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Abstract
We present a general framework for dealing with set heterogeneity in data and learning 
problems, which is able to exploit low complexity components. The main ingredients are 
(i) A definition of complexity for elements of a convex union that takes into account the 
complexities of their individual composition – this is used to cover the heterogeneous con-
vex union; and (ii) Upper bounds on the complexities of restricted subsets. We demonstrate 
this approach in two different application areas, highlighting their conceptual connection. 
(1) In random projection based dimensionality reduction, we obtain improved bounds on 
the uniform preservation of Euclidean norms and distances when low complexity compo-
nents are present in the union. (2) In statistical learning, our generalisation bounds justify 
heterogeneous ensemble learning methods that were incompletely understood before. We 
exemplify empirical results with boosting type random subspace and random projection 
ensembles that implement our bounds.
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1  Introduction

We are interested in data and learning problems of a heterogeneous nature, which we will 
describe shortly. Let m be a positive integer, and consider a sequence � = (�j)j∈[m] consist-
ing of bounded subsets of a vector space. The convex union � is defined to be the convex 
hull of the union of these sets,

 where Δ� ∶= {(�t)t∈[�] ∈ [0, 1]� ∶
∑

t∈[�] �t = 1} is the simplex for � ∈ ℕ.
In dimensionality reduction, random projection (RP) is a universal and computation-

ally convenient method that enjoys near-isometry. The distortion of Euclidean norms and 
distances depends on the complexity of the set being projected (see Liaw et al. (2017) and 
references therein). Now suppose some high dimensional data resides in a set of the form 
(1). What can be said about simultaneous preservation of norms and distances? The com-
plexity of the union grows with its highest complexity component. We would like to take 
advantage of heterogeneity to better exploit the presence of low complexity components.

In statistical learning (SL), suppose we want to learn a weighted ensemble where base 
learners belong to different complexity classes. The ensemble predictor then belongs to 
a function class of the form (1) – for instance, learning a weighted ensemble of random 
subspace classifiers, as raised in the future work section of Tian and Feng (2021). What 
simultaneous (i.e. worst-case) generalisation guarantees can be given?

To tackle these problems, it is helpful to observe their common structure. Both prob-
lems can be described by a certain stochastic process – an infinite collection of random 
variables {Xs}s∈S , indexed by the elements of a bounded set S. In the RP task, the index-set 
S ⊂ ℝ

d is a set of points in a high dimensional space, and the source of randomness is the 
RP map R, a random matrix taking values in ℝk×d with independent rows drawn from a 
known distribution. We are interested in norm-preservation, i.e. the discrepancy between 
the norm of a point before and after RP, so the collection of random variables of interest 
is {

√
k‖s‖2 − ‖Rs‖2}s∈S , and we would like to guarantee that all of these discrepancies are 

small simultaneously, with high probability.
In the SL task, the index-set is a set of functions H (the hypothesis class), and the 

source of randomness is a training sample {(X1, Y1),… , (Xn, Yn)} , drawn i.i.d. from an 
unknown distribution. We are interested in generalisation, i.e. the discrepancy between 
true error and sample error, so the infinite collection of random variables of interest is 
{�X,Y [L(f (X),Y)] −

1

n

∑n

i=1
L(f (Xi),Yi)}f∈H , where L is a loss function. Again, we want all 

of these discrepancies to be small simultaneously, with high probability.
This analogy suggests dealing with the problem of index-set heterogeneity in both tasks 

in a unified way. The index-sets will be of the form (1), and we appeal to empirical process 
theory to link the processes of interest with canonical processes whose suprema can be 
bounded.

(1)𝕊 ∶=
⋃
�∈ℕ

{∑
t∈[�]

�t ⋅ st ∶ (st)t∈[�] ∈
⋃
j∈[m]

𝕊j, (�t)t∈[�] ∈ Δ�

}
= conv

(⋃
j∈[m]

𝕊j

)
,
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1.1 � Related work

The use of empirical process theory to provide low distortion guarantees for random 
projections of bounded sets was pioneered by the work of (Klartag and Mendelson 
2005), and further refined by others – see Liaw et al. (2017) and references therein for 
a relatively recent treatment. These results extend the celebrated Johnson-Lindenstrauss 
(JL) lemma from finite sets to infinite sets. They allow simultaneous high probability 
statements to be made about Euclidean norm preservation of all points of the set being 
projected, and these guarantees depend on a notion of metric complexity of the set. For 
this reason, these bounds are more capable of explaining empirically observed low dis-
tortion in application areas where the underlying data support has a low intrinsic dimen-
sion, or a simple intrinsic structure, such as images or text data (Bingham and Mannila 
2001). However, these existing bounds do not cater to the heterogeneity of the data sup-
port, so the presence of any small high-complexity component still renders them lose. 
This observation will be made precise in the sequel.

Empirical process theory is also a cornerstone in statistical learning, where it 
is widely used to provide uniform generalisation guarantees for learning problems 
(Boucheron et al. 2013) via Rademacher and Gaussian complexities. Uniform generali-
sation bounds ascertain, under certain conditions, that with high probability the training 
data does not mislead the learning algorithm. However, for complex models like het-
erogeneous ensembles of interest to practitioners, theory is scarce (Parnell et al. 2020, 
Cortes et al. 2014), Tian and Feng 2021) and a general unifying treatment is missing.

In both of the above domains, classic theory considers a single homogeneous index-
set in the underlying empirical process, ignoring any heterogeneity of its subsets. The 
complexity of a union of sets of differing complexities grows linearly with the complex-
ity of the most complex one, consequently by this approach one obtains uniform bounds 
that grow linearly with the complexity of the most complex component set. However, 
in many natural situations one would expect predominantly lower complexity compo-
nents – for instance, data may lie mostly (though not exclusively) on low dimensional 
structures, or the required hypothesis class has mostly (though not exclusively) low-
complexity. This class of problems motivates our approach.

1.2 � Contributions

In this paper, we develop a general unifying framework that allows us to formulate 
simultaneous high-probability bounds over all elements of a convex union of sets of 
differing complexity, taking advantage of any low-complexity components. The main 
contributions are summarised below.

•	 We introduce a notion of complexity for elements of the convex union, defined as a 
weighted average of complexities of constituent sets. This serves to cover the convex 
union with sets of increasing complexity and treat each individually.

•	 We bound the supremum of a weighted combination of canonical subgaussian pro-
cesses, which serves as a tool to bound the complexities of restricted subsets of the 
convex union.
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We demonstrate our approach in two different areas, highlighting their conceptual con-
nection in our framework, namely random projection based dimensionality reduction, 
and statistical learning of heterogeneous ensembles.

•	 In dimensionality reduction, heterogeneity of the data support brings improvement in 
simultaneous norm-preservation guarantees when points have some low complexity 
constitution, improving on results from Liaw et al. (2017).

•	 In statistical learning, our bounds justify and guide principled heterogeneous weighted 
ensemble construction more generally than previous work has, and we exemplify reg-
ularised gradient boosting type random subspace & random projection ensembles for 
high dimensional learning.

2 � Theory

We begin with preliminaries, and develop some theory in Sects. 2.1 and 2.2.

Definition 1  (Sub-Gaussian right tail) A random variable X is said to have a sub-Gaussian 
right tail with parameter 𝜎 > 0 if ℙ(X > 𝜉) ≤ e−𝜉

2∕2𝜎2 for all 𝜉 > 0 . Let R(�2) denote the 
collection of such random variables.

A sub-Gaussian right tail implies an expectation upper bound, as integrating the tail ine-
quality yields 𝔼(X) ≤ ∫ ∞

0
ℙ(X > 𝜉)d𝜉 ≤ ∫ ∞

0
e−𝜉

2∕2𝜎2

d𝜉 = 𝜎
√
𝜋∕2 . Hence, the class R(�2) 

will serve as useful generalisation of sub-Gaussian random variables X, for which both tails 
decay quickly i.e. |X| ∈ R(�2).

Example 1  A univariate Gaussian random variable X with mean � and variance �2 satisfies 
X − � ∈ R(�2).

In the sequel, we shall be concerned with canonical stochastic processes {Xs}s∈S indexed 
by a bounded set S, and their suprema Z ∶= sups∈S Xs . In many useful cases these suprema 
turn out to have sub-Gaussian right tail.

Example 2  (Suprema of Gaussian processes) Given a bounded set S ⊂ ℝ
n let {Xs}s∈S be 

the Gaussian process obtained by taking a standard normal vector g ∼ ℕ(0, In) and setting 
Xs ∶= ⟨s, g⟩ . The expectation of the supremum �(S) ∶= �[sups∈S Xs] is referred to as the 
Gaussian width of S. The Borell-TIS inequality (Boucheron et  al. 2013), Theorem  5.8) 
yields sups∈S{Xs −�(S)} ∈ R(sups∈S

∑
i∈[n] s

2
i
).

Example 3  (Suprema of Rademacher processes) Given a bounded set S ⊂ ℝ
n , let 

{Xs}s∈S be the Rademacher process obtained by letting � = (�i)i∈[n] be an i.i.d. ran-
dom sequence with �i chosen uniformly from {−1,+1} , and Xs ∶= ⟨s, �⟩ . Then expecta-
tion of the supremum ℜ(S) ∶= �[sups∈S Xs] is referred to as the Rademacher width of 
S. By McDiarmard’s inequality, sups∈S Xs −ℜ(S) ∈ R(

∑
i∈[n] sups∈S s

2
i
) . We also have 

sups∈S{Xs −ℜ(S)} ∈ R(8 ⋅ sups∈S
∑

i∈[n] s
2
i
) (Wainwright 2019, Example 3.5). Whilst 

the latter bound is sometimes tighter, we will rely primarily on the former bound in what 
follows.
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2.1 � Empirical processes over heterogeneous sets

Here we give a general result that will allow us to bound the complexity of certain subsets 
of a convex union. Consider the canonical stochastic process whose index set is the convex 
union of our interest. The next lemma bounds the supremum and its expectation for the 
resulting mixture process, subject to constraints, by showing that this supremum has sub-
Gaussian right tail.

Lemma 1  (Supremum of mixture process) Suppose that for each j ∈ [m] we have a real-
valued stochastic process {Xj

s}s∈�j
 with supremum Zj ∶= sups∈�j

X
j
s , and that for each 

j ∈ [m] there exist �j, �j ∈ (0,∞) with Zj − �j ∈ R(�2
j
) . Given �, 𝜎 > 0 we consider the fol-

lowing random variable

where the supremum runs over all � ∈ ℕ , (jt)t∈[�] ∈ [m]� , (st)t∈[�] ∈
∏

t∈[�] �jt
 and 

(�t)t∈[�] ∈ (0,∞)� satisfying the specified constraints. It follows that 
Z�,� − (� + �

√
2 logm) ∈ R(�2) and �

�
Z�,�

�
≤ � + � ⋅ (

√
2 logm +

√
�∕2).

Proof  For each � ∈ (0, 1) we define E� ∶=
⋂

j∈[m]

�
Zj ≤ �j + �j

√
2 log (m∕�)

�
 . By 

Zj − �j ∈ R(�2
j
) , combined with the union bound, we have ℙ

(
E�
)
≥ 1 − � . Next we 

observe that, on the event E� , for any � ∈ ℕ , (�t)t∈[�] ∈ (0,∞)� , (jt)t∈[�] ∈ [m]� and 
(st)t∈[�] ∈

∏
t∈[�] �jt

 satisfying 
∑

t∈[�] �t ⋅ �jt
≤ � and 

∑
t∈[�] �t ⋅ �jt ≤ � we have,

Hence, on the event E� , we have Z�,� ≤ � + �
√
2 logm + �

√
2 log(1∕�) . Since 

ℙ
(
E�
)
≥ 1 − � for each � ∈ (0, 1) we deduce that Z�,� − (� + �

√
2 logm) ∈ R(�2) . The 

expectation bound follows by integrating the tail inequality. 	�  ◻

2.2 � Element‑wise complexity‑restricted subsets

We define a notion of complexity for elements of a convex union as follows.

Definition 2  (Gaussian widths for elements of the convex hull of a union) Given 
� = (�j)j∈[m] consisting of bounded sets 𝕊j ⊂ ℝ

d and s ∈ � , we define

where the infimum is over all � ∈ ℕ , (jt)t∈[�] ∈ [m]� , (st)t∈[�] ∈
∏

t∈[�] �jt
 and (�t)t∈[�] ∈ Δ� . 

Similarly, we define ℜ
�
(s) with ℜ(�jt

) in place of �(�jt
).

Z�,� ∶= sup

{∑
t∈[�]

�t ⋅ X
jt
st
∶
∑
t∈[�]

�t ⋅ �jt
≤ � and

∑
t∈[�]

�t ⋅ �jt ≤ �

}
,

�
t∈[�]

�t ⋅ X
jt
st
≤

�
t∈[�]

�t ⋅ Zjt ≤
�
t∈[�]

�t

�
�j + �j

√
2 log (m∕�)

�

≤ � + �
√
2 logm + �

√
2 log(1∕�).

�
�
(s) ∶= inf

{∑
t∈[�]

�t ⋅�(�jt
) ∶ s =

∑
t∈[�]

�t ⋅ sjt

}
,



1688	 Machine Learning (2024) 113:1683–1704

1 3

This will be useful in obtaining high probability bounds that hold simultaneously for all 
elements of the convex union, yet provide individual guarantees for each – a key idea in 
our approach. Note that an element s ∈ � may have multiple representations as a convex 
combination; the infimum breaks ties in favour of the most parsimonious one. The convex 
coefficients (�t)t∈[�] that realise the infimum in this definition depend on the individual ele-
ment s. Note also that the complexity �

�
(s) of an element s ∈ � depends crucially upon 

the sequence of sets � with respect to which the complexity is quantified. Indeed, if the 
sequence of sets contains {s} , we would have �

�
(s) = 0.

The following result shows the utility of element-wise complexities.

Theorem 1  (Element-wise complexity bounds) Suppose we have a sequence � = (�j)j∈[m] 
consisting of sets 𝕊j ⊂ ℝ

d with maxj∈[m] sups∈�j
‖s‖2 ≤ b for some b > 0 . Then, for all 

� ∈ (0,∞) , we have

Moreover, if �j ⊆ [−r, r]n for all j ∈ [n] , then for all 𝜅 > 0 , then

Eq. (3) also holds with � in place of ℜ , using (2), since sups∈[−r,r]n ≤
√
nr.

Proof  Both bounds are instances of Lemma 1, using the sub-Gaussian right tail properties 
described in Examples 2 and 3. Take g ∼ N(0, In) ; for each t ∈ [�] and jt ∈ [m] , take the 
canonical process {Xjt

st
}st∈�jt

 with Xjt
st
∶= ⟨st, g⟩ . By Example 2, supst∈�jt

X
jt
st
 has sub-Gauss-

ian right tail with parameter �jt = sups∈�jt
‖s‖2 . By Definition 2 and Lemma 1 with � ∶= b , 

�jt
∶= �(�jt

) , � ∶= � , (2) follows. Now, let � be a sequence of n i.i.d. Rademacher varia-
bles. For each t ∈ [�] , jt ∈ [m] take the canonical process {Xjt

st
}st∈�jt

 with Xjt
st
∶= ⟨� , st⟩ . By 

Example 3, supst∈�jt
X
jt
st
 has sub-Gaussian right tail with parameter 

�2
jt
= sups∈�jt

∑
i∈[n] s

2

i
≤
∑

i∈[n] sups∈�j
s2
i
≤ n ⋅ r2 . Hence, Definition 2 combined with Lemma 1 

with � ∶= r
√
n,�jt

∶= �(�jt
),� ∶= � , gives (3). 	�  ◻

Furthermore, using element-wise complexities we can cover the convex union with sets 
of increasing complexity, allowing us to deal with each in turn.

Lemma 2  (Covering the convex union) Take 𝜖 > 0 , L ∶= maxj∈[m]⌈�(�j)∕�⌉ and let 
Tl ∶= {s ∈ � ∶ (l − 1) ⋅ � ≤ �

�
(s) ≤ l ⋅ �} for l ∈ [L] . Then, � ⊆

⋃L

l=1
Tl.

A similar result holds with ℜ in place of �.

Proof  By Definition  2, for s ∈ � , 0 ≤ �
�
(s) ≤ maxj∈[m] �(�j) ≤ L ⋅ � , so s ∈

⋃L

l=1
Tl . 	

� ◻

The next sections rely on Theorem 1 combined with the covering approach of Lemma 2.

(2)�

��
s ∈ � ∶ �

�
(s) < 𝜅

��
≤ 𝜅 + b ⋅

�√
2 logm +

√
𝜋∕2

�
.

(3)ℜ

��
s ∈ � ∶ ℜ

�
(s) < 𝜅

��
≤ 𝜅 + r ⋅ (

√
2n logm +

√
𝜋n∕2).
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3 � Dimension reduction for heterogeneous sets

Here we consider random projection (RP) based dimensionality reduction of sets of the 
form (1) in some high dimensional Euclidean ambient space, with component regions 
each having their own predominantly simple structure together with various higher 
complexity noise components. This is a realistic scenario in real world data (Wright and 
Ma 2022). Dimensionality reduction is often desirable before a time-consuming pro-
cessing of the data, and RP is a convenient approach, oblivious to the data, with useful 
distance-preservation guarantees. However, there is a gap in understanding what makes 
RP preserve structure more accurately. We apply our theory to this problem.

Recall that a k × d random matrix R, is said to be isotropic if every row Ri∶ of R satis-
fies �

[
R⊤
i∶
Ri∶

]
= Id . The sub-Gaussian norm ‖ ⋅ ‖�2

 of a random matrix R is defined as

We shall make use of the following result.

Lemma 3  (Liaw et  al. 2017) There exists a universal constant C� > 0 such that for any 
isotropic k × d random matrix R, any set S ⊂ ℝ

d and � ∈ (0, 1) , the following holds with 
probability at least 1 − �,

The main result of this section is the following simultaneous bound for norm 
preservation.

Theorem 2  (Norm preservation in the convex union) Suppose we have an isotropic k × d 
random matrix R and a sequence of sets � = (�j)j∈[m] with 𝕊j ⊆ ℝ

d and let � denote the 
convex union (1). Suppose further that maxj∈[m] sups∈�j

‖s‖2 ≤ b for some b > 0 . Given any 
� ∈ (0, 1) , with probability at least 1 − � , the following holds simultaneously for all points 
s ∈ �,

The two dominant terms are in a tradeoff in the above bound; these are the element-
wise complexity �

�
(s) (cf. Definition 2), and a logarithmic function of the number of 

component sets m in the union. Indeed, if the union consists of many low complexity 
sets, then the latter quantity will increase, while if it consists of fewer high complexity 
sets then the former will increase.

Proof of Theorem 2  Let 𝜖 > 0 (to be chosen later), and L = maxj∈[m]⌈�(�j)∕�⌉ and define 
sets Tl ∶= {s ∈ � ∶ (l − 1) ⋅ � ≤ �

�
(s) ≤ l ⋅ �} , for l ∈ [L] , as in Lemma 2, so � ⊆

⋃L

l=1
Tl . 

By the first part of Theorem 1, for each l ∈ [L] we have

‖R‖�2
∶= max

i∈[k]

�
sup

u∈ℝd : ‖u‖2=1

�
inf

�
� ∈ (0,∞) ∶ �Ri∶u� ∈ R(�2)

���
.

sup
s∈S

�
�‖Rs‖2 −

√
k‖s‖2�

�
≤ C� ⋅ ‖R‖2

�2
⋅

�
�(S) +

√
log(1∕�) ⋅ sup

s∈S

‖s‖2
�
.

�‖Rs‖2 −
√
k‖s‖2� ≤ C�‖R‖2�2

⎛⎜⎜⎝
�

�
(s) + 2b

�
log

�
m⌈max

j∈[m]
�(�j)∕b⌉∕�

�
+ 2�

⎞⎟⎟⎠
.
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We apply Lemma 3 to each Tl and take union bound, so the following holds w.p. 1 − � for 
all l ∈ [L] and s ∈ Tl,

Finally, we take � = b , note 1 <
√
𝜋∕2 and use 

√
x +

√
y ≤

√
2(x + y) twice. 	�  ◻

The log(m) term in Theorem 2 is the price to pay for a bound which holds simultane-
ously over all convex combinations. Let us compare the obtained bound with the alter-
native of applying Liaw et al. (2017) directly to the convex union, which would give us

where the latter bound follows from (2). Crucially, in Theorem 2 the maximal complexity 
maxj∈[m] �(�j) only appears under a log in our bound. By contrast, the above bound scales 
linearly with this quantity.

Figure  1 exemplifies the tightening of our bound in low complexity regions of the 
data support in comparison with the previous uniform bound of Liaw et al. (2017).

4 � Learning in heterogeneous function classes

In this section we apply the second part of Theorem 1 to heterogeneous function classes. 
Let X  be the instance space (a measurable space). Throughout, we denote by M(X,V) 
the set of (measurable) functions with domain X  and co-domain V . First, let us recall 
some classic complexity measures for function classes. Given a class H ⊆ M(X,ℝ) , and 
a sequence of points x = (x1,⋯ xn)i∈[n] ∈  n , the empirical Gaussian width �̂n(H, x) 
and empirical Rademacher width ℜ̂n(H, x) are defined as

 where g and � are n-dimensional standard Gaussian and Rademacher random variables 
respectively. The uniform (worst-case) Gaussian width �∗

n
(H) and uniform Rademacher 

width ℜ∗
n
(H) are defined as

 The uniform complexities are useful in obtaining faster rates than O(n1∕2) , see Theorem 4.

�(Tl) ≤ l ⋅ � + b ⋅
�√

2 logm +
√
�∕2

�
.

�‖Rs‖2 −
√
k‖s‖2� − C�‖R‖2�2

⋅ b

�
log

L

�
≤ C�‖R‖2�2

⋅�(Tl)

≤ C�‖R‖2�2
⋅

�
l ⋅ � + b ⋅

�√
2 logm +

√
�∕2

��

≤ C�‖R‖2�2
⋅

�
� +�

�
(s) + b ⋅

�√
2 logm +

√
�∕2

��
.

�‖Rs‖2 −
√
k‖s‖2� ≤ C�‖R‖2�2

�
�

�
�

�
+ b

√
log(1∕�)

�

≤ C�‖R‖2�2

�
max
j∈[m]

�(�j) + 2b
√
log(m∕�) + 2�

�
,

𝔊̂n(H, x) ∶= �g

(
sup
h∈H

{
1

n

∑
i∈[n]

gih(xi)

})
; ℜ̂n(H, x) ∶= �𝛾

(
sup
h∈H

{
1

n

∑
i∈[n]

𝛾ih(xi)

})

𝔊
∗
n
(H) ∶= sup

x∈Xn

𝔊̂n(H, x) andℜ∗
n
(H) ∶= sup

x∈Xn

ℜ̂n(H, x).
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Finally, given a distribution PX on X  , and H ⊆ M(X,ℝ) , the Gaussian width 
�n

(
H,PX

)
 and Rademacher width ℜn

(
H,PX

)
 are

where the expectation is taken over a random sample X = (X1,⋯ ,Xn) , consisting of n 
independent random variables Xi with distribution PX.

We can now define our element-wise complexities. Suppose we have a sequence 
H = (Hj)j∈[m] of function classes Hj ⊆ M(X,ℝ) and let H ∶= conv(

⋃
j∈[m] Hj) be the 

convex union. Given a function f ∈ H,

𝔊n(H,PX) ∶= �

[
𝔊̂n(H,X)

]
andℜn(H,PX) ∶= �

[
ℜ̂n(H,X)

]
,

ℜ̂H,n(f , x) ∶= inf

{∑
t∈[𝜏]

𝛼t ⋅ ℜ̂n

(
Hjt

, x
)
∶ f =

∑
t∈[𝜏]

𝛼t ⋅ hjt

}
,

ℜH,n(f ,PX) ∶= inf

{∑
t∈[𝜏]

𝛼t ⋅ℜn

(
Hjt

,PX

)
∶ f =

∑
t∈[𝜏]

𝛼t ⋅ hjt

}
,

ℜ
∗
H,n

(f ) ∶= inf

{∑
t∈[𝜏]

𝛼t ⋅ℜ
∗
n

(
Hjt

)
∶ f =

∑
t∈[𝜏]

𝛼t ⋅ hjt

}
,

Fig. 1   Example comparison of bounds on norm preservation in a union of three linear subspaces of dimen-
sions 5, 150 and 400 respectively in the ambient space ℝ500 using Gaussian RP. With probability at least 
0.95, we have simultaneously holding low distortion guarantees in the union of these, such that the guaran-
tee is tighter in lower complexity subspaces at the expense of a negligible increase in the highest complex-
ity subspace. In contrast, the previous bound (Liaw et al.2017) gives the same guarantee everywhere in the 
union
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where each infimum runs over all � ∈ ℕ , (jt)t∈[�] ∈ [m]� , all (ht)t∈[�] ∈
∏

t∈[�] Hjt
 and 

(�t)t∈[�] ∈ Δ� . We can also make corresponding definitions for �̂H,n(f , x) , �H,n(f ,PX) and 
�∗

H,n
(f ) ; the results that follow hold unchanged.

The following lemma extends Theorem 1 to these element-complexities.

Lemma 4  (Element-wise complexity bounds for function classes) Take n,m ∈ ℕ and 𝛽 > 0 . 
Given x = (xi)i∈[n] ∈ Xn,

Moreover, the bound (4) also holds with any one of �̂H,n(⋅, x) , ℜ∗
H,n

(⋅) , �∗
H,n

(⋅) in place of 
ℜ̂H,n(⋅, x) . In addition, given any distribution PX on X ,

 Moreover, the bound (5) also holds with �H,n(⋅,PX) in place of ℜH,n(⋅,PX).

The proof is given in the Appendix. The bound for empirical widths follows directly 
from Theorem 1, and the others will be reduced to these by using concentration of the 
empirical widths around its expectation, and for the uniform complexities this reduction 
will follow simply from its definition.

4.1 � Learning with a Lipschitz loss

In this section we focus on the problem of supervised learning. Suppose we have a 
measurable input data space X  and an output space Y ⊆ ℝ . Suppose further that we have 
a tuple of random variables (X, Y), where X takes values in X  , and Y takes values in Y , 
with joint distribution P , and marginal PX over X. The learning task is defined in terms 
of a loss function L ∶ ℝ × Y → [0,B] . The goal of the learner is to obtain a measurable 
mapping f ∶ X → ℝ with low risk, EL(f ) ≡ EL(f ,P) ∶= �(X,Y)∼P

[
L(f (X), Y)

]
 . Whilst the 

distribution P is unknown, the learner does have access to a data set D ∶= {(Xi, Yi)}i∈[n] , 
where (Xi, Yi) are independent copies of (X,  Y), and computes the empirical risk, 
ÊL(f ) ≡ ÊL(f ,D) ∶=

1

n

∑
i∈[n] L(f (Xi),Yi) . This setting includes both binary classification, 

where Y = {−1,+1} and regression where Y = ℝ.
The main result of this section is the following simultaneous upper bound for 

weighted heterogeneous ensembles, given in terms of our element-wise Rademacher 
width of individual predictors.

Theorem  3  Suppose we have a bounded, Λ-Lipschitz loss function L ∶ ℝ × Y → [0,B] 
along with a sequence of function classes H = (Hj)j∈[m] with each Hj ⊆ M(X, [−𝛽, 𝛽]) . 
Given n ∈ ℕ , � ∈ (0, 1) , with probability at least 1 − � , both of the following holds for all 
f ∈ H,

(4)ℜ̂n

({
f ∈ H ∶ ℜ̂H,n(f , x) < 𝜅

}
, x
)
≤ 𝜅 + 𝛽 ⋅

(√
2 logm

n
+

√
𝜋

2n

)
.

(5)ℜn

({
f ∈ H ∶ ℜH,n

(
f ,PX

)
< 𝜅

}
,PX

)
≤ 𝜅 + 2𝛽 ⋅

(√
2 logm

n
+

√
𝜋

2n

)
.
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Proof  For each l ∈ [n] , let l: =
{

f ∈ :(l − 1) ⋅ � ≤ ℜ,n
(

f ,PX
)

≤ l ⋅ �
}

 where � ∶= B∕(2Λn) . By 
Talagrand’s contraction lemma (Mohri et  al. 2012, Lemma 5.1), we have 
ℜ̂n(L◦H,D) ≤ Λ ⋅ ℜ̂n(H,X) . Moreover, by Lemma 4 for each l ∈ [n],

Thus, by the classic Rademacher bound (Mohri et al. 2012, Theorem 3.3) combined with 
a union bound, the following holds with probability at least 1 − � for all l ∈ [n] and f ∈ Fl,

and 
√
log(n∕�)∕(2n) + 1∕n ≤

√
2 log(en∕�)∕n for all n ≥ 3 . This proves the first bound in 

Theorem 3 for all f ∈
⋃n

l=1
Fl and n ≥ 3 . On the other hand, if f ∈ H�

⋃n

l=1
Fl or n ≤ 2 

then max{2Λ ⋅ℜH,n

�
f ,PX

�
,B

√
2 log(en∕�)∕n} ≥ B , in which case the bound in Theo-

rem 3 follows from sup(u,y)∈ℝ×Y L(u, y) ≤ B , which completes the proof of the first bound in 
Theorem 3. The second bound may be proved by a similar argument exploiting (4). 	�  ◻

4.2 � Learning with a self‑bounding Lipschitz loss

To further demonstrate the generality of our theory, here we apply Theorem 4 to multi-out-
put learning, and show how to obtain a heterogeneous ensemble with good generalisation 
as well as favourable rates.

We begin with the problem-specific preliminaries. The main result of this section is 
Theorem 5.

The label space is Y ⊆ {0, 1}Q , where Q , the number of classes, can be very large in appli-
cations, but the number of simultaneous positive labels for an instance is typically much 
smaller, resulting in q-sparse binary vectors � (q) ∶= {(yj)j∈[Q] ∈ {0, 1}Q ∶

∑
j∈[Q] yj ≤ q} , 

where q ≤ Q . The following definition from Reeve and Kabán (2020) was shown to explain 

EL(f ) − ÊL(f ) ≤ 2ΛℜH,n

(
f ,PX

)
+ 4Λ𝛽

√
2 (log(m) + 1)

n
+ B

√
2 log(en∕𝛿)

n

EL(f ) − ÊL(f ) ≤ 2Λℜ̂H,n(f ,X) + 2Λ𝛽

√
2 (log(m) + 1)

n
+ 3B

√
2 log(4n∕𝛿)

n
.

ℜn

(
Fl,PX

)
≤ l ⋅ � + 2� ⋅

(√
2 logm

n
+

√
�

2n

)
.

EL(f ) − ÊL(f ) − B ⋅

√
log(n∕𝛿)

2n
≤ 2 ⋅ℜn

(
L◦Fl,P

)
≤ 2Λ ⋅ℜn

(
Fl,PX

)

≤ 2Λ ⋅

(
l ⋅ 𝜖 + 2𝛽 ⋅

(√
2 logm

n
+

√
𝜋

2n

))

≤ 2Λ ⋅

(
ℜH,n

(
f ,PX

)
+ 𝜖 + 2𝛽 ⋅

(√
2 logm

n
+

√
𝜋

2n

))

= 2Λ ⋅

(
ℜH,n

(
f ,PX

)
+ 2𝛽 ⋅

(√
2 logm

n
+

√
𝜋

2n

))
+

B

n

≤ 2Λ ⋅ℜH,n

(
f ,PX

)
+ 4Λ𝛽 ⋅

√
2 ⋅ (1 + logm)

n
+

B

n
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favourable rates for learning multi-output problems, ranging from slow rate n−1∕2 , in the 
case of general Lipschitz losses, to fast rates n−1.

Definition 3  (Self-bounding Lipschitz condition) A loss function L ∶ ℝ × Y → ℝ is said 
to be (�, �)-self-bounding Lipschitz for 𝜆 > 0, 𝜃 ∈ [0, 1∕2] if for all y ∈ Y and u, u� ∈ ℝ , 
�L(u, y) − L(u�, y)� ≤ � ⋅max{L(u, y),L(u�, y)}� ⋅ ‖u − u�‖∞.

A nice example associated with fast rates is the pick-all-labels loss (Menon et al. 2019), 
which generalises the multinomial logistic loss to multi-label problems.

Example 4  (Pick-all-labels) Given Y = � (q) , the pick-all-labels loss L ∶ ℝ × Y → [0,∞) is 
defined by L(u, y) ∶=

∑
l∈[Q] yl log

�∑
j∈[Q] exp(uj − ul)

�
 , where u = (uj)j∈[Q] ∈ ℝ and 

y = (yj)j∈[Q] ∈ Y . As shown in (Reeve  and Kabán, 2020), L is (�, �)-self-bounding Lip-
schitz with � = 2

√
q and � = 1∕2.

To capture the complexity of a multi-output function class H ⊆ M(X,ℝQ) , its projected 
class is defined as Π◦H ∶= {Π◦f ∶ f ∈ H} ⊆ M(X × [Q],ℝ) , where Π◦f ∶ X × [Q] → ℝ 
defined by (Π◦f )(x,𝓁) = �

𝓁
(f (x)) , and �

�
∶ ℝ

Q
→ ℝ is the �-th coordinate projection.

We shall make use of the following optimistic-rate bound from Reeve and Kabán 
(2020).

Theorem  4  (Reeve and Kabán, 2020) Suppose we have a multi-output function class 
H ⊆ M(X, [−𝛽, 𝛽]Q) along with a (�, �)-self-bounding Lipschitz loss L ∶ ℝ

Q × Y → [0,B] 
for some 𝜆 > 0, 𝜃 ∈ [0, 1∕2] . Given any � ∈ (0, 1) , with probability at least 1 − � , the fol-
lowing bounds hold for all f ∈ H

where K is a numerical constant, and Γ�,�

n,Q,�
(H) ∶=

With these preliminaries in place, we consider convex combinations of multi-output 
functions. Let us suppose H ∶= (Hj)j∈[m] consists of multi-output functions 
Hj ⊆ M(X, [−𝛽, 𝛽]Q) . Note that Π is linear, so if f ∈ conv

�⋃
j∈[m] Hj

�
 then we also have 

Π◦f ∈ conv
�⋃

j∈[m] Π◦Hj

�
 , and hence we can quantify the complexity of f through 

ℜ∗
Π◦H,nQ

(Π◦f ) , where Π◦H ∶= (Π◦Hj)j∈[m] , which leads to the following result.

Theorem  5  Consider a (�, �)-self-bounding Lipschitz loss L ∶ ℝ
Q × Y → [0,B] for some 

� ∈ (0,∞) , � ∈ [0, 1∕2] and B ∈ [1,∞) , along with multi-output function classes 
Hj ⊆ M(X, [−𝛽, 𝛽]Q) for j ∈ [m] and H ∶= conv

�⋃
j∈[m] Hj

�
 . Given any � ∈ (0, 1) , with 

probability at least 1 − � , for all f ∈ H,

EL(f ) − ÊL(f ) ≤ K

(√
ÊL(f ,D) ⋅ Γ𝜆,𝜃

n,Q,𝛿
(H) + Γ𝜆,𝜃

n,Q,𝛿
(H)

)
,

�
�

�√
Q ⋅ log3∕2 (e�nQ) ⋅ℜ∗

nQ
(Π◦H) +

1√
n

�� 1

1−�

+
B log(log(n)∕�)

n
.
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 where K is a numerical constant and Γ�,�

n,Q,�
(f ) ∶=

�
�

�
Q

1

2 log
3

2 (e�nQ)
�
ℜ∗

Π◦H,nQ
(Π◦f ) + �

�
logm

nQ

�
+

1√
n

�� 1

1−�

+
4B log(n∕�)

n
.

We note that often ℜ∗
nQ
(Π◦F) = Õ({nQ}−1∕2) , so the dependence on the number of 

classes Q is, up to the mild factor log
3

2(1−�) (Q) , only though the self-bounding Lipschitz 
constant � . Hence in Example 4 there is no further dependence on Q, but only q. Since 
� = 1∕2 , we also have fast rates for multi-label heterogeneous ensembles with very large 
numbers of labels, provided the individual label vectors are sufficiently sparse.

Proof  (Proof of Theorem 5) Take 𝜖 > 0, L ∈ ℕ (to be determined later), and for each l ∈ [L],

By Theorem  4 combined with the union bound, the following holds with probability at 
least 1 − � for all l ∈ [L] and f ∈ Fl,

Moreover, by Lemma 4, for each l ∈ [L] we have ℜ∗
Π◦,nQ

(

Π◦l
)

≤ l ⋅ � + �⋅
(√

2 logm
nQ

+
√

�
2nQ

)

 . Hence, for any � ∈ [L] and f ∈ F
�
 we have Γ�,�

n,Q,�∕L
(Fl) ≤

Moreover, since f ∈ Fl , we have l ⋅ � ≤ ℜ∗
Π◦H,nQ

(Π◦f ) + � . Hence, choosing L = n and 
� = B∕n yields the required bound when n is sufficiently large that � ≤ �1−� . On the other 
hand, if 𝜖 > 1 , so n < B , then the bound is immediate. 	�  ◻

4.3 � Algorithmic consequences and numerical experiments

We exemplify and assess the use of our generalisation bounds empirically by turning Theo-
rems 3 and 5 into learning algorithms for binary and multi-label classification problems, by 
minimising the bounds. We implement these as regularised gradient boosting with random 
subspace and random projection based base learners. Such ensembles are heterogeneous, 
since each base class is defined on a different subspace of the ambient input space.

For concreteness and simplicity, we consider generalised linear model base learn-
ers. Denoting by Θ ∶= {a, b, v,w} the parameters, a base learner has the form 
h(x,Θ) = a tanh(x⊤w + v) + b , where a, b, v ∈ ℝ , and w ∈ X  . For multi-label problems, 
w ∈ XQ and tanh(⋅) is computed component-wise. To ensure that h has bounded outputs, 
we constrain the magnitudes of a and b. We do not regularise the weight vectors w, as the 

EL(f ) − ÊL(f ) ≤ K

(√
ÊL(f ) ⋅ Γ

𝜆,𝜃

n,Q,𝛿
(f ) + Γ𝜆,𝜃

n,Q,𝛿
(f )

)
,

(6)Fl = {f ∈ H ∶ (l − 1) ⋅ � ≤ ℜΠ◦H,nQ(Π◦f ) ≤ l ⋅ �}

EL(f ,P) − ÊL(f ,D) ≤ K

(√
ÊL(f ,D) ⋅ Γ𝜆,𝜃

n,Q,𝛿∕L
(Fl) + Γ𝜆,𝜃

n,Q,𝛿∕L
(Fl)

)
.

⎛⎜⎜⎝
�

⎛⎜⎜⎝
Q

1

2 log
3

2 (e�nQ) ⋅

⎛⎜⎜⎝
l ⋅ � + � ⋅

⎛⎜⎜⎝

�
2 logm

nQ
+

�
�

2nQ

⎞⎟⎟⎠

⎞⎟⎟⎠
+

1√
n

⎞⎟⎟⎠

⎞⎟⎟⎠

1

1−�

+
B log(L log(n)∕�)

n
.
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random dimensionality reduction itself performs a regularisation role. Thus, with k-dimen-
sional inputs, a binary classification base class of this form has Rademacher width of order 
(k∕n)1∕2 , a multi-label base class has its Γ�,�

n,Q,�
 of order (�k∕n)

1

2(1−�) , and neither the expo-
nents nor n affect the minimisation. This translates into easy-to-compute individual penal-
ties for each base learner. The pseudo-code of the resulting algorithm is given in Algo-
rithm  1. Other base learners are of course possible, and their Rademacher width would 
then be replacing this penalty term. However our goal is to assess in principle the ability 
of our bounds to turn into competitive learning algorithms. We generated kt for t ∈ [�] for 
the base learners independently from a skew distribution proportional to − log(U) where 
U ∼ Uniform(0, 1) , re-scaled these between 1 and half of the rank of the data matrix, and 
rounded them to the closest integers. This favours simpler base models, both for efficiency 
and to avoid large penalty terms.

 In addition to our heterogeneous ensembles, we also tested regularised gradient boost-
ing on the original data; this is a homogeneous ensemble that performs all computations in 
the original high dimensional space. For comparisons we chose the closest related exist-
ing methods as follows. For binary classification we compare with adaboost, logitboost, 
and with the top results obtained by Tian and Feng (2021) by the methods RASE1-LDA, 
RASE1-kNN, RP-ens-LDA, RP-ens-kNN, as well as the classic Random Forest. For multi-
label classification, we compare with existing multi-label ensembles: COCOA (Zhang 
et al. 2015), ECC (Read et al. 2011), and fRAkEL (Kimura et al. 2016) provided by the 
MLC-Toolbox (Kimura et  al. 2017).We use data sets previously employed by our com-
petitors: the largest two real-world data sets from Tian and Feng (2021), and 5 benchmark 
multi-label data sets from Zhang et al. (2015), Read et al. (2011) and Kimura et al. (2016). 

Table 1   Characteristics of the binary classification data sets used

Data # features # examples Train set sizes Description

Mice 77 1079 200, 800 Protein expression
Musk 166 6598 200, 1000 Shape meas-

urements of 
molecules
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The data characteristics are given in Tables 1 and 2. We stantardised all data sets to zero 
mean and unit variance. In binary problems we tested different training set sizes, following 
Tian and Feng (2021), leaving the rest of the data for testing. In multi-label problems we 
used 80% of the data for training and 20% for testing. We did not do any feature selection, 
to avoid external effects in assessing the informativeness of our bounds, while the RASE 
methods do so and hence might have some advantage in comparisons. In particular, the 
RASE algorithms use 200 evenly weighted base learners each selected from 500 trained 
candidates and meanwhile collecting information for feature selection – this totals 10,000 
trained base learners – while we just train 1000 base learners in gradient boosting fashion. 
We have set � by 5-fold cross-validation in {10−7, 10−5, 10−3, 10−1, 0} ⋅ n−1∕2.

The misclassification rates obtained on the binary problems are summarised in Table 3 
with both exponential and logistic loss functions. The shrinkage parameter was set to 0.1, 
which is a common choice in gradient boosting algorithms. The multi-label results are 
given in Table 4, with the pick-all-labels loss function – here the values represent the aver-
age area under the ROC curve (AUC) over the labels (higher is better). We present results 
with shrinkage � = 0.1 as well as without shrinkage ( � = 1 ); our heterogeneous ensembles 
appear more robust to the setting of this parameter than homogeneous gradient boosting, 
where shrinkage is known to have a role in preventing overfitting.

From Tables  3 and 4 we see that our regularised heterogeneous ensembles (s reg 
= regularised random subspace gradient boosting; g reg = regularised random projec-
tion gradient boosting) consistently display good performance, even best performance 
in several cases. The regularised high-dimensional gradient boosting (HD reg) is only 
sometimes better and only marginally – despite it performs the computations to train 
all base learners in the full dimensional input space. The logistic loss worked better 
than exponential on these data, likely because of noise. Interestingly, the random sub-
space setting of our ensembles tended to work better than random projections, which is 
good news both computationally and from interpretability considerations. We also see 
that un-regularised models (Adaboost and Logitboost) sometimes display erratic behav-
iour, especially in the small sample regime. RASE performs very well in general, as 
its in-built feature selection also has a regularisation effect. One could mimic this with 
our boosting-type random subspace ensemble, especially when interpretability is at pre-
mium, although we have not pursued this here. Based on these results, we conclude that 
our heterogeneous random subspace ensemble is a safe-bet competitive approach.

5 � Relation to previous work and discussion

The following corollary shows that, with a specific example loss function, our Theo-
rem 3 recovers a result of Cortes et al. (2014), termed as “deep boosting”.

Example 5  (The margin loss and the ramp loss) Consider binary classifcation, we have 
Y = {−1,+1} . The ramp loss is a Lipschitz upper bound for the zero–one loss, which is 
in turn upper bounded by the margin loss. More precisely, for � ∈ [0, 1] , the �-ramp loss is 
defined by Lr

�
(u, y) ∶= min{1,max{0, 1 − (1∕�) ⋅ u ⋅ y}} and the margin loss is defined by 

L�(u, y) ∶= �{u ⋅ y ≤ �} . The Lr
�
 is 1∕�-Lipschitz and L0,1(u, y) ≤ Lr

�
(u, y) ≤ L�(u, y) for all 

u ∈ ℝ and y ∈ Y.
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Table 2   Multi-label classification data sets used

Data # features # examples Label dim Avg. labels Description

Birds 260 645 19 1.014 Audio
Emotions 72 593 6 1.8685 Music
Flags 19 194 7 3.3918 Flag descriptors
Scene 294 2407 6 1.074 Images
Yeast 103 2417 14 4.237 Gene profiles

Table 3   First 6 rows: Binary classification error rates (average ± standard deviation computed from 10 
independent repetitions) on the Mice and Musk data sets after 1000 regularised gradient-boosting rounds. 
Our regularised heterogeneous ensembles are ‘s reg’ and ‘g reg’ (underlined). The method descriptors 
specify the loss function used (exp=exponential; log=logistic), the input type (s = subspace ensemble; g 
= random projection ensemble with Gaussian RPs in base learners; HD = original uncompressed inputs). 
The competing methods do not regularise their base learners. The last 5 rows are taken from Tian and Feng 
(2021) for comparison. Bold font indicates best performance, the second best is marked in italic if its per-
formance is within one standard deviation of the best performer

Mice n = 200 Mice n = 800 Musk n = 200 Musk n = 1000

Exp s  reg 3.87 ± 0.32 1.51 ± 0.73 8.42 ± 1.64 5.57 ± 0.47
g  reg 4.55 ± 0.32 1.36 ± 0.28 8.44 ± 1.20 5.54 ± 0.41
HD reg 4.94 ± 0.95 0.97 ± 0.63 9.23 ± 0.98 5.93 ± 0.35

Log s  reg 3.85 ± 0.47 0.86 ± 0.82  8.25 ± 1.26  4.70 ± 0.47
g  reg 4.41 ± 0.47 0.79 ± 0.54  8.49 ± 0.98  4.74 ± 0.44
HD reg 5.37 ± 1.04 0.72 ± 0.76  8.80 ± 1.08  5.35 ± 0.47

Adaboost 11.39 ± 1.83 1.04 ± 0.51 12.06 ± 1.71 5.52 ± 0.47
Logitboost 10.07 ± 2.09 1.25 ± 0.69 12.20 ± 1.71 5.51 ± 0.41
RASE

1
-LDA  7.24 ± 1.10  4.49 ± 1.23 10.56 ± 1.19  7.82 ± 0.46

RP-ens-LDA 24.84 ± 2.91 22.34 ± 2.55 12.58 ± 1.86  9.50 ± 0.46
RASE

1
-kNN  7.43 ± 2.00  0.60 ± 0.56 10.52 ± 1.95  5.71 ± 0.78

RP-ens-kNN 11.77 ± 2.54  0.92 ± 0.68 10.01 ± 1.66  6.89 ± 0.84
Random Forest   8.32 ± 1.71  1.04 ± 0.73 10.83 ± 1.44  5.71 ± 0.48

Table 4   AUC results in multi-label classification problems (higher values are better)

The loss function used for training was the pick-all-labels function

Birds Emotions Flags Scene Yeast

� = 1   s  reg 0.29 ±.02 0.86 ±.01 0.71 ±.01 0.77 ±.03 0.74 ±.05
   g  reg 0.26 ±.03 0.85 ±.01 0.71 ±.01 0.78 ±.03 0.71 ±.06

 HD reg 0.24 ±.03 0.83 ±.01 0.70 ±.02 0.75 ±.03 0.70 ±.04
� = .1   s  reg 0.30 ±.02 0.89 ±.01 0.72 ±.01 0.79 ±.02 0.75 ±.05

   g  reg 0.29 ± 0.03 0.88 ±.01 0.72 ±.01 0.80 ±.02 0.74 ±.06
 HD reg 0.26 ±.03 0.88 ±.01 0.72 ±.01 0.79 ±.03 0.73 ±.05

COCOA 0.30 ±.03 0.84 ±.01 0.74 ±.01 0.79 ±.03 0.73 ±.06
ECC 0.28 ±.02 0.84 ±.01 0.74 ±.01 0.78 ±.04 0.74 ±.06
fRAkEL 0.25 ±.03 0.85 ±.01 0.73 ±.01 0.79 ±.03 0.73 ±.05
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Corollary 1  Consider a sequence of function classes H = (Hj)j∈[m] with 
Hj ⊆ M(X, [−1, 1]) . Given � ∈ (0, 1) , with probability 1 − � , the following holds for all 
f =

∑
t∈[�] �t ⋅ hjt ∈ H with (�t)t∈[�] ∈ Δ� and hjt ∈ Hjt

,

A similar result holds with ℜ̂n(Hjt
,PX) in place of ℜ(Hjt

,PX).

Proof  Follows straightforwardly from Theorem 3 applied to Example 5 and relaxing the 
infimum in our definition of element-wise complexities. 	� ◻

Corollary 1 is closely related to Theorem 1 of Cortes, (2014), which contains a similar 
result with a different proof. We can also relate our Theorem 5 to multi-class “deep boost-
ing” given in Kuznetsov et al. (2014) in the special case of q = 1 . Their bound grows lin-
early with the number of classes Q, while ours can exploit label-sparsity; their rate is n1∕2 , 
while ours allow significantly tighter bounds when the empirical error is sufficiently low 
and the sample size sufficiently large.

Foremost, our theoretical framework is general and widely applicable whenever hetero-
geneous geometric sets are of interest. The main benefit of our approach is to allow for 
a unified analysis which can be straightforwardly extended, and it justifies heterogeneous 
ensemble constructions beyond the previous theory. For instance SnapBoost (Parnell et al. 
2020) considered a mix of trees and kernel methods in gradient boosting and was empiri-
cally found very successful.

The bound suggests a regularisation should be included in the training of each base 
learner, proportional to the Rademacher complexity of its class. Of course the more data 
we have for training the less the effect of this will be – SnapBoost did not include a regu-
larisation but trained on very large data sets. In relatively small sample settings (as we 
consider in Sect.  4.3) the regularisation suggested by the bound is expected to be more 
essential. However, we need to reckon that Rademacher complexity is hard to compute in 
practice, one typically resorts to upper bounds, therefore over-regularising can be a con-
cern. This may be somewhat countered by including a balancing regularisation parameter 
that may be tuned by cross-validation.

6 � Conclusions

We presented a general approach to deal with set heterogeneity in high probability uniform 
bounds, which is able to exploit low complexity components. We applied this to tighten 
norm preservation guarantees in random projections, and to justify and guide heterogene-
ous ensemble construction in statistical learning. We also exemplified concrete use cases 
by turning our generalisation bounds into a practical learning algorithms with competitive 
performance.

EL0,1
(f ) − ÊL𝜌

(f ) ≤
2

𝜌
⋅

∑
t∈[𝜏]

𝛼t ⋅ℜ(Hjt
,PX) +

8

𝜌
⋅

√
2 logm

n
+

√
2 log(n∕𝛿)

n
.
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Appendix

Proof of Lemma 4  Given x ∈ Xn , the bound for ℜ̂n(⋅, x) holds by the second part of Theo-
rem 1 with �j =

{
n−1 ⋅

(
h(xi)

)
i∈[n]

}
h∈Hj

 and r = �∕n.

To prove the bound for ℜ∗
n
 we observe that, for any fixed x ∈ Xn , we have

Indeed, take f ∈ H with ℜ∗
,n(f ) < � . It follows that f =

∑
t∈[�] �t ⋅ ht with ∑

t∈[𝜏] 𝛼t ⋅ℜ
∗
n

�
Hjt

�
< 𝜅 where (jt)t∈[�] ∈ [m]� , (ht)t∈[�] ∈

∏
t∈[�] Hjt

 and (�t)t∈[�] ∈ Δ� . Given 
that ℜ̂n

(
Hjt

, x
)
≤ ℜ∗

n

(
Hjt

)
 it follows that 

∑
t∈[𝜏] 𝛼t ⋅ ℜ̂n

�
Hjt

, x
�
≤
∑

t∈[𝜏] 𝛼t ⋅ℜ
∗
n

�
Hjt

�
< 𝜅 , 

and so ℜ̂H,n(f , x) < 𝜅 , which proves the claim (7). Hence, applying the bound for ℜ̂n(⋅, x) 
we have

Taking a supremum over all x ∈ Xn we deduce the bound

The corresponding bound with �∗
n
 in place of ℜ∗

n
 may be proved similarly.

To prove the bound for ℜn (5) we first apply McDiarmid’s inequality (cf. (Mohri et al., 
2012), (3.14)) combined with the union bound to deduce that with probability at least 1 − � 
the following holds for all j ∈ [m],

Let �(�) ∶= � ⋅

√
2 log(m∕�)∕n . Now suppose X satisfies (8) and take f ∈ H with 

ℜH,n(f ,P) < 𝜅 . It follows that f =
∑

t∈[�] �t ⋅ ht with 
∑

t∈[𝜏] 𝛼t ⋅ℜn

�
Hjt

,P
�
< 𝜅 where 

� ∈ ℕ , (jt)t∈[�] ∈ [m]� , (ht)t∈[�] ∈
∏

t∈[�] Hjt
 and (�t)t∈[�] ∈ Δ� . By (8) we deduce that ∑

t∈[𝜏] 𝛼t ⋅ ℜ̂n

�
Hjt

,X
�
< 𝜅 + 𝜉(𝛿) . Hence, (8) implies that

Now applying again the bound in (4), with probability at least 1 − � we have

(7)
{
f ∈ H ∶ ℜ

∗
H,n

(f ) < 𝜅

}
⊆

{
f ∈ H ∶ ℜ̂H,n(f , x) < 𝜅

}
.

ℜ̂n

({
f ∈ H ∶ ℜ

∗
H,n

(f ) < 𝜅

}
, x
)
≤ ℜ̂n

({
f ∈ H ∶ ℜ̂H,n(f , x) < 𝜅

}
, x
)

≤ 𝜅 + 𝛽 ⋅

(√
2 logm

n
+

√
𝜋

2n

)
.

ℜ
∗
n

({
f ∈ H ∶ ℜ

∗
H,n

(f ) < 𝜅

})
≤ 𝜅 + 𝛽 ⋅

(√
2 logm

n
+

√
𝜋

2n

)
.

(8)ℜ̂n

(
Hj,X

)
≤ ℜn

(
Hj,P

)
+ 𝛽 ⋅

√
2 log(m∕𝛿)

n
.

{
f ∈ H ∶ ℜH,n(f ,P) < 𝜅

}
⊆

{
f ∈ H ∶ ℜ̂H,n(f ,X) < 𝜅 + 𝜉(𝛿)

}
.
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 Hence, if we define a random variable Z by

we have Z ∈ R(�2∕n) . By integrating the tail bound we deduce �(Z) ≤ � ⋅

√
�∕2n . It fol-

lows from the definition of the average Rademacher width that

as required. The proof of the corresponding bound with �n(⋅,P) in place of �n(⋅,P) is simi-
lar, except for replacing McDiarmid’s inequality with Borell-TIS. 	� ◻

List of symbols

S A generic geometric set
{Xs}s∈S A stochastic process indexed by S
� A sequence � = (�

j
)
j∈[m] of bounded sets �

j
 where, j ∈ [m]

� convex hull from � , i.e. conv(
⋃

j∈[m] �j
)

m Number of sets in �
� Number of points defining a convex hull
Δ� �-dimensional simplex
(�t)t∈[�] An element of Δ�

R(⋅) Set of all random variables with sub-Gaussian right tail
g Standard Gaussian vector
� i.i.d. Rademacher vector
�(⋅) Gaussian width
ℜ(⋅) Rademacher width
Z Supremum of a stochastic process
Z�,�

Supremum of mixture process s.t. �, � dependent constraints
�

�
(s) Element-wise Gaussian complexity of s ∈ �

ℜ
�
(s) Element-wise Rademacher complexity of s ∈ �
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[−r, r]n Hypercube shaped set used in Theorem 1
� Element-complexity constraint parameter in Theorem 1
L An integer
(Tl)l∈[L] Sets of increasing complexity that cover �
d Data dimensionality
k Target dimension of RP, k ≤ d

R k × d random matrix (RP map)
‖R‖�

2

Sub-Gaussian norm of R
C� Constant introduced in Lemma 3
X Instance space (a measurable space)
Y Label or target space, e.g. {-1,1} or ℝ or ℝQ

M(X,V) All measurable functions with domain X  & co-domain V
H A generic hypothesis class
[−�, �] Range of values of hypothesis functions
x Non-random sequence of points, (xi)i∈[n]
PX Probability distribution on X
X Random sequence of n points drawn i.i.d. from PX

�̂n(⋅, x) Empirical Gaussian width of a function class

ℜ̂n(⋅, x) Empirical Rademacher width of a function class
�n(⋅,P) Gaussian width of a function class
ℜn(⋅,P) Rademacher width of a function class
�∗

n
(⋅) Uniform Gaussian complexity of a function class

ℜ∗
n
(⋅) Uniform Rademacher complexity of a function class

H A sequence of hypothesis classes (Hj)i∈[m]

H Convex hull from H , i.e. conv(
⋃

j∈[m] Hj)

ℜ̂H,n(f , x) Element-wise empirical Rademacher complexity of f ∈ H

ℜH,n(f ,P) Element-wise Rademacher complexity of f ∈ H

ℜ∗
H,n

(f ) Element-wise uniform Rademacher complexity of f ∈ H

�̂H,n(f , x) Element-wise empirical Gaussian complexity of f ∈ H

�H,n(f ,P) Element-wise Gaussian complexity of f ∈ H

�∗
H,n

(f ) Element-wise uniform Gaussian complexity of f ∈ H

P Probability distribution on X × Y

(X, Y) A random tuple from X × Y drawn from P
L Loss function
B Largest value of L
Λ Lipschitz constant of L
EL(f ) Generalisation error (risk) of f
n Sample size

D Training set drawn i.i.d. from P

ÊL(f ) Training error (empirical risk) of f
(Fl)l∈[L] Sets of increasing complexity that cover H
Q Number of classes in multi-label problems
q Maximum number of non-zero labels for an instance
� (q) Set of all label vectors with at most q ≤ Q non-zeros
(�, �) Self-bounding Lipschitz parameters
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�
�
(f ) f

�
 , the �-th coordinate projection of a multi-output f

Π◦f Projection of f: X × [Q] → ℝ, (Π◦f )(x,𝓁) = �
𝓁
(f (x))

Π◦H Projected multi-output class, {Π◦f ∶ f ∈ H}

Γ�,�

n,Q,�
(H) Complexity of L◦H when L is self-(�, �)-Lipschitz

Γ�,�

n,Q,�
(f ) Element-complexity of f ∈ H with self-(�, �)-Lipschitz loss

� Regularisation parameter in the algorithm
� Shrinkage parameter in the gradient boosting algorithm
Θ Θ = {a, b, v,w} base learner’s parameters
L
0,1

0-1 loss
� Margin parameter, a value in [0, 1]
Lr
�

Ramp loss
L� Margin loss
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