Machine Learning (2024) 113:1743-1769
https://doi.org/10.1007/510994-022-06255-z

®

Check for
updates

IA-NGM: A bidirectional learning method for neural graph
matching with feature fusion

Tianxiang Qin - Shikui Tu'® . Lei Xu’

Received: 28 May 2022 / Revised: 10 August 2022 / Accepted: 19 September 2022 /
Published online: 1 November 2022
©The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract

Most existing deep learning methods for graph matching tasks tend to focus on affinity
learning in a feedforward fashion to assist the neural network solver. However, the poten-
tial benefits of a direct feedback from the neural network solver to the affinity learning
are usually underestimated and overlooked. In this paper, we propose a bidirectional learn-
ing method to tackle the above issues. Our method leverages the output of a neural net-
work solver to perform feature fusion on the input of affinity learning. Such direct feedback
helps augment the input feature maps of the raw images according to the current solution.
A feature fusion procedure is proposed to enhance the raw features with pseudo features
that contain deviation information of the current solution from the ground-truth one. As
a result, the bidrectional alternation enables the learning component to benefit from the
feedback, while keeping the strengths of learning affinity models. According to the results
of experiments conducted on five benchmark datasets, our methods outperform the corre-
sponding state-of-the-art feedforward methods.

Keywords Graph matching - Bidirectional learning - Combinatorial optimization - Graph
neural networks

Editors: Yu-Feng Li and Prateek Jain.

P< Shikui Tu
tushikui @sjtu.edu.cn

P4 Lei Xu
leixu@sjtu.edu.cn

Tianxiang Qin
tianxiang_qin @sjtu.edu.cn

Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800
Dongchuan Road, Shanghai 200240, China

@ Springer

http://orcid.org/0000-0001-6270-0449
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06255-z&domain=pdf

1744 Machine Learning (2024) 113:1743-1769

1 Introduction

Graph matching (GM) refers to finding node correspondences between two graphs such
that the similarity between the matched graphs is maximized. To find node correspond-
ences between two graphs, GM usually leverages node-wise and edge-wise information.
When considering node-wise and edge-wise information, GM can be represented in the
following Lawler’s quadratic assignment programming (QAP) form Lawler (1963):

J(X) = vee(X)"Kvec(X),

1
Xe{0,1}™X1=1,X"1=1 M

where K is the so-called affinity matrix (Leordeanu & Hebert, 2005). Solving the general
QAP is known to be NP-hard, and it is difficult to find the global optimal solution for large
graphs. GM has been applied in many fields, such as visual tracking, action recognition,
robotics, weak-perspective 3-D reconstruction, and so on. For a more comprehensive sur-
vey on GM applications, please refer to Vento and Foggia (2013).

Traditional GM methods are mostly developed on predefined, hand-crafted affinity
matrix, which is limited to represent real-world data’s structure. To tackle this issue,
Caetano et al. (2009) introduced free parameters and turned the affinity matrix into a
learnable function. Recently, it was developed in Zanfir and Sminchisescu (2018) to
learn the affinity in an end-to-end deep learning model, and later deep learning frame-
works became popular to build learning models for GM. Typically, a deep graph neural
network is constructed to encode the node-wise and edge-wise structural information
into the affinity matrix, and the affinity is subsequently used in a GM solver, e.g., Hun-
garian algorithm. For example, Wang et al. (2019) relaxed GM as a linear assignment
problem by employing deep graph embedding models to learn intra-graph and cross-
graph affinity functions, while Wang et al. (2021) regarded the affinity matrix as an
association graph and transformed GM to a vertex classification problem, solving GM
in the Lawler’s QAP form directly. However, these methods mainly focus on the design
of the feedforward pipeline, and do not notice the potential benefits of a possible feed-
back from the GM solver to the affinity learning.

In this paper, we take into account not only the assistance from affinity learning to
GM solving, but also the feedback benefits from GM solving. Recently, a general bidi-
rectional learning scheme, called IA-DSM, was suggested in Xu (2019), to solve double
stochastic matrix (DSM) featured combinatorial tasks like GM. The IA-DSM framework
consists of a learning component and an optimization component, and the intermediate
discrete solution from the optimization component is fed back into the learning compo-
nent through a feature enrichment and fusion process. Taking this framework into GM
problem solving, Zhao et al. (2021) proposed a bidirectional learning method, IA-GM,
to impose the output of the feedforward model into the graph embedding to enhance
the affinity learning. Although IA-GM (Zhao et al., 2021) has been demonstrated with
promising improvement over the existing GM methods, it still has several limitations.
First, IA-GM was implemented by relaxing GM as a linear assignment problem, and
whether the bidirectional learning paradigm works for GM in the general Lawler’s QAP
form is unknown. Second, the performance of IA-GM was mainly evaluated on PAS-
CAL VOC keypoint (Bourdev & Malik, 2009), and the generalization ability to other
benchmarks requires further investigations. Third, it deserves more explorations on the
effective ways of circulating the information from the optimization component back to
the affinity learning.

@ Springer

Machine Learning (2024) 113:1743-1769 1745

To address the above issues, we propose a deep bidirectional learning method for solv-
ing GM in the Lawler’s QAP form, under the IA-DSM framework (Xu, 2019). A new
feature fusion technique is employed to enhance the structural patterns using the images
which are constructed via the output of the learning component (i.e. current estimation of
the solution). In this way, each input sample would bring one similar sample in each bidi-
rectional alternation, helping the model to learn better features. Our main contributions are
summarized as follows:

e We propose a deep bidirectional learning method that works for solving GM in the gen-
eral Lawler’s QAP form. Our method employs the DSM given by Sinkhorn algorithm
rather than the hard assignment solution after the computation by Hungarian algorithm,
and construct image-like input in the feature space for the subsequent feature fusion.
In this manner, the constructed features of a node contain information of all possible
matching nodes, and enable the learning component to adjust its matching result in the
next bidirectional alternation.

e We present a gated feature fusion technique to combine the features of the raw sam-
ples in the actual world and their constructed image-like input in the bidirectional alter-
nation. The fused features enforce the learning component to focus more on certain
nodes according to the guiding information from the intermediate matching output by
Sinkhorn algorithm. In comparisons with Zhao et al. (2021), our bidirectional learning
employs a longer feedback path on the features directly.

e We evaluate the proposed method and the existing state-of-the-art ones on four image
benchmark datasets and one QAPLIB (Burkard et al., 1997) dataset. Experiments
demonstrate that our method is able to improve the matching accuracies consistently
and robustly. We also extend IA-GM’s bidirectional learning paradigm directly to the
QAP form, and empirical analysis indicate that the IA-DSM framework can be flexibly
implemented and still has room to improve for solving GM.

2 Related work
2.1 Progresses in learning GM

Traditionally, researchers viewed building the affinity model and finding the solution as
two separate steps. They focused on the latter, seeking approximate solution while leaving
the affinity model hand-crafted, for example, the elements of the affinity matrix K are cal-
culated according to the fixed Gaussian kernel with Eucildean distance:

[1f; = 117
K, j» = exp (jT))

where f;;, f,, are edges’ feature vectors of two graphs respectively. Caetano et al. (2009)

first proposed a method to learn the affinity model. Later in 2013, Cho et al. (2013) defined
a joint feature map by aligning node-wise and edge-wise similarities into a vectorial form,
and introduced weights to all elements of the feature map. However, these predefined meth-
ods tend to have limitations in representing real-world data’s affinity.

Recently, with the development of deep learning, great progresses have been made
in GM. Zhou and De la Torre (2015) proposed a novel closed-form factorization of the

@ Springer

1746 Machine Learning (2024) 113:1743-1769

pairwise affinity matrix, making it easier to incorporate global geometric transformation in
GM. Meanwhile, there is no need to calculate the affinity matrix explicitly as its structure
is decoupled. Then, the end-to-end model proposed by Zanfir and Sminchisescu (2018),
which learns an n? x n*> quadratic affinity matrix to guide the GM optimization, presented
an efficient way to back-propagate gradients from the loss function to the feature layers.
Wang et al. (2019) employed deep graph embedding networks to encode structure affinity
into a node-wise affinity matrix so that GM is relaxed as a linear assignment problem, and
its devised permutation loss is more powerful than the offset loss used in Zanfir and Smin-
chisescu (2018). Later, Rolinek et al. (2020) replaced Graph Neural Network (GNN) with
SplineCNN (Fey et al., 2018) to process features, pushing the accuracy on PASCAL VOC
keypoint up to around 80%. However, these works can not directly deal with the general
Lawler’s QAP form when individual graph information is unprovided as QAPLIB (Burk-
ard et al., 1997). Therefore, following these work, Wang et al. (2021) proposed Neural
Graph Matching (NGM) network by translating the GM task to a vertex classification task
to directly solve it in the QAP form, as well as NGM-v2 by using SplineCNN for feature
refinement.

2.2 Bidirectional learning

Bidirectional intelligence was recently reviewed in Xu (2018). In the bidirectional intel-
ligence system, there are two domains defined: A-domain and I-domain. A-domain denotes
the Actual-world and I-domain denotes the Inner-space. Between the two domains, there
are two mappings: A-mapping (from A-domain to I-domain along the inward direction)
and I-mapping (from I-domain to A-domain along the outward direction). A general bidi-
rectional learning scheme, called IA-DSM, was first sketched in Xu (2019), under the
framework of the system. Featured by an [A-alternation of A-mapping and I-mapping, the
IA-DSM is to solve DSM featured combinatorial tasks. For instance, Xu (2019) suggested
that traveling salesman problem can be solved in a bidirectional way by employing CNN
as A-mapping to obtain a policy and its goodness from the current state, thus guiding the
I-mapping for iterative learning. Zhao et al. (2021) provided a GM implementation of the
IA-DSM scheme called IA-GM, which follows Wang et al. (2019), relaxing GM as a linear
assignment problem. The A-mapping is implemented by an SR-GGNN, and the [-mapping
consists of Sinkhorn algorithm and Hungarian algorithm.

Our work falls in the framework of IA-DSM, but has several differences. Most rencent
deep learning GM methods (1) learn affinity matrix from features and (2) find a solution
based on the affinity matrix. Zhao et al. (2021) implements the IA-DSM framework by
(3) imposing the feedback to graph embedding to enhance the affinity learning, and our
method implements the IA-DSM framework by (4) employing the feedback to perform fea-
ture fusion. Therefore, the key difference between our work and Zhao et al. (2021) is the
bidirectional learning fashion. Unlike Zhao et al. (2021), we lengthen the feedback path to
assist the learning component by affecting features directly. Meanwhile, we employ neural
network solver of state-of-the-art models and Sinkhorn algorithm as the A-mapping, and
we regard pseudo feature generation and feature fusion as the I-mapping. Moreover, we
implement IA-DSM to solve GM in the Lawler’s QAP form directly while (Zhao et al.,
2021) solves GM by relaxing it as a linear assignment problem.

@ Springer

Machine Learning (2024) 113:1743-1769 1747

(I-a)*F

P = Sinkhorn (B)

* * — e — T
B = Solver (E ,Fz) K =PE,FE =PF @

F,F, = Fusion (F,,F,,F,F,) =

| F

[]
|
1

S

| Concat ‘

l Feature Extraction |

(a) Overview of the proposed method

(¢) The gating network

Fig. 1 An overview of IA-NGM. a The pipeline of IA-NGM for graph matching problem, where Solver
represents a neural network solver, Fusion is implemented by Eq. (10); b The Fusion process of the pipe-
line; ¢ The gating network for adjusting the fusion weights

3 Methods
3.1 Overview of our method

We propose a bidirectional learning method for solving GM in the general form of Lawler’s
QAP. Our method is developed under the IA-DSM framework (Xu, 2019) by adopting NGM
(Wang et al., 2021) as the network backbone, and thus we call it as IA-NGM. An overview
of our method is given in Fig. 1a. IA-NGM consists of a learning component (black arrows)
and an optimization component (red arrows) that produces feedback into the learning part.
The learning component takes two types of feature maps as input. One type is the primal fea-
ture map which is extracted from a real-world image by a CNN-based extractor (e.g., VGG-
16 (Simonyan & Zisserman, 2014)). The learning component learns the unary and quadratic
affinity across graphs through a neural network solver, and outputs a score matrix B whose
entries represent the confidences of node correspondences between two graphs. Then Sink-
horn algorithm is performed to get a soft assignment matrix P, where its entries indicate how
likely the corresponding two nodes are matched to each other. The soft matching solution P
is used to construct pseudo feature maps for the two input real images, and the pseudo feature
maps are circulated back into the learning component via a linear feature fusion module. The
fused features are fed into the neural network solver for further learning, and the affinity learn-
ing is augmented on the pseudo feature maps which contain the deviation information of the

@ Springer

1748 Machine Learning (2024) 113:1743-1769

current matching solution to the ground-truth correspondences. The feedback from the current
matching status completes an [A-alternation under the bidirectional intelligence framework
(Xu, 2018). The key difference between our IA-alternation and the one in Zhao et al. (2021) is
that the affinity learning is more involved in the alternating path, enhancing the representation
learning in a more through way.

3.2 Feature extraction and neural network solver

For two input images, we construct two graphs G, , G, using the annotated key points as graph
nodes. We adopt VGG-16 architecture to extract their node features U,, U, from layer relu4_2,
edge features F, F, from layer relu5_I1 when using NGM’s neural network solver. We use
layer relu4_2 and relu5_1 to extract init node features and use relu5_3 to extract global fea-
tures g when using NGM-v2’s solver.

The neural network solver can be viewed as a function as follows:

B = Solver(F7},F5), 3)

where B is the score matrix for node-wise correspondence between G, and G,, and F{, F;
represent the features of two graphs, respectively, including node features U, U,, edge fea-
tures F,, F,, and global features g if available. In this paper, we adopt NGM and NGM-v2
(Wang et al., 2021) to learn the score matrix.

3.3 Pseudo feature generation

Following (Adams & Zemel, 2011), Sinkhorn algorithm is computed as follows:

S, = Si[17S,17", kmod2 =0
k=SS, kmod2 = 1 @

where k =0, 1,2, ... denotes the iteration serial number. Then, the soft assignment matrix
P is obtained by Sinkhorn procedure taking the score matrix B as input,

P = Sinkhorn(B), ie., S, =B. %)
Then, the hard assignment matrix X € {0, 1 }"*" is calculated by the Hungarian algorithm:
X = Hungarian(P). (6)

If the matching solution X is close to optimum, the permuted features of one graph will be
similar to those of the other graph. Specifically, define the pseudo node features as:

U, =XU, U,=X"U,, 7

where U;, U, € R™¢ are primal node features extracted directly from the input images.
Generally, we calculate the pseudo overall features as follows:

F, =XF,, F,=X"F,, (8)

where F,,F, are primal overall features extracted from the input images. It is noted that
the pseudo features depend on the accuracy of the matching solution X. If X is optimal,
the discrepancy between F; and F; is minimized. However, at the beginning of the training

@ Springer

Machine Learning (2024) 113:1743-1769 1749

process, the intermediate solution X is not the optimal one, including the correctly matched
part and the error part. The matched part does not affect the affinity learning, but the error
part would change the affinity.

Since X by Eq. (6) is a binary permutation matrix, the pseudo feature generation by
Eq. (8) is not flexible enough to continuously capture the learning status of the model.
Moreover, it does not take into account the uncertainty of the learning process which is
large at the beginning. Therefore, we further replace X in Eq. (8) with the soft assignment
matrix P, and get

F, =PF,; F,=P'F,. 9)

In this way, the constructed pseudo features are more sensitive to deviation of the learning
output from the optimal solution, and they are helpful and more effective in guiding the
learning process towards the optimal solution.

3.4 Gated feature fusion

We present a linear fusion scheme to integrate the pseudo features back into the learning
component, as illustrated in Fig. 1b:

Fi=aF, +(1-F,, F;=aF,+(-aF,, (10)

where we have constrained the sum of the combining coefficients a and 1 — a to be one.
The obtained FTF; are the features augmented with deviation information of the cur-
rent GM solution from the optimum, and they are fed into Eq. (3) to improve the affinity
learning.

In practice, the coefficients can be predefined according to the empirical experience.
However, prefixed coefficients may not adapt to the learning dynamics well because fea-
ture extractors like SplineCNN may change the distribution of the primal features as learn-
ing proceeds. We propose a two fully-connected (FC) layer network with feature channels
[, =1024,1, = 32, which is shown in Fig. lc, to learn the weight & according to the cur-
rent state of the input. It is worth noticing that the Feature Extraction in Fig. l1a and c is
same, but we use all features extracted in Fig. 1a and only use global features in Fig. lc.
The global features g,, g, are computed as the relu5_3 layer of VGG-16 for the two input
graphs G,, G,, as described in Sect. 3.2. Mathematically, the gating network is computed as
follows:

a = tanh(FC(tanh(FC(concat(g,, g,))))), (11)

where concat denotes the concatenation operator.

3.5 IA-alternation

With the gated fusion between the primal features and the pseudo ones by Eq. (10), it com-
pletes the circle of IA-alternation, i.e.,

PO = Sinkhorn(Solver(F®, FiV)), (12)

@ Springer

1750 Machine Learning (2024) 113:1743-1769

loss

-_— 3 — . _ . ,
IA-alternation F IA-alternation F 1A-alternation //function

H s
H c
w4 5
o (I3 | [0/}
e o
<5 . R *
SR T B X
sl =]
Fig.2 Unfolded structure of the proposed network during training
F'“Y = Fusion(Construct®®,F:®)), i€ (1,2} (13)
where k = 1,2, -+, K represents the serial number of the [A-alternations and Construct

is implemented by Eq. (9). At the beginning, there is no pseudo features, and we set
FT(I) =F,, Fz(l) = F, or equivalently setting & = 1in Eq. (10). The soft assignment matrix
P® encodes the cross-graph affinity via the neural network solver, and the gated feature
fusion guides the learning in the next alternation to pay more attention to the matching
pairs that have large deviation from the optimum in the previous alternation. As a conse-
quence, the [A-alternation benefits the GM solving model from both directions. After the
last [A-alternation, the predicted assignment matrix is calculated by Eq. (6) as:

X* = Hungarian(P®). (14)

3.6 Loss function

We leverage the ground-truth correspondences to supervise the learning process. We adopt
the permutation loss (Wang et al., 2019), which has been proved effective for graph match-
ing tasks, as the loss function:

1 1 (K) t (K)

where X§ = [xg.’],x‘fjt € {0,1} represents the ground-truth assignment matrix, and

P® = [p;.K)] is the soft assignment matrix of the last IA-alternation by Egs. (12) and (13).
We illustrate the computational procedure in Fig. 2. It is noted that, in the end-to-end train-
ing, the Hungarian algorithm is only used in the end to get the output matrix, while Sink-
horn is used in each feedback loop to generate the intermediate solution matrix. The loss
function by Eq. (15) is applied on the soft assignment matrix output by the K-th Sinkhorn
block, before the Hungarian algorithm is activated in the end. In testing, the model follows
the blue arrow in Fig. 2 to get X*, and there is no back propagation involved.

@ Springer

Machine Learning (2024) 113:1743-1769 1751

4 Experiments

We evaluate our models on five benchmark datasets. Specifically, in line with Wang et al.
(2021), we use PASCAL VOC keypoint and Willow ObjectClass (Cho et al., 2013) as
benchmark datasets, to compare with previous closely-related GM methods: (1) GMN
(Zanfir & Sminchisescu, 2018) learns affinity functions, (2) PIA-GM (Wang et al., 2019)
learns intra-graph affinity, (3) PCA-GM (Wang et al., 2019) learns cross-graph affinity, (4)
IA-GM (Zhao et al., 2021) implements the IA-DSM framework by relaxing GM to linear,
(5) BBGM employs SplineCNN (Fey et al., 2018) in GM and (6) NGM & NGM-v2 (Wang
et al., 2021)) solve GM in QAP form directly.

For further exploration on the benefits of different bidirectional learning fashion, we
also include IMC—PT—SparseGMl and CUB2011 (Wah et al., 2011) as benchmark datasets,
to compare with NGM and NGM-v2 (Wang et al., 2021), and IA-GM (Zhao et al., 2021).
Our models are named as IA-NGM and IA-NGM-v2, which correspond to the versions of
employing the neural network solvers of NGM and NGM-v2 respectively. We set the value
of a in feature fusion by Eq. (10) to be 0.6 for IA-NGM according to our empirical experi-
ence, and leave it to be learned by the gating learning network in IA-NGM-v2. We set the
number of [A-alternation to be 3 for [A-NGM and 2 for IA-NGM-v2, because a big num-
ber of [A-alternations would possibly lead to over-smoothing. For fair comparisons with
IA-GM, we extend it to be IA-GM-v1 and IA-GM-v2 by modifying the network backbone
from the weights-shared residual gated graph neural network (SR-GGNN) to be NGM and
NGM-v2 respectively.

In line with Wang et al. (2021), the neural network solvers of IA-NGM and IA-NGM-v2
both use a three-layer GNN with feature channels /;, = [, = [; = 16 to perform association
graph embedding. The maximum iteration number is set to 20 for Sinkhorn algorithm. The
initial learning rate of the neural network solver in IA-NGM/IA-NGM-v2 and the gating
network for a in Eq. (10) starts at 103 and decays by 10 every 10,000 steps. The learning
rate of the feature extractor is set to 2 X 107 in IA-NGM-v2. All experiments are con-
ducted on a Linux workstation with Titan XP GPU.

4.1 Results on PASCAL VOC keypoint

The PASCAL VOC keypoint dataset, containing 20 semantic classes with annotated exam-
ples, is challenging as the images differ in size and the number of keypoints varies from 6
to 23. We count the keypoints of samples for each class in Fig. 3. It is observed that some
classes contain samples of more than 10 keypoints while others may have only a few.

The matching accuracies on PASCAL VOC keypoint are reported in Table 1. Our bidi-
rectional methods all outperform the corresponding feedforward baselines, indicating
that the feedback of the pseudo features is beneficial to the affinity learning. Specifically,
IA-NGM improves the mean accuracy by 2.5% with respect to NGM, while IA-NGM-v2
improves the performance by 0.8% with respect to NGM-v2. Meanwhile, IA-NGM and IA-
NGM-v2 outperforms IA-GM-v1 and [A-GM-v2, respectively, indicating that the affinity
fusion by Zhao et al. (2021) is not so effective as the proposed feature fusion by Eq. (10).
The NGM-v2 based methods are superior to the NGM-based ones, with about 15% incre-
ment contributed mainly by using SplineCNN as the feature extractor. The increment 2.5%
by IA-NGM is more than 0.8% by IA-NGM-v2, probably because it becomes more difficult

! https://github.com/Thinklab-SJTU/ThinkMatch#available-datasets

@ Springer

https://github.com/Thinklab-SJTU/ThinkMatch#available-datasets

1752 Machine Learning (2024) 113:1743-1769

1000 samples 4 aero bike bird boat
0 samples J\

1000 samples 4 bottle bus car cat
osamples ,/\/\ WA i

1000 samples chair cow table dog
0 samples et

1000 samples - horse mbike person plant
0 samples = > /\

1000 samples - sheep sofa train tv
0 samples T E——— JATHE /\“‘ T

10 20 10 20 10 20 10 20

Fig.3 Keypoint number distribution of PASCAL VOC dataset. Each of 20 subfigures corresponds to a
semantic class. The name of each class is marked at top-right of the subfigure. The x-axis denotes the num-
ber of keypoints in a graph, and the y-axis denotes the number of samples containing corresponding num-
ber of keypoints

to improve the performance from a very high level. Looking into the detailed accuracies for
each class in Table 1, we observe that our bidirectional methods can make the neural net-
work solver learn better on its weak classes while keeping its comparable results on other
classes. For example, on the class “chair", IA-NGM-v2 exceeds NGM-v2 by 11.7%; on the
class “table", IA-NGM achieves a 29.9% improvement over NGM.

To evaluate the performance on each class, we train and test NGM, IA-NGM, NGM-v2
and IA-NGM-v2 on individual classes, and the results are shown in Table 2. The results are
consistent with Table 1. IA-NGM-v2 exceeds NGM-v2 on the class “chair" and “sofa" by
over 10%, while NGM-v2’s in-class accuracy is lower than its cross-class accuracy. Some
classes can have similar features with other classes so that NGM-v2’s learning is enhanced
when trained on all classes, while IA-NGM-v2 already fused the similarity into features so
that it has similar in-class and cross-class performances.

Moreover, IA-GM/IA-GM-v2 are comparable to IA-NGM/IA-NGM-v2, respectively,
which confirms the effectiveness of the feedback and fusion scheme in Zhao et al. (2021).
For the performance on 20 classes, the accuracy gaps between the two methods are mostly
small except for the class “table” where IA-NGM-v2 exceeds IA-GM-v2 by 20.3%. We
also notice that the accuracies on the class “aero” and “person” remain relatively low,
because the images of the two classes have a wide range of keypoints, making it very dif-
ficult to learn.

@ Springer

1753

Machine Learning (2024) 113:1743-1769

PIOq UI 9IE SJ[NSaI Isog

608 €76 996 S6L SLL S86 8S9 VLL TLL 89L ¥T6 €LL TL9 SLL L6S 96 168 ¥6L O¥L €L S19 (SIN0) ZA-NON-VI
808 I'to +8 69L 98L 886 L'S9 L'SL T'6L 008 1TL S6L 1€9 618 006 6¥6 988 86L 108 6EL 879 (SMO)ZA-IND-VI
1’08 T¢6 L96 LSL LLL LL6 9T9 T6L T08 88L S68 8LL ¥SS 86L LL8 9¢6 €L8 88L 9LL TIL 819 TA-INDN
06L 6€6 OVv6 OLL €LL T8 TSS9 I'SL TIL 68L 9¥9 T6L 89S TO8 S68 0Ov6 +'L8 0O6L L6L T'IL 619 WOdgd
999 116 018 99 L69 €18 SSy S€9 6€9 €99 LvL 999 €SS TOL LOL 88L 86L 6¢S 1S9 €L9 S0S (s10) WON-VI
Y9 ¢88 G6L ¥TS TS89 ¥9L OLP 67T9 ¥'S9 LS9 SS9y OLY LTY LOL SEL T9L §LL 99§ TS9 S6S 9€S (SMO)[A-ND-VI
I'v9 T88 T6L €S9 €69 I'LL 9SSy 6€9 619 €09 80F +¥99 [I'Iy T8 9€L I'LL 86L ¥ES 6LS S€9 108 INON
999 606 S8L ¥6S 180 0T8 6%y 199 1L9 1I'S9 9¢L LS9 68 TTL 08 I'vL T08 09 1€9 999 9IS WD-VI
8¢9 606 LI98 SLS V¥L9 GLL 6%y 879 689 €19 9¢9 §S9 LEE ¥LI §E€9 6LL 69L 6Ly 8S9 0SS 60V INOD-VDOd
0¢9 106 LT8 S6S €V¥9 TO8 6cy I'T9 L'L9 LT 8T9 669 ¢€€E TSS9 965 8SL 0SL 6'1S 609 865 SI¥ NO-VId
¥79 vI6 T¥8 66F 089 T8L TLE 865 119 865 699 €19 T6E 6%9 ¥L9 TOL T6L 08y €09 965 91y NIAD
ueoly AL urer] ejos doay§ Jueld uosidd OMIQN 9SIOH Sog o[qel, MmoD) IeyD) IJeD) IB) sng oplog Jeog pig oyig o010y PO

jurod£ay DOA [eosed uo (%) Aoeinode SuyoeN | 3djqel

pringer

As

1754 Machine Learning (2024) 113:1743-1769

Table 2 In-class performances

on certain classes of PASCAL Class NGM TIA-NGM NGM-v2 TA-NGM-v2
VOC keypoint Bottle 747 85.8 88.5 933

Bus 79.4 79.6 924 927

Car 79.4 82.1 917 89.9

Cat 72.1 65.8 754 732

Chair 417 474 55.8 731

Dog 58.8 55.8 735 728

Sofa 725 67.9 63.1 75.9

Train 89.9 90.9 95.7 97.4

Mean 71.0 722 79.5 83.5

Best results are in bold

Table 3 Matching accuracy (%)

on Willow ObjectClass Method Car Duck Face m-bike w-bottle Mean
GMN 679 767 998 69.2 83.1 79.3
PCA-GM 87.6 83.6 1000 77.6 88.4 87.4
IA-GM 94.1 899 100.0 83.1 94.1 92.3
NGM 842 77.6 994 76.8 88.3 85.3

IA-GM-v1 (ours) 95.1 90.3 1000 94.7 94.5 94.9
IA-NGM (ours) 944 90.8 1000 954 95.7 95.3
BBGM 96.8 89.9 1000 99.8 99.4 97.2
NGM-v2 97.4 934 1000 98.6 98.3 97.5
IA-GM-v2 (ours) 964 93.7 100.0 99.8 99.0 97.8
IA-NGM-v2 (ours) 96.4 963 100.0 100.0 100.0 98.5

Best results are in bold

4.2 Results on willow ObjectClass

Willow ObjectClass, containing 5 categories and all instances in same class share 10 distinct
image keypoints, is easier than PASCAL VOC keypoint for the GM task. The results are given
in Table 3. We see that our bidirectional methods outperform their corresponding feedforward
baselines, which is consistent with the results in Table 1. In particular, the mean accuracy
of IA-NGM is 10% higher than NGM. Although the mean accuracy of NGM-v2 is already
very high at 97.5%, IA-NGM-v2 still improves by a 1% increment to 98.5%. IA-NGM and TA-
NGM-v2 are again separately better than IA-GM-v1 and IA-GM-v2, consistently indicating
that our gated feature fusion scheme is more effective than the fusion scheme in Zhao et al.
(2021).

4.3 Results on IMC-PT-SparseGM
IMC-PT-SparseGM is developed based on Image Matching Challenge dataset (Jin et al.,

2021), which contains 16 classes of images of popular landmarks. We use 3 classes for testing
and the others for training. Due to the limit of memory, we set the batch size to 2. The results

@ Springer

Machine Learning (2024) 113:1743-1769 1755

Table 4 Matching accuracy (%) on IMC-PT-SparseGM

Method Reichstag sacre_coeur st_peters_square Mean
PCA-GM 73.2 429 44.5 53.5
IA-GM 83.5 63.9 78.2 75.2
NGM 97.8 76.1 87.4 87.1
IA-GM-v1 (ours) 97.9 73.3 84.8 85.3
TIA-NGM (ours) 98.2 77.2 87.1 87.5
NGM-v2 99.2 78.4 87.6 88.4
IA-GM-v2 (ours) 99.7 79.4 87.9 89.0
IA-NGM-v2 (ours) 99.3 80.9 89.1 89.8

Best results are in bold

Table 5 Matching accuracy (%) on CUB2011

Method PCA-GM IA-GM NGM IA-GM-vl IA-NGM NGM-v2 IA-GM-v2 IA-NGM-v2

Accuracy 93.8 95.2 940 928 94.7 96.3 97.3 97.4

Best results are in bold

in Table 4 again confirm the advantages of our bidirectional learning methods over the feed-
forward baselines. Both IA-NGM-v2 and IA-GM-v2 outperform NGM-v2, while [A-NGM-
v2 achieves the highest mean matching accuracy.

4.4 Results on CUB2011

The CUB2011 dataset by Wah et al. (2011) contains 11788 images of 200 subcatego-
ries belonging to birds, 5994 for training and 5794 for testing. Detailed annotations are
provided for each image, including its subcategory label, 15 part locations, 312 binary
attributes and 1 bounding box. Unlike other datasets we used, all images of CUB2011
are regarded as one class only. The matching accuracies are reported in Table 5. We can
find that the bidirectional method TA-NGM-v2 improves the accuracy by about 1.1% over
NGM-v2, while IA-NGM is slightly better than NGM.

To summarize the results on the four image datasets, i.e., PASCAL VOC keypoint, Wil-
low ObjectClass, IMC-PT-SparseGM, and CUB2011, our bidirectional learning methods
IA-NGM and IA-NGM-v2 are both able to improve the matching performance with respect
to their baselines NGM or NGM-v2. Generally, the NGM/NGM-v2 based formulations of
GM in the form of Lawler’s QAP is relatively more powerful than the relaxed linear assign-
ment version and IA-NGM-v2 is the best for all four datasets.

4.5 Results on QAPLIB

We also evaluate our bidirectional learning method for pure QAP tasks on QAPLIB bench-
mark,? in comparisions with RRWM (Cho et al., 2010), SM (Leordeanu & Hebert, 2005),

2 https://www.opt.math.tugraz.at/qaplib/

@ Springer

https://www.opt.math.tugraz.at/qaplib/

1756 Machine Learning (2024) 113:1743-1769

3.5 1 RRWM
-—- SKJA
--- NGM
3.0 {| -~ NGM-GSk
-=- IA-NGM
2.5
[
2
£
3
2 20
S
o
[
N
= 15
E A Ay
S RS P
4 /v ; \
1.04 / T —— / NN
) / - \7 % 0
e oy
\
——————— /' al O
0.5 Laennm—— 2 = ki P 8 \
______ el SO
S L Sk L S s o S DN A\
0.0 o Tttt »

bur26a
bur26b
bur26c
bur26d
bur26e
bur26f
bur26g
bur26h
chrl2a
chr12b
chrl2c
chrl5a
chrl5b o
chrlsc
chrlg8a
chr18b
chr20a
chr20b
chr20c
chr22a
chr22b
chr25a
els19
escl6a
escl6b

Fig.4 Normalized objective score (lower is better) of different methods on selected QAP instances due to
the space limit. The instances are sorted by alphabet order

SK-JA (Kushinsky et al., 2019) and NGM/NGM-G5k (Wang et al., 2021). As the affinity
matrix of pure QAP instances are constructed using Kronecker product rather than fea-
tures of images, our feature fusion method is not applicable. Therefore, we just try one
sharping method like Eq. (9), regarding the input matrix as feature map. The final solution
is obtained using the original input after three [A-alternations during training. Due to the
limit of memory, we can only run experiments on 100 instances, and the settings are dif-
ferent from NGM-G5k’s suggested settings. We train one model for each category, and use
the normalized objective score (lower is better) as the evaluation metric, i.e.,

solved_score — upper_bnd

norm_score =

SM_score — upper_bnd (16)
where the upper bound (primal bound) is provided by the up-to-date online benchmark,
and the baseline solver is given by SM (Leordeanu & Hebert, 2005).

In spite of these difficulties, our method still gets lower objective scores on 45 instances
than NGM-G5k according to Table 10 in the Appendix 1. Examples of the results are visu-
alized in Fig. 4. It is noted that the result on kra32 is abnormal. We have checked the data,
and find that the data might be problematic, because the ground truth objective score can-
not be obtained by the ground truth solution and two input matrices. Meanwhile, although
the data of ste36a has the same problem, its result is normal. We also found the orders of
two input matrice of the kronecker product of several instances are reversed which seems
have little influence on the result.

4.6 Study on variants of our method

In this section, we investigate the performances of different variants of our bidirectional
method, to explain why we choose the linear mixture as our feature fusion technique for
NGM'’s neural network solver and why we choose the soft assignment matrix P for feature
fusion rather than the hard assignment matrix X.

@ Springer

Machine Learning (2024) 113:1743-1769 1757

Table 6 Matching accuracy (%) on PASCAL VOC keypoint when choosing different numbers of IA-alter-
nation

Number of IA-alternation K = 0 (baseline) K=1 K=2 K=3

Mean accuracy 64.46 65.62 66.61 66.02

Table 7 Matching accuracy (%) Method

on PASCAL VOC keypoint Zg’f;rl ;’If IA- * Mean
NGM (baseline) K=1 - 63.18
Concatenation K=2 - 63.87
Linear mixture K=2 0.6 65.20
Linear mixture K=3 0.6 65.70
Linear mixture K=4 0.6 65.03
Linear mixture K=5 0.6 65.32
Linear mixture K=6 0.6 65.97
Linear mixture K=17 0.6 25.13
Linear &concat K=2 0.6 64.61

Best results are in bold

Table 6 provides the results of experiments on the choice of the number of IA-alter-
nations of IA-NGM. To avoid the over-smoothing problem, we only vary the number of
[A-alternations from 2 to 4. We observe that the model of 3 [A-alternations achieves the
highest performances.

4.6.1 Exploration on IA-alternation and feature fusion technique

We have tried several ways of feature fusion, including the linear mixture, concatena-
tion, and the combination of these two approaches. The mean matching accuracies are
reported in Table 7, which also includes the results when the number of [A-alternation
varies. We observe that most feature fusion models improve the performance except
for the case of 7 IA-alternations and linear mixture, which leads to the over-smoothing
problem. The input feature is fused in every IA-alternation, and after too many times of
[A-alternation, the features of nodes and edges tend to be close to each other due to the
GNN used in the neural network solver, where all the nodes share the same transition
function and the same output function (Uwents et al., 2011). From the second and the
third row, we can see that the linear mixture outperforms the concatenation by 1.33%,
and from the third and the last row, we can find that the linear mixture also outperforms
the combination method. Therefore, we choose the linear mixture for feature fusion in
IA-NGM, and also in IA-NGM-v2 for consistency.

Meanwhile, the choice of a in Eq. (10) is important, as it affects the influence of pseudo
features on affinity learning. Inappropriate value may cause the fused features to deviate
from the original correct one. As the learning proceeds, the uncertainty conveyed in pseudo
features gradually changes. Therefore, a fixed @ may limit the performance of the model.
As in Table 8, the case of determining « via a learnable gating network can adapt the learn-
ing dynamics well and outperforms the case of fixing & at a certain constant.

@ Springer

1758 Machine Learning (2024) 113:1743-1769

Table 8 Matching accuracy (%) on four image datasets when choosing different fusion weights while the
number of IA-alternations is K = 2

a in Eq. (10) PASCAL VOC Willow IMC-PT- CUB2011
SparseGM

1 80.2 97.5 88.4 96.3

0.5 78.4 96.5 84.8 97.0

0.75 79.5 98.5 86.4 96.8

0.8 75.7 97.6 86.1 97.3

Gating learning network 80.9 98.5 89.8 97.4

Best results are in bold. Notice that « = 1 acutally degenerates our algorithm to NGM-v2

Table9 Average accuracy on
PASCAL VOC of IA-NGM epoch 12 3 4 5 6 7 8 9 10
using Por X for feature fusion w336 576 510 531 551 56.1 568 594 594 559

P 623 64.5 639 653 645 645 649 648 656 66.3

4.6.2 Choice of feedback matrix

Table 9 shows the average testing accuracies of the first ten epochs on PASCAL VOC key-
point of IA-NGM using the soft assignment matrix P or the hard assignment matrix X for
feature fusion. It is found that IA-NGM using P learns faster and better than IA-NGM using
X. As aresult, we choose P for feature fusion in IA-NGM and also in IA-NGM-v2.

5 Conclusion

We have proposed a deep bidirectional learning method named IA-NGM for graph matching
problem. Our method is featured by an [A-alternation of a learning component for affinity
learning and an optimization component that produces feedback via feature fusion into the
affinity learning. The feedback is leveraged to construct the feature maps by a gated feature
fusion of not only raw features directly extracted from images, but also pseudo features that
convey the deviation information of the current optimization output from the ground-truth
optimum. We devise a gating network to instruct the feature fusion based on the global fea-
tures of two graphs, and the gating network adapts to the learning dynamics well for improved
performance. Experimental results on benchmark datasets indicate that our method can fit two
different neural network solvers appropriately, and demonstrate that the bidirectional learning
scheme is effective to further improve the matching accuracies. Last but not least, we also
find that our bidirectional learning fashion can be applied effectively on pure QAP tasks of
QAPLIB benchmark, and there is still room for further improvement.

Appendix 1
Detailed results on QAPLIB

See Table 10.

@ Springer

1759

Machine Learning (2024) 113:1743-1769

76T 6T 962 90¢ ore 80¢ ¥0€ 76 8I¢ 6T Q91989
9L 8L 8 98 8 88 001 08 86 89 ©910S9
TLLITIET 87L6C0LT 9€£0098C YOSLYTIE 7980£8€S 082088+€ 06vTH081 TH9T991L 911L08¢€ 8¥STITLI 61510
876C1 8Y911 91€1 8SLET $0LIT 05681 SIS 090¢€ 9TS1T 96L€E ©GTIYD
8756 9006 9616 0€€01 78811 9L8S1 $£99 859¢1 P6TET 619 qzTId
7688 876 09101 8LLOT P6EST 0T¥91 8526 768651 TEL9T 9619 eTTI
9TLLS 0LL6Y 78£99 78199 0r0€01 8CISTI 234114 TLSS61 90%CIl (42841 20z
o16¥ 998 9T¥S 9618 TTss 7966 00¥€ 89T+ 7996 86CC 0TIy
8GLS 8LIS 9799 78¢8 9156 8TLOT yoor 0L6ET PSITI T61¢ eOTIYO
Wt ¥0S¢T 960¢ 0Ev€ ogey 018% 069C 768¢ YSoP PeST a8 1Yo
Ph6ee 174133 ¥STIY Y1808 T19¢$ 920¢8 SH6L1 8TESTI 908%6 86011 eRIYD
8SLIT 061+C 8759C 43323 81¢8Y 8968¢ #0S6 8ELOL 8619 056 o6 TP
TeENT 8%0CC 94$8¢C 9¢61¢ 990¢S T80¢S 066L 965611 OEVLL 066L Qg Ty
T86€C 0T 8LYIE PIP6E 9PLIS TLT0S 91911 0L806 $60LL 9686 BGTIYD
TEes8T 9E91 YLITT 09S1€ T091¢ 144343 9STIT 0€10S YOVLS 9GITI o7y
Y91 78611 YELYT 8TSIT 8TSIT 96£6¢ L6 098¢€L 98¢€9% L6 a1
02961 ov6l 8€10C 08L6¢ 0L9T€ 96SLT 7556 ¥2ocy TELOS (4993 ez
01668€L 9988H€L 8LYLIVL LO6GE6YL LO6E6YL 9S0LIL 6TEESTL LLOTLLS Y69€SL8 859860L y9zing
LLOTSE0T 6EVEEYOT YOTLLYOT TLTY6901 YLTH6901 S9155801 9LLYTI01 0£89¢€T1 11189121 TLILTTOL 39ginq
8806£6€ T1L6¥6€ $90616¢ 6570S0Y 7607801 LL6YS6E 1LO6L6E 86181 ¥T8ETLY YHOT8LE J9zing
S818HSS THI9€SS 6198£9¢ 8805596 $€0958¢ 7029995 I¥T6€SS 886199 620T1LY 6L898€S 29zmq
LEG6SP6E LTET96€ £80596¢ 680LLOY 60LLETY LYT¥66€ TS0S86¢ YL68LIY SHI6Y9Y STTIT8E p9zng
6hP16SS $90809¢ 8TSTLIS THS8TLS 8L0T68S 1¥98€9¢ $996£9S 966¥L9 TIPLESY S6L9THS 29zinq
9EEPT6E €V6LT6E 69LEV6E 9869901 G810T1Y 9TE90Y £TESOY €8CIvLY TLLO6YY TS8LISE q9zinq
6L689SS YLLTTIS £5£059S €7£059S L8T8T8S 879%89¢ £68889¢ 181£999 0FEEESY 0L99T¥S egzIng
INON-VI ASO-IWON 00SD-INON 0SD-INON SD-INON NON VIS AR NS Joddn
uhoow dueisuy

dITdVO UO (19119q ST IomO[) 21095 9ATIOR[qO Aq sI[nsaI ooueIsuI-19g QL d|qel

pringer

As

Machine Learning (2024) 113:1743-1769

1760

L€9601 §65601 8¥L601 788601 890011 760011 9S80T 89¥011 198601 8ICLOIT e(gedi|
ELTTTST 968¢eCSI COITEST 1€20esT €ESTSCI YOCEYST PreolcI 60116ST 8CI68S1 c0ICl qogedr|
8¥C€09 8¥8109 99L109 669019 9$¥079 969919 I8S9LY S6CLY9 CTLT8T9 18S9LY qotedr|
cLyCe ysyee Y0STE Tecsee 869¢¢E 999¢¢ 8€ESTE 989C¢ 9¢LTE 8¢€SIE eQpedi]
S0S881 LO9L8T LS0681 yeolel £e9161 9¢¢eTol 9TPIST SLLTOCT 231! Pra 489! qogedr|
9Ig¢ee gelee SI8¢e c06¢¢€ 0L6VE L06EE 9L0LT 9€T8¢E 2059¢ 9L0LT qogedr|
6¥8¢ £68¢ 798¢ 168¢ 06¢ 6C6¢ £€89¢ 0r6¢e 9¢6¢ £89¢ eQzedi|
899¢C 0€60¢I 0essel 0806¢1 o6ceel ovelct 0TI8CI 0€L8Y1 (53974 00L88 ceen]
00L6I1T 0€TI8II (39741 0888¢I 0¥60¢cT 0€TI8IT 0869¢1 0SSIvl 09L0ST 0cri6 qocenr]
OSSLIT 11844188 08Lzel 099¢cl 0T68C1 (11844188 06¢SCI 0€89¢1 069871 00688 BocR
STL 00€L °9¢L 0EyL TOSL YeeL YovL 0ss8 PCI18 69 ocpey
979¢ 8ssS 2996 0L9S 0568 08LS 9€LS 0rs9 CLI9 86¢€S 81pPeY
yise 206¢ 096¢€ Y901 0LOY 0s1v 8L6E 1214 06¢eY 0CLE 91pey
06T 998¢ 8C6C 0¥6C 860¢ 6T 916¢C 14143 oree VCLT y1pey
90LT 00LT CLT COLI 8081 06L1 - 060¢ 7681 91 cipey
01 01 14! 4! 0¢ 8¢ o (1§ 9¢ 9 S7goso
(4 (4 [4 (44 [43 w 9 9 89 [4 9CEISd
01 8 4! 91 8¢ 91 81 81 (44 8 [91os0
81 81 9¢ [43 0s 9t 9¢ 8¢ 129 14! 191989
oror 001 9L01 140! 8hvl 9¢01 (4141 2001 [{A! 966 Yg[ose
Pe (4% 8¢ 8 8y 0s [43 14 144 9C 391080
(43 (43 8¢ w 14 8y 144 0S 49 8¢ 991989
¥C 0c 9C or [43 oy 8¢S 144 8 91 P9Iosa
0LT VLI 981 01¢ 91¢ 81 99¢ ¥0¢ 9LT 091 991989
INON-VI ACD-INDON 00SO-INON 0SD-INON SO-INON INON VIS INMTE NS Teddn
91005 9Qour)suf

(ponunuoo) Q| ajqeL

pringer

A s

1761

Machine Learning (2024) 113:1743-1769

IreTes 9LLLTS8 149494 89L98 C8TIL8 8Y€L68 86C¢CT8 SS0101 810056 (443595 Ognox
7S666¢ CL8EOY yoCely 0000€y 09TeSy 26569y 01806€ 9CCoPs 0S€68Y (4433 g[nol
9¢€885¢ 86819¢ 9STCST 9L8SLT 8CLI0E 801¢e I9LT 89ILLE YOrSee 8CSSET ¢[nox
0LEL Y6CL 0€SL 08LL 999L 809L wiL €001 9568 Y19 0g3nu
8879 8CI9 Yro ee9 ¥9L9 8T19 8679 4% 8I¥L 991¢ g¢3nu
8079 8079 9LT9 9¥S9 0989 [435° 9 9798 08L 12949 Lg8nu
(4244 ocry (1897 88LY [44:14 ocry ey CILS (4339 YyLE ggsnu
vocy 1 2%44 8LTY 14594 89S 14%44 10944 0CLS 8C6Y 88Y¢ ygdnu
00cy 86Ty 091v 9191 2608 919y 886¢€ 8¢9 968¢S 96S¢ T¢dnu
768¢ 916¢C ¥56C [438% 1433 916C ¥90¢€ 8¢y 0LE 8¢E¥C Ig3nu
886¢ 9€6¢ 890¢ VLIE 092¢ 9€6¢ 1243 VLIV 0Sve 0LST 0g3nu
8¥CC wie (444 0¥eT ¥8¢€C Clee (4114 881¢ 889¢ 0¢61 g13nu
010T 0861 290¢ 0ri1c 9sCC $00C 0102 Y€6C sye CELT L18nu
9971 96€1 8971 0191 9691 08¢ST (434! 61T 7981 ovel q913nu
w8l 9¢81 8881 881 oric 9¢81 (7] 979¢C yeee 0191 eg[3nu
145! 8I¢l 09¢T CI€l 00ST [434! 8¥r1 00¢ 8991 0STI G18nu
12148 9¢CT11 9CIT 414! 80¢T o1¢I - 0cLT oSyl 101 y13nu
09 €9 9L9 91L CLL 0cL 89 8¢01 988 8LS z18nu
A2 Y 9S69L091 088¢Y191 SEO09LIOT L20TET91 SYLY6191 IPro6rcl LLSYISOT L9T16791 I¥¥06¥C1 qoeedr|
0¥7699¢ 80599¢ $6L99¢ 97699¢ 680L9¢ €61L9¢ 6¥999¢ 0LELIE ¥8€L9¢ 0€909¢ eooedi
15620001 0v0£866 €€CLO00T ¥CL6S001 LL8¥6001 SSIELIOL T96€9LL L69¢€T201 L6LTECOT T96€9LL qogedr|
CSLLST £€99L6¢T L9LLST L66LST 8018S¢C [40) 4194 S6ELST 8098S¢ SPE8ST S61€sT eogedi|
LLLEBSS 191068S 6CL806S 86€688¢ 8CE986S 91¢8L6S 00C€09¥ 81€909 €196609 00Ce09¥y qoLedr
VITELT 0oceeLl 8ICELT 61vEL] LLSELT T98¢ELIT POSTLT 69S¢ELT 679¢LI GSL691 e(Ledr]
6Er0Ce 10580¢¢ Ierelce S681¢cTe (64443 70S69C¢ SET0CST 16200€€ 196€0¢€ SE10TsT qo9edr|

INON-VI ACD-INDON 00SO-INON 0SD-INON SO-INON INON VIS INMTE NS Teddn
91005 9Qour)suf

(ponunuoo) Q| ajqeL

pringer

As

Machine Learning (2024) 113:1743-1769

1762

CICLOISETT 8OPLLSOCIT TEVCOLEOIl ¥T998L6SIT CI1606660CT 80¥608SLCI 1€C98SSITI 9SveCLOIVI 0880608E€] evOSIv818 q081el
CLILYCST 8€1€8CSI 86¢E8EST 9LOLTYST 912809S1 80L819ST 799¢SEST 98L69091 06,5991 78166v¢1 BQO8re)
920S€1C 8ELEETT 9LITLOT 8LYICET 2068¥¢€C 0rSE0LS 99G681¢ 888€9¢9 0¥S€68S 8C65G81 dp9re]
0P0€8LIS8 CS1696798 887897606 09620¢Cr6 ¥861CLC06 YTr6ssy66 LILEY88LO6 ~ ¥99LESOLTT TLIY966801 $SOSIT809 q091e)
¥8€19¢8 966188 0S911¢8 0TTLOES 7986118 7609658 PToere8 0291¢L8 8667198 796S0CL eQ9™®)
8¥¥8099¥9 8TS8EIPTI 008C679L9 00CE9S8IL YYSTSTLIL 8CI9681Y9L 68965969 8C188906L 009€6S96L LISIT88SY qo6Tes
CILILTIY6 91886¥L16 088¥SSCS6 TOLO6VYCCOl 00PPES9601 0TS6EEESOl $E6TLI6IO0T LLYTLLECYT TICII8SOIT 8¥60STLES qotvrel
8¥0r1€60¥ VYYLLSILLE 09L69YSTY 9126807y 9689L1CLY 9LIBILSSY 6S6€8L97Y IVSTISYLS 168186VSYy SPPSIce8e qecten
876086£68 8006L£968 0817890CL6 ~ CE08TBCBOI 0CEOPCEOIT ¥8€0096SCT CTE8VISYIIT OEE8LO9ILI £8¢¥918001 EITLITLES qoctel
¥0L0898YS 0vOLYI8IS 9$1€89009 9196568¢9 Y¥S8ToELL 89ISLLOEL €80€I186L TBYIV6ESTI Tr60C6v9L 9P9SSeErE qscrel
00819871 091v0LOVI 879L986S1 77S908091 89CLG8SLT Y¥LLO9LET 88C0LY0CC L9LE06209 01€9€8Y6¢ 61€SSYTTI q0cre
0LT208 78€908 86€1¢8 0€68¢8 9L0¥88 815968 806¥8 8¢CCI01 9€T9L6 8YE0L 'O
44433 YSLYYS [440 759 Y6616S 919809 ¥¥90€9 91L86S 9968¢L CIL699 Ci8ley BLITR)
88698LCS 8091L8¢S 960006¢S ET809ES 918900¥¢£¢C 0v06LYS61 9S€€8STS 9C6T6C0L 6S15C6C0L 89CSILIS qeres
1253294 8969¢t 98S0SY 96005y 0L888Y CI8L9Y CTLTILT CTSOILS 13489 1788¢ eGrel
V8ISLELY rrocsTLy 9T 10S Y6LOLES 09SLI8ES CSLBETSY VCrLTLIS 06LL6VYCI £5106196 STOoYO6E qcires
ceee9e 86166¢ 019¢Le 79€08¢ 901+8¢ 71065¢ (410 44 ¥00C6€ ce081¢e 91vvee eglel
709168¢1 TSE886CT 896CS0ov1 00€vC8S1 909618S1 7SE886C1 cleeleyl 908068¢ CTO6LOESYT 01T6¢£T8 29¢als
148%94 i 454 9TreS CSL8S TEee9 8yCey 919LY 9r0¢€61 9CCOLIT [4319! q9¢aIs
08¥91 89L91 0Tes8l 90561 149414 8¥991 8EO6LI 6Tee 0€00¢ 9CS6 BYEIS
peecel woTel 960¢e€cl CLYYEL ¥299¢1 orLEl 818¢€Cl 8LV 0r80v1 PESSTI 06038
8LIT01 OILYOI1 817501 9LLSOT 01801 88CLOT 9¥CSol CLEBTT 8€8CIT 86606 [803S
(431341 9€9PST 9991LIT ESSLI (43494 788¢8I 09CILI 8CC0S¢E 860€9C 0€00T11 0cIos
81099 89.89 YCesL IVLSL OLELL Prel8 ceorL VILIOL 80¢t01 (4089 GLIos
8YCLE °679¢ 80601 y10cy 8CC8E 001 yeesy 156 coclL 0lvie [4E

INON-VI ACD-INDON 00SO-INON 0SD-INON SO-INON INON VIS INMTE NS Toddn
9100§ Qour)suf

(ponunuoo) Q| ajqeL

pringer

A s

1763

Machine Learning (2024) 113:1743-1769

08¢ 191 oLl LT°0 200 100 £°6001 y1'0 200 qcTyd
SLe 8891 SL'1 LT°0 200 100 '88¥1 Y1°0 200 BT
e €67l 891 ST°0 200 100 S¥6 Y10 200 20¢1yd
£9°¢ 96 V1 99°1 910 00 100 €116 10 00 90T

9L'¢ 0°SI 161 91’0 200 100 8'G8CI 710 200 BOTIYO
0s'¢e L6°El 8Vl 10 200 100 1ce 710 100 q8 11>
LS'E 4! LET v1°0 00 100 S 18L 710 100 BRI
we 65Tl STl €ro 00 100 I'vic ¥1°'0 100 RYELE)
0S¢ 19°C1 9C'1 €ro 100 100 6’191 ¥1°0 100 QeI
or'e 9¢l 9C'1 €1ro 00 100 9°¢89 y1°0 100 BGTIYD
e [N! [4N! o 00 100 6°L6 Y10 100 RIARLE)
0g'e YeTl 91l cro 10°0 10°0 I'SL 10 10°0 qcriyd
6C'¢ 9C'T1 SI'1 cro 10°0 10°0 L'SL 10 100 B
L9°S 7981 L8'1 81°0 00 200 7'0ge S1'o 100 yoging
66'¢ GG 8l L8] 610 200 200 8'C6¢ S1'o 100 89ging
66'¢ 6581 98’1 0 200 200 9€LT S0 100 Jocing
00'Y 981 L8'1 61°0 00 €00 6'CS 91°0 100 9¢ing
66'¢ 8L'81 681 81°0 00 00 99LC 910 00 pP9¢ing
LS YL'81 6’1 61°0 00 00 6'9¢1 SI'o 100 99¢inq
00y [¢61 881 610 00 00 L'161 S0 10°0 q9¢inq
LSS yeo6l S8l 61°0 200 200 6'60¢ S0 200 e9zing

INON-VI ASOD-INON 00SO-INON 0SD-INDN SD-INON INON VIS NI NS

QI Qoue)suy

9L1061 TT9S8I L0961 9S¥861 Yy LOT C90L81 ¥820C ¥61L9C 8780¢€T 9€66171 ooyl

INON-VI ASO-INON 00SD-INDN 0SD-INON SO-INDN INDN VIS JARR: R NS Teddn

Q100§ due)isuy

(ponunuoo) Q| ajqeL

pringer

As

Machine Learning (2024) 113:1743-1769

1764

209 SE1T 87T 0 €00 200 091 S1'o €00 qogedr
9°¢ ¥0°'ST S9'1 S1'o 200 100 e€eL 710 100 qozedi
16°¢ 6871 791 S1'o 00 100 1'ILT y1°0 100 eogedr
IL9 96'CC we €20 €00 200 9'6LY S0 100 ceeny
029 (SR 8C'C 120 200 200 6’687 y1°0 100 qoger]
°6'S 9¢'1C we 120 €00 100 9'16¥ 10 100 rOgRD
19°¢ L6V 1S°1 S0 200 100 ¥'8C¢ ¥1°0 100 ocpey
€g'¢ 6°¢l LET 1°0 200 100 YILT S1'0 100 81peyY
9 88°CI LT1 €10 00 100 L'9S ¥1°0 100 91pey
9¢'¢ erel (4! [4N0) 10°0 10°0 o1 Y10 10°0 v1pey
or'e 8TII erl 170 200 10°0 - 10 10°0 cIpey
I1°L (4 x44 geT 20 €00 200 Tseles S1'o 100 8ggose
88'9 88'CC we €0 €00 200 ¥'1996 S0 200 9TEIs
Sv'e Y0'€l (! 710 200 100 €l y1'0 100 fgroso
e L6'C1 1¢1 €10 200 100 9°679¢S y1°0 200 191989
ev'e S6'Cl 6C'1 €r'o 200 100 I'S1 y1°0 0 Yy9[ose
0S¢ YO'€l €1 y1°0 200 100 I'LT 1°0 0 891089
1243 €l I¢°1 y1°0 200 10°0 gel v1°0 0 991983
16°¢ S6'Cl €1 €1r'o 200 100 9vl1 10 100 P919s?
IS¢ €l €1 €10 100 100 L'L 71°0 100 991982
1243 L6'C1 6C'1 €1r'o 200 100 9y 710 0 q9719s2
8¢'¢ €l LT 710 200 100 8'CI 710 0 €989
1423 (44! Ly'1 S1'o 200 100 00L 1°0 100 6180
96’y €6'L1 ¥0'C 61°0 200 10°0 T'ESST ST°0 €0'0 BGTIO
INDN-VI ASO-INON 00SO-INDON 0SD-INON SDO-INON DN VIS JARR R NS
Ly, Qoue)suy

(ponunuoo) Q| ajqeL

pringer

A s

1765

Machine Learning (2024) 113:1743-1769

80t €61 (44 20 €00 100 £09¢ 710 10°0 Lg3nu
80°¢ S6'LT L6'1 81°0 €00 100 L'8LY 710 100 Ggdnu
65t e LT oL'1 81°0 00 100 970¢ y1°0 100 yesnu
88'¢ 6091 €Ll 910 200 100 9C8¢ 710 100 7¢snu
6L°¢ 42! L1 910 200 100 8'9¢6C y1°0 100 [¢8nu
S9'¢ L8V 89'1 910 200 100 L9Vl S1'o 100 0gsnu
(43> 88°¢l 8S'1 710 200 100 TSI S1'o 100 g13nu
Ly'e 247! 6v'1 1°0 200 100 9181 ¥1°0 100 L13nu
€v'e 96°Cl Syl y1°0 100 100 899 S1'0 100 q918nu
we 10°€l 1€°1 €ro 10°0 10°0 L'8TT Y10 10°0 e9[3nu
Sh'e 96Tl YTl €10 200 10°0 969 710 10°0 SI3nu
ve'e et (! €ro 10°0 100 - 1°0 100 y18nu
8C'¢ 6C'11 [4N! 110 200 100 ! 710 100 ZI3nu
€9vel 6C°CCl 10CL el 120 S0 [4498 €€°0 920 qoeedry
18¥¢1 y1eel 90°CI 1€1 0 910 G'6881 20 80°0 eoeedr
L8'€8 756 676 660 10 0 8SI¥ LT0 0 qogedr
68°¢8 £6'16 8€°6 10°T y1°0 €10 €01 LT0 100 eogediy
1254 6'CL 1L 80 170 S0 8°76S¢ (YA S1'o qoLedy
6£°CS 19°CL 61°L 18°0 170 80°0 8'69¢ LT°0 100 e(Ledi
8¥°0¢ LESS 6¢°S 8S°0 600 10 T96L1 o 10 qo9edi|
120¢ L'vS 'S 860 L00 S0'0 [SRESS LT°0 €00 eogedi
SS'LT STy v 70 S0] 800 Se9L 0 80°0 qosedi
866 1"0¢ 11e 1€0 700 700 £69¢ LT°0 ¥0'0 qopedr
¥5°6 60°0¢ 11°¢ 1€°0 €00 200 '8l 10 100 e(pedr

INDN-VI ASO-INON 00SO-INDON 0SD-INON SDO-INON DN VIS JARR R NS
Ly, Qoue)suy

(ponunuoo) Q| ajqeL

pringer

As

Machine Learning (2024) 113:1743-1769

1766

IL9 °6'6C 16C 1€0 €00 700 L9%99 S1'o 700 qotres
9¢°¢S 9¢'ST €6°C 920 €00 €00 9°0¥¥e S1°0 €00 qseres
€Sy ele €T (440 00 200 TYore S0 €00 qogcres
8y S6'L1 £6'1 61°0 200 100 0¥01 710 200 qeze
o9¢ 6871 91 S1'o 200 100 6’687 S1'o 200 qozres
£€9°¢ 1671 €9'1 S0 200 100 98 10 100 'QCe)
6¥'¢ 76'¢l o'l 710 200 100 y'es ¥1°0 100 BLITe)
e 9¢°CI A €r'o 100 200 6C 710 100 qerres
6¢'¢ 16°¢C1 9T'1 €10 00 100 78T ¥1°0 100 egre
0¢'e SN SI'1 cro €00 100 |44 ¥1°0 100 qzires
6C'¢ 8¢'TI erl 170 10°0 10°0 I'LT 10 100 ezle
08'L 9T 19'C LT0 €00 200 1'CIel S1'o 200 29¢9)s
e8’L 79T 6S°C LT0 €00 200 8ILE 910 200 q9¢aIs
06'L 129¢T 78T 920 €00 200 43874 SI'o 200 BOEIS
89 €1 Ly'TCl SI'CI 8T'1 61°0 610 996L91 (430 91°0 0603
9606 8T'L6 86°6 €0'1 ST°0 Y10 8'€98S1 8C0 10 18038
65°¢ 9671 89'1 910 200 100 8'0CC 1°0 100 0T18
9¢°¢ 9Tl Sl €1r'o 200 10°0 I'LIT v1°0 200 G108
9T'¢ el 6C'1 cro 10°0 100 8'0¢ 10 100 (458
€9'¢ L6V 99°1 S1'o 200 100 IS 71°0 100 ognox
I7'e 6v'Cl A €1r'o 100 100 799 710 10°0 gInol
sTe SETT el o 100 100 6’1y 710 100 cinox
oSy 8T'1C (44 (440 €00 200 L'0ge 10 100 0gsnu
LT'Y 96'61 91'C 120 £0°0 10°0 9'6£¢ 10 100 ggsnu
INDN-VI ASO-INON 00SO-INDON 0SD-INON SDO-INON DN VIS JARR R NS

Ly, Qoue)suy

(ponunuoo) Q| ajqeL

pringer

A s

1767

Machine Learning (2024) 113:1743-1769

PIOq UT oIk $)[NSAI ISog

6v'Y 8¢'1C €r'e 170 €00 200 1'6€L 71°0 100 ogom
14859 6'76 76 ! S1r'o €10 'S665¢ Y20 (YA qo81e}
LO'€ES 60°56 1€°6 L6°0 y1°0 710 TShLy 8C°0 0 BO8Ie)
91°¢C L'19 9 ¥9°0 800 800 VELE 120 10°0 op9re)
6L°61 eSS 'S 90 L00 L00 L'68¢81 0 cro q091e}
0861 (S99 ¥’ 90 800 L00 I'1cie 120 110 eO9re)
LTI Iy 86'¢ £v'0 SO0 ¥0°0 SSTl 81°0 80°0 qosrel
INDN-VI ASO-INON 00SO-INDON 0SD-INON SDO-INON DN VIS JARNC R NS

Ly, Qoue)suy

(penunuod) Q| a|qey

pringer

As

1768 Machine Learning (2024) 113:1743-1769

Author contributions Conceptualization: TQ, ST; Methodology: TQ, ST, LX; Formal analysis and investi-
gation: TQ, ST; Writing - original draft preparation: TQ, ST, LX; Writing - review and editing: TQ, ST, L
X; Funding acquisition: ST, LX; Supervision: ST, LX.

Funding This work was supported by The National Key Research and Development Program
(2018AAA0100700) of the Ministry of Science and Technology of China, and Shanghai Municipal Science
and Technology Major Project (2021SHZDZX0102).

Data availability The data and materials used in this article is fully available.

Code availability The codes are available at https://github.com/CMACHS08/IA-NGM.
Declarations

Conflict of interest The authors have no conflicts of interests to declare that are relevant to the content of
this article.

Ethics approval Not Applicable.
Consent to participate Not Applicable.

Consent for publication Not Applicable.

References

Adams, R.P., & Zemel, R.S. (2011). Ranking via sinkhorn propagation. arXiv preprint arXiv:1106.1925.

Bourdeyv, L., & Malik, J. (2009). Poselets: Body part detectors trained using 3d human pose annotations.
In International Conference on Computer Vision (pp. 1365-1372).

Burkard, R. E., Karisch, S. E., & Rendl, F. (1997). QAPLIB-a quadratic assignment problem library.
Journal of Global Optimization, 10(4), 391-403.

Caetano, T. S., McAuley, J. J., Cheng, L., Le, Q. V., & Smola, A. J. (2009). Learning graph matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6), 1048—1058.

Cho, M., Alahari, K., & Ponce, J. (2013). Learning graphs to match. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (pp. 25-32).

Cho, M., Lee, J., & Lee, K.M. (2010). Reweighted random walks for graph matching. In European Con-
ference on Computer Vision (pp. 492-505).

Fey, M., Lenssen, J.E., Weichert, F., & Miiller, H. (2018). Splinecnn: Fast geometric deep learning with
continuous b-spline kernels. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (pp. 869-877).

Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, KM., & Trulls, E. (2021). Image match-
ing across wide baselines: From paper to practice. In International Journal of Computer Vision,
517-547.

Kushinsky, Y., Maron, H., Dym, N., & Lipman, Y. (2019). Sinkhorn algorithm for lifted assignment
problems. SIAM Journal on Imaging Sciences, 12(2), 716-735.

Lawler, E. L. (1963). The quadratic assignment problem. Management Science, 9(4), 586-599.

Leordeanu, M., & Hebert, M. (2005). A spectral technique for correspondence problems using pairwise
constraints. Tenth IEEE International Conference on Computer Vision. https://doi.org/10.1109/
ICCV.2005.20

Rolinek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., & Martius, G. (2020). Deep graph matching
via blackbox differentiation of combinatorial solvers. In European Conference on Computer Vision
(pp. 407-424).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556.

Uwents, W., Monfardini, G., Blockeel, H., Gori, M., & Scarselli, F. (2011). Neural networks for relational
learning: an experimental comparison. Machine Learning, 82(3), 315-349.

@ Springer

https://github.com/CMACH508/IA-NGM
http://arxiv.org/abs/1106.1925
https://doi.org/10.1109/ICCV.2005.20
https://doi.org/10.1109/ICCV.2005.20
http://arxiv.org/abs/1409.1556

Machine Learning (2024) 113:1743-1769 1769

Vento, M., & Foggia, P. (2013). Graph matching techniques for computer vision. Image Processing: Con-
cepts, Methodologies, Tools, and Applications, 381-421. IGI Global.

Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The caltech-ucsd birds-200-2011
dataset .

Wang, R., Yan, J., & Yang, X. (2019). Learning combinatorial embedding networks for deep graph match-
ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3056-3065).

Wang, R., Yan, J., & Yang, X. (2021). Neural graph matching network: Learning lawler’s quadratic assign-
ment problem with extension to hypergraph and multiple-graph matching. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

Xu, L. (2018). Deep bidirectional intelligence: Alphazero, deep IA-search, deep IA-infer, and TPC causal
learning. Applied Informatics, 5, 1-38.

Xu, L. (2019). Deep IA-BI and five actions in circling. In International Conference on Intelligent Science
and Big Data Engineering (pp. 1-21).

Zanfir, A., & Sminchisescu, C. (2018). Deep learning of graph matching. Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (pp. 2684-2693).

Zhao, K., Tu, S., & Xu, L. (2021). IA-GM: A deep bidirectional learning method for graph matching. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35, 3474-3482.

Zhou, F., & De la Torre, F. (2015). Factorized graph matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(9), 1774-1789.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

	IA-NGM: A bidirectional learning method for neural graph matching with feature fusion
	Abstract
	1 Introduction
	2 Related work
	2.1 Progresses in learning GM
	2.2 Bidirectional learning

	3 Methods
	3.1 Overview of our method
	3.2 Feature extraction and neural network solver
	3.3 Pseudo feature generation
	3.4 Gated feature fusion
	3.5 IA-alternation
	3.6 Loss function

	4 Experiments
	4.1 Results on PASCAL VOC keypoint
	4.2 Results on willow ObjectClass
	4.3 Results on IMC-PT-SparseGM
	4.4 Results on CUB2011
	4.5 Results on QAPLIB
	4.6 Study on variants of our method
	4.6.1 Exploration on IA-alternation and feature fusion technique
	4.6.2 Choice of feedback matrix

	5 Conclusion
	Appendix 1
	Detailed results on QAPLIB

	References

