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Abstract
In this paper we address imbalanced binary classification (IBC) tasks. Applying resam-
pling strategies to balance the class distribution of training instances is a common approach 
to tackle these problems. Many state-of-the-art methods find instances of interest close 
to the decision boundary to drive the resampling process. However, under-sampling the 
majority class may potentially lead to important information loss. Over-sampling also may 
increase the chance of overfitting by propagating the information contained in instances 
from the minority class. The main contribution of our work is a new method called ICLL 
for tackling IBC tasks which is not based on resampling training observations. Instead, 
ICLL follows a layered learning paradigm to model the data in two stages. In the first 
layer, ICLL learns to distinguish cases close to the decision boundary from cases which 
are clearly from the majority class, where this dichotomy is defined using a hierarchical 
clustering analysis. In the subsequent layer, we use instances close to the decision bound-
ary and instances from the minority class to solve the original predictive task. A second 
contribution of our work is the automatic definition of the layers which comprise the lay-
ered learning strategy using a hierarchical clustering model. This is a relevant discovery as 
this process is usually performed manually according to domain knowledge. We carried out 
extensive experiments using 100 benchmark data sets. The results show that the proposed 
method leads to a better performance relatively to several state-of-the-art methods for IBC.
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1 Introduction

In supervised learning, we face an imbalanced problem when the distribution of classes 
is significantly biased towards a particular value and at the same time, the least frequent 
class is also the most relevant one (Branco et al., 2016). An archetype of imbalanced clas-
sification is the detection of fraudulent cases, which are rare occurrences among a large 
proportion of normal activity. The accurate detection of these rare but important instances 
is fundamental across many domains of application. In effect, learning from imbalanced 
domains is one of the most active research topics in the machine learning literature.

The skewed class distribution hinders the learning process of algorithms, and several 
strategies have been devised to overcome this problem. The large majority of approaches 
designed to tackle the class imbalance issue are based on resampling methods. These trans-
form the training data to improve the relevance of the minority class. Examples include 
SMOTE (Chawla et al., 2002), ADASYN (He et al., 2008), among many others (Branco 
et  al., 2016). These methods are versatile and easy to couple with any learning system. 
However, under-sampling the majority class may potentially lead to important information 
loss. Over-sampling may increase the chance of overfitting by propagating the information 
contained in instances from the minority class.

Many of the existing resampling approaches work by finding instances close the deci-
sion boundary and using those instances to drive the resampling process. For example, 
ADASYN (He et  al., 2008) is a popular method which synthesizes instances from the 
minority class whose neighborhood belong to the majority class. In this paper we propose 
a novel approach for imbalanced binary classification problems, which is called ICLL 
(Imbalanced Classification via Layered Learning). Specifically, we propose a method that, 
unlike resampling approaches, attempts to capture and improve the modelling of instances 
close to the decision boundary without synthesizing new instances or removing informa-
tion from the training set.

First, we consider that an instance is arbitrarily close to the decision boundary accord-
ing to a hierarchical clustering analysis. After applying the clustering model and cutting 
the hierarchy using an automatic heuristic (Bellinger et al., 2019), instances are assigned to 
one of three groups: the pure majority group, if that instance is clustered with only obser-
vations of the majority class; the pure minority group, if the respective cluster contains 
only observations of the minority class; or the mixed group, if the respective cluster con-
tains observations from both classes. Accordingly, an observation is considered borderline 
(i.e., close to the decision boundary) if it belongs to the mixed group.

After assigning the training instances to one of these three groups based on the class 
distribution of the respective cluster, we model the data set using a layered learning 
approach (Stone & Veloso, 2000). Layered learning represents a hierarchical learning para-
digm in which a predictive task is split into multiple, expectedly simpler, sub-tasks. In this 
work, we adopt a two-layer strategy following the work by Cerqueira et al. (2020). The first 
layer denotes a binary task designed to distinguish instances of the pure majority group 
from instances of either the mixed or pure minority group. In other words, we attempt to 
separate those instances which are clearly from the majority class (i.e. belong to the pure 
majority group). The second layer represents the original predictive task, where the objec-
tive is to distinguish instances from the majority class from instances of the minority class. 
The major difference is that only observations from mixed or pure minority groups are 
considered; instances from the pure majority group are discarded as the system models 
them in the first layer. Inference is performed according to the product of the output of each 



2085Machine Learning (2023) 112:2083–2104 

1 3

layer. The main motivation for this layered approach is the assumption that by proceeding 
this way we obtain two learning tasks that are simpler to solve than the original imbalanced 
task. The main reason for this simplification lies on the fact that the imbalance is strongly 
decreased on each of the tasks, thus making the modelling task simpler for most learn-
ing algorithms. Finally, we also remark that the proposed method automates the problem 
of defining the layers within the layered learning approach using a hierarchical clustering 
analysis. In previous works (e.g. Cerqueira et al., 2020) this was carried out manually.

We carried out experiments using 100 benchmark binary classification data sets, and 
compared the proposed approach with several state-of-the-art methods. These include 
several resampling approaches, such as SMOTE (Chawla et al., 2002) and ADASYN (He 
et al., 2008), and a special-purpose algorithm designed for imbalanced problems, namely 
the balanced random forest (Chen et al., 2004). The results suggest that ICLL outperforms 
other approaches significantly according to the area under the ROC curve (AUC) metric.

In summary, the main contributions of this paper are two-fold:

• A novel method called ICLL for tackling binary imbalanced classification problems 
based on layered learning which does not require any parameters;

• An automatic framework for defining the layers in a layered learning methodology 
designed for classification.

The experiments and proposed method are publicly available.1 The paper is organized as 
follows. In the next section we overview the literature related to our work. We focus on two 
specific topics: imbalanced classification and layered learning. In Sect.  3, we define the 
predictive task, and formalize the proposed approach which is named ICLL. We provide 
empirical evidence for the predictive performance of our method in Sect. 4, which includes 
a significance analysis based on the Bayes signed-rank test (Benavoli et  al., 2017). The 
results from our work are discussed in Sect. 5, where we highlight the advantages of our 
approach and list its known limitations. Finally, we conclude the paper in Sect. 6.

2  Related work

In this section we overview the literature related to our work. Section 2.1 lists the main 
approaches used in the literature that deal with imbalanced classification problems. Sec-
tion 2.2 describes layered learning approaches.

2.1  Imbalanced classification

Some of the most popular solutions used to tackle class imbalance in classification prob-
lems are resampling methods. These approaches transform the training set to enhance the 
prevalence of the minority class. This involves a strategy based on under-sampling the 
majority class, over-sampling the minority class, or both. Since the resampling occurs 
before model fitting, these methods are agnostic to the learning algorithm.

The simplest resampling methods are random under-sampling (RU) and random over-
sampling (RO). RU randomly selects instances from the majority class, and removes those 

1 https:// github. com/ vcerq ueira/ icll.

https://github.com/vcerqueira/icll
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instances from the training set. RO also selects instances at random, but from the minority 
class. The selected instances are replicated in the training data.
SMOTE (Synthetic Minority Over-sampling Technique) is a widely used over-sampling 

approach. It works by synthesising new examples based on existing ones. This is accom-
plished by interpolating between instances from the minority class within their neighbour-
hood. More precisely, an observation from the minority class is selected at random, along 
with its k nearest neighbours. Then, a new synthetic instance is created by interpolating 
between one of the k neighbours and the selected observation. This process can be carried 
out several times, for example until the distribution of classes is balanced.

After the initial publication (Chawla et  al., 2002) several extensions of this method 
have been published, for example Borderline-SMOTE (Han et al., 2005) (Borderline). 
A comprehensive list of SMOTE variants can be found in the survey by Fernández et al. 
(2018).
ADASYN (Adaptive Synthetic) (He et al., 2008) is another over-sampling method which 

follows a similar approach to SMOTE and creates new synthetic instances. The key differ-
ence is that ADASYN focuses on instances which are difficult to learn, i.e., close to the deci-
sion boundary. The information about which instances are hard to classify is also explored 
in the work by Smith et al. (2014). They proposed an under-sampling method that discards 
instances based on their hardness (Hardness).

Informed under-sampling of the majority class is also a common approach to deal with 
the imbalance problem that embeds some domain information in the selection of the major-
ity class examples to be removed. One example of this approach is the One-Sided Selection 
(OSS) method (Kubat et al., 1997). OSS identifies and removes instances close to the deci-
sion boundary using Tomek links (Tomek et al., 1976). Let x1 and x2 denote two instances 
from different classes, and d(x1, x2) the distance between these examples. The pair ( x1,x2 ) 
is considered a Tomek link if there exists no other instance with a smaller distance d to 
either x1 or x2 . Typically, these instances are considered to be noise or close to the decision 
boundary. Tomek links have also been explored along SMOTE with the work by Batista 
et al. (2003) (SMOTETomek).
Near-Miss is another informed under-sampling method (Mani & Zhang, 2003). The 

main idea behind it is, contrary to the approach taken by OSS, it tries to retain only the 
instances from the majority class which are close to the decision boundary, instead of the 
other way around.

Resampling methods can be embedded in some learning algorithms. For example, the 
balanced random forest (Chen et al., 2004) extends the original method (Breiman, 2001) by 
applying random under-sampling in each bootstrap sample. Several ensemble methods have 
been modified through the integration of resampling to tackle the class imbalance prob-
lem (Galar et al., 2011). For instance, SMOTEBoost (Chawla et al., 2003) and SMOTE-
Bagging (Wang & Yao, 2009) integrate SMOTE into a boosting and bagging ensemble, 
respectively, There are also hybrid ensembles that combine both bagging and boosting with 
resampling methods (e.g. EasyEnsemble and BalanceCascade (Liu et al., 2008)).

Previous works in the literature tried to couple clustering with resampling methods, e.g. 
Wu et  al. (2007), Nickerson et  al. (2001) and Bellinger et  al. (2019). For example, CURE 
(Clustered Resampling) is a resampling approach which applies clustering analysis to the data 
and can perform both over-sampling and under-sampling (Bellinger et  al., 2019). First, the 
method learns the structure of the data using hierarchical clustering analysis. Their approach 
for hierarchical clustering includes a novel semi-supervised metric used to compute the dis-
tance between each instance, and a novel heuristic for cutting the hierarchy and forming the 
clusters. Under-sampling of instances from the majority class is only performed in cases not 
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close to the decision boundary. On the other hand, over-sampling of minority instances is car-
ried out with instances from the same concept or cluster. Our proposed method leverages ideas 
from CURE. In particular, as we will detail in the next section, we cluster the observations 
using a hierarchical method. We also apply the heuristic developed by the authors of CURE 
to cut the hierarchy and form the clusters. However, while CURE applies a semi-supervised 
mechanism for clustering our approach is purely unsupervised and based on the Euclidean 
distance. Finally, the purpose of our clustering analysis is to automatically create the layers for 
the layered learning methodology rather than to resample the training data.

The proposed approach is automated insofar as it does not require any parameters. In this 
context, it can be regarded as an automated machine learning (AutoML) approach for imbal-
anced problems, specifically binary classification. AutoML is becoming increasingly relevant 
in the machine learning literature. In the case of imbalanced problems, the literature is scarce. 
Moniz and Cerqueira (2021) presented a recent work which leverages meta-learning to select 
the best resampling strategy to apply in a given data set. Li et al. (2021) developed an auto-
matic loss function for training deep neural networks.

2.2  Layered learning

Layered learning denotes a hierarchical procedure in which a predictive task is decomposed 
into simpler sub-tasks or layers, and each layer influences the learning process of the subse-
quent ones. For example, this may occur by influencing which training instances or predictor 
variables are used.

Layered learning was originally introduced by Stone and Veloso (2000) for robotic soccer, 
where they split the task of passing a ball into three sub-tasks: (i) intercepting the ball; (ii) 
evaluation of passing possibilities; and (iii) sending the ball. More generally, splitting a task 
into different parts is a common approach in the hierarchical reinforcement learning literature, 
such as the options framework devised by Sutton et al. (1999).

Cerqueira et  al. (2020) have applied a layered learning process to tackle classification 
problems, specifically the detection of impending critical health episodes in the intensive 
care unit of hospitals. They, and subsequent related works (Ribeiro et  al., 2021), show the 
advantage of this approach relative to a standard classification strategy coupled with resam-
pling pre-processing methods. The crucial difference to our work is that they manually define 
the layers according to domain expertise or by optimization. Conversely, we provide a novel 
approach which accomplishes this task automatically using hierarchical clustering analysis. 
Moreover, we also systematise layered learning approaches for imbalanced binary classifica-
tion problems.

There are similar hierarchical procedures to layered learning in the literature. For example, 
cascade classifiers (Sharma et al., 2012) denote a stepwise methodology in which a meta-clas-
sifier is built to predict which concept an instance refers to. Then that instance is passed to the 
appropriate base model. The critical difference of this approach to layered learning is that the 
learning of each layer affects the learning of subsequent ones. Besides, each instance traverses 
all layers instead of being routed to a specific model.

3  Methodology

In this section we start by defining the predictive task addressed in this work (Sect. 3.1). 
Next we formalize the method we propose to tackle this task (Sect. 3.2).
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3.1  Problem definition

Let D denote a data set, which is defined as D = {⟨xi, yi⟩}ni=1 , where xi ∈ X represents 
the feature vector for the i-th instance, and yi ∈ Y  represents the respective target value. 
The target variable Y is discrete and can take two values. The objective is to carry out 
supervised learning, which, given the domain of Y, amounts to a binary classification task. 
Moreover, let D0 denote a subset of D in which all y ∈ D0 belong to the class 0; D1 rep-
resents the subset of observations for the class 1. An imbalanced classification problem 
arises because the number of observations belonging to one class is significantly larger 
than the number of observations of the other class: |D0| ≫ |D1| . We will refer to 0 as the 
majority class, and 1 to the minority class.

3.2  Imbalanced classification layered learning

In this sub-section we formalize the proposed method which is named ICLL for Imbal-
anced Classification Layered Learning. The training of the ICLL method is based on three 
main steps: 

1. Clustering the training instances using a hierarchical clustering method (Murtagh & 
Contreras, 2011);

2. Automatic creation of the layers for the layered learning strategy based on the output of 
the clustering model;

3. Training a predictive model in each layer.

In the rest of this section we will describe each step in detail.

3.2.1  Step 1: clustering analysis

In the first stage of the methodology a hierarchical clustering algorithm is applied to cluster 
the training instances. The main motivation for clustering is to extract structural informa-
tion from the data, which will be used to automatically define the layers. Hierarchical clus-
tering methods group data into a tree structure, which provides different levels of abstrac-
tion of that data (Murtagh & Contreras, 2011). We adopt an agglomerative approach for 
the clustering algorithm, which is a common strategy that can be described as follows. 
Each instance is first assigned as their own cluster. Then, pairs of clusters are successively 
merged until there is only a single cluster that contains all observations. One of the advan-
tages of using a hierarchical algorithm for clustering is that it does not require the number 
of clusters as an input parameter.

The hierarchical clustering process is detailed in Algorithm  1. In order to group the 
data we start by measuring the dissimilarity between each pair of instances according to 
the Euclidean distance (line 1). As the linkage criterion, we apply the Ward method, which 
minimizes the total within-cluster variance (line 2). We use the Ward method to bias the 
clusters to contain instances that are highly concentrated. In other words, the goal is to 
obtain clusters which represent sub-concepts or groups of highly similar instances. These 
groups will then be sorted according to those that are easy and hard to classify (in the next 
step of the methodology).
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Algorithm 1: Hierarchical clustering analysis
Input : X - Predictor variables for classification training data set
Output: C - Set of clusters

1 MX ← PairwiseDistance(X, method = Euclidean) // Pairwise distance
matrix of X using the Euclidean distance

2 Z ← Linkage(MX , method=Ward) // Agglomerative linkage tree using
MX and the Ward method

3 InterClusterDistance(Z) ← log(InterClusterDistance(Z)) // Log transformation
of the inter-cluster distances obtained in the tree Z

4 µ ← Mean(InterClusterDistance(Z)) // Mean of the inter-cluster distances
5 σ ← StandardDeviation(InterClusterDistance(Z)) // Standard deviation of

the inter-cluster distances
6 τ ← µ+ σ // Maximum inter-cluster distance for cluster formation
7 C ← FormClusters(Z, threshold=τ) // Form clusters using the linkage

tree, subject to the threshold τ
8 Return C

Once the cluster hierarchy is formed, we must extract a specific clustering of the data 
from the hierarchy. Bellinger et  al. (2019) proposed an automatic strategy by which to 
extract this clustering such that it accounts for the natural spread in the data. The objective 
is to define clusters that are large enough to capture entire sub-concepts without including 
multiple sub-concepts. In this method (lines 3–7), each instance is assigned to the cluster 
with the largest cardinality that it belongs to and has an intra-cluster distance less than 
the threshold � = � + � ; � and � denote the mean and standard deviation of the log trans-
formed intra-cluster distances. Intuitively, utilising � + � as the threshold caps distance 
between the samples in the clusters at a level that is natural according the target dataset. 
The log transformation is applied because Bellinger et al. (2019) discovered that the intra-
cluster distances approximately followed a lognormal distribution.

3.2.2  Step 2: automatic layer definition

At this point, we have the cluster allocation for each training observation (x, y) ∈ D . In the 
second stage of the methodology we create the layers which comprise the layered learning 
strategy. We follow the layer architecture developed by Cerqueira et  al. (2020) for early 
event detection and construct a workflow with two layers.

The two layers are automatically defined according to the clustering composition 
obtained in the previous step. Specifically, we assign each instance to one of three possible 
groups:

• Pure majority group: if the corresponding cluster comprises only instances of the 
majority class;

• Pure minority group: if the corresponding cluster comprises only instances of the 
minority class;

• Mixed group: if the corresponding cluster contains observations from both majority 
and minority classes.

This idea is depicted in Fig. 1, where part of a dendrogram is shown. In this synthetic 
example there are six clusters, two of each comprise only majority instances (Pure 
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Majority 1 and 2), one contains only instances of the minority class (Pure Minority 1), 
and the remaining ones are Mixed. The process of assigning the observations into the 
three possible groups is formalized in Algorithm 2.

Algorithm 2: Group assignment based on cluster class distribution
Input : D - Binary classification data set

: C - Set of clusters
Output: Cmaj , Cmin, Cmix

1 Cmaj ← [ ] // Initialize empty group of pure majority instances
2 Cmin ← [ ] // Initialize empty group of pure minority instances
3 Cmix ← [ ] // Initialize empty group of borderline instances
4 foreach instance (xi, yi) in D do
5 ci ← Cluster of (xi, yi)
6 if ci contains only instances of the majority class then
7 Cmaj .add((xi, yi)) ;

// Add instance to Cmaj

8 else if ci contains only instances of the minority class then
9 Cmin.add((xi, yi)) ;

// Add instance to Cmin

10 else
11 Cmix.add((xi, yi)) ;

// ci contains instances from both classes -- add instance to
Cmix

12 end
13 end
14 Return Cmaj , Cmin, Cmix

This process enables the understanding of the position of each training instance with 
respect to the decision boundary. If an instance belongs to the pure majority group it can 
be said that it is clear that this observation belongs to the majority class. In other words, 
the instance is arbitrarily far from the decision boundary on the side of the majority 
class. The same can be argued for instances belonging to the pure minority group. In 
principle, these observations are far from the decision boundary but on the side of the 

Pure
Majority1

Mixed1 Mixed2 Mixed3
Pure

Majority2
Pure

Minority1

Fig. 1  An example of a partial dendrogram resulting from the hierarchical clustering. The instances are 
assigned to three possible groups according to the class distribution of the respective cluster after the cut-off
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minority class. Finally, we have instances from the mixed group whose cluster com-
prises instances from both minority and majority classes. We regard these observations 
as borderline instances, i.e. arbitrarily close to the decision boundary.

In order to leverage the information regarding the group of each training instance we 
adopt a stepwise methodology based on layered learning. As we described in Sect. 2.2, lay-
ered learning denotes a learning approach in which a predictive task is split into multiple 
ones which are, in principle, easier to solve. We construct two layers, Layer 1 and Layer 2, 
according to the definitions below.

Layer 1 The two layers denote two sub-tasks of the original problem. These sub-tasks 
comprise a more balanced class distribution. We hypothesise that this will lead to easier 
classification tasks and, consequently, better performance. Let L1 denote the event “The 
observation belongs to the Mixed or Pure Minority group”. For the first layer, the target 
value for a given instance is defined as:

Essentially, we attempt to model whether or not each observation belongs to a purely 
majority group, in which case yL1 = 0 , or not ( yL1 = 1 ). In practice, the original predictor 
variables remain the same, but the target values y ∈ Y  are replaced with yL1 ∈ YL1 , where 
YL1 denotes the target variable for the layer L1.

This first layer can be regarded as an approach designed to distinguish instances from 
the majority class which are easy to learn (belong to the pure majority group) from the oth-
ers, which are either borderline (mixed group) or scarce (pure minority group).

Layer 2 Assuming that the first layer is modelled successfully, the second layer attempts 
to solve the remaining problem: Given that L1 occurs, i.e., an observations belongs to the 
mixed or pure minority group, we want to find whether it belongs to the minority class (i.e. 
yi = 1 ). The target variable for this sub-task ( yL2 ) is formalised in Eq. (2).

In the second layer we discard all observations from the pure majority group, and only fit a 
model with those from the mixed and pure minority group (yL1 = 1∀yL1 ∈ YL1).

3.2.3  Step 3: model fitting and inference

In the training stage, a predictive model is fit in each one of the two layers. We note that, 
since the two layers are independent, the training can occur in parallel.

Let f L1 and f L2 denote the models trained in the layers L1 and L2, respectively. We 
combine the output of these models according to a function g:

The final decision is made according to the multiplication of the individual predictions. 
Therefore, our approach postulates that the probability that a given instance belong to the 

(1)yL1
i

=

{
1 if L1 happens,

0 otherwise.

(2)Given yL1 = 1, yL2
i

=

{
1 if yi = 1,

0 otherwise.

(3)g(xi) = f L1(xi) ⋅ f
L2(xi)
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minority class is estimated according to the probability that it belongs to either the mixed 
or pure minority group times the probability that, given that the observations it belongs to 
either the mixed or pure minority group, it belongs to the minority class. This process is 
also applicable to non-probabilistic classifiers. That is, our approach predict that a given 
instance xi belongs to the minority class if both f L1(xi) and f L2(xi) predict 1.

3.3  Methodological limitations

The layer definition stage of the methodology strongly depends on the outcome of the hier-
archical clustering model. We formalized our method assuming that all three groups Cmaj , 
Cmin , and Cmix are non-empty, but this might not be the case depending on the input data.

The methodology works normally in the case that Cmin is empty, i.e. there are no 
instances in the pure minority group. By definition, the minority class comprises a rela-
tively low number of observations. In effect, it is expected that, even if the minority class 
is more prevalent in a given cluster, all clusters contain some instances from the majority 
class.

If Cmix is empty, this means that the hierarchical clustering is able to perfectly split the 
two classes in the chosen cut-off. In this case the proposed methodology becomes redun-
dant. However, this also means that the predictive task is solved.

The scenario in which Cmaj is empty is more problematic as the first layer cannot be 
defined properly. Our approach to solve this problem would be to change the threshold � 
and move the formation of the clusters up in the hierarchy. Notwithstanding we remark 
that, given the relative high prevalence of instances of the majority class, this represents a 
highly unlikely scenario.

4  Experiments

This section describes the experiments carried out to validate ICLL. These were designed 
to address the following research questions: 

1. RQ1 How does ICLL perform relatively to state-of-the-art methods for IBC problems?;
2. RQ2 Does applying resampling to the proposed method improve its performance? Since 

resampling methods are agnostic to the learning algorithm, we attempt to couple these 
approaches with ICLL and assess whether performance improvements are obtained;

3. RQ3 Is ICLL a model-based strategy for under-sampling? The second layer of ICLL 
is carried out after discarding observations which are arbitrarily far from the decision 
boundary on the side of the majority class. Thus, it can be argued that the first layer is 
performing under-sampling and the discrimination between classes occurs in the second 
layer. We will test this hypothesis in the experiments;

4. RQ4 Are the conclusions consistent when taking into account only difficult problems? 
We examine the results of the experiments with all available data sets (presented in 
Sect. 4.1) and using only a subset were a baseline performs poorly.

4.1  Case study and experimental design

The experiments were carried out using 100 data sets. These were retrieved from the KEEL 
repository (Keel data, 2022; Fernández et al., 2008, 2009), which provides benchmark data 
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sets for imbalanced domain learning. From this repository, we collected all binary imbal-
anced classification data sets. The distribution of basic characteristics of these 100 data sets 
are shown in Fig. 2, namely the number of observations, number of explanatory variables, 
and imbalance ratio. The number of instances ranges from 92 to 5472 with an average of 
934 data points, while the number of variables range from 3 to 100 with an average of 11.6. 
The minimum, maximum, and average imbalance ratio is 1.8, 129.4, and 25.7 respectively. 
In effect, the case study covers data sets with different imbalance ratio profiles.

We applied a 2 ×5-fold stratified cross-validation procedure for estimating the predictive 
performance of each approach. We take a probabilistic perspective to the imbalanced clas-
sification task. Therefore, performance was measured according to the area under the ROC 
curve (AUC). In terms of learning algorithms, we tested a Random Forest (RF), a Sup-
port Vector Machine (SVM), and a Logistic Regression (LR). We resorted to the imple-
mentation from scikit-learn (Pedregosa et al., 2011) to apply these algorithms with their 
default parameters. The RF provided the overall best results. In effect, we will show the 
complete results only for this method. Notwithstanding, we include a variant of the remain-
ing approaches in the interest of completeness. All conclusions also hold for these meth-
ods. We also remark that the Random Forest is used in both layers of ICLL, but this is not 
a requirement of the method. Different learning algorithms could be applied in each layer.

4.2  Methods

Besides the proposed approach ICLL, we include the following methods in the 
experiments:

• NoResample-RF, NoResample-SVM, NoResample-LR: A standard binary clas-
sifier which is fit in the training data set without any specific mechanism for dealing 
with the imbalanced class distribution. As explained above we test three learning algo-
rithms for this approach;
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Number of Instances Number of Variables Imbalance Ratio

0

50

100

10

20

30

40

0

2000

4000

variable Number of Instances Number of Variables Imbalance Ratio

Fig. 2  Boxplots showing the distribution of number of instances, number of explanatory variables, and 
imbalance ratio of the data sets used in the experiments. The horizontal red line denotes the mean value for 
each characteristic (Color figure online)
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• SMOTE, CURE, ADASYN, NearMiss, Borderline, SMOTETomek, Hardness, 
OSS, RO, RU: A Random Forest classifier is fit after the training data is pre-processed 
with the respective resampling method for balancing the class distribution. These 
approaches were described in Sect. 2.1;

• BalancedRF: A variant of the Random Forest algorithm in which random under-
sampling is carried out for each bootstrap sample (Chen et al., 2004);

We remark that all resampling approaches were applied using their default parameter set-
ting according to the implementation provided by the imblearn python library.2 Besides 
these state-of-the-art approaches, we also include the following five variants of ICLL:

• ICLL+SMOTE: The proposed method described in Sect. 3.2 works without any resam-
pling approach. In this variant we couple our approach with a SMOTE (Chawla et al., 
2002) resampling method. Essentially, we apply SMOTE in each of the two layers to 
balance the distribution of the classes;

• ICLL+SMOTE(L1): This approach is similar to ICLL+SMOTE, but SMOTE is applied 
only in the first layer;

• ICLL+SMOTE(L2): Another approach similar to ICLL+SMOTE, in which SMOTE is 
applied only in the second layer;

• ICLL(L2): A variant which only uses the output from the second layer. It can be 
argued that the proposed layered learning method is performing a model-based under-
sampling in the first layer. Thus, the performance advantage is obtained only in the 
second layer, making the first layer unnecessary in the inference stage. We test this 
hypothesis using this variant.

• ICLL(L1): In the interest of completeness, we also include a variant which uses only 
the output from the first layer.

4.3  Results

We present the results of the experiments in this section. First (Sect. 4.3.1), we perform a 
preliminary analysis on the applicability of the proposed method. Then (Sect. 4.3.2), we 
compare all methods according to the average rank and measure the percentage difference 
in predictive performance. Finally, we repeat this analysis but only taking into account the 
datasets where the approach NoResample-RF does not provide a good predictive perfor-
mance (Sect. 4.3.3).

4.3.1  Preliminary analysis

In this section we present the results of the experiments. As we explained in Sect.  3.3 
there are scenarios in which the stepwise approach followed by ICLL becomes redundant, 
specifically when the mixed group ( Cmix ) is empty. As we mentioned, this means that the 
hierarchical clustering method was able to perfectly split the majority instances from the 
minority instances to different clusters. This case occurred in at least one of the ten itera-
tions of 11 (out of 100) data sets. In principle, if the clustering model is able to split the 
classes perfectly then a standard classifier should be able to do so as well. Indeed, in all 11 

2 https:// pypi. org/ proje ct/ imble arn/.

https://pypi.org/project/imblearn/
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datasets where this issue occurred, the final AUC score of the NoResample-RF approach 
was 1 (i.e. a perfect score). We continue the analysis without these 11 datasets.

4.3.2  Average rank, magnitude of differences, and significance analysis

Regarding the analysis of results we start by observing the average rank of each method 
across the remaining 89 problems. Afterwards, we analyse the magnitude in the differences 
in performance to assess their significance. In Fig.  3 we show the average rank of each 
method across the 89 data sets. A given method has a rank of 1 in a given problem if it 
shows the best performance (AUC) in that problem. Effectively, the average rank repre-
sents the average position of each approach relative to the remaining ones.

Four of the variants of ICLL are the best four methods in average rank. The best one 
is ICLL+SMOTE(L2), which applies the SMOTE resampling method in the second 
layer. The version of the proposed method which does not apply any resampling approach 
(ICLL) shows a better score than any state-of-the-art resampling approach. Notwithstand-
ing, its performance improves when coupled with SMOTE. The variants of the proposed 
method which only use the output of one of the layers (ICLL(L1) and ICLL(L2)) show 
one of the worse average ranks. This suggests that the output of both layers is critical for 
the predictive performance of ICLL. This outcome contradict the hypothesis that ICLL 
is a model-based under-sampling approach (RQ3). ICLL performs considerably better 
than ICLL(L2), which means that both layers are important during the inference stage. 
Regarding state-of-the-art resampling methods, RO shows the best average rank, followed 
by SMOTE. Finally, the standard classifier trained with a Random Forest (NoResam-
pler-RF) shows a better score relative to the same approach trained with either a Logistic 
Regression (NoResampler-LR) or a SVM (NoResampler-SVM).

As mentioned before, the average rank measures the average position of each method 
relative to the remaining ones. However, it does not take into account the magnitude of dif-
ferences of predictive performance. Therefore, we complement the average rank by analys-
ing the percentage difference in performance between each method and the variant of the 
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Fig. 3  Average rank of each method. Lower values denote better performance
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proposed approach with best average rank (ICLL+SMOTE(L2)). This can be formalized 
as follows for a given method m:

where AUC
�
 and AUC

����+�����(��) represent the AUC of method m and 
ICLL+SMOTE(L2), respectively. Since AUC should be maximized, negative values in 
percentage difference denote better performance of ICLL+SMOTE(L2).

We show this analysis in Fig. 4. This figure depicts several boxplots showing the dis-
tribution of the log percentage difference between each method and ICLL+SMOTE(L2), 
where negative values denote better performance for the proposed method. Moreover, the 
methods are ordered by decreasing median percentage difference in AUC. Thus, more 
competitive methods appear first (from left to right). In terms of ranking, the order of the 
methods is similar to that obtained according to the average rank analysis. The main take 
away is that, for all methods, most of the distribution lies below the zero line. This shows 
that ICLL+SMOTE(L2) outperforms the other methods more times than not.

While it is clear that ICLL+SMOTE(L2) shows a better performance, Fig. 4 also shows 
that the percentage difference is close to zero in many cases. In this context, we perform 
a new analysis which considers small differences in performance to be negligible and the 
pair of models practically equivalent.

We define this interval to be [− 1%, 1%]. This means that the performance of two meth-
ods under comparison is considered equivalent if their percentage difference is within this 
interval.

Figure 5 shows the probability of ICLL+SMOTE(L2) winning in blue (percentage dif-
ference below − 1%), drawing in light grey (results within [− 1%, 1%]), or losing in red 
(percentage difference above 1%) against each remaining method. For example, relative 
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to ADASYN, ICLL+SMOTE(L2) has a probability of winning of around 25%, a probabil-
ity of losing of about 12.5%, and a probability of drawing of about 62.5%. Analysing the 
scores, it is clear that ICLL+SMOTE(L2) outperforms the other methods. That is, the 
probability of winning is larger than the losing. Nonetheless, there is a considerable proba-
bility that the results end up being comparable (a percentage difference in AUC below 1%).

Finally, we carried out a bayesian analysis to assess the significance of the results using 
the Bayes signed-rank test (Benavoli et  al., 2017). This test is used to compare pairs of 
predictive models across multiple data sets. In this case, we compare ICLL+SMOTE(L2) 
with all remaining methods. We also define the region of practical equivalence (ROPE) 
for the Bayes signed-rank test to be the interval [−  1%, 1%]. The results are shown 
in Fig.  6, which follow a similar structure as Fig.  5. The results of the test show that 
ICLL+SMOTE(L2) either wins significantly with high probability or draws when com-
pared with other methods and considering a 1% ROPE level. While ICLL+SMOTE(L2) 
tends to outperform state-of-the-art approaches, the differences are often small and not sta-
tistically significant above 1% when compared with some approaches, e.g. ICLL+SMOTE, 
RO, or NoResample-RF.

4.3.3  Repeating the study for difficult problems

In many of the data sets, specifically in 71 out of 100, the NoResample-RF approach 
is able to achieve at least 0.9 AUC. This means that, even without any special mechanism 
for dealing with the imbalanced distribution, the predictive model is able to distinguish 
between both classes with a good performance. In this context, we decided to repeat the 
result analysis but only considering the data sets in which NoResample-RF has an AUC 
score lower than 0.9. Overall, there are 29 data sets where this occurs. For simplicity, we 
will refer to these data sets as the difficult problems within our case study.
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Figure 7 shows the average rank of each method across the difficult problems. The 
relative position of each method is similar. However, the variant of the proposed method 
without resampling (ICLL) shows a slightly worse average rank relative to Balance-
dRF. Notwithstanding, ICLL+SMOTE(L2) shows the best score overall.
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The distribution of the percentage difference in AUC is presented in Fig. 8. Overall, for 
difficult problems the distribution of the percentage differences becomes even more favour-
able towards ICLL+SMOTE(L2). These conclusion can also be drawn from Fig. 9, which 
shows the probability of ICLL+SMOTE(L2) winning, losing, or drawing (percentage 
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Fig. 8  Boxplots showing the distribution of the log percentage difference between each method and 
ICLL+SMOTE(L2) using only the difficult problems

0.00

0.25

0.50

0.75

1.00

A
D

A
S

Y
N

B
al

an
ce

dR
F

B
or

de
rli

ne

C
U

R
E

H
ar

dn
es

s

IC
LL

IC
LL

(L
1)

IC
LL

(L
2)

IC
LL

+S
M

O
TE

IC
LL

+S
M

O
TE

(L
1)

N
ea

rM
is

s

N
oR

es
am

pl
e−

LR

N
oR

es
am

pl
e−

R
F

N
oR

es
am

pl
e−

S
V

M

O
S

S

R
O R
U

S
M

O
TE

S
M

O
TE

To
m

ek

P
ro

po
rti

on
 o

f p
ro

ba
bi

lit
y

Result ICLL+SMOTE(L2) loses draw ICLL+SMOTE(L2) wins
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difference below 1%). The results of the Bayesian signed-rank test are shown in Fig. 10. In 
this subset of problems, ICLL+SMOTE(L2) shows statistically significant better perfor-
mance when compared with all other methods, except for the variants ICLL+SMOTE(L1) 
and ICLL+SMOTE. Indeed, when considering this subset of more difficult problems the 
advantage of the proposed method is enhanced and the probability of outperforming other 
methods increases considerably.

Finally, we studied in which conditions the proposed method led to better performance. 
We analysed the characteristics of the data sets based on three complexity measures: k-Dis-
agreeing Neighbors (kDN) (Smith et al., 2014), number of borderline examples (Border-
line) (Napierała et al., 2010), and Degree of Overlap (Mercier et al., 2018). We analysed 
the distribution of these metrics while controlling for whether ICLL+SMOTE(L2) out-
performed NoResample-RF. The results are shown in Fig.  11. Higher values denotes 
greater problem complexity. These values are presented in a log scale for visualization 
purposes. Besides the boxplots, the figure includes horizontal red lines which represent 
the median value of each metric. The distributions are similar in both conditions, though 
the average value is slightly higher for when ICLL+SMOTE(L2) performs better. This 
indicates that the proposed method is more appropriate for more complex problems with 
respect to NoResample-RF.

5  Discussion

In the previous section we provided compelling evidence for the advantage of applying 
ICLL when tackling binary classification tasks with an imbalanced class distribution. We 
showed that ICLL performs better than several state-of-the-art methods for IBC prob-
lems (RQ1). The improvements are enhanced when coupled with the SMOTE resampling 

0.00

0.25

0.50

0.75

1.00
A

D
A

S
Y

N

B
al

an
ce

dR
F

B
or

de
rli

ne

C
U

R
E

H
ar

dn
es

s

IC
LL

IC
LL

(L
1)

IC
LL

(L
2)

IC
LL

+S
M

O
TE

IC
LL

+S
M

O
TE

(L
1)

N
ea

rM
is

s

N
oR

es
am

pl
e−

LR

N
oR

es
am

pl
e−

R
F

N
oR

es
am

pl
e−

S
V

M

O
S

S

R
O R
U

S
M

O
TE

S
M

O
TE

To
m

ek

P
ro

po
rti

on
 o

f p
ro

ba
bi

lit
y

Result ICLL+SMOTE(L2) loses draw ICLL+SMOTE(L2) wins

Fig. 10  Paired comparisons between ICLL+SMOTE(L2) and each remaining approach using the Bayesian 
sign test with 1% ROPE level. Each bar represents the proportion of probability of each outcome: the blue 
part denotes the probability that ICLL+SMOTE(L2) wins significantly; the red part represents the propor-
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method in the second layer (RQ2). Regarding the behaviour of ICLL, it is clear that both 
layers are important during the inference stage (RQ3). Finally, the performance advantage 
of ICLL is greater when considering difficult problems where a baseline method performs 
poorly. Besides the gains in predictive performance, it is worth mentioning that the pro-
posed method does not require any parameters besides the base learning algorithm, which 
in our case is a Random Forest. This is an important advantage of the proposed ICLL 
solution as it does not require the end-user to carry out any additional hyper-parameter tun-
ing for using ICLL. However, the best results were achieve when ICLL was coupled with 
SMOTE, which is not automated. Notwithstanding, in this work we applied SMOTE with its 
default configuration. The hierarchical clustering procedure is automated. Specifically, the 
process of cutting the hierarchy and obtaining the cluster compositions is carried out using 
the heuristic described by Bellinger et al. (2019).

One interesting thing we noted in the experiments is that ICLL+SMOTE(L2) shows 
a greater performance advantage in difficult data sets. These are problems in which the 
decision boundary is, in principle, more difficult to model. We believe that the concept of 
mixed group we introduced, and the subsequent stepwise approach based on layered learn-
ing, can be beneficial for these cases.

Layered learning approaches have been used for tackling classification problems. Not-
withstanding, the layer definition is usually, to our knowledge, carried out manually – either 
treating these as parameters to optimize or defined by domain experts. Therefore, automat-
ing the process of defining the layers within these approaches is a valuable contribution.

Our work is limited by the successful application of the hierarchical clustering pro-
cedure. To be more precise, the layers require the existence of both pure majority and 
mixed groups. Otherwise, these cannot be defined properly. Notwithstanding, during our 
experiments we found that majority groups were common because of the high preva-
lence of majority class instances. In 11 out of the 100 data sets, mixed groups could 
not be found. These represented easy data sets where the hierarchical clustering was 
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able to perfectly split the two classes. Indeed, the classifier without any resampling 
method, or any other mechanism for dealing with class imbalance, achieved a perfect 
AUC score (1) in all those 11 data sets. In such cases, we do not need to go beyond the 
clustering analysis as this process indicated that an advanced classification strategy is 
not necessary.

Our work is focused on tabular problems. Therefore, the experiments did not include 
any deep learning approach. Recent developments in imbalanced deep learning are pri-
marily fixated on images, text and graphs. This type of data sets are not considered. 
Notwithstanding, relying on clustering and a Random Forest model means our solution 
is more interpretable relative to deep learning.

In terms of future developments, we outline two potential research directions: the 
first is a better exploitation of the hierarchy output by the clustering model. Specifically, 
it may be possible to devise different layer architectures depending on the result of the 
clustering analysis. Second, we will attempt to apply ICLL to other predictive tasks, 
namely multi-class problems, one-class classification, or imbalanced regression tasks.

6  Conclusions

We proposed a new approach for IBC problems, which is one of the most active research 
topics in machine learning. The proposed approach models the data in a two-stage fash-
ion according to a layered learning methodology (Stone & Veloso, 2000). The layers are 
automatically defined using hierarchical clustering analysis, and the class distribution 
of the resulting clusters. We provided extensive empirical evidence which shows that 
the proposed approach leads to a better performance relatively to several state-of-the-art 
methods for IBC tasks. Contrary to the state of the art approaches to IBC, our proposal 
does not require tuning of any parameter—it is essentially parameter-less.

We believe that our method represents a promising direction towards modelling 
approaches which are not based on resampling the training data.
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