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Abstract
One notable weakness of current machine learning algorithms is the poor ability of models 
to solve new problems without forgetting previously acquired knowledge. The Continual 
Learning paradigm has emerged as a protocol to systematically investigate settings where 
the model sequentially observes samples generated by a series of tasks. In this work, we 
take a task-agnostic view of continual learning and develop a hierarchical information-
theoretic optimality principle that facilitates a trade-off between learning and forgetting. 
We derive this principle from a Bayesian perspective and show its connections to previous 
approaches to continual learning. Based on this principle, we propose a neural network 
layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating 
a set of information processing paths through the network which is governed by a gat-
ing policy. Equipped with a diverse and specialized set of parameters, each path can be 
regarded as a distinct sub-network that learns to solve tasks. To improve expert allocation, 
we introduce diversity objectives, which we evaluate in additional ablation studies. Impor-
tantly, our approach can operate in a task-agnostic way, i.e., it does not require task-specific 
knowledge, as is the case with many existing continual learning algorithms. Due to the 
general formulation based on generic utility functions, we can apply this optimality prin-
ciple to a large variety of learning problems, including supervised learning, reinforcement 
learning, and generative modeling. We demonstrate the competitive performance of our 
method on continual reinforcement learning and variants of the MNIST, CIFAR-10, and 
CIFAR-100 datasets.
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1 Introduction

Acquiring new skills and concepts without forgetting previously acquired knowledge is 
a hallmark of human and animal intelligence. Biological learning systems leverage task-
relevant knowledge from preceding learning episodes to guide subsequent learning of new 
tasks to accomplish this. Artificial learning systems, such as neural networks, usually lack 
this crucial property and experience a problem coined "catastrophic forgetting" (McClos-
key & Cohen, 1989). Catastrophic forgetting occurs when we naively apply machine learn-
ing algorithms to solve a sequence of tasks T1∶t , where the adaptation to task Tt prompts 
overwriting of the parameters learned for tasks T1∶t−1.

The Continual Learning (CL) paradigm (Thrun, 1998) has emerged as a way to inves-
tigate such problems systematically. We can divide CL approaches into four broad cat-
egories: generative approaches with memory consolidation, regularization, architecture 
and expansion methods, and algorithm-based methods. Generative methods train a gen-
erative model to learn the data-generating distribution to reproduce data of old tasks. Data 
sampled from the learned model is then part of the training process (Shin et  al., 2017; 
Rebuffi et  al., 2017). This strategy draws inspiration from neuroscience research regard-
ing the reactivation of neuronal activity patterns representing previous experiences that 
are hypothesized to be vital for stabilizing new memories while retaining old memories 
(Wilson & McNaughton, 1994; Rasch & Born, 2007; van de Ven et  al., 2016). In con-
trast, regularization methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Ahn et al., 2019; 
Benavides-Prado et al., 2020; Han & Guo, 2021) introduce an additional constraint to the 
learning objective. The goal is to prevent changes in task-relevant parameters, where we 
may measure relevance as, e.g., the performance on previously seen tasks (Kirkpatrick 
et al., 2017; Zenke et al., 2017; Li et al., 2021; Cha et al., 2020). This approach can also 
be motivated through synaptic plasticity and elasticity changes of biological neurons when 
learning new tasks (Ostapenko et  al., 2019). CL can also be achieved by modifying the 
design of a model during learning (Lin et  al., 2019; Fernando et  al., 2017; Rusu et  al., 
2016; Yoon et al., 2018; Golkar et al., 2019). Such methods include adding new layers to 
a neural network (Zacarias & Alexandre, 2018), re-routing data through a neural network 
based on task information (Collier et al., 2020), distilling parameters (Zhai et al., 2019; Liu 
et al., 2020), and adding new experts to a mixture-of-experts architecture (Lee et al., 2020). 
Lastly, algorithmic approaches aim to adapt the optimization algorithm itself to avoid cata-
strophic forgetting, e.g., by mapping the gradient updates into a different space (Zeng et al., 
2019; Wang et al., 2021). Some methods provide a combination of approaches, as it seems 
plausible that a mixture of approaches will provide the best-performing systems, as these 
methods are often complementary (Biesialska et al., 2020; De Lange et al., 2021; Vijayan 
& Sridhar, 2021).

While there has been significant progress in the field of CL, there are still some major 
open questions (Parisi et al., 2019). For example, most existing algorithms share a signifi-
cant drawback in that they require task-specific knowledge, such as the number of tasks and 
which task is currently at hand (Zenke et al., 2017; Shin et al., 2017; Nguyen et al., 2017; 
Kirkpatrick et  al., 2017; Li & Hoiem, 2017; Rao et  al., 2019; Sokar et  al., 2021; Yoon 
et al., 2018; Han & Guo, 2021; Chaudhry et al., 2021, 2018). One prominent class of CL 
approaches sharing this drawback are multi-head approaches (El Khatib & Karray, 2019; 
Nguyen et al., 2017; Ahn et al., 2019), which build a set of shared layers but a separate 
output layer ("head") per task, deterministically activated by the current task index (see 
Fig. 1).
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Extracting relevant task information is in general a difficult problem, in particular when 
distinguishing tasks without any contextual input (Hihn & Braun, 2020; Yao et al., 2019). 
Thus, providing the model with such task-relevant information yields overly optimistic 
results (Chaudhry et  al., 2018). In order to deal with more realistic and challenging CL 
scenarios, therefore, models must learn to compensate for the lack of auxiliary information. 
The approach we propose in this work tackles this problem by formulating a hierarchical 
learning system, that allows us to learn a set of sub-modules specialized in solving par-
ticular tasks. To this end, we introduce hierarchical variational continual learning (HVCL) 
and devise the mixture-of-variational-experts layer (MoVE layers) as an instantiation of 
HVCL. MoVE layers consist of M experts governed by a gating policy, where each expert 
maintains a posterior distribution over its parameters alongside a corresponding prior. Dur-
ing each forward pass, the gating policy selects one expert per layer. This sparse selection 
reduces computation as only a small subset of the parameters must be updated during the 
back-propagation of the loss (Shazeer et al., 2017). To mitigate catastrophic forgetting we 
condition the prior distributions on previously observed tasks and add a penalty term on 
the Kullback-Leibler-Divergence between the expert posterior and its prior. This constraint 
facilitates a trade-off between learning and forgetting and allows us to design information-
efficient decision-makers (Hihn & Braun, 2020).

When dealing with ensemble methods, two main questions arise naturally. The first one 
concerns the question of optimally selecting ensemble members using appropriate selec-
tion and fusion strategies (Kuncheva, 2004). The second one, is the question of how to 
ensure expert diversity (Kuncheva & Whitaker, 2003; Bian & Chen, 2021). We argue that 
ensemble diversity benefits continual learning and investigate two complementary diversity 
objectives: the entropy of the expert selection process and a similarity measure between 
different experts based on Wasserstein exponential kernels in the context of determinan-
tal point processes (Kulesza et  al., 2012). By maximizing the determinant of the expert 
similarity matrix, we can then “spread” the expert parameters optimally within the shared 
parameter space. To summarize, our contributions are the following: (1) we extend vari-
ational continual learning (Nguyen et  al., 2017) to a hierarchical multi-prior setting, (2) 
we derive a computationally efficient method for task-agnostic continual learning from this 
general formulation, (3) to improve expert specialization and diversity, we introduce and 
evaluate novel diversity measures (4) we demonstrate our approach in supervised CL, gen-
erative CL, and continual reinforcement learning.

Fig. 1  Left: Multi-head architectures share a feature extractor block and select task-specific output heads 
based on the knowledge provided by a task oracle. Right: Our proposed architecture for single head CL. 
Each layer implements a modular system, such that task data can flow through distinct ”paths” (highlighted) 
in the network
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This paper is structured as follows: after introducing our method in Sect. 2, we design, 
perform, and evaluate the main experiments in Sect. 3. In Sect. 4, we discuss novel aspects 
of the current study in the context of previous literature and conclude with a final summary 
in Sect. 5.

2  Hierarchical variational continual learning

In this section we first introduce the concept of continual learning and related nomencla-
ture formally and then extend the variational continual learning (VCL) setting introduced 
by Nguyen et  al. (2017) to a hierarchical multi-prior setting and then introduce a neural 
network implementation as a generalized application of this paradigm in Sect. 2.1.

In CL the goal is to minimize the loss of all seen tasks given no (or limited) access to 
data from previous tasks:

where T is the total number of tasks, Dt = {xi
t
, yi

t
}
Nt

i=1
= (Xt, Yt) the dataset of task t, � some 

loss function, and f� a single predictor parameterized by � (e.g., a neural network). Here, 
task refers to an isolated training stage with a new dataset. This dataset may belong to a 
new set of classes, a new domain, or a new output space. We can divide these concepts 
based on the in- and output distributions (De Lange et al., 2021): in task-incremental learn-
ing the labels change Yt ≠ Yt+1 , but the label distributions remain P(Yt) = P(Yt+1) , e.g., in a 
series of binary classification tasks, plus the task t is always known. In domain-incremental 
learning we have Yt = Yt+1 and P(Yt) = P(Yt+1) , but t is unknown. Finally, in class-incre-
mental learning we have Yt ⊂ Yt+1 , but P(Yt) ≠ P(Yt+1) and unknown t, e.g., MNIST with 
ten total classes but only two classes per task. For all settings it holds that Xt ≠ Xt+1—see 
Fig. 2 for an illustration.

(1)min

T∑
t=1

�(xt ,yt)∼(Xt ,Yt)

[
�(f�(xt, yt))

]
,

Fig. 2  Continual Learning setups. In Task Incremental Learning the number of classes is constant and task 
information is provided. In Domain Incremental Learning, the number of classes is also constant, but no 
task information is given. In Class Incremental Learning the total number of classes is constant, but the 
learning agent only observes a subset at a time, e.g., two out of ten total classes per task



659Machine Learning (2023) 112:655–686 

1 3

The variational continual learning approach (Nguyen et  al., 2017) describes a gen-
eral learning paradigm wherein an agent stays close to an old strategy ("prior") it has 
learned on a previous task Tt−1 while learning to solve a new task Tt ("posterior"). Given 
datasets of input-output pairs Dt = {xi

t
, yi

t
}
Nt

i=0
 of tasks t ∈ {1, ...,T} , the main learning 

objective of minimizing the log-likelihood log p�(yit|xit) for task t is augmented with an 
additional loss term in the following way:

where p(�) is a distribution over the models parameter � and Nt is the number of samples 
for task t. The prior constraint encourages the agent to find an optimal trade-off between 
solving a new task and retaining knowledge about old tasks. When the likelihood model is 
implemented by a neural network, a new output layer can be associated with each incoming 
task, resulting in a multi-head implementation. Over the course of T datasets, Bayes’ rule 
then recovers the posterior

which forms a recursion: the posterior after seeing T datasets is obtained by multiplying 
the posterior after T − 1 with the likelihood and normalizing accordingly.

In their original work, the authors propose to use multi-headed networks, i.e., to train 
a new output layer for each incoming task. This strategy has two main drawbacks: (1) it 
introduces an organizational overhead due to the growing number of network heads, and 
(2) task boundaries must be known at all times, making it unsuitable for more complex 
continual learning settings. In the following we argue that we can alleviate these prob-
lems by combining multiple decision-makers with a learned selection policy to replace 
the deterministic head selection.

To extend VCL to the hierarchical case, we assume that samples are drawn from a 
set of M independent data generating processes, i.e. the likelihood is given by a mixture 
model p(y�x) = ∑M

m=1
p(m�x)p(y�m, x) . We define an indicator variable z ∈ Z , where zi,t

m
 is 

1 if the output yt
i
 of sample i from task t was generated by expert m and zero otherwise. 

The conditional probability of an output is then given by

where � are the parameters of the selection policy, �m the parameters of the m-th expert, 
and Θ = {�, {�m}

M
m=1

} the combined model parameters. The posterior after observing T 
tasks is then given by

(2)L
t
VCL

=

Nt∑
i=1

��

[
log p�(y

i
t
|xi

t
)
]
− DKL

[
pt(�)||pt−1(�)

]
,

(3)

p(�|D1∶T ) ∝ p(�)

T∏
t=1

Nt∏
i=1

p(yi
t
|�, xi

t
)

= p(�)

T∏
t=1

p(Dt|�)

∝ p(�|D1∶T−1)p(DT |�),

(4)p(yi
t
|xi

t
,Θ) =

M∑
m=1

p(zi,m
t
|xi

t
, �)p(yi

t
|xi

t
,�m),
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The Bayes posterior of an expert p(�m|D1∶T ) is recovered by computing the marginal over 
the selection variables Z. Again, this forms a recursion, in which the posterior p(Θ|D1∶T ) 
depends on the posterior after seeing T − 1 tasks and the likelihood p(DT |Θ) . We can now 
formulate the hierarchical variational continual learning objective for task t as minimizing 
the following loss:

where Nt is the number of samples in task t, and the likelihood p(y|x,Θ) is defined as in 
Eq. (4). The Mixture-of-Variational-Experts layers we introduce in Sect. 2.1 are based on a 
generalization of this optimization problem.

2.1  Sparsely gated mixture‑of‑variational layers

As we plan to tackle not only supervised learning problems, but also reinforcement learning 
problems, we assume in the following a generic scalar utility function �(x, f�(x)) that depends 
both on the input x and the parameterized agent function f�(x) that generates the agent’s out-
put y. We assume that the agent function f�(x) is composed of multiple layers as depicted in 
Fig. 3. Our layer design builds on the sparsely gated Mixture-of-Expert (MoE) layers (Shazeer 
et al., 2017), which in turn draws on the Mixture-of-Experts paradigm introduced by Jacobs 
et al. (1991). MoEs consist of a set of M experts indexed by m and a gating network p(m|x) 
whose output is a (sparse) M-dimensional vector. All experts have an identical architecture but 
separate parameters. Let p(m|x) be the gating output and p(y|m, x) the response of an expert m 
given input x. The layer’s output is then given by a weighted sum of the experts responses, i.e.,  
p(y�x) = ∑

m∈M p(m�x)p(y�m, x) . To save computation time we employ a top-k gating scheme, 
where only the k experts with highest gating activation are evaluated and use an additional 
penalty that encourages gating sparsity (see Sect. 2.1). In all our experiments we set k = 1 , to 
drive expert specialization (see Sect. 2.2.1) and reduce computation time. We implement the 
learning objective for task t as layer-wise regularization in the following way:

(5)

p(Θ|D1∶T ) ∝ p(�)p(�)

T∏
t=1

Nt∏
i=1

M∑
m=1

p(zi,m
t
|xi

t
, �)p(yi

t
|xi

t
,�m)

= p(Θ)

T∏
t=1

p(Dt|Θ)

∝ p(Θ|D1∶T−1)p(DT |Θ).

(6)

L
t
HVCL

=

Nt∑
i=1

�p(Θ)

[
log p(yi

t
|xi

t
,Θ)

]

− DKL

[
pt(�)||p1∶t−1(�)

]

− DKL

[
pt(�)||p1∶t−1(�)

]
,
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where L is the total number of layers, Θ = {�, {�m}
M
m=1

} the combined parameters,and the 
temperature parameters �1 and �2 govern the layer-wise trade-off between utility (e.g., clas-
sification performance) and information-cost.

Thus, we allow for two major generalizations compared to Eq. 6: in lieu of the log-
likelihood we allow for generic utility functions �(⋅) , and instead of applying the con-
straint on the gating parameters, we apply it directly on the gating output distribution 
p(m|x) . This implies, that the weights of the gating policy are not sampled. Otherwise 
the gating mechanism would involve two stochastic steps: one in sampling the weights 
and a second one in sampling the experts. This potentially high selection variance hin-
ders expert specialization (see Sect. 2.2.1). Encouraging the gating policy to stay close 
to its prior also ensures that similar inputs are assigned to the same expert. Next we 
consider how we could extend objective 7 further by additional terms that encourage 
diversity between different experts.

(7)

L
t
MoVE

=

Nt∑
i=1

[
�Θ

[
�(xt

i
, fΘ(x

t
i
))
]

−

L∑
l=1

�pl(m|xt
i
),ql(�|m)

[
�1 DKL

[
pl
t
(m|xt

i
)||pl

1∶t−1
(m|xt

i
)
]

+ �2 DKL

[
pl
t
(�|m)||pl

1∶t−1
(�|m)]

]]
,

Fig. 3  This figure illustrates our proposed design. Each layer implements a top-k expert selection con-
ditioned on the output of the previous layer. Each expert m maintains a distribution over its weights 
p(�|m) = N(�m, �m) and a set of bias variables bm . Left to right arrows represent sampling, while right to 
left arrows show the resulting utility and losses. Combining L layers with M experts gives LM possible paths 
through the network. The architecture shown here is used in the CIFAR10 experiments
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2.2  Encouraging expert diversity

In the following, we argue that a diverse set of experts may mitigate catastrophic for-
getting in continual learning, as experts specialize more easily in different tasks, which 
improves expert selection. Diversity measures enjoy an increasing interest in the reinforce-
ment learning community but remain mainly understudied in continual learning (e.g., Bang 
et  al., 2021). In the reinforcement learning literature diversity has been considered, for 
example, by encouraging skills or policies that are sufficiently different (Eysenbach et al., 
2018; Parker-Holder et  al., 2020), or by sampling trajectories that reflect goal diversity 
(Dai et al., 2021), which is an idea similar to well-known bagging techniques (Breiman, 
1996). Moreover, diversity may arise from a sufficiently high variance weight initialization, 
but this can introduce computational instabilities during back-propagation, as we lose the 
variance reducing benefits of state-of-the-art initialization schemes (Glorot et al., 2010; He 
et al., 2015; Narkhede et al., 2021). Also, there is no guarantee that the expert parameters 
won’t collapse again during training.

In the following, we present two expert diversity objectives. The first one arises directly 
from the main learning objective and is designed to act as a regularizer on the gating policy 
while the second one is a more sophisticated approach that aims for diversity in the expert 
parameter space. The latter formulation introduces a new class of diversity measures, as 
we discuss in more detail in Sect. 4.1. We designed additional experiments in Sect. 3.4 to 
investigate their influence on learning and the resulting policies and to further motivate the 
need for expert diversity.

2.2.1  Diversity through specialization

The relationship between objectives of the form described by Eq. (7) with the emergence 
of expert specialization has been previously investigated for simple learning problems 
(Genewein et al., 2015) and in the context of meta-learning (Hihn & Braun, 2020), but not 
in the context of continual learning. This class of models assumes a two-level hierarchi-
cal system of specialized decision-makers where first level decision-makers p(m|x) select 
which second level decision-maker p(y|m, x) serves as experts for a particular input x. By 
co-optimizing

the combined system finds an optimal partitioning of the input space X, where I(⋅|⋅) 
denotes the (conditional) mutual information between random variables. In fact, the hierar-
chical VCL objective given by Eq. (6) can be regarded as a special case of the information-
theoretic objective given by Eq. (8), if we interpret the prior as the learning strategy of task 
t − 1 and the posterior as the strategy of task t, and set � = 1 . All these hierarchical decision 
systems correspond to a multi prior setting, where different priors associated with different 
experts can specialize on different sub-regions of the input space. In contrast, specializa-
tion in the context of continual learning can be regarded as the ability of partitioning the 
task space, where each expert decision-maker m solves a subset of old tasks Tm ⊆ T1∶t . In 
both cases, expert diversity is a natural consequence of specialization if the gating policy 
p(m|x) partitions between the experts. Using gradient descent on parameterized distribu-
tions, objective (8) can also be maximized in an online manner (Hihn & Braun, 2020).

In addition to the implicit pressures for specialization already implied by Eq. 7, here we 
investigate the effect of an additional entropy cost. Inspired by recent entropy regularization 

(8)max
p(y|x,m),p(m|x) � [�(x, y)] − �1I(X;M) − �2I(X;Y|M),
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techniques (Eysenbach et al., 2018; Galashov et al., 2019; Grau-Moya et al., 2019), we aim 
to improve the gating policy by introducing the entropy cost

where M is the set of experts and X the inputs. By maximizing the conditional entropy 
H(M�X) = −

∑
m,x p(x)p(m�x) log p(m�x) we encourage high certainty in the expert gating 

and by minimizing the marginal entropy H(M) we prefer solutions that minimize the num-
ber of active experts. In our implementation, we compute these values batch-wise, as the 
full entropies are not tractable. We evaluate these entropy penalties in Sect. 3.4.

2.2.2  Parameter diversity

Our second diversity formulation is based on differences in the parameter space, rather 
than in the output space as formalized by Eqs.  (9) or (8). To find expert parameters that 
are pairwise different, we introduce a symmetric distance measure and we show how this 
measure can be efficiently computed and maximized. By maximizing distance in param-
eter space, we hope to find a set of expert parameters stretched over the space of possible 
parameters. This in turn helps to prevent collapsing to a state where all experts have similar 
parameters (and thus similar outputs), rendering the idea behind an ensemble useless.

Our idea builds on determinantal point processes (DPPs) (Kulesza et al., 2012), a mech-
anism that produces diverse subsets by sampling proportionally to the determinant of the 
kernel matrix of points within the subset (Macchi, 1975). A point process P on a ground 
set Y is a probability measure over finite subsets of Y. A sample from P may be the empty 
set, the entirety of Y, or anything in between. P is a determinantal point process if, when Y 
is a random subset drawn according to P, we have, for everyA ⊂ Y  , P(A ⊂ Y) = det(KA) for 
some real, symmetric N × N matrix K indexed by the elements of Y. Here, KA = [Kij]i,j∈A 
denotes the restriction of K to the entries indexed by elements of A, and we adopt 
det(K�) = 1 . Since P is a probability measure, all principal minors det(KA) of K must be 
non-negative, and thus K itself must be positive semi-definite. These requirements turn out 
to be sufficient: any K, 0 ≤ K ≤ I , defines a DPP. We refer to K as the marginal kernel 
since it contains all the information needed to compute the probability of any subset A of Y. 
If A = {i} is a singleton, then we have P(i ∈ Y) = Ki,i . In this case, the diagonal of K gives 
the marginal probabilities of inclusion for individual elements of Y. Diagonal entries close 
to 1 correspond to elements of Y selected with high probability. The matrix K is defined 
by a kernel function k(x0, x1) . A kernel is a two-argument real-valued function over X × X  
such that for any x0, x1 ∈ X :

where X  is a vector space and F  is a inner-product space such that ∀x ∈ X ∶ �(x) ∈ F  . 
Specifically, we use a exponential kernel based on the Wasserstein-2 distance W(p,  q) 
between two probability distributions p and q. The pth Wasserstein distance between two 
probability measures p and q in Pp(M) is defined as

where Γ(p, q) denotes the collection of all measures on M ×M with marginals p and q 
on the first and second factors. Let p and q be two isotropic Gaussian distributions and 

(9)max
p(m|x)H(M|X) − H(M),

(10)k(x0, x1) = ⟨�(x0),�(x1)⟩F,

(11)Wp(p, q) ∶=

(
inf

�∈Γ(p,q)∫M×M

d(x, y)p d�(x, y)

)1∕p

,
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W2
2
(q, p) the Wasserstein-2 distance between p and q. The exponential Wasserstein-2 kernel 

is then defined by

where h is the kernel width. We show in Appendix B that Eq.  (12) gives a valid kernel. 
This formulation has two properties that make it suitable for our purpose. Firstly, the 
Wasserstein distance is symmetric, i.e., W2

2
(p, q) = W2

2
(q, p) , which in turn will lead to a 

symmetric kernel matrix. This is not true for other similarity measures on probability dis-
tributions, such as DKL (Cover & Thomas, 2012). Secondly, if p and q are Gaussian and 
mean-field approximations, i.e., covariance matrices Σp and Σq are given by diagonal matri-
ces, such that Σp = diag(dp) and Σq = diag(dq) , W2

2
(p, q) can be computed in closed form as

where �p,q are the means and d p, q the diagonal entries of distributions p and q. We pro-
vide a more detailed derivation of Eq. (13) in Appendix A. For each layer l with N experts 
the following regularization objective is added to the main objective:

where L is the number of Layers, k(pl
i
, pl

j
) is the kernel of the i-th and j-th expert of layer l 

(see Eq. 10) and det(K) denotes the matrix determinant of the kernel matrix K. Note that 
the matrix is symmetric, which reduces computation time. Computing det(K) can have 
some pitfalls, which we discuss in Sect. 4.2.

From a geometric perspective, the determinant of the kernel matrix represents 
the volume of a parallelepiped spanned by feature maps corresponding to the kernel 
choice. We seek to maximize this volume, effectively filling the parameter space—see 
Fig. 4 for an illustration.

3  Experiments

While the correct and robust evaluation of continual learning algorithms is still a topic 
of discussion (Farquhar & Gal, 2018; Hsu et al., 2018), we follow the majority of stud-
ies to ensure a fair comparison. We evaluate our approach in current supervised learn-
ing benchmarks in Sect.  3.1, in a generative learning setting in Sect.  3.2, and in the 
continual reinforcement learning setup in Sect. 3.3. Additionally, we conduct ablation 
studies in Sect. 3.4 to investigate the influence of the diversity objective, the generator 
quality, the influence of the hyper-parameters �1 and �2 , and regarding the number of 
experts. We give experimental details in Appendix C.
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3.1  Continual supervised learning scenarios

The basic setting of continual learning is defined as an agent which sequentially observes 
data from a series of tasks T = {Ti}

N
i=1

 and must learn Ti while maintaining performance on 
older tasks T≤i . We evaluate the performance of our method in this setting in split MNIST 
(Fig. 1), split CIFAR-10 and split CIFAR-100 (Fig. 2). We follow the domain incremental 
setup (van de Ven et al., 2020; Kessler et al., 2021; Raghavan & Balaprakash, 2021; Hsu 
et al., 2018; Mazur et al., 2021; He & Zhu, 2022), where the number of classes is constant 
and task information is not available, but we also compare against task-incremental meth-
ods (Zenke et al., 2017; Shin et al., 2017; Nguyen et al., 2017; Kirkpatrick et al., 2017; Li 
& Hoiem, 2017; Rao et al., 2019; Sokar et al., 2021; Yoon et al., 2018; Han & Guo, 2021; 
Chaudhry et al., 2021, 2018) in Appendix C Tables 3 and 4, where the task information is 
available, to give a complete overview of current methods. The different Continual Learn-
ing setups are given in Fig. 2 in more detail.

The first benchmark builds on the MNIST dataset. Five binary classification tasks from 
the MNIST dataset arrive in sequence: 0/1, 2/3, 4/5, 6/7, and 8/9. In time step t, the per-
formance is measured as the average classification accuracy on all tasks up to task t. In 
permuted MNIST the task received at each time step t consists of labeled MNIST images 
whose pixels have undergone a fixed random permutation. The second benchmark is a var-
iation of the CIFAR-10/100 datasets. In Split CIFAR-10, we divide the ten classes into 
five binary classification tasks. In total, CIFAR-10 consists of 60000 32 × 32 × 3 images in 
10 classes, with 6000 images per class. There are 50,000 training images and 10,000 test 

Fig. 4  Upper Row: We seek experts that are both specialized, i.e., their posterior p is close to their prior q, 
and diverse, i.e., posteriors pi, pj∀i ≠ j are sufficiently distant from one another. Bottom Row: To this effect, 
we maximize the determinant of the kernel matrix K, effectively filling the feature space. In the case of two 
experts this would mean to maximize det(K) = 1 − K(p0, p1) , which we can achieve by maximizing the 
Wasserstein-2 distance between the posteriors p0 and p1
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images. CIFAR-100 is like the CIFAR-10, except it has 100 classes containing 600 images 
each. There are 500 training images and 100 testing images per class. Tasks are defined as 
a 10-way classification problem, thus forming ten tasks in total.

We achieve comparable results to current state-of-the-art approaches (see Tables 1 and 
2) on all three supervised learning benchmarks.

Table 1  Continual learning results in the split MNIST (S-MNIST) and permuted MNIST (P-MNIST) 
benchmark compared to current CL methods

Results were averaged over ten random seeds with the standard deviation given in parenthesis. Results on 
algorithms marked with † were taken from (van de Ven & Tolias, 2018), others from their original work. 
”Dense Neural Network” refers to simple NN, that has been trained naively with sequential data and repre-
sents a lower bound. ”Offline re-training” refers to a NN that has been retrained on all tasks seen so far

Baselines S-MNIST P-MNIST

Dense neural network 86.15 (± 1.00) 17.26 (± 0.19)
Offline re-training 99.64 (± 0.03) 97.59 (± 0.02)
Single-head and task-agnostic methods
Hierarchical VCL (ours) 97.50 ( ± 0.33) 97.07 (± 0.62)
Hierarchical VCL w/GR (ours) 98.60 ( ± 0.35) 97.47 (± 0.52)
Uncertainty guided CL w/BNN (Ebrahimi et al., 2020) 97.70 (± 0.03) 92.50 (± 0.01)
Brain-inspired replay through feedback† (van de Ven et al., 2020) 99.66 (± 0.13) 97.31 (± 0.04)
Hierarchical Indian buffet neural nets (Kessler et al., 2021) 91.00 (± 2.20) 93.70 (± 0.60)
Balanced continual learning (Raghavan & Balaprakash, 2021) 98.71 (± 0.06) 97.51 (± 0.05)
Target layer regularization (Mazur et al., 2021) 80.64 (± 1.25)

Table 2  Continual learning results in the split CIFAR-10 and the split CIFAR-100 benchmark compared to 
current CL methods

Results were averaged over ten random seeds with the standard deviation given in the parenthesis. We 
report results of other methods as given in their original studies. ”Conv. Neural Network” refers to simple 
CNN, that has been trained naively with sequential data and represents a lower bound. ”Offline re-training” 
refers to a CNN that has been retrained on all tasks seen so far

Baselines Split-CIFAR-10 CIFAR-100

Conv. neural network 66.62 (± 1.06) 19.80 (± 0.19)
Offline re-training 80.42 (± 0.95) 52.30 (± 0.02)
Single-head and task-agnostic methods
Hierarchical VCL (ours) 78.41 (± 1.18) 33.10 (± 0.62)
Hierarchical VCL w/GR (ours) 81.00 (± 1.15) 37.20 (± 0.52)
Continual learning with dual regularizations (Han & Guo, 

2021)
86.72 (± 0.30) 25.62 (± 0.22)

Natural continual learning (Kao et al., 2021) 38.79 (± 0.24)
Target layer regularization (Mazur et al., 2021) 74.89 (± 0.61
Memory aware synapses (He & Zhu, 2022) 73.50 (± 1.54)
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3.2  Generative continual learning

Generative CL is a simple but powerful paradigm (Shin et al., 2017; Rebuffi et al., 2017; 
van de Ven et  al., 2020). The main idea is to learn the data generating distribution and 
simulate data of previous tasks. We can extend our approach to the generative setting by 
modeling a variational autoencoder using the novel layers we propose in this work. We pro-
vide hyper-parameters and other experimental settings in Appendix C.

Modeling the latent variable z to capture the dynamics the data generating distribution 
p(x) is difficult if p(x) is multi-modal and authors have suggested the use of more com-
plex distributions (Hadjeres et  al., 2017; Ghosh et  al., 2019; Vahdat & Kautz, 2020) as 
variational prior p(z). We model the distribution of the latent variable z in the variational 
autoencoder by using a densely connected MoVE layer with 3 experts. Using multiple 
experts enables us to capture a richer class of distributions than a single Gaussian distribu-
tion could, as is usually the case in VAEs. We can interpret this as z following a Gaussian 
Mixture Model, whose components are mutually exclusive and modeled by experts. We 
integrate the generated data by optimizing a mixture of the loss on the new task data and 
the loss of the generated data:

where Bt is batch of data from the current task, B1∶t−1 a batch of generated data (instead of 
stored data from previous tasks), and �(b) a loss function on the batch b. We were able to 
improve our results in the supervised settings by incorporating a generative component as a 
replay mechanism, as we show in Table 1, and in Fig. 2.

3.3  Continual reinforcement learning

In the continual reinforcement learning (CRL) setting, the agent is tasked with finding an 
optimal policy in sequentially arriving reinforcement learning problems. To benchmark our 
method in this setting, we follow the experimental protocol of Ahn et al. (2019) and use a 
series of reinforcement learning problems from the PyBullet environments (Coumans & 
Bai, 2016–2021; Ellenberger, 2018–2019). In particular, we use the following: Walker2D, 
Half Cheetah, Ant, Inverted Double Pendulum, and Hopper. The environments we selected 
have different states and action dimensions. This implies we can’t use a single neural net-
work to model policies and value functions. To remedy this, we pad each state and action 
with zeros to have equal dimensions. The Ant environment has the highest dimensionality 
with a state dimensionality of 28 and an action dimensionality of 8. All others are zero-
padded to have this dimensionality. We provide hyper-parameters and other settings in 
Appendix C.

Our approach to continual reinforcement learning can build upon any deep reinforce-
ment learning algorithm (see Wang et al., 2020 for a review of current algorithms). Here, 
we chose soft actor-critic (SAC) (Haarnoja et al., 2018). We extend SAC by implementing 
all neural networks with MovE layers. When a new task arrives, the old posterior over the 
expert parameters and the gating posterior become the new priors. After each update step 
in task t, we evaluate the agent in all previous tasks T1∶t for three episodes each. We divide 
the reward achieved during evaluation by the mean reward during training and report the 
cumulative normalized reward, which gives an upper bound of t in the t-th task.

(15)L(�) =
1

2|Bt|
∑
b∈Bt

�(b) +
1

2|B1∶t−1|
∑

b∈|B1∶t−1|
�(b),
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We compare our approach against a simple continuously trained SAC implementation with 
dense neural networks, EWC (Kirkpatrick et al., 2017), and the recently published UCL (Ahn 
et al., 2019) method. UCL is similar to our approach in that it also employs Bayesian neural 
networks, but the weight regularization acts on a per-weight basis. Note that, in contrast to our 
approach, UCL and EWC both require task information to compute task-specific losses. Our 
results (see Fig. 5) show that our approach can sequentially learn new policies while maintain-
ing an acceptable performance on previously seen tasks. We evaluate the methods by comput-
ing the following score J(t) for each time step after training on task t is complete:

Fig. 5  Continual reinforcement learning. The upper row shows the cumulative normalized rewards over 
time across the five reinforcement learning tasks. Each vertical dotted line indicates a change in environ-
ment after 1 million frames. Performance is computed according to Eq. (16) after each frame and thus rep-
resents the total reward achieved by the agent summed over t tasks (with a maximum normalized reward 
of one per task). Thus, a value close to t indicates no forgetting, while 1.0 shows the total forgetting of old 
tasks. The lower row shows the absolute cumulative episodic reward in each of the five environments given 
pre-training on the preceding tasks. We compare against EWC (Kirkpatrick et  al., 2017) and UCL (Ahn 
et  al., 2019). The lower bound is given by a naively trained dense neural network using SAC (Haarnoja 
et al., 2018) without CL and without access to old environments
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where N is the number of episodes to average over, and R(k,�k) is the cumulative episodic 
reward in environment k under policy �k:

where pk(si+1|ai, si) are the dynamics of environment k and r(si, ai) is the immediate reward 
for executing action ai in state si at time step i. The policy �k refers to the policy trained on 
tasks up to k. The normalization is done by dividing by the average performance over ten 
episodes of the agent in task k, when the agent was trained on that task for the first time. 
Thus we get a score that measures how well the agent retains its performance on a past 
environment while learning to solve new problems. As we sum over past environments, an 
increasing score indicates a successful trade-off between learning and forgetting, while a 
decreasing or stagnating score indicates forgetting of old tasks.

Our method outperforms UCL (Ahn et al., 2019) and EWC (Kirkpatrick et al., 2017). 
In this setting naively training the agent sequentially (labeled "Dense") yields poor perfor-
mance. This behavior indicates the complete forgetting of old policies. The bottom row of 
Fig. 5 shows the performance of our method in any particular environment, when pre-train-
ing on the preceding environments. It shows that the other methods (UCL and EWC) adapt 
more successfully to the individual tasks, which is however, coupled with catastrophic for-
getting, when switching to the next task. In contrast, our method achieves a better trade-
off between learning and forgetting. For this result, we did not optimize hyper-parameters 
for single task performance, but we simply set the hyper-parameters such that the training 
performance in each task was comparable in order of magnitude to the other methods. The 
evaluation across tasks with the same normalized metric shows then the superior ability of 
HVCL to maintain performance over a sequence of reinforcement learning tasks. Addition-
ally, we note that the variance of the results achieved by our method are lower, suggesting a 
more stable and reliable training phase.

3.4  Ablation studies

To further investigate the methods we propose in this work, we designed a set of ablation 
experiments. In particular, we aim to demonstrate the importance of each component. To 
this effect, we run experiments investigating the generator quality in the generative CL set-
ting, study the diversity bonuses in the supervised CL scenario, and take a closer look at 
the number of experts and the influence of the DKL weights in the continual reinforcement 
learning setup.

3.4.1  Investigating diversity bonuses

In Sect. 2.2 we introduced a diversity objective to stabilize learning in a mixture-of-experts 
system. Additionally, we argued in favor of an entropy bonus to encourage a selection pol-
icy that favors high certainty and sparsity. To investigate the validity of these additions, we 
run a set of experiments on the Split CIFAR-10 dataset as described in Sect. 3, but with 

(16)J(t) =

t∑
k=1

1

NRavg(k,�k)

N∑
n=1

Rn(k,�t),

(17)R(k,�k) = �ai∼�k(si),s∼pk(si+1|ai,si)
[
r(si, ai)

]
,
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different bonuses—see Fig. 6. In the baseline setup, we used no other objectives as those 
described by Eq. (6).

Apart from the classification accuracy, we are interested in three information-theo-
retic quantities that allow us to investigate the system closer. Firstly, the mutual infor-
mation between the data generating distribution p(x) and the expert selection p(m|x) as 
measured by I(M; X) indicates how much uncertainty over m the gating unit can reduce 
on average after observing an input x. A higher value means that inputs are differenti-
ated better, which is what we would expect from a more diverse set of experts. I(M; X) 
is the highest when we use a DPP-based diversity objective ("DDP"), while the entropy 
of selection policy H(M) is lowest when we use an entropy-based diversity measure 

Fig. 6  Here we evaluate the proposed diversity measures in the split CIFAR-10 benchmark. We averaged 
every experiment over three random trials. Information-theoretic quantities I(M; X), I(C; X),  and H(X) were 
measured for each layer and averaged
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("H-Penalties"), which both show that the objectives we introduced in this study yield 
the intended results. Combining both the DDP diversity bonus and the entropy penalty 
on the expert ("DDP+H-Pen.") enforces a trade-off between both objectives and yields 
the best empirical results. We average the results of ten random seeds in each setting.

3.4.2  Generator quality

We introduce a generative approach to continual learning in Sect. 3.2 by implementing a 
Variational Auto-encoder using our proposed layer design. This addition improved clas-
sification performance and mitigated catastrophic forgetting, as evidenced by the results 
shown in Fig. 2 and Table 1.

By borrowing methods from the generative learning community, we can investigate the 
performance further. The main focus lies on the quality of the generated images. We can 
not straightforwardly measure the accuracy, as artificial images lack labels. Thus we first 
use the trained classifier to obtain labels and compute metrics based on these self-gener-
ated labels. We opted for the Inception Score (IS) (Salimans et al., 2016), as it is widely 
used in the generative learning community. In this initially proposed formulation, the IS 
builds on the DKL between the conditional and the marginal class probabilities as returned 
by a pre-trained Inception model (Szegedy et al., 2015). To investigate the quality of the 
generated images concerning the continually trained classifier, we use a different version of 
the Inception Score, which we defined as

where G1∶T is the data generator trained on tasks up to T, p1∶T (y|x) the conditional class 
distribution returned by the classifier trained up to task T, and p1∶T (y) the marginal class 
distribution up to Task T. Note that, IS(G1∶T ) ≤ log2 Nc , where Nc is the number of classes. 
We show IST and the entropy of p(y) in the split CIFAR-10 and CIFAR-100 setting in 
Fig. 7. In both cases, it can be seen that the generated pictures retain task-specific informa-
tion, although there is a notable decrement across tasks.

3.4.3  Number of experts

Our method builds on a mixture of experts model and it is thus natural to assume that 
increasing the number of experts improves performance. Indeed, this is the case as we 
demonstrate in additional continual reinforcement learning experiments in Fig. 8. As Fig.  
1 illustrates, adding experts to layers increases the number of possible information process-
ing paths through the network. Equipped with a diverse and specialized set of parameters, 
each path can be regarded as a distinct sub-network that learns to solve tasks.

3.4.4  D
KL

 weights

As with any hyper-parameter, setting a specific value for � has a strong influence on the 
outcome of the experiments. Setting it too small will lead to the regularization term domi-
nating the loss, and the experts can’t learn a new task, as the new parameters remain close 
to the parameters of the previous task. A high value will drive the penalty term towards 
zero, which, in turn, will not preserve parameters from old tasks. In principle, there are 
three ways to choose �.

(18)IST (G1∶T ) = �x∼G1∶T

[
DKL

[
p1∶T (y|x)||p1∶T (y)

]]
,
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First, by setting � such that it satisfies an expert information-processing limit. This tech-
nique has the advantage that we can interpret this value, e.g., "each expert can process 
1.57 bits of information on average, i.e., distinguishing between three options", but shifts 
the burden from picking � to setting a target entropy (see, e.g., Haarnoja et al., 2018; Grau 
et al., 2019 for an example of this approach). Second, employing a schedule for � , as, e.g., 
proposed by Fu et al. (2019). Last, another option is to run a grid search over a pre-defined 
range and choose the one that fits best. In our supervised learning experiments, we used a 
cyclic schedule for �1 and �2 (Fu et al., 2019) while we kept them fixed in the reinforcement 
learning experiments. To systematically investigate the influence of these parameters, we 
conducted additional experiments (see Fig. 9).

4  Discussion

4.1  Related work

The principle we propose in this work falls into a wider class of methods that deal more 
efficiently with learning and decision-making problems by integrating information-theo-
retic cost functions. Such information-constrained machine learning methods have enjoyed 
recent interest in a variety of research fields, such as reinforcement learning (Eysenbach 
et  al., 2018; Ghosh et  al., 2018; Leibfried & Grau-Moya, 2019; Hihn et  al., 2019; Aru-
mugam et  al., 2020), MCMC optimization (Hihn et  al., 2018; Pang et  al., 2020), meta-
learning (Rothfuss et al., 2018; Hihn & Braun, 2020), continual learning (Nguyen et al., 
2017; Ahn et al., 2019), and self-supervised learning (Thiam et al., 2021; Tsai et al., 2021).

Fig. 9  In this figure, we show the influence of the DKL weights �1 and �2 in the continual reinforcement 
learning setting. Setting the expert DKL weight 𝛽2 < 0.1 results in poor performance, as posteriors deviate 
too much from their priors. On the other hand, a lower gating DKL weight �1 allows for a flexible expert 
allocation and improves performance
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The hierarchical structure we employ is a variant of the Mixture of Experts (MoE) 
model. Jacobs et al. (1991) introduced MoE as tree-structured models for complex classi-
fication and regression problems, where the underlying approach is the divide and conquer 
paradigm. As in our approach, three main building blocks define MoEs: gates, experts, and 
a probabilistic weighting to combine expert predictions. Learning proceeds by finding a 
soft partitioning of the input space and assigning partitions to experts performing well on 
the partition. MoEs for machine learning have seen a growing interest, with a recent surge 
stemming from the introduction of the sparsely-gated mixture-of-experts layer (Shazeer 
et al., 2017). In its initial form, this layer is optimized to divide the inputs equally among 
experts and then sparsely activate the top-k experts per input. This allowed training sys-
tems with billions of total parameters, as only a small subset was active at any given time. 
In our work, we removed the incentive to equally distribute inputs, as we aim to find spe-
cialized experts, which contradicts a balanced load. The computational advantage remains, 
as we still activate only the top-1 expert.

We extended the sparse MoE layer to continual learning by re-formulating its main prin-
ciple as a hierarchical extension of variational continual learning (Nguyen et  al., 2017). 
Our main contribution is removing the need for multi-headed networks by moving the head 
selection to the gating network. Our method is similar to the approach described in Hihn 
and Braun (2020) but differs in two key aspects. Firstly, we provide a more stable learning 
procedure as our layers can readily offer end-to-end training, which alleviates problems 
such as expert class imbalance and brittle converging properties reported in the previous 
study. Secondly, we implement the information-processing constraints on the parameters 
instead of the output of the experts, thus shifting the information cost from decision-mak-
ing to learning. A method similar to ours is conditional computing for continual learning 
(Lin et al., 2019). The authors propose to condition the parameters of a neural network on 
the input samples by learning a (deterministic) function that groups inputs and maps a set 
of parameters to each group. Our approach differs in two main ways. First, our method can 
capture uncertainty allowing us to learn stochastic tasks. Second, our design can incorpo-
rate up to 2n paths (or groupings) through a neural net with n layers, making it more flex-
ible than learning a mapping function. Another routing approach is routing networks by 
Collier et al. (2020). The authors propose to use mixture-of-experts layers that they train 
with a novel algorithm called co-training. In co-training, an additional data structure keeps 
track of all experts assigned to a specific task, as these are trained differently than those 
unassigned so far. In contrast, our method does not require additional training procedures 
and does not produce any organizational overhead. PathNet (Fernando et  al., 2017) is a 
modular neural network architecture where an evolutionary algorithm combines modules 
(e.g., convolution, max pooling, activation) to solve each task. This approach requires two 
training procedures: one for the evolutionary algorithm and one to adapt the path modules. 
Our method allows efficient end-to-end training. Lee et al. (2020) propose a Mixture-of-
Experts model for continual learning, in which the number of experts increases dynami-
cally. Their method utilizes Dirichlet-Process-Mixtures (Antoniak, 1974) to infer the 
number of experts. The authors argue that since the gating mechanism is itself a classifier, 
training it in an online fashion would result in catastrophic forgetting. To remedy this, they 
implement a generative model per expert m to model p(m|x) and approximate the output as 
p(y�x) ≈ ∑

m p(y�x)p(m�x) . In our work, we have demonstrated that it is possible to imple-
ment a gating mechanism based only on the input by coupling it with an information-theo-
retic objective to prevent catastrophic forgetting.

To stabilize expert training we introduced a diversity objective. Diversity measures have 
witnessed increasing interest in the reinforcement learning community. The ”diversity is 
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all you need” (DIAYN) paradigm (Eysenbach et al., 2018) proposes to formulate an infor-
mation-processing hierarchy similar to Eq.  (8), where the information bottleneck on the 
latent variable discards irrelevant information while an entropy bonus increases diversity. 
DIAYN acts as intrinsic motivation in environments with no rewards and enables efficient 
policy learning. Lupu et al. (2021) investigate diversity as a means to create a set of poli-
cies in a multi-agent environment. They define diversity between two policies based on a 
generalization of the Jensen-Shannon divergence and optimize this objective and the main 
goal defined by the environment simultaneously. Parker et  al. (2020) introduce a DDP-
based method, that aims to promote diversity in the policy space by defining it as a meas-
ure of the different states a policy may reach from a given starting state. Dai et al. (2021) 
propose another DDP-based method, where the idea is to augment the sampling process in 
hindsight experience replay (Andrychowicz et al., 2017) (a method for off-policy reinforce-
ment learning) with a diversity bonus. The method we propose to encourage expert diver-
sity differs from previous methods as we define diversity in parameter space instead of the 
policy outcomes or inputs. In combination with a DKL penalty, this allows us to optimize 
for efficient information-processing, which facilities efficient continual learning. Addition-
ally, as we define it on parameters instead of actions, we can apply it straightforwardly to 
any problem formulation, as our extensive experiments show.

Currently, there are only few methods that perform well in supervised continual learning 
and continual reinforcement learning (e.g., Ahn et al., 2019; Jung et al., 2020; Cha et al., 
2020). These methods require task information, as the either keep a set of separate task-
specific heads (Ahn et  al., 2019; Jung et  al., 2020) or compute task-specific losses (Cha 
et al., 2020). We were able to achieve comparable results to Uncertainty-based continual 
learning (UCL) (Ahn et al., 2019). This makes our method one of the first task-agnostic CL 
approaches to do so.

4.2  Critical issues and future work

One drawback of our method is the number of hyper-parameters it introduces. Specifically, 
the weighting factors for the gating and the expert DKL constraint, the diversity bonus and 
its kernel parameters, and the number of experts and the top-k settings. To optimize them 
in our experiments, we ran a hyperparameter optimization algorithm on a reduced vari-
ant of the problem and fine-tuned them on the complete dataset. To further mitigate this 
problem, we used a scheduling scheme for the DKL weights, as discussed in more detail in 
Sect. 3.4.4.

Moreover, variational inference in neural networks can be computationally expen-
sive (Gal and Ghahramani 2016; Zhang et  al., 2018; Freitas et  al., 2000), as one has to 
draw samples for each forward pass to approximate gradients. We tackle this issue in 
three ways. Firstly, we use D−dimensional Gaussian mean-field approximate posteriors 
qt(�) =

∏D

d=1
N(�t�pt,d, �2

t,d
) to model distributions. This allows us to compute the DKL 

(as well as the diversity measures) in closed form. Secondly, we use the flip-out estimator 
(Wen et al., 2018) to approximate the gradients, which is known to have a low variance. In 
practice, we draw a single sample to approximate the expectation. Lastly, our top−k sam-
pling allows us to only activate k of the posteriors, which means that the remaining param-
eters have zero gradient, and accordingly do not have to be updated (Tensorflow 2022). As 
a consequence, our HVCL approach requires a similar amount of training episodes and 
computation time as non-probabilistic network representations.
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We have observed in simple toy problems that expert allocation and optimization 
greatly depend on the initialization of the experts. A sufficiently diverse expert initializa-
tion yielded better results while requiring fewer iterations. We could not directly transfer 
this to more complex learning problems because this would introduce computational insta-
bilities during back-propagation, as we lose the variance reducing benefits of state-of-the-
art initialization schemes (Glorot et al., 2010; He et al., 2015; Narkhede et al., 2021). This 
is also part of the reason why we chose to implement a diversity objective instead of a 
novel initializer. We leave this as a topic for future work.

To optimize the diversity measure, we have to compute the determinant of the kernel 
matrix (see Sect. 2.2) by evaluating the kernel function for each expert pair and finding the 
derivative of its determinant. While we showed that the Wasserstein-2 distance between 
Gaussian distributions with diagonal covariances is available in closed form (see Eq. 13), 
and that the resulting kernel matrix is symmetric, there is still the issue of the derivative 
of the determinant. Following Jacobi’s formula to do so, requires finding the inverse of the 
kernel matrix. This operation fails when the kernel matrix is not invertible, which is equiv-
alent to the determinant being zero. This is the case if diversity is also zero, i.e., the expert 
parameters are pairwise nearly identical. We countered this by setting the kernel width h 
(see Eq. 12) to a sufficiently large value, which we found by a simple grid search. This 
problem requires further investigation, as it can impede the complete optimization process.

Our model requires a fixed number of experts. In a more realistic continual learning 
setting, the number of tasks may grow such that the system may benefit from additional 
experts. This could be realized by taking a Bayesian non-parametric approach which treats 
the number of experts as a variable. Dirichlet-Process-Mixtures (Antoniak, 1974) offer 
such flexibility, with recent applications to meta-learning (Jerfel et al., 2019), and to con-
tinual learning (Lee et al., 2020).

5  Conclusion

We introduced a novel hierarchical approach to task-agnostic continual learning, derived 
an immediate application, and extensively evaluated this method in supervised continual 
learning and continual reinforcement learning. The method we introduced builds on a hier-
archical Bayesian inference view of continual learning and is a direct extension of Vari-
ational Continual Learning (VCL). This adaptive mechanism allowed us to remove the 
need for extrinsic task-relevant information and to operate in a task-agnostic way. While we 
removed this limitation, we achieved results competitive to task-aware and to task-agnostic 
algorithms. These insights allowed us to design a diversity objective that stabilizes learn-
ing and further reduces the risk of catastrophic forgetting. In particular, we could show 
that enforcing expert diversity through additional objectives stabilizes learning and further 
reduces the risk of catastrophic forgetting. Essentially, catastrophic forgetting is avoided by 
having multiple experts that are responsible for different tasks and are activated in different 
contexts and trained only with their assigned data, which avoids weight overwriting and 
negative interference. Finally, having more diverse experts leads to crisper task partitioning 
with less interference.

As our method builds on generic utility functions, we can apply it independently of the 
underlying optimization problem, which makes our method one of the first to do so and 
achieve competitive results in continual supervised learning benchmarks based on variants 
of the MNIST, CIFAR-10, and CIFAR-100 datasets. In continual reinforcement learning, 
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we evaluated our method on a series of challenging simulated robotic control tasks. We 
also demonstrated how our method gives rise to a generative continual learning method. 
Additionally, we conducted ablation experiments to analyze our approach in a detailed and 
systematic way. These experiments confirmed that the additional objectives we introduced 
enhance expert partitioning and enforce a sparse expert selection policy. This leads to spe-
cialized and diverse experts, which alleviates catastrophic forgetting. We also investigated 
the impact of the hyper-parameters our method introduces to highlight how they help to 
mitigate catastrophic forgetting. In the generative setting, we took a closer look at the per-
formance of the generative model by introducing a continual learning version of the widely 
used Inception Score. Finally, we showed that increasing the number of experts reduces 
forgetting in the continual reinforcement learning scenarios.

Appendix A: Wasserstein‑distance between two Gaussians

The W2
2
 distance between two Gaussians is given by

Proof: Let p = N(�p,Σp) and q = N(�q, �q) be two Guassian distributions. The Wasser-
stein-2 distance between p and q is then given by

where B is the Bures metric between two positive semi-definite matrices:

where tr(A) is the trace of a matrix A and A1∕2 is the matrix square root. Matrix square 
roots are computationally expensive to compute and there can potentially be an infinite 
number of solutions. In the case where p and q are Gaussian mean-field approximations, 
i.e., all dimensions are independent, Σp and Σq are given by diagonal matrices, such that 
Σp = diag(dp)i and Σq = diag(dq)i . The Bures metric then reduces to the Hellinger distance 
between the diagonals dp and dq , and we have:

The full Hellinger distance is given by 1√
2
‖√dp −

√
dq‖2 , but we chose to ommit the con-

stant factor during optimization.

Appendix B: Wasserstein‑2 exponential kernel

The exponential Wasserstein-2 kernel between isotropic Gaussian distributions p and q 
with kernel width h defined by

(19)W2
2
(p, q) = ‖�p − �q‖22 + ‖

�
dp −

�
dq‖2,

(20)W2
2
(p, q) = ‖�p − �q‖22 + B(Σp,Σq),

(21)B(Σp,Σq) = tr(Σp + Σq − 2(Σ1∕2
p

ΣqΣ
1∕2
p

)1∕2,

(22)W2
2
(p, q) = ‖�p − �q‖22 + ‖

�
dp −

�
dq‖2.
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is a valid kernel function.
Proof: The simplest way to show a kernel function k is valid is by deriving k from other 

valid kernels. We can express the Wasserstein distance as the sum of two norms as shown 
in Eq. (22). The euclidean norm and the Hellinger distance both form inner product spaces 
and are thus valid kernel functions. Their sum is also a valid kernel function, which makes 
the Wasserstein distance on isotropic Gaussians a valid kernel. If k(p, q) is a valid kernel, 
then exp(k(p, q)) is also a valid kernel.

Appendix C: Experiment details

To implement variational layers we use Gaussian distributions. For simplicity we use a D−
dimensional Gaussian mean-field approximate posterior qt(�) =

∏D

d=1
N(�t�pt,d, �2

t,d
) . We 

use the flip-out estimator (Wen et al., 2018) to approximate the gradients. In practice, we 
draw a single sample to approximate the expectation.

C.1 MNIST experiments

For split MNIST experiments we used dense layers for both the VAE and the classifier. 
The VAE encoder contains two layers with 256 units each, followed by 64 units (64 units 
for the mean and 64 units for log-variance) for the latent variable, and two layers with 256 
units for the decoder, followed by an output layer with 28 ∗ 28 = 784 units. This assumes 
isotropic Gaussians as priors and posteriors over the latent variable and allows to compute 
the DKL if closed form. We used only one expert for the VAE with �1 = 0.002 , �2 = 0.75 , 
a diversity bonus weight of 0.01 and leaky ReLU activations (Maas et  al., 2013) in the 
hidden layers. We trained with a batch size 256 for 150 epochs. The VAE output activa-
tion function is a sigmoid and we trained it using a binary cross-entropy loss between the 
normalized pixel values of the original and the reconstructed images. We used no other 
regularization methods on the VAE. We used 10.000 generated samples after each task.

The classifier consists of two dense layers, each with 256 units with leaky ReLU acti-
vations (Maas et  al., 2013) and dropout (Srivastava et  al., 2014) layers, followed by an 
output layer with two units. All layers of the classifier have two experts. We trained with 
batch size 256 for 150 epochs using Adam (Kingma and Ba 2015) with a learning rate of 
6 × 10−4 . In the permuted MNIST setting we used the same architecture, but increased the 
number of units to 512.

C.2 CIFAR‑10 experiments

The VAE encoder consisted of five convolutional layers with stride 4 with two experts, 
each with 8, 16, 32, 64, and 128 units, followed by two dense units with two experts, each 
with 256 units. The latent variable has 128 dimensions, which we model by two dense lay-
ers: one with 128 units for the mean and one with 128 units for the log-variance. The dense 
layer modeling the mean has three experts, the layer for the log-variance one expert. We 
assume isotropic Gaussian distributions as priors and posteriors over the latent variable, 

k(p, q) = exp

(
−
W2

2
(p, q)

2h2

)
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which allows us to compute the DKL if closed form. The decoder mirrors the encoder and 
has two dense layers followed by 5 de-convolutional layers with stride 4 (the last layer has 
stride 3). All hidden layers use a leaky ReLU activation function (Maas et al., 2013). The 
VAE output activation function is a sigmoid and we trained it using a binary cross-entropy 
loss between the normalized pixel values of the original and the reconstructed images. We 
used no other regularization methods on the VAE. We used 10.000 generated samples after 
each task.

The classifier architecture is similar to the encoder architecture. We used five convolu-
tional layers, followed by two dense layers. All layers used two experts. The convolutional 
layers have 8, 16, 32, 64, and 128 units per experts, while the dense layers both have 256 
units per layer. We used leaky ReLU as an activation function for the hidden layers and 
softmax for the output layer. We trained the classifier using a binary cross-entropy loss 
between the true and the predicted label. We trained with batch size 256 for 1000 epochs 
using the Adam optimizer with a learning rate of 3 × 10−4.

C.3 Reinforcement learning experiment details

Each task was trained for one million time steps. We use two layer networks (actor and 
critics) with 64 units per layer. Each layer has four experts followed by leaky ReLU 
(Maas et  al., 2013) activation functions. Each We set each SAC related hyper-parameter 
as proposed in the original publication (Haarnoja et  al., 2018). We update every 5000 

Table 3  Continual learning results with additional task-aware methods in the split MNIST (S-MNIST) and 
permuted MNIST (P-MNIST) benchmark compared to current CL methods

Results were averaged over ten random seeds with the standard deviation given in parenthesis. Results on 
algorithms marked with † were taken from van de Ven and Tolias (2018), others from their original work

Baselines S-MNIST P-MNIST

Dense neural network 86.15 (± 1.00) 17.26 (± 0.19)
Offline re-training + task oracle 99.64 (± 0.03) 97.59 (± 0.02)
Single-head and task-agnostic methods
Hierarchical VCL (ours) 97.50 ( ± 0.33) 97.07 (± 0.62)
Hierarchical VCL w/GR (ours) 98.60 ( ± 0.35) 97.47 (± 0.52)
Uncertainty guided CL w/BNN (Ebrahimi et al., 2020) 97.70 (± 0.03) 92.50 (± 0.01)
Brain-inspired replay through feedback† (van de Ven et al., 2020) 99.66 (± 0.13) 97.31 (± 0.04)
Hierarchical Indian buffet neural nets (Kessler et al., 2021) 91.00 (± 2.20) 93.70 (± 0.60)
Balanced continual learning (Raghavan and Balaprakash 2021) 98.71 (± 0.06) 97.51 (± 0.05)
Target layer regularization (Mazur et al., 2021) 80.64 (± 1.25)
Multi-head and task-aware methods
Synaptic intelligence† (Zenke et al., 2017) 99.14 (± 0.49) 94.75 (± 0.49)
Deep generative replay + distill.† (Shin et al., 2017) 99.59 (± 0.40) 97.51 (± 0.04)
Variational continual learning† (Nguyen et al., 2017) 98.50 (± 1.78) 96.60 (± 1.34)
Elastic weight consolidation† (Kirkpatrick et al., 2017) 85.48 (± 5.36) 94.74 (± 0.22)
Learning without forgetting† (Li & Hoiem, 2017) 99.60 (± 0.13) 69.84 (± 2.00)
Continual unsupervised representation learning (Rao et al., 2019) 99.10 (± 0.06)
Self-attention meta-learning for CL (Sokar et al., 2021) 97.95 (± 0.07)
Dynamically expandable networks (Yoon et al., 2018) 99.26 (± 0.01)
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environment steps with a batch size of 256. We use a Prioritized Replay Buffer (Schaul 
et  al., 2015) with 1 Million sample capacity. For UCL (Ahn et  al., 2019), we used the 
implementation provided by the authors for our experiments and use the hyper-parameters 
suggested in the publication. Note that the UCL implementation rests on a PPO (Schulman 
et  al., 2017) backbone. Our CRL experiments do not use any form of additional replay 
(except for the replay buffer used by SAC).
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Meta-consolidation for continual learning (Kj & Balasubramanian, 2020) 82.90 (± 1.20) 43.50 (± 0.60)
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Hindsight anchor learning (Chaudhry et al., 2021) 75.19 (± 2.57) 47.88 (± 2.76)
Synaptic intelligence (Zenke et al., 2017) 63.31 (± 3.79) 36.33 (± 4.23)
Averaged gradient episodic memory (Chaudhry et al., 2018) 74.07 (± 0.76) 46.88 (± 1.81)
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