are closest to data points is sufficient (Section 6, Proposition 2)
	Appendix C: IPD visualizations on case study datasets
	Acknowledgements 
	References




