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Abstract
Domain generalization studies how to generalize a machine learning model to unseen dis-
tributions. Learning invariant representation across different source distributions has been 
shown high effectiveness for domain generalization. However, the intrinsic possibility of 
overfitting in source domains can limit the generalization of invariance when faced with 
a target domain with large discrepancy to the source domains. To address this problem, 
we propose a meta-learning algorithm via bilevel optimization for domain generalization, 
where the inner-loop objective aims to minimize the discrepancy across different source 
domains while the outer-loop objective aims to minimize the discrepancy between source 
domains and a potential target domain. We show from a geometric perspective that the 
proposed algorithm can improve out-of-domain robustness for invariance learning. Empiri-
cally, we evaluate on five datasets and achieve the best results among a range of strong 
domain generalization baselines.

Keywords  Domain generalization · Meta-learning · Invariance learning · Transfer learning

1  Introduction

Deep learning has achieved highly competitive performance on test data drawn from the 
same distribution as large training data. However, in practice, it is almost impossible to 
ensure that test data strictly follow source distributions. Domain generalization (DG) 
investigates how to generalize a hypothesis learned from source domains to unseen target 
domains (Blanchard et al., 2011; Muandet et al., 2013).
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As a seminal method, the empirical risk minimization (ERM) algorithm (Vapnik, 1999) 
aims to learn a hypothesis that achieves the minimum empirical risk on all the source 
domains (Gulrajani & Lopez-Paz, 2020). Although the ERM algorithm has achieved prom-
ising results on DG (Gulrajani & Lopez-Paz, 2020), previous work have shown from both 
theoretical and empirical perspectives that the performance of ERM can be largely relayed 
on the number of source domains and the diversity of source samples (Li et al., 2022; Gul-
rajani & Lopez-Paz, 2020).

Recent DG work explores an invariance learning approach to alleviate the prediction 
gap that arises from the distributional diversity across different domains (Li et al., 2018a, 
b; Zhang et al., 2021). Such approach aims to obtain an invariant representation by training 
the feature embedding using discrepancy-based losses, which estimate discrepancy metrics 
on covariate shifts w.r.t. marginal feature distributions (Albuquerque et al., 2020) or con-
ditional shifts w.r.t. conditional feature distributions (Zhang et al., 2021; Shui et al., 2022). 
Further, previous work has shown that an invariance of the excess risk across domains is 
equivalent to the invariance of representation (Zhang et  al., 2021). Although the invari-
ant feature learning can ensure prediction invariance across domains, the intrinsic distribu-
tion gap between the source and target domains and the possibility of overfitting in source 
domains can badly affect the generalization performance, as shown in Fig. 1b.

We improve the out-of-domain robustness for invariance learning via a bilevel meta-
learning algorithm to learn more robust invariant representation across different domains. 
In particular, we follow the previous work to use an episodic training process (Li et  al., 
2018c), i.e., randomly extracting some meta-source domains for training and a meta-target 
domain for test from all the source domains as a meta-task to simulate domain shift.

1.1 � Approach

We consider a learning algorithm for the feature embedding with meta-parameters, denoted 
as Af

�
(⋅) . Then, a bilevel meta-learning algorithm (Finn et al., 2017) is used to learn the 

parameter initialization � , where the inner-loop objective aims to minimize the discrep-
ancy across different meta-source domains while the outer-loop objective aims to minimize 

(a) (b) (c)

Fig. 1   Illustration of our approach. Compared with the ERM baseline (a), domain invariance learning (b) 
reduces the discrepancy across source domains and performs well on source-domain classification, but it 
may still have big error on the target domain. Our approach (c) uses bilevel meta-learning to further reduce 
the discrepancy between the target domain and source domains, such that a hypothesis learned from the 
source domains can generalize to the target domain
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the discrepancy between the meta-target and meta-source domains. Intuitively, the effec-
tiveness of such bilevel meta-learning algorithm is shown in Fig. 1c.

1.2 � Results

We formulate a geometric understanding for the bilevel meta-learning algorithm and 
show its effectiveness to minimize the intrinsic domain discrepancy, which is formulated 
as the Y-discrepancy (Zhang et  al., 2012) between the target domain and a convex hull 
of source domains. Empirically, we follow the training and evaluation protocol by Gul-
rajani and Lopez-Paz (2020) and conduct experiments on five datasets. Results show that 
our approach can effectively learn the domain invariance and achieve the best performance 
compared with a range of ERM, invariance learning and meta-learning algorithms. The 
code is released at https://​github.​com/​jiach​enwes​tlake/​MLIR.

2 � Related work

Domain generalization (DG) has become a popular field and achieved promising results in 
recent years. We review the most related DG work as follows.

2.1 � Domain‑invariance learning

Early DG work performs kernel-based approaches to learn an invariant feature mapping 
to the reproducing kernel Hilbert space (RKHS) (Muandet et al., 2013). Neural methods 
have achieved promising results in recent years, and invariant representation learning has 
become a strong approach for DG. Roughly speaking, such approach uses an additional 
loss w.r.t. a discrepancy measure across different source domains, which can employ maxi-
mum mean discrepancy (Li et  al., 2018a), H-divergence (Li et  al., 2018b; Albuquerque 
et al., 2020), KL-divergence (Xiao et al., 2021), Y-discrepancy (Zhang et al., 2021) and 
total variation distance (Shui et al., 2022). Furthermore, DMG (Chattopadhyay et al., 2020) 
learns a balance between invariant and specific representation; REG (Shui et  al., 2022) 
uses regularization to improve the smoothness of representation. In contrast to these work, 
we aim to improve the robustness of invariant learning via meta-learning. Our work can be 
seen as an extension to the line of work (Zhang et al., 2021) with a meta-learning approach, 
which has shown the equivalence between transferability and Y-discrepancy across differ-
ent domains. Other invariance learning approaches such as IRM (Arjovsky et  al., 2019) 
learns the labeling invariance across different domains, which is orthogonal to this work.

2.2 � Meta‑learning

Meta-learning provides a framework to gain experience for future tasks over multiple train-
ing episodes, which has been introduced to address DG via simulating domain shift (Li 
et al., 2018c; Balaji et al., 2018; Dou et al., 2019). An early approach is MLDG (Li et al., 
2018c), which uses bilevel meta-learning (Finn et  al., 2017) to train a model on source 

https://github.com/jiachenwestlake/MLIR
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domains such that it generalizes to the target domain. MetaReg Balaji et al. (2018) learns 
a regularization on the classifier such that a classifier trained on source domains can gen-
eralize to target domain. These work have a common limitation that uses task objectives 
directly as the inner-loop and outer-loop objectives, which can be suboptimal, since it is 
highly abstracted from the feature representation. To address this problem, we focus on a 
meta-learning approach to reduce the discrepancy between the target domain and sources 
domains. In particular, we build a bilevel meta-learning procedure on the first-order 
MAML framework (Finn et  al., 2017), which achieves highly computational efficiency 
while also preserving the accuracy. To our knowledge, we are the first to use meta-learning 
for invariance learning.

2.3 � Convex domain combination

A closely related problem is in multiple-source domain adaptation, where the target 
domain is assumed to be a convex combination of source domains, but the weights can be 
unknown. Previous work (Mansour et al., 2008; Hoffman et al., 2018; Shao et al., 2021) 
assume that there exists pretrained hypothesis for each source domain and have well-stud-
ied how to combine the source hypotheses to derive a target hypothesis. Such work also 
indicate that simple linear combinations face difficulties due to the discrepancy across dif-
ferent source domains. In contrast to these work, DG often assumes that source-domain 
data are available for training, which can be used to learn an invariant representation to 
break the limitation of domain discrepancy for convex combination (Shao et  al., 2021). 
Furthermore, we study a more general setting, where the target domain can be outside 
the convex hull of source domains. Accordingly, we propose a meta-learning approach to 
reduce the discrepancy between the target domain and the convex hull of source domains.

3 � Preliminaries

3.1 � Notations

Let X  be the input space and Y be the output space. Following previous work (Blanchard 
et al., 2011; Muandet et al., 2013), we define a domain as a joint distribution on Cartesian 
product of the input and output space Z = X × Y and let � denote the set of all domains. 
We denote the set of N source domains as S = {�i}1≤i≤N . The corresponding set of train-
ing samples is denoted as Ŝ = {�̂i}1≤i≤N , where the training sample for the i-th domain 
is denoted as �̂i = {(xi

k
, yi

k
)}1≤k≤ni with cardinality ni and assuming that (xi

k
, yi

k
)
i.i.d.
∼ �i . For 

brevity, we assume that all domains have the equal sample size, i.e., n1 = … = nN = n.
A hypothesis h ∈ H ∶ X → Y is defined as a mapping from the input space to the output 

space. The associated error of a hypothesis h at a data point (x, y) is defined as �(h(x), y) . 
Given a domain � and its corresponding sample �̂ = {(xi, yi)}1≤i≤n , the expected error and 
the empirical error are defined as ��(h) = �(x,y)∼��(h(x), y) and 𝜖�̂(h) =

1

n

∑n

i=1
�(h(xi), yi) , 

respectively. In this work, we consider h to be a neural network and decompose h into 
a feature embedding f� ∈ F ∶ X → ℝd , parameterized by � (or f for brevity) and a task 
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classifier g� ∈ G ∶ ℝd
→ Y , parameterized by � (or g for brevity), i.e., h = g�◦f� . Fur-

thermore, this work is interested in a learning algorithm for the feature embedding 
A
f

�
∶
⋃∞

N=1
Z

N×n
→ F  , with the meta-parameter � ∈ � , mapping from source-domain 

training samples to a feature embedding. Given source-domain training samples Ŝ , the 
hypothesis can therefore be represented as g◦Af

�
(Ŝ).

3.2 � Meta‑learning for domain generalization

The main idea is to use a sequence of M pairs of meta-training and meta-test samples 
{(D̂

tr

i
, D̂

te

i
)}1≤i≤M to improve the ability of an algorithm for tackling domain shift. To 

make connections with the standard meta-learning formulations (Baxter, 2000; Chen 
et al., 2020), each meta-sample (D̂

tr

i
, D̂

te

i
) can be seen as a pair of Qury/Support sets of a 

DG task, where for each i ∈ [M] , D̂
tr

i
 denotes meta-training samples from a set of meta-

source domains and D̂
te

i
 denotes the meta-test sample from a meta-target domain which 

should not belong to any meta-source domain. In practice, an episodic training process 
is used to construct the meta-sample with training samples from N source domains. In 
each training iteration, each domain can become the meta-target domain and the rest are 
served as the meta-source domains. Thus, the meta-sample {(D̂

tr

i
, D̂

te

i
)}1≤i≤M is defined 

as:

3.3 � Domain discrepancy

Y-discrepancy has been used for domain invariance learning (Zhang et al., 2012, 2021). 
For convenience in presentation, we extend the hypothesis in the original definition 
(Zhang et al., 2012) to a learning algorithm for feature embedding.

Definition 1  (Y -discrepancy): Let g ∈ G be the classifier and Af

�
(Ŝ) be the feature embed-

ding learned from source samples Ŝ , then the Y-discrepancy disc(�, � ) between two 
domains � and �  and its empirical version ̂disc(�̂, �̂ ) w.r.t. the corresponding samples �̂ 
and �̂  are defined as:

It is clear that Y-discrepancy defines a pseudo-distance between a pair of domains 
in that it satisfies symmetry and the triangle inequality but not satisfies identity of 
indiscernibility since disc(�, � ) = 0 ⇏ � = �  . It can measure not only covariate shift 
between domains, but also conditional shift between domains (Zhang et  al., 2012). 
Therefore, we choose Y-discrepancy as a measurement for domain discrepancy for the 
proposed algorithm.

(1)
{
(D̂

tr

i
, D̂

te

i
)
}

1≤i≤M
∶=

{(
{�̂j}j≠i, �̂

i
)
∶ 1 ≤ i ≤ N

}

(2)
disc

(
�, �

)
∶= sup

g∈G

||𝜖�
(
g◦A

f

�
(Ŝ)

)
− 𝜖�

(
g◦A

f

�
(Ŝ)

)||;
̂disc
(
�̂, �̂

)
∶= sup

g∈G

||𝜖�̂
(
g◦A

f

�
(Ŝ)

)
− 𝜖�̂

(
g◦A

f

�
(Ŝ)

)||.
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4 � Approach

The goal of our algorithm is to reduce the Y-discrepancy between the source domains 
and the target domain. We present a specific meta-learning algorithm.

4.1 � Meta‑learning via bilevel optimization

We focus on a bilevel meta-learning framework (Finn et al., 2017), which uses the meta-
sample to learn a meta-parameter �∗ ∈ � for a learning algorithm Af

�∗ (⋅) . Such learning 
algorithm can use the source samples Ŝ for optimizing the feature embedding, repre-
sented as Af

�∗ (⋅) ∶ Ŝ ↦ f�∗ , where f�∗ denotes the feature embedding parameterized by 
the optimized parameter �∗ . For notation convenience, we will sometimes treat f�∗ and 
�∗ equivalently to represent the learned feature embedding.

In this work, the meta-learner optimizes the meta-parameter � to minimize Y-discrep-
ancy between the meta-target domain and meta-source domains (will be defined in Eq. 4), 
such that the learned algorithm optimizes the parameter of feature embedding to minimize 
the Y-discrepancy across different meta-source domains (will be defined in Eq. 5). We for-
mally define the bilevel optimization problem as follows.

Definition 2  (Bilevel Optimization) We denote the outer-loop and inner-loop objectives 
w.r.t. the feature embedding as L̂out and L̂in , respectively. Let Af

�
(⋅) be a learning algorithm 

parameterized by � for the inner-loop optimization. Given a meta-sample {(D̂
tr

i
, D̂

te

i
)}1≤i≤M 

defined in Eq. 1, the bilevel optimization problem is defined as:

where C(�) denotes the constrained parameter space of � by � , which will be specified in 
the next section. Let �∗

i
 denote �∗

i
∶= A

f

�
(D̂

tr

i
) , the empirical objectives in the outer-loop 

and inner-loop are defined as follows:

(3)

Outer-loop: �∗ ∈ argmin
�∈�

∑
i∈[M]

L̂out

(
A
f

�
(D̂

tr

i
), (D̂

tr

i
, D̂

te

i
)
)
;

Inner-loop: A
f

�
(D̂

tr

i
) ∈ argmin

�∈C(�)

L̂in

(
� ;D̂

tr

i

)
,

(4)L̂out

(
�∗

i
;(D̂

tr

i
, D̂

te

i
)
)
∶=

∑
�̂k
i
∈D̂

tr

i

̂discY

(
f�∗

i

(
D̂

te

i
, �̂k

i

))
;

(5)L̂in

(
� ;D̂

tr

i

)
∶=

∑
�̂k
i
,�̂t

i
∈D̂

tr

i

̂discY
(
f�
(
�̂k
i
, �̂t

i

))
.
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4.2 � Gradient‑based meta‑learning algorithm

Algorithm 1 Meta-training.
Input data: N source-domain training samples, hyperparameters: η, α, γ.
Parameters: feature embedding fψ , adversarial classifiers G = {gθij

}1≤i<j≤N , task classifier gθ .

Output: meta-trained feature embedding ψtr, meta-trained adversarial classifiers {θtr
ij }1≤i<j≤N

and meta-trained task classier θtr

1: while Stopping condition is not met do
2: Sample l ∈ [N ] and minibatch of meta-test sample Bte from the l-th domain, minibatch

of meta-training samples Btr from the rest N − 1 domains
3: for Sk, St ∈ Btr, k<t do
4: L̂kt

in ←
∣∣ε̂

Sk (gθkt
◦ fψ) − ε̂St (gθkt

◦ fψ)
∣∣ gθkt

∈ G � inner-loop objective Eq. 5
5: θkt ← θkt + η∇θkt

L̂kt
in � update adversarial classifiers

6: end for
7: ψ′ ← ψ − αη∇ψ

∑
k,t L̂

kt
in � update feature embedding

8: for Sk ∈ Btr do
9: L̂k

out ←
∣∣ε̂

Sk (gθkl
◦ fψ′ ) − ε̂Bte (gθkl

◦ fψ′ )
∣∣ gθkl

∈ G � outer-loop objective Eq. 4
10: θkl ← θkl + η∇θkl

L̂k
out � update adversarial classifiers

11: end for
12: ψ ← ψ − γη∇ψ

∑
k L̂k

out � update feature embedding
13: L̂task ← ε̂Btr (gθ ◦ fψ) � task objective
14: [θ,ψ] ← [θ,ψ] − η∇θ,ψL̂task � update task classifier and feature embedding
15: end while

Algorithm 2 Meta-test.
Input data: N source-domain training samples, hyperparameters: η, α
Output: feature embedding Fψ , task classifier Tθ

1: ψ ← ψtr, {θij}1≤i<j≤N ← {θtr
ij }1≤i<j≤N , θ ← θtr � initialization

2: while Stopping condition is not met do
3: Sample minibatch of training samples B from all the N source domains
4: for Sk, St ∈ B, 1 ≤ k < t ≤ N do
5: L̂kt

in ←
∣∣ε̂

Sk (gθkt
◦ fψ) − ε̂St (gθkt

◦ fψ)
∣∣ gθkt

∈ G � inner-loop objective Eq. 5
6: θkt ← θkt + η∇θkt

L̂in � update adversarial classifiers
7: end for
8: ψ ← ψ − αη∇ψ

∑
k,t L̂

kt
in � update feature embedding

9: L̂task ← ε̂B(gθ ◦ fψ) � task objective
10: [θ,ψ] ← [θ,ψ] − η∇θ,ψL̂task � update classifier and feature embedding
11: end while

In practice, we specify the previous bilevel meta-learning algorithm as the first-order MAML 
(Finn et al., 2017). In particular, the meta-parameter � is defined as the parameter initialization 
for the inner-loop learning algorithm Af

�
(⋅) , which corresponds to one or multiple steps of gra-

dient descent for optimizing the inner-loop objective in the constrained parameter space C(�) 
by the initialization with � . Given a batch of training samples B = {(Btr

i
,Bte

i
)}1≤i≤M which 

contains M pairs of meta-training and meta-test domains, the sample size of each meta-train-
ing domain and the meta-test domain in B are both b. The update in one iteration with m inner-
loop steps is computed as,

(6)� = � − 𝛾𝜂

M∑
i=1

∇� L̂out

(
� ;(Btr

i
,Bte

i
)
)||�=A

f

�
(Btr

i
)
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where � denotes the learning rate and �, � denote the adversarial factors of the inner-loop 
and outer-loop, respectively. In addition to the first-order MAML framework, there exit 
other gradient-based meta-learning frameworks used in the prior work (Li et  al., 2018c; 
Balaji et al., 2018). We analyze the differences to these work and propose two variants of 
our approach in Appendix 1.

We use an adversarial training strategy (Goodfellow et al., 2014; Zhang et al., 2021) to 
optimize the inner-loop and outer-loop objectives ( ̂Lin , L̂out in Def. 2). Following the previ-
ous work (Zhang et al., 2021), the Y-discrepancy is estimated by the trained classifier using 
gradient ascent updates, while the minimizing of Y-discrepancy is performed via gradient 
descent w.r.t the parameters of feature embedding. The whole meta-learning procedure is 
shown in Algorithms 1 & 2 and described as follows.

4.3 � Meta‑training

As shown in Algorithm 1, lines 3–7 show an adversarial training process to optimize the 
inner-loop objective L̂in , which can be seen as a two-player minimax game between adver-
sarial classifiers and the feature embedding. Lines 8–12 show a similar way to optimize the 
outer-loop objective L̂out via adversarial training. In addition, lines 13–14 show the training 
process of the classification task w.r.t. the task classifier and feature embedding with the 
source samples.

4.4 � Meta‑test

As shown in Algorithm 2, the learned feature embedding is further trained on all the N 
source domains with the inner-loop objective in lines 4–8 and simultaneously, the classi-
fication task w.r.t. the task classifier and feature embedding is also trained with the source 
samples in lines 9–10.

4.5 � Computational complexity

Following the convergence analysis on bilevel meta-learning by Ji et al. (2022), we assume 
that ∇L̂in(⋅) and ∇L̂out(⋅) are Lipschitz continuous, ∇L̂out(⋅) has a bounded variance and the 
batch size is large enough. Then, to achieve �[‖∇L̂out(�)‖] ≤ 𝜀 , we need O(�−2) iterations. 
Therefore, by the computational cost of each iteration analyzed in Appendix 1, we need a 
total number O(mbN3�−2) of gradient computations.

(7)
s.t. 𝜓

(0)

i
= �;�

(m)

i
= �

(m−1)

i
− 𝛼𝜂∇

�
(m−1)

i

L̂in

(
�

(m−1)

i
;Btr

i

)

�����������������������������������������������������������������������������������

A
f

�(B
tr
i )

,
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5 � Theoretical analysis

We analyze the learned feature distribution from a geometric perspective. For convenience 
in presentation, we regard the feature embedding Af

�
(Ŝ) as a mapping from a domain � on 

X × Y to a domain �
A
f

�
(Ŝ)

 on Cartesian product of the feature space and the output space 
ℝd × Y . To show such definition is reasonable, we can regard the feature embedding as a 
random transformation Φ(x�|x) , where x ∈ X  and x� ∈ ℝd . In particular, the deterministic 
representation function is a special case such that Φ(x�|x) is the Dirac delta function 
𝛿
A
f

�
(Ŝ)(x)

 . Therefore, we can define the domain on ℝd × Y as 

�
A
f

�
(Ŝ)
(x�, y) = ∫ Φ(x�|x)�(x, y)dx , for any y ∈ Y . We denote the set of all domains on 

ℝd × Y induced by Af

�
(Ŝ) as �

A
f

�
(Ŝ)

 . The associated Y-discrepancy, equivalent to Def. 1, is 
defined as follows.

Definition 3  Let g ∈ G be the classifier and Af

�
(Ŝ) be the feature embedding, then, the Y

-discrepancy between two domains � and �  is defined as:

Definition 4  (Intrinsic domain discrepancy) Given a feature embedding Af

�
(Ŝ) , We define 

the intrinsic domain discrepancy as the Y-discrepancy between the target domain �  and the 
convex hull of source domains conv(S):

where �
∗
 denotes the nearest point to the target domain in conv(S),

Proposition 1  (Geometric understanding) Given a feature embedding Af

�
(Ŝ) , we consider 

a pseudo-metric space 
(
M(�

A
f

�
(Ŝ)
), disc

A
f

�
(Ŝ)
(⋅, ⋅)

)
 , defined as the space of all domains 

�
A
f

�
(Ŝ)

 equipped with a pseudo-metric disc
A
f

�
(Ŝ)
(⋅, ⋅) . Let S̃ denote the average of source 

domains S̃ =
1

N

∑
i∈[N] �

i and �
∗
 be defined as Def. 4, by triangle inequality w.r.t. the 

pseudo-metric, we first have:

Then, we assume that there exits a meta-distribution over the set of all domains, repre-
sented as P . We also assume that the classifier class G has a finite VC-dimension d. Given 
the training set of N source domains Ŝ and the associated meta-sample {(D̂

tr

i
, D̂

te

i
)}1≤i≤M 

defined in Eq. 1, we have for any 𝛿 > 0 , with probability at least 1 − 5�,

(8)disc
A
f

�
(Ŝ)(�, � ) ∶= sup

g∈G

||𝜖�
A
f

�
(Ŝ)

(g) − 𝜖�
A
f

�
(Ŝ)

(g)||.

(9)disc
A
f

�
(Ŝ)(� , conv(S)) = disc

A
f

�
(Ŝ)

(
�
∗
, �

)
,

(10)�
∗
∶= argmin

�∈conv(S)

disc
A
f

�
(Ŝ)
(� , � ).

(11)disc
A
f

�
(Ŝ)(� , conv(S)) ≤discAf

�
(Ŝ)

(
� , �S

)
+ disc

A
f

�
(Ŝ)

(
�
∗
, �S

)
.
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Proof  In Appendix 1. 	�  ◻

Remark 1  Proposition 1 shows that the expectation of intrinsic domain discrepancy can be 
approximately upper-bounded by (i) the empirical objective of meta-training and (ii) the 
empirical objective of meta-test. Thus, the meta-training procedure directly optimizes the 
first empirical term (i), where the optimized meta-parameter is denoted as �∗ . Then, the 
second empirical term (ii) can also be minimized, since Af

�∗ (Ŝ) is defined as an algorithm 
for optimizing the discrepancy across source domains. Therefore, the proposed meta-learn-
ing approach can approximately minimize the upper bound of intrinsic domain discrep-
ancy. An intuitive illustration of the meta-learning procedure is shown in Fig. 2.

To show the effectiveness of optimizing the intrinsic domain discrepancy for DG, we 
give a generalization bound as follows.

Proposition 2  (Upper bound) Albuquerque et al. (2020). Let h = g◦A
f

�
(Ŝ) be the hypoth-

esis. We assume that there exists a meta-distribution P over the set of domains. Then,

(12)

𝔼P

[
disc

A
f

�
(Ŝ)
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Fig. 2   Geometric understanding. Independently performing the inner-loop optimization based on the initial 
parameter � can only reduce the discrepancy across sources, as shown by (I)→(II). The bilevel meta-train-
ing approach optimizes the meta-parameter �∗ such that performing the inner-loop optimization in meta-test 
can reduce not only the discrepancy across sources but also the discrepancy between the target and sources, 
resulting in an optimization on the intrinsic domain discrepancy (Def. 4), as shown by (III)
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Proof  The proof largely follows Albuquerque et  al. (2020) with only slight modification 
of replacing the H-divergence with Y-discrepancy and taking expectation on the target 
domain. 	� ◻

Remark 2  Proposition 2 gives an upper bound for DG, which consists of (i) the intrinsic 
domain discrepancy, (ii) the weighted average of source-domain errors and (iii) the dis-
crepancy across domains. Compared with the invariance learning approach, which can be 
seen as only performing the inner-loop or the outer-loop optimization of our approach, the 
proposed bilevel meta-learning algorithm can further minimize the intrinsic domain dis-
crepancy while also optimizing the discrepancy across source domains by meta-test.

6 � Experiments

6.1 � Experimental settings

6.1.1 � Datasets and evaluation metrics

Following (Gulrajani & Lopez-Paz, 2020), we evaluate the proposed algorithm on 
five real-world datasets, including PACS (Li et  al., 2017) (9,991 images, 7 classes 
and 4 domains), VLCS (Fang et  al., 2013) (10,729 images, 5 classes and 4 domains), 
OfficeHome (Venkateswara et  al., 2017) (15,588 images, 65 classes, 4 domains), 

�P

[
𝜖� (h)

]
≤ �P

[
disc

A
f

�
(Ŝ)(� , conv(S))

]
+

1

N

N∑
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𝜖�i (h) +
2

N

N∑
i<j

disc
A
f

�
(Ŝ)

(
�i,�j

)
.

Table 1   Hyperparameter, the default value and distribution for random search

U(a, b) denotes a random variable sampled according to the uniform distribution on [a, b]

Hyperparameters Default value Random distribution

Batch size (DomainNet) 32 2U(3,5)

Batch size (Other datasets) 32 2U(3,5.5)

Dopout 0 Random select from {0, 0.1, 0.5}
Larning rate � 5e−5 10U(−5,−3.5)

Generator learning rate 5e−5 10U(−5,−3.5)

Classifier learning rate 5e−5 10U(−5,−3.5)

Weight decay 0 10U(−6,−2)

Generator weight decay 0 10U(−6,−2)

Classifier weight decay 0 10U(−6,−2)

Adam �1 0.5 Random select from {0, 0.5}
Inner-loop gradient steps (meta-training) m 5 Random select from {5, 10, 15}
Inner-loop gradient steps (meta-test) m 15 Random select from {5, 10, 15}
Adversarial factor (inner) � 1 10U(−1,1)

Adversarial factor (outer) � 1 10U(−1,1)
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TerraIncognita (Beery et  al., 2018), (24,788 images, 10 classes and 4 domains) 
and DomainNet (Peng et al., 2019) (586,575 images, 345 classes, 6 domains).

We report the out-of-domain accuracy for each dataset and their average, i.e., we 
use the training set of each source domain to train a model and use the validation sets 
aggregated by source domains for model selection. Each reported result is the average 
of three independent repetitions with different hyperparameters, initialization and data-
set splits.

Optimization protocol For a fair comparison, we follow training and evaluation pro-
tocol by Gulrajani and Lopez-Paz (2020) for our method and other baselines. In par-
ticular, we use an ImageNet pretrained ResNet-50 (Gulrajani & Lopez-Paz, 2020) as the 
feature embedding and Adam as the optimizer in all experiments. For hyperparameter 
search, each hyperparameter is assigned with a default value as well as a range near 
the default value, all hyperparameters are tuned jointly via random search (Gulrajani & 
Lopez-Paz, 2020) according to their search distributions with a maximum number of 
20 trials. The settings of hyperparameter search for our method and other baselines are 
the same, except for some hyperparameters specific to ours, which are detailed listed in 
Table 1.

6.2 � Results

Table 2 shows the main results and Tables 3 & 4 show the ablation study.

6.2.1 � Methods

We make comparisons with several related methods in Table 2. The compared approaches 
include ERM (Vapnik, 1999), domain-invariance learning (Chattopadhyay et  al., 2020; 
Ganin et al., 2016; Sun & Saenko, 2016; Li et al., 2018a, b; Nam et al., 2019; Arjovsky 

Table 2   Accuracy ( % ) on five DG datasets using pretrained ResNet-50 backbone. † denotes results of the 
baseline are reproduced under the same training and evaluation protocol (by Gulrajani and Lopez-Paz 
(2020)) as ours. Results of the other three baselines are from the original literature Dou et al. (2019); Chat-
topadhyay et al. (2020); Xiao et al. (2021)

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg.

MASF Dou et al. (2019) 82.7 – – – – –
DMG Chattopadhyay et al. (2020) 83.4 – – – 43.6 –
DILU Xiao et al. (2021) 85.5 – 66.4 – – –
ERM† Vapnik (1999) 85.5 77.5 66.5 46.1 40.9 63.3
IRM† Arjovsky et al. (2019) 83.5 78.6 64.3 47.6 33.9 61.6
DANN† Ganin et al. (2016) 83.6 78.6 65.9 46.7 38.3 62.6
CDANN† Li et al. (2018b) 82.6 77.5 65.7 45.8 38.3 60.2
CORAL† Sun and Saenko (2016) 86.2 78.8 68.7 47.7 41.5 64.5
MMD† Li et al. (2018a) 84.7 77.5 66.4 42.2 23.4 58.8
MLDG† Li et al. (2018c) 84.9 77.2 66.8 47.8 41.2 63.6
SagNet† Nam et al. (2019) 86.3 77.8 68.1 48.6 40.3 64.2
MetaReg† Balaji et al. (2018) 84.2 76.7 67.6 48.2 43.4 64.0
Ours 86.8 80.7 69.8 51.0 44.2 66.5



1673Machine Learning (2024) 113:1661–1681	

1 3

et al., 2019; Xiao et al., 2021) and meta-learning (Li et al., 2018c; Balaji et al., 2018; Dou 
et al., 2019). Compared with these baselines, our algorithm achieves the best results on all 
the five datasets, which shows the effectiveness of the proposed bilevel optimization algo-
rithm for DG.

6.2.2 � Ablation study on inner‑loop and outer‑loop objectives

As shown in Table 3, we compare a range of variations of choosing the inner-loop or outer-
loop objectives between task objective and Y-discrepancy. The first line is similar to the 
invariance learning approach (Zhang et  al., 2021), which optimizes the Y-discrepancy 
across different source domains. Compared with this baseline, our approach (bottom line) 
achieves better results on both datasets, which shows that the proposed bilevel optimiza-
tion algorithm can improve invariant representation learning for DG. In addition, compared 
with other meta-learning approaches, the proposed algorithm achieves the best results, 
which shows the potential of optimizing domain discrepancy to reduce domains shift for 
DG.

6.2.3 � Ablation study on bilevel meta‑learning

As shown in Table  4, we compare with two prior meta-learning algorithms (Li et  al., 
2018c; Balaji et al., 2018). We further make connection to these methods by unifying the 
empirical inner-loop and outer-loop objectives as our approach, and present two baselines 
Ours-MLDG and Ours-MetaReg to compare the frameworks of bilevel meta-learning. 
Results show that our approach is more effective than other variants of meta-learning 
framework. Besides, Ours-MLDG and Ours-MetaReg outperform the original MLDG (Li 
et al., 2018c) and MetaReg (Balaji et al., 2018), respectively. This shows the effectiveness 
of meta-learning the invariant representation for DG.

Table 3   Ablation study on inner-
loop and outer-loop objectives  L̂in  L̂out

PACS DomainNet Avg.

Y-Disc (single-loop) 84.7 41.2 63.0
Task Y-Disc 85.5 41.7 63.6
Y-Disc+Task Task 85.9 40.8 63.4
Y-Disc Y-Disc 86.8 44.2 65.5

Table 4   Ablation study on 
bilevel meta-learning

 Method PACS DomainNet Avg.

MLDG Li et al. (2018c) 84.9 41.2 63.1
MetaReg Balaji et al. (2018) 84.2 43.4 63.8
Ours-MLDG (Eq. 13) 86.1 42.8 64.5
Ours-MetaReg (Eq. 14) 85.5 43.7 64.6
Ours 86.8 44.2 65.5
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6.3 � Analysis

6.3.1 � Domain discrepancy

In Fig. 3b, we show the effectiveness of adversarial training strategy against the factor � 
and � for minimizing the Y-discrepancy across different source domains (top left), and the 
Y-discrepancy between the hold-out domain and source domains (bottom left), respec-
tively. We can find that with the adversarial factors increasing from 0.01 to 2.00, both the Y
-discrepancy across different source domains and the Y-discrepancy between the hold-out 
domain and source domains first decrease with only some small fluctuations and then come 
to a plateau or tend to slightly increase. This shows the sensitivity of adversarial factors for 
minimizing the Y-discrepancy in both inner-loop optimization and outer-loop optimization.

As shown in Fig.  3d, we compare Y-discrepancy (Zhang et  al., 2012) with the ERM 
algorithm and an invariant representation learning algorithm (the same as the first line of 
Table 3) on five datasets. The top right picture shows that both our approach and invariance 
learning can better reduce the Y-discrepancy between source domains compared with the 
ERM algorithm. This is because these two approaches have a training objective to reduce 
Y-discrepancy across different source domains. In addition, the bottom right picture shows 

(b)

(a) (c)

Sensitivity of adversarial fac-
tor α or γ for optimizing the Y -
discrepancy.

(d) Comparison between different
algorithms for reducing the Y -
discrepancy.

Fig. 3   The effectiveness of reducing Y-discrepancy by the bilevel optimization algorithm
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that the Y-discrepancy between the hold-out domain and source domains of our approach 
is lower than both the ERM algorithm and the invariance learning algorithm, which shows 
the effectiveness of meta-learning to achieve more robust domain invariance.

6.3.2 � Visualization

We visualize the learned feature representation in Fig.  1. We randomly select 250 test 
examples from each domain. As shown in Fig.  4, compared with ERM, both domain-
invariant learning and our method can match the feature distributions of source domains; 
Compared with the domain-invariant learning, our method can also well match the feature 
distributions of the target and source domains, which benefits from the outer-loop objective 
in bilevel optimization to improve the robustness to domain shift.

7 � Conclusion

We investigated a meta-learning approach for invariant representation learning to 
improve domain generalization. In particular, we learn a more robust domain invari-
ance via a bilevel optimization algorithm, where the inner-loop aims to minimize 
the Y-discrepancy across source domains while the outer-loop aims to minimize the 
Y-discrepancy between the target and source domains. Theoretically, we show from 
a geometric perspective that the meta-learning approach minimizes the Y-discrep-
ancy between the target domain and a convex hull of source domains. Empirically, 
our approach achieves the best results on five domain generalization datasets among a 
range of strong baselines.

Appendix 1: Connections to MLDG and MetaReg

Despite the most significant difference between our approach and these meta-learning 
algorithms is the inner-loop and outer-loop optimization objectives, we also analyze 
the differences w.r.t. bilevel meta-learning framework and make connections to these 
approaches by replacing their original inner-loop and outer-loop objectives with L̂in 
and L̂out in Def. 2.

MLDG Li et al. (2018c) can be regarded as adding the inner-loop objectives to the 
outer-loop (Eq. 3). We revise our meta-learning objective accordingly to connect with 
MLDG as:

Fig. 4   t-SNE visualization of feature representation on PACS when the target domain is photo. Each class 
is represented by a specific marker and each domain is represented in a specific colors where the target 
domain is in gray
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It can be viewed as integrating our meta-test procedure into the meta-training procedure. 
Thus, it can increase the computational cost. We denote this variant of our approach as 
Ours-MLDG.

MetaReg Balaji et  al. (2018) can be regarded as meta-learning the regularization 
instead of the parameter initialization in our approach. We revise our meta-learning 
objective to connect with MetaReg as:

Such approach is similar to iMAML (Rajeswaran et al., 2019), where optimizing the Hes-
sian-vector products can be much more costly than our approach, which neglects the sec-
ond-order gradients as analyzed in Appendix 1. We denote this variant of our approach as 
Ours-MetaReg.

Appendix 2: Computational complexity in one iteration

By the gradient updating rule in Eq. 6, we have:

The first-order MAML Finn et al. (2017) treats � (m)

i
 by the inner-loop updates as a constant 

and thus neglects the second-order gradients, and then by the definition of empirical Y-dis-
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where g∗ denotes the optimized classifier for supremum in Def. 1 and sgn(⋅) denotes the 
sign function for sgn(𝜖

D̂
te

i

(⋅) − 𝜖Sk
i
(⋅)) . � (m)

i
 is computed in the inner-loop, for each inner-

loop step l ∈ [m − 1]:

where b is sample size of each meta-training domain or meta-test domain of in each 
minibatch.

In practice, the size of meta-sample M is equal to the number of source domains 
N in Eq.  1. Thus, each inner-loop step has O(bN2) number of gradient computation. 
Since first-order MAML treats updates of the inner-loop as a constant for outer-loop 
gradient computing, thus the gradient operations in the inner-loop and outer-loop for 
each iteration can be sequential. Therefore, the total number of gradient computation is 
O(N ⋅ (mbN2 + bN)) = O(mbN3).

Appendix 3: Proof of proposition 1

Proof  At the beginning, we introduce the following useful lemma.

	�  ◻
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(Ŝ)

(g) − 𝜖ℙ̂
A
f

�
(Ŝ)
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Then, by VC-dimension generalization bound (Corollary 3.19 in the book (Mohri et  al., 
2018)), we complete the proof. 	�  ◻

By the triangle inequality of Y-discrepancy,
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(Ŝ)

(
� , conv(S)

)
= disc

A
f

�
(Ŝ)
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(Ŝ)

(
�i,�j

)
.

(15)disc
A
f

�
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We bound the first term in the RHS by Hoeffding’s inequality. Given a set of meta-test 
domains {Dte

i
}1≤i≤M , where Dte

i

i.i.d.
∼ P , then, we have for any 𝛿 > 0 , with probability at 

least 1 − �,

Since the set of meta-training domains Dtr
i
 , for each 1 ≤ i ≤ M , is equal to S except for the 

meta-test domain of Dte
i
 , thus we have S̃ ≈ D̃

tr

i
 , where D̃

tr

i
=

1

�Dtr
i
�
∑

�j

i
∈Dtr

i

�j

i
 . Then, we have 

for any 1 ≤ i ≤ M:

By the triangle inequality, we have

Then, by Lemma 1, and using |Dtr
i
| = |D̂tr

i
| equivalently to denote the number of meta-

training domains, we have for any 𝛿 > 0 , with probability at least 1 − 2�:

Insert Eq. 18 into Eq. 17 and by the union bound, we have with probability at least 1 − 3�:

Similarly, we can bound the second term in the RHS of Eq. 16 by Lemma 1: for any � 0 , 
with probability at least 1 − 2�:

Finally, we insert Eqs. 19 and 20 into Eq. 16 and by the union bound, then, we complete 
the proof of Eq. 12. 	�  ◻
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(Ŝ)

(
D

te
i
, �S

)
≈ disc

A
f

�
(D̂

tr

i
)

(
D

te
i
, �D

tr

i

)

disc
A
f

�
(Ŝ)
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(Ŝ)

(
�̂i, �̂j

)
+ 2

√
8dlog(2en∕d) + 8log(4∕𝛿)

n



1680	 Machine Learning (2024) 113:1661–1681

1 3

Data availability  The data is publicly available online.

Code availablity  https://​github.​com/​jiach​enwes​tlake/​MLIR.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Consent to participate  All authors consent to participation.

Consent for publication  All authors consent to publish this manuscript.

References

Albuquerque, I., Monteiro, J., Darvishi, M., Falk, T.H., & Mitliagkas, I.  (2020). Generalizing to unseen 
domains via distribution matching. arXiv preprint arXiv:​1911.​00804

Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv pre-
print arXiv:​1907.​02893

Balaji, Y., Sankaranarayanan, S., Chellappa, R., & Metareg, R. (2018). Towards domain generalization 
using meta-regularization. In: NeurIPS.

Baxter, J. (2000). A model of inductive bias learning. JAIR, 12, 149–198.
Beery, S., Van Horn, G., & Perona, P. (2018). Recognition in terra incognita. In: ECCV (pp. 472–489).
Blanchard, G., Lee, G., & Scott, C. (2011). Generalizing from several related classification tasks to a 

new unlabeled sample. In: NIPS.
Chattopadhyay, P., Balaji, Y., & Hoffman, J. (2020). Learning to balance specificity and invariance for in 

and out of domain generalization. In: ECCV (pp. 301–318).
Chen, J., Wu, X.-M., Li, Y., Li, Q., Zhan, L.-M., & Chung, F.-l. (2020). A closer look at the training 

strategy for modern meta-learning. In: NeurIPS.
Dou, Q., Coelho de Castro, D., Kamnitsas, K., & Glocker, B. (2019). Domain generalization via model-

agnostic learning of semantic features. In: NeurIPS.
Fang, C., Xu, Y., & Rockmore, D.N. (2013). Unbiased metric learning: On the utilization of multiple 

datasets and web images for softening bias. In: ICCV (pp. 1657–1664).
Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep net-

works. In: ICML (pp. 1126–1135).
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., & Laviolette, F., et al. (2016). Domain-

adversarial training of neural networks. JMLR, 17(1), 2030–2096.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Ben-

gio, Y. (2014). Generative adversarial nets. In: NeurIPS.
Gulrajani, I., & Lopez-Paz, D. (2020). In search of lost domain generalization. In: ICLR.
Hoffman, J., Mohri, M., & Zhang, N. (2018). Algorithms and theory for multiple-source adaptation. In: 

NeurIPS.
Ji, K., Yang, J., & Liang, Y. (2022). Theoretical convergence of multi-step model-agnostic meta-learn-

ing. JMLR, 23(29), 1–41.
Li, D., Gouk, H., & Hospedales, T. (2022). Finding lost DG: Explaining domain generalization via 

model complexity. arXiv preprint arXiv:​2202.​00563
Li, H., Jialin Pan, S., Wang, S., & Kot, A.C. (2018). Domain generalization with adversarial feature 

learning. In: CVPR (pp. 5400–5409).
Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., & Tao, D. (2018). Deep domain generalization 

via conditional invariant adversarial networks. In: ECCV (pp. 647–663).
Li, D., Yang, Y., Song, Y.-Z., Hospedales, & T.M. Deeper. (2017). Broader and artier domain generali-

zation. In: ICCV (pp. 5543–5551).
Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. (2018). Learning to generalize: Meta-learning for 

domain generalization. In: AAAI (pp. 3490–3497).
Mansour, Y., Mohri, M., & Rostamizadeh, A. (2008). Domain adaptation with multiple sources. In: 

NIPS.
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning.

https://github.com/jiachenwestlake/MLIR
http://arxiv.org/abs/1911.00804
http://arxiv.org/abs/1907.02893
http://arxiv.org/abs/2202.00563


1681Machine Learning (2024) 113:1661–1681	

1 3

Muandet, K., Balduzzi, D., & Schölkopf, B. (2013). Domain generalization via invariant feature repre-
sentation. In: ICML (pp. 10–18).

Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D. (2019). Reducing domain gap via style-agnostic networks. 
arXiv preprint arXiv:​1910.​11645

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., & Wang, B. (2019). Moment matching for multi-
source domain adaptation. In: ICCV (pp. 1406–1415).

Rajeswaran, A., Finn, C., Kakade, S.M., & Levine, S. (2019). Meta-learning with implicit gradients. In: 
NeurIPS.

Shao, J.-J., Cheng, Z., Li, Y.-F., & Pu, S. (2021). Towards robust model reuse in the presence of latent 
domains. In: IJCAI (pp. 2957–2963).

Shui, C., Wang, B., & Gagné, C. (2022). On the benefits of representation regularization in invariance 
based domain generalization. Machine Learning, 111, 895–915.

Sun, B., & Saenko, K. (2016). Deep coral Correlation alignment for deep domain adaptation. In: ECCV 
Workshops (pp. 443–450).

Vapnik, V. N. (1999). An overview of statistical learning theory. TNN, 10(5), 988–999.
Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017). Deep hashing network for 

unsupervised domain adaptation. In: CVPR (pp. 5385–5394).
Xiao, Z., Shen, J., Zhen, X., Shao, L., & Snoek, C. (2021). A bit more bayesian: Domain-invariant learn-

ing with uncertainty. In: ICML (pp. 11351–11361).
Zhang, C., Zhang, L., & Ye, J. (2021). Generalization bounds for domain adaptation. In: NIPS.
Zhang, G., Zhao, H., Yu, Y., & Poupart, P. (2021). Quantifying and improving transferability in domain 

generalization. In: NeurIPS.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

http://arxiv.org/abs/1910.11645

	Meta-learning the invariant representation for domain generalization
	Abstract
	1 Introduction
	1.1 Approach
	1.2 Results

	2 Related work
	2.1 Domain-invariance learning
	2.2 Meta-learning
	2.3 Convex domain combination

	3 Preliminaries
	3.1 Notations
	3.2 Meta-learning for domain generalization
	3.3 Domain discrepancy

	4 Approach
	4.1 Meta-learning via bilevel optimization
	4.2 Gradient-based meta-learning algorithm
	4.3 Meta-training
	4.4 Meta-test
	4.5 Computational complexity

	5 Theoretical analysis
	6 Experiments
	6.1 Experimental settings
	6.1.1 Datasets and evaluation metrics

	6.2 Results
	6.2.1 Methods
	6.2.2 Ablation study on inner-loop and outer-loop objectives
	6.2.3 Ablation study on bilevel meta-learning

	6.3 Analysis
	6.3.1 Domain discrepancy
	6.3.2 Visualization


	7 Conclusion
	Appendix 1: Connections to MLDG and MetaReg
	Appendix 2: Computational complexity in one iteration
	Appendix 3: Proof of proposition 1
	References




