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Abstract
Treatment effect estimation is a fundamental problem in various domains for effective 
decision making. While many studies assume that observational data include all the con-
founding variables, we cannot practically guarantee that observational data include such 
confounding variables, and there might be confounding variables that are not included in 
observational data, referred to as hidden confounding variables. Recently, variational aut-
encoder (VAE) based methods have been successfully applied to treatment effect estima-
tion problem. However, although they can recover a large class of latent variable models, 
they do not give the correct treatment effect, even when they achieve an optimal solution 
due to the nature of VAE loss function. We propose an efficient VAE-based method that 
employs information theory to estimate treatment effect and combines it with a matching 
technique. To the best of our knowledge, this is the first work that gives the correct treat-
ment effect given an optimal solution using VAE-based methods. Experiments on a semi-
real dataset and synthetic dataset demonstrate that the proposed method mitigates VAE 
problems and observational bias effectively, even under hidden confounding variables, and 
outperforms strong baseline methods.

Keywords  Causal inference · Treatment effect estimation · Generative model

1  Introduction

Treatment effect estimation plays an essential role in decision making in various 
domains, such as healthcare, economic policy, and education. The goal of treatment 
effect estimation is to estimate the effect of an action by a decision maker. The main 
difficulty of treatment effect estimation based on observational data is that a treatment 
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assignment is not randomized, which is often referred to as observational or selection 
bias. For example, elderly people might be more likely to receive drug treatment than 
younger people. In this example, age is a variable that impacts treatment assignment and 
outcome. This variable is called a confounding variable. We need to find such confound-
ing variables to mitigate bias and give appropriate treatment effect.

In the context of treatment effect estimation, many studies usually assume that obser-
vational data include all the confounding variables. However, this assumption seems too 
strong and is not realistic because we cannot always practically obtain sufficient infor-
mation regarding individuals to guarantee that we observe all the confounding variables. 
Confounding variables that are not included in observational data are often referred to 
as hidden confounding variables. For example, private and sensitive individual informa-
tion like income might be difficult to obtain, but this variable can have an effect on treat-
ment assignment and outcome. Without knowing confounding variables, it is impossible 
to know the true treatment effect, and treating proxy variables as confounding variables 
will lead to incorrect estimands  (Rothman et  al., 2008; Louizos et  al., 2017). Fig.  1 
illustrates a graphical model of the data generation process. In this graphical model, 
it is indispensable to infer � correctly to know the true treatment effect. Prior studies 
have used strong assumptions that they have knowledge regarding the nature of hidden 
confounding variables beforehand, like the number of categories of hidden confound-
ing variables (Cai and Kuroki, 2008). These assumptions limit the application range of 
these approaches.

Recently, the Causal Effect Variational Autoencoder (CEVAE), the variational auten-
coder (VAE)-based method  has been successfully incorporated into treatment effect esti-
mation with the existence of hidden confounding variables  (Louizos et  al., 2017; Zhang 
et  al., 2021). One of the advantages of VAE is that it can recover a large class of hid-
den confounding variable models thanks to the expressive power of neural networks (Tran 
et al., 2015). Previous researches require that we know the nature of hidden confounding 
variables, such as the number of categories.

Fig. 1   A graphical model for the 
treatment effect estimation meth-
ods with hidden confounding 
variables. Hidden confounding 
variable � has an effect on treat-
ment assignment and outcome. 
Treating proxy variables � as 
normal confounding variables 
gives incorrect treatment effect 
estimation
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Xu et al. (2021) employed a deep learning-based technique but they also assumed that 
they can distinguish variables that have an effect only on treatment assignment from vari-
ables which have an effect only on outcome. This assumption requires prior knowledge and 
seems unrealistic.

However, recent theoretical analysis revealed that the global optimum of VAE evidence 
lower bound  (ELBO) does not correctly model the data generation process  (Zhao et  al., 
2019) because VAE focus on reconstruction loss too much, which becomes severer when 
input variables have much higher dimensions than latent variables. To mitigate this prob-
lem, InfoVAE (Zhao et al., 2019), which adds a mutual information regularizer to the VAE 
loss function, was proposed.

This phenomenon obviously arises in VAE-based methods for treatment effect esti-
mation and makes recovering hidden confounding variables by VAE difficult. We first 
remark there are datasets that the optimal solution of VAE-based methods, such as 
CEVAE (Louizos et al., 2017), does not give the correct treatment effect. This is a strict 
limitation without any guarantee when they achieve optimal solution even though they are 
capable of recovering them.

To mitigate these problems, we propose hidden confounding variable matching VAE, 
which combines VAE with information regularization and matching to give appropriate 
treatment effect. The proposed method obtains the correct treatment effect when it achieves 
the optimal solution of its loss function, even under the existence of hidden confounding 
variables. We summarize the contribution of this study as follows:

•	 To the best of our knowledge, this is the first work that shows the optimal solution of 
naive VAE-based methods is not a correct average treatment effect (ATE) for types of 
datasets.

•	 We propose an effective method based on information regularization and matching 
algorithm to mitigate hidden confounding variables and bias, with theoretical guaran-
tee.

•	 In experiments using semi-synthetic and synthetic datasets, the proposed method sig-
nificantly outperformed existing methods.

2 � Related work

2.1 � Treatment effect estimation

Treatment effect estimation plays a essential role in decision making across vari-
ous domains, such as healthcare  (Eichler et  al., 2016; Sekhon, 2009), economic pol-
icy  (LaLonde, 1986), and education  (Zhao and Heffernan, 2017). We outline important 
studies, ranging from established methods to modern deep learning-based methods. The 
goal of treatment effect estimation is to understand the effect of a specific action, i.e., treat-
ment. One of the classical methods for treatment effect estimation is matching  (Rubin, 
1973; Abadie & Imbens, 2006; King & Nielsen, 2019). Matching methods estimate the 
counterfactual outcomes by the nearest neighbor of each individual in terms of covariates. 
Because the curse of dimensionality makes finding appropriate nearest neighbors of each 
individual more difficult, propensity score matching, which defines nearest neighbors in 
terms of propensity score, was developed (Rosenbaum & Rubin, 1983, 1985). Tree-based 



1802	 Machine Learning (2024) 113:1799–1817

1 3

methods, such as Random forest and Bayesian additive regression trees (BART), have also 
been applied . (Chipman et al., 2010; Hill, 2011)

Recently, deep learning-based methods have been successfully applied to the treatment 
effect estimation problem (Shalit et al., 2017; Johansson et al., 2016; Yao et al., 2018; Yoon 
et al., 2018; Louizos et al., 2017; Zhang et al., 2021; Guo et al., 2020; Harada and Kashima, 
2020, 2021). Counterfactual regression (CFR) encourages individual representation of each 
treatment group extracted by neural networks to get closer to each other. Perfect matching 
combines neural networks and propensity score matching (Schwab et al., 2018), and Coun-
terfactual propagation, which also integrates matching and graph-based semi-supervised 
learning, aims to estimate treatment effect using a large number of unlabeled individual 
data (Harada and Kashima, 2020). In particular, VAE-based methods (Louizos et al., 2017; 
Zhang et al., 2021) have been developed to mitigate the hidden confounding variable prob-
lem. They aim to recover hidden confounding variables by the strong expressive power of 
neural networks. Network structured-data also have been utilized to infer hidden confound-
ing variables effectively (Guo et al., 2020).

2.2 � VAE

VAE is one of the most famous deep generative models (Kingma and Welling, 2013) and 
has been widely employed in various domains, such as computer vision (Liu et al., 2017), 
natural language processing (Miao et al., 2016), and chemoinformatics (Liu et al., 2018). 
One of the advantages of VAE-based generative models is their strong expressive power 
based on neural networks. VAE has also been successfully applied in treatment effect esti-
mation (Louizos et al., 2017; Zhang et al., 2021). The idea is to recover a joint distribution 
including hidden confounding variables expressed as latent variables to estimate treatment 
effect. However, recent theoretical analysis revealed that VAE will ignore the latent vari-
ables in the global optimum of the VAE loss function (Zhao et al., 2019). Hence, due to 
the nature of the VAE loss function, VAE-based treatment effect estimation methods face 
the unavoidable issue that they do not provide the correct treatment effect estimation even 
when their loss function achieves the optimal solution, which we will discuss in this paper.

Our goal is to fill the gap between VAE theoretical analysis and VAE-based treatment 
effect estimation methods, proposing an efficient method that provides theoretical guaran-
tee of treatment effect even when there are hidden confounding variables.

3 � Problem statement

In this section, we state the problem setting of treatment effect estimation. Suppose 
�i ∈ X ⊂ ℝ

d
� is the d

�
 dimensional proxy variables of the i-th individual, ti ∈ T = {0, 1} 

is the binary treatment applied to the i-th individual, and yti
i
∈ Y ⊂ R is its outcome of the 

i-th individual. We omit the notation i of a variable when the variable can represent any 
individual. Given a dataset D ∶= (�i, ti, y

ti
i
)N
i=1

 , which includes N individuals, our goal is to 
estimate the conditional ATE (CATE) and ATE, defined as:

(1)CATE
(
�i

)
∶= �

[
y1
i
∣�i, do(t = 1)

]
− �

[
y0
i
∣�i, do(t = 0)

]
, ATE ∶= �

[
CATE

(
�i

)]
.
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We make some basic assumptions in this study: (i) stable unit treatment value: the outcome 
of each instance is not affected by the treatment assigned to other instances;  (ii)  uncon-
foundedness: the treatment assignment to an individual is independent of the outcome 
given hidden confounding variables; (iii) overlap: each individual has a positive probability 
of treatment assignment;  (iv) smoothness: individuals who have similar hidden confound-
ing variables have similar outcomes;  (v)  noisy proxy variables: hidden confounding vari-
ables can be recovered by noisy proxy variables.

4 � Preliminaries

We briefly introduce some notable deep generative models based on VAE as preliminaries for 
clarity.

VAE  (Kingma and Welling, 2013) is a widely used deep generative model that sets a 
prior distribution as the normal distribution. It maximizes the ELBO, consisting of recon-
struction loss and the Kullback-Leibler (KL) divergence loss. It usually parameterizes p�

�
 

and q� by neural networks.

InfoVAE (Zhao et al., 2019) is a VAE with a mutual information regularization term. The 
mutual information term boils down to the distribution divergence between the prior distri-
bution and marginal distribution of posterior distribution, and the function to be optimized 
is written as

where D(q�(�), p(�)) is a divergence between the two distributions p(�) and q�(�) , and 
any divergence can be used given that D(q�(�), p(�)) = 0 if and only if q�(�) = p(�) (Zhao 
et al., 2019).

CEVAE  (Louizos et  al., 2017) is a recently proposed VAE-based methods for CATE 
and ATE estimation, which aims to identify treatment effect under the presence of hidden 
confounding variables. To correctly specify treatment effect, we need to deal with hidden 
confounding variables. CEVAE assumes that such hidden confounding variables can be 
recovered from proxy variables as many previous studies. It takes inputs �i, ti, y

ti
i
 to infer 

hidden confounding variables, �i.

(2)p(�i) =

d
�∏

j=1

N(zij ∣ 0, 1);p�
�
(�i ∣ �i) =

d
�∏

j=1

p�
�
(xij ∣ �i);

(3)LELBO =

N∑
i=1

�q�(�i∣�i)
[log p�

�
(�i ∣ �i) + log p(�

�
) − log q�(�i ∣ �i)]

(4)=

N∑
i=1

Eq�(�i∣�i)
[log p�

�
(�i ∣ �i) − KL(q�(�i ∣ �i), p(�))].

(5)LInfoVAE =

N∑
i=1

�q�(�i∣�i)
[log p�

�
(�i ∣ �i) − KL(q�(�i ∣ �i), p(�))] − D(q�(�), p(�)),

(6)p�t (ti ∣ �i) =Bern(h(g(�i))),
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where h(x) is a sigmoid function defined as h(x) ∶= 1

1+exp−x
 , and g, f0 , f1 , f2 , f3 and f4 are 

neural networks. The variational lower bound is given as

where log p�
�,t
(�i, ti ∣ �i) = log p�

�
(�i ∣ �i) + log p�t (ti ∣ �i) . To give outcomes for new indi-

viduals, CEAVE is required to have the treatment assignment and outcome beforehand. 
Therefore, it employs two auxiliary loss functions to deal with new individuals. Finally, the 
objective function of CEVAE is given as

5 � CEVAE fails to estimate CATE

Treatment effect estimation with hidden confounding variables is an essential problem. 
CEVAE  (Louizos et  al., 2017) enabled us to estimate treatment effect with hidden con-
founding variables without any strong assumption because VAE can recover a larger func-
tion class. Prior studies have made strong assumptions, such as on the properties of proxy 
variables and hidden confounding variables. CEVAE can identify CATE and ATE when it 
recovers the joint distribution p(�, �, t, y).

Theorem  1  We can recover CATE and ATE when we recover the joint distribution 
p(�, �, t, y) in Fig. (1).(Louizos et al., 2017).

Proof  The proof is completed by applying the rules of do-calculus to Fig. (1). See CEVAE 
paper for the details (Louizos et al., 2017).

However, one of the major drawbacks of previous VAE-based methods, including 
CEVAE, is that they do not guarantee that they can recover the hidden confounding varia-
bles, even when when they achieve the optimal solution even though they have a capability 
to recover them. As a motivating example, we first note that there is a dataset for which the 
optimal solution of CEVAE does not give the correct CATE and ATE for new individuals. 

(7)p𝜃y (y
ti
i
∣ �i, ti) =N(𝜇 = 𝜇̂i, 𝜎

2 = 1);𝜇̂i = tif1(�i) + (1 − ti)f0(�i),

(8)q𝜙(�i ∣ �i, ti, y
ti
i
) =

d
�∏

j=1

N(𝜇ij = 𝜇̄ij, 𝜎
2
j
= 𝜎̄2

ij
),

(9)�̄i =ti�̄t=0,i + (1 − ti)�̄t=1,i, �̄
2
i
= ti�

2
t=0,i

+ (1 − ti)�
2
t=1,i

,

(10)�̄t=0,i,�
2
t=0,i

=f3◦f2(�i, yi), �̄t=1,i,�
2
t=1,i

= f4◦f2(�i, yi),

(11)

LELBO(CEVAE) =

N∑
i=i

�q�(�i∣�i ,ti ,yi)
log p�

�,t

(
�i, ti∣�i

)
+ log p�y

(
y
ti
i
ti, �i

)
− KL

(
q�

(
�i∣�i, ti, yi

)
, p(�)

)

(12)LCEVAE = LELBO(CEVAE) +

N∑
i=i

log q(ti ∣ �i) + log q(y
ti
i
∣ �i, ti).
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Note that we consider the case that we use only the proxy variables � because assuming 
that we have correct outcomes y for new individuals is not realistic.

Theorem 2  Suppose we have a dataset D = {�i, ti, y
ti
i
}N
i=1

 , where �i ∼ N(0, 1) , �i ∼ N(�i, 1) , 
ti ∼ Bern(�t) , yi ∼ N(�(Czi > 0)t, 1) , where �t is a probability of of receiving treatment and 
C is a constant value. Suppose we only observe �i = 1 or �i = −1 and yi = 1 or yi = −1 . 
The optimal solution of CEVAE for this dataset does not give correct CATE and ATE.

Proof  Appendix.
This result demonstrates the insufficiency of naive VAE-based methods to recover hid-

den confounding variables and estimate treatment effect. Because there are numerous 
situations where observational data are limited and over-fitting to observational data may 
occur, we need to treat this problem carefully. Here we demonstrate a specific dataset, but 
we leave the proof of a more general form for future work.

6 � InfoCEVAE with hidden confounding variables matching

The phenomenon described above arises because of the nature that VAE pushes masses 
away from each other and focuses on reconstruction loss too much. This becomes more 
crucial when we have higher dimensional proxy variables and a lower number of hidden 
confounding variables compared to proxy variables  (i.e, d

�
≫ d

�
 ), especially when we 

have limited data. Some readers might think a larger number of proxy variables makes an 
unconfoundedness assumption, i.e., non-hidden confounding assumption, more reasonable; 
however, we usually can not guarantee that there are no hidden confounding variables in 
practice, and moreover, sometimes we never have access to the hidden confounding var-
iables  (e.g., variables including sensitive privacy information)  even when we can easily 
obtain some proxy variables.

The straightforward solution to obtain the correct ATE using VAE-based methods is 
to employ the theoretical analysis of InfoVAE (Zhao et al., 2019), which adds the mutual 
information regularization term to the original ELBO of VAE.

The ELBO of InfoCEVAE will be adding the information regularization term to 
CEVAE given as

We can employ the several measures of divergence D between two probability distribu-
tions, such as 2-Wasserstein distance given that D(q(�), p(�)) = 0 if and only if q(�) = p(�) . 
We use the 2-Wasserstein distance as D, and the 2-Wasserstein distance for two Gaussian 
distributions is written as:

We can also get correct CATE and ATE when the model achieves the optimal solution of 
the objective function q�(�) = p(�).

(13)
L =

N∑
i=i

�q�(�i∣�i,ti,yi)
[log p�

�,t
(�i, ti ∣ �i) + log p(y

ti
i
∣ ti, �i)

− KL(q�(�i ∣ �i, ti, y
ti
i
), p(�))] − D(q�(�), p(�)).

(14)D(N(�1, �1),N(�2, �2)) = ‖�1 − �2‖2 + ‖�1 − �2‖2.
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Theorem 3  The optimal solution of InfoCEVAE gives the correct CATE and ATE.

Proof  According to the Proposition of InfoVAE, we obtain the optimal solution when we 
achieve q�(y ∣ t, �) = p(y ∣ t, �) and q�(� ∣ �, t, y) = p(� ∣ �, t, y) . Therefore,

	�  ◻

However, this naive approach requires that we obtain the correct outcome function, 
i.e., p(y ∣ �, t) = p�(y ∣ �, t) as well as the propensity score function p(t ∣ �) . Obtain-
ing the correct outcome function is challenging, especially when we need to consider 
observational bias. Say we obtain q�(�) = p(�) once, and then our goal is to recover the 
joint distribution ∫

z
q�(�, �, t, y)dz = p(�, t, y) . Therefore we need to ensure that we have 

q(�, t, y ∣ �) = p(�, t, y ∣ �) . Hence, to achieve the optimal solution of InfoCEVAE, we need 
to learn � such that p�(�, t, y ∣ �) = p(�, t, y ∣ �) , which means we need to learn the correct 
outcome function only by skewed observational data. This is almost impossible without modi-
fication. The estimator �y given observational data is given as

However, this estimator is not consistent because of observational bias caused by hidden 
confounding variables.

(15)ĈATE(�) = p�(y ∣ t = 1, �) − p�(y ∣ t = 0, �)

(16)

= ∫Z

p�(y = 1 ∣ t = 1, �)q�(� ∣ �, t = 0, y) − p�(y = 1 ∣ t = 0, �)q�(� ∣ �, t = 1, y)dz

(17)= ∫Z

p(y ∣ t = 1, �)p(� ∣ �, t = 0, y) − p(y ∣ t = 0, �)p(� ∣ �, t = 1, y)dz

(18)
= ∫Z

p(y ∣ do(t = 1), �)p(� ∣ �, do(t = 0), y)

− p(y ∣ do(t = 0), �)p(� ∣ �, do(t = 1), y)dz

(19)= p(y ∣ �, do(t = 1)) − p(y ∣ �, do(t = 0))

(20)= CATE(�).

(21)�obs
y

= argmin�y∈Θ −
1

N

N∑
i=1

�q�(�i∣�i,ti,yi)
[log p�y (yi ∣ ti, �i)]

(22)≃ argmin�y∈Θ − �pDtrain
(t,y)[�q�(�i∣�,ti,yi)

[log p�y (yi ∣ ti, �i)]].

(23)lim
N→∞

�obs
y

= argmin�y∈Θ − �pDtrain
(t,y)[�q�(�∣�,t,y)

[log p�y (yi ∣ ti, �i)]]

(24)≠ argmin�y∈Θ − �p(t)p(y)[�q�(�∣�,t,y)
[log p�y (yi ∣ ti, �i)]].
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Note that we assume the treatment assignment is randomized when evaluating the model. 
To resolve this problem, we propose an effective algorithm based on latent variables and a 
matching algorithm. Note that InfoCEVAE guarantees the correct treatment effect when it 
achieves the optimal solution, although it is challenging to obtain. However, CEVAE can-
not provide the optimal treatment effect, even when it achieves the optimal solution.

6.1 � Hidden confounding variables matching

To mitigate the above issue, we aim to recover hidden confounding variables by only 
proxy variables, not using outcomes like CEVAE. This approach sounds reasonable 
because the assumption that we can recover hidden confounding variables only by proxy 
variables when we have such high dimensional proxy variables is quite valid  (Zhang 
et al., 2021). Moreover, the advantage of using only proxy variables is that we do not 
need to predict outcomes for new individuals. Hence, hidden confounding variables are 
inferred as:

The ELBO is given as:

where � is a hyper-parameter that controls the strength of regularization.
For bias mitigation, we propose latent variable matching, which makes use of latent 

variables to match individuals. Thanks to the theoretical advantage of InfoCEVAE, we 
can find the matching based on the some metric using latent variables. By nearest neigh-
bor matching, we construct the counterfactual outcome for each individual i as

where NN(�i, k) = {i1,… , ik} is a set of indices ordered by a similarity that defines nearest 
neighbors of �i , and t̄i ∈ T  represents the other treatment of ti . Here, we consider two vari-
ants of nearest neighbor selection: (i) Euclidean distance of means of the two latent vari-
ables: (ii) propensity score matching. The advantage of (i) is that we can use all the infor-
mation of latent variables and does not need to infer propensity score, while (i) might fail 
to find good matching in higher dimensions of latent variables. The pros and cons of (ii) 
are the opposite of those of (i). Note that under the smoothness assumption and when we 
achieve the optimal solution of InfoCEVAE, both hidden confounding variable matching 

(25)∵pDtrain
(t, y) = �Z

p(y ∣ t, �)p(t ∣ �)p(�)d� ≠ �Z

p(y ∣ t, �)p(t)p(�)d�

(26)= p(t)p(y).

(27)q�(zi ∣ �i) =

d
z∏

j=1

N(� = �ij, � = �ij);p(zi) = N(0, 1).

(28)
LInfoCEVAE =

N∑
i=i

�q�(�i∣�i)

[
log p�

�,t
(�i, ti∣�i) + log p�y

(
yi∣ti, �i

)

−KL
(
log q�

(
�i∣�i

)
, p(�)

)]
− �D

(
q�(�), p(�)

)
,

(29)ŷ
t̄i
i
=

1

k

∑
j∈NN(�i ,k)

y
tj

j
,
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methods yield consistency estimators. We compute the log-likelihood of counterfactual 
outcome as

Finally, the objective function to be optimized is given as

Theorem 4  The optimal solution of InfoCEVAE with hidden variables matching gives the 
consistent treatment effect estimator under the smoothness assumption.

Proof  According to the theorem of InfoVAE, we can obtain the correct posterior function 
when we obtain the optimal solution. Using correct hidden confounding variables, we can 
obtain correct counterfactual outcomes under the smoothness assumption. Using the cor-
rect counterfactual outcomes as well as factual outcomes, we can obtain a consistent esti-
mator, which yields the correct ATE. 	� ◻

7 � Experiments

We validated the performance of the proposed method, especially when there are hidden 
confounding variables. First, we introduce the datasets used in the experiments, and detail 
the experimental settings.

7.1 � Datasets

We rarely have real-world datasets due to the counterfactual nature of treatment effect esti-
mation problem. We employed a widely-used semi-synthetic dataset and a synthetic dataset 
for this experiment.

7.1.1 � News dataset (Johansson et al., 2016)

This is a dataset including opinions of media consumers for news articles  (Johansson 
et al., 2016).1 It contains 5, 000 news articles and outcomes generated from the NY Times 
corpus2. Each article is consumed on desktop (t = 0) or mobile (t = 1 ), and it is assumed 
that media consumers prefer to read some articles on mobile than desktop. We use the 
News dataset by setting the scale parameter for outcome in previous research  (Johans-
son et al., 2016) as 200. Each article is generated by a topic model and represented in the 
bag-of-words representation. The size of the vocabulary is 3, 477. As preprocessing, we 
apply principal component analysis  (PCA) with d

�
= 30 . To simulate hidden confound-

ing variables situation, we generate proxy variables using these variables after PCA. More 

(30)Lcf =

N∑
i=i

�q𝜙(�i∣�i)
[log p(ŷ

t̄i
i
∣ t̄i, �i)].

(31)L = Lcf + LInfoCEVAE.

1  https://​www.​fredjo.​com/.
2  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Bag+​of+​Words.

https://www.fredjo.com/
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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concretely, we treat these variables as hidden confounding variables zij and generate proxy 
variables as

where �
�
 is a standard deviation of the entire variables after PCA , dproxy stands for the 

number of proxy variables per hidden confounding variables and [] represents the concat-
enation. We set dproxy as 30 for the News dataset.

7.1.2 � Synthetic dataset

The synthetic dataset is a benchmark generated in this study. This dataset includes 5, 000 
individuals, binary treatment, and continuous outcomes. We generated the dataset accord-
ing to the following procedure:

where � ≥ 0 is a variable that controls the strength of observational bias, and �(x) is an indi-
cator function that is 1 if x is True and 0 otherwise. Note again that h is a sigmoid function. 
Larger � means we have severer observational bias, and setting � as 0 represents a rand-
omized controlled trial. We clamped the treatment assignment probability at 0.01 and 0.99. 
We change dproxy as ranging from 10 to 500 for the Synthetic dataset. Unless otherwise 
stated, we report the results when dproxy = 500.

In the experiments, we investigated the robustness against the bias strength by changing 
the value of �.

7.2 � Experimental settings

We split the all individuals into 20% , 40% , and 40% train, validation, and test data, respec-
tively. Note that we especially focus on the case when train data are limited because over-
estimation becomes severer. As base neural network models including VAE-based meth-
ods, we use two-layer neural networks. We also set the number of neurons (i.e, the number 
of representations)  as 50 for TARNet and CFR. We use the elu function  (Clevert et  al., 
2015) as the activation function for all neural networks.

As evaluation metrics, we employ ATE error defined as

(32)xi,j×1,…,j×dproxy
∼ N

(
zij, �

2
�

)
,

(33)�i = [xi,1,… , xi,30×dproxy ],

(34)zij ∼ N(0, 1) (j = 1,… , 5),

(35)xi,j×1,…,j×dproxy
∼ N(10zij, 1),

(36)�i = [xi,1,… , xi,5×dproxy ],

(37)ti ∼ Bern

(
�h

(
5∑
j=1

zij

))
, yi ∼ N

(
3�

(
5∑

j = 1

zij ≥ 0

)
× ti + 5ti, 1

)
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and precision in estimation of heterogeneous effect  (PEHE)   used in previous 
researches (Hill, 2011; Johansson et al., 2016). �PEHE is the estimation error of individual 
treatment effects and is defined as

The hyper-parameters are tuned based on the prediction loss using the observed outcomes 
on the validation data. We log-uniform randomly choose the hyper-paramters � ranging 
from 1e − 3 to 1e3 ten times, and the final hyper-parameter is selected based on the predic-
tion loss using the outcomes on the validation data. For CEVAE, we compute the ELBO 
using validation data and use the model at the epoch when the ELBO for validation data 
achieves the maximum value. We report the average results of 10 trials on the Synthetic 
dataset and 20 trials on the News dataset.

7.3 � Baseline methods

We compare the proposed method with the following baseline methods including VAE-
based methods. Unless otherwise stated, we use the concatenation of proxy variables and 
treatment assignment coded as a one-hot vector as the input of predictive models of (i) and 
(ii). 

	 (i)	 Ridge is the ordinary linear regression methods with L2 regularization.
	 (ii)	 Random forest (RF) (Breiman, 2001) and BART (Chipman et al., 2010; Hill, 2011) 

are the predictive models based on the decision tree.
	 (iii)	 TARNet (Shalit et al., 2017) is a deep neural network model that has shared layers 

for representation learning and different layers for outcome prediction for treatment 
and control instances. Counterfactual regression (CFR) (Shalit et al., 2017) is a state-
of-the-art deep neural network model based on balanced representations between 
treatment and control instances. We use the Wasserstein distance.

	 (iv)	 CEVAE (Louizos et al., 2017) is a VAE-based treatment effect estimation method.

7.4 � Results

We first assess the full results in comparison with the baseline methods, and then we 
investigate how the performance changes as we change the size of proxy variables or 
the strength of observational bias. Table 1 gives a performance comparison of the pro-
posed method with the baseline methods. Overall, the proposed method outperforms 
baseline methods significantly. On the News dataset, the both approaches of proposed 
method show significant improvement from the baseline methods. On the Synthetic 
dataset, the proposed method with propensity score matching works better. This result 
makes sense because the propensity score and outcome have strong correlation in this 
dataset. However, the proposed method with the Euclidean matching does not work 

𝜀ATE =
1

N

N∑
i=1

|||
(
y1
i
− y0

i
−
(
ŷ1
i
− ŷ0

i

))|||

√
𝜖PEHE =

���� 1

N

N�
i=1

(y1
i
− y0

i
− (ŷ1

i
− ŷ0

i
))2.
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because nearby individuals in terms of the Euclidean distance of hidden confound-
ing variables do not necessarily become the good matching unless we have a large 
amount of individuals. Meanwhile the predictive performance deteriorates as selec-
tion bias becomes stronger, the proposed method shows robustness to selection bias 
and consistently outperforms the baseline methods. Figures  2  and  3  demonstrate the 
change of predictive performances as we change the strength of bias � and the number 
of proxy variables dproxy . Whereas the baseline methods suffer from observational bias, 
the proposed method show robustness to it. Although, the baseline methods result in 
limited improvement, the proposed method also can deal with and make use of high 
dimensional proxy variables and improve its predictive performance.

Table 1   Performance comparison on the News dataset and the Synthetic dataset in terms of PEHE and 
ATE. Lower is better.

† indicates that the proposed method show statistically significantly better result by the paired t-test with 
p < 0.05 . Bold results show the best results in term of average. We also show standard errors for 20 and 10 
times repeated experiments for the News dataset and the Synthetic dataset, respectively

 News  Synthetic

Method
√
�
PEHE

�
ATE

√
�
PEHE

�
ATE

Mean †14.325±0.128
†3.921±0.551

†1.980±0.010
†1.292±0.015

Ridge †13.764±0.959 0.911±0.190
†1.570±0.019

†0.438±0.061

RF †10.246±0.959
†2.211±0.385

†1.465±0.021
†0.854±0.024

BART​ †13.618±0.921
†1.310±0.221

†2.758±0.332
†1.829±0.332

TARNet †8.988±0.488
†1.135±0.200

†1.729±0.093
†0.415±0.043

CFR †9.125±0.488
†1.643±0.268

†1.619±0.057
†0.366±0.049

CEVAE †9.389±0.600
†2.319±0.381

†1.795±0.053
†1.048±0.085

CEVAE w/Euclidean †8.659±0.524
†1.196±0.250

†2.000±0.053
†1.229±0.017

CEVAE w/propensity †8.642±0.523
†1.136±0.254

†1.630±0.046
†0.683±0.013

InfoCEVAE †8.453±0.510
†1.742±0.242

†1.373±0.062
†0.415±0.073

InfoCEVAE w/Euclidean �.934±0.478 0.928±0.172
†1.334±0.032

†0.815±0.042

InfoCEVAE w/propensity �.930±0.476 �.835±0.147 �.626±0.023 �.184±0.022

(a) (b)

Fig. 2   Performance comparison as the change of observational bias � . Lower is better. Whereas baseline 
methods suffered a observational bias and get degrade its performance, the proposed method demonstrates 
its robustness to the observational bias and almost entirely surpass the baseline methods in the both metrics. 
Especially, the proposed method consistently shows the affordable performance in ATE
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8 � Conclusion

In this study, we considered treatment effect estimation problem with hidden confound-
ing variables using VAE. VAE has been used to recover hidden confounding variables 
by making use of its large capability. We first pointed out that the optimal solution of 
CEVAE is not the correct ATE. We propose an efficient algorithm to recover hidden 
confounding variables and estimate treatment effect making use of mutual information 
and matching techniques. Experiments on semi-synthetic and synthetic datasets demon-
strate the effectiveness of the proposed method, especially when we have higher dimen-
sional proxy variables but still hidden confounding variables.

Appendix a proof of Theorem 2.

Proof  Note that � and � represent vectors in the main paper but they are also scalar values 
in this proof. The ATE of this dataset is

We first show naive CEVAE loss has unbounded reward if the proxy variables come 
from Gaussian distribution family. This step mainly follows the same procedure as Info-
VAE (Zhao et al., 2019). We consider the following restricted a Gaussian models and 
if we achieve the infinite ELBO in this model, we can achieve the infinite ELBO in any 
model with more expresiveness than this model.

p(� ∣ �) =

{
N(1, 𝜎2) (� ≥ 0)

N(−1, 𝜎2) (� < 0)
,

q(� ∣ �) =

{
N(a, 𝜎2

q
) (� ≥ 0)

N(−a, 𝜎2
q
) (� < 0)

,

(A1)�[y1] − �[y0] = p(�i ≥ 0)C − 0

(A2)= p(�i ≥ 0)C.

(a) (b)

Fig. 3   Performance comparison as the change of the number of proxy variables. Lower is better. While the 
baseline methods do not improve their predictive performances as the number of proxy variables increase, 
the proposed method with propensity score matching achieves almost entirely the best results, especially 
significant in 

√
�
PEHE
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p(t ∣ �) =

{
p1 (� ≥ 0)

p0 (� < 0)
 , p(y ∣ �) =

⎧
⎪⎨⎪⎩

N(C, 1) (� ≥ 0, t = 1)

N(0, 1) (� < 0, t = 1)

N(0, 1) (t = 0).

The ELBO for � = 1 is

Taking the gradient of LAE(� = 1),

and the optimal solution for LAE(� = 1) is achieved when � = 2
√
q(� ≤ 0 ∣ � = 1) . 

Therefore,

q(� ≤ 0 ∣ � = 1) is the sum of Gaussian tail probabilities. Hence in the limit �q → 0 , 
a → ∞,

Therefore, we can achieve unbounded ELBO.

Next, we show that treating them as normal confounding variables will not give the correct 
treatment effect.

(A3)LAE(� = 1) ≡�q(�∣�=1)[log p(� = 1 ∣ �)] + �q(�∣�=1)[log p(� = 1 ∣ �)]

(A4)�q(�∣�=1)[log p(t ∣ �)] + �q(�∣�=1)[log p(y ∣ �, t)].

(A5)
�LAE(� = 1)

�
= −

1

�
+

4

�3
q(� ≤ 0 ∣ � = 1) = 0,

(A6)L∗
AE
(x = 1) = −

1

2
log q(� ≤ 0 ∣ � = 1) + Constant.

(A7)L∗
AE
(� = 1) = Θ(

a2

�2
q

).

(A8)LREG = −KL(q�(� ∣ � = 1)||p(�))

(A9)= log �q −
�2
q

2
−

a2

2
+

1

2
.

(A10)lim
�q→0,a→∞

LELBO(� = 1) = lim
�q→0,a→∞

L∗
AE
(� = 1) + LREG(� = 1)

(A11)
→ ∞.

(A12)�[y1 ∣ t = 1] = ∫X

p(y ∣ t = 1, �)p(�)d�

(A13)= ∫X

p(t = 1, � ∣ y)p(y)

p(t = 1, �)
p(�)d�
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One case where this procedure gives the correct estimand is the case when the treatment 
assignment is randomized, i.e., �t = ��.

Next, we try to estimate treatment effect using CEVAE and prove the estimand is wrong 
even if we obtain the correct outcome function.

(A14)= �X

∫
Z
p(y, t = 1, � ∣ �)p(�)d�

∫
Z
p(t = 1, � ∣ �)p(�)d�

p(�)d�

(A15)

= �X

∫
Z
p(y, t = 1, � ∣ � ≥ c)p(� ≥ 0)d� + ∫

Z
p(y, t = 1, � ∣ � < 0)p(� < 0)d�

∫
Z
p(t = 1, � ∣ � ≥ 0)p(� ≥ c)d� + ∫

Z
p(t = 1, � ∣ � < 0)p(� < 0)d�

p(�)d�

(A16)

= �X

∫
Z
p(y, t = 1, � ∣ � ≥ 0)p(� ≥ 0)d�

∫
Z
p(t = 1, � ∣ � ≥ 0)p(� ≥ 0)d� + ∫

Z
p(t = 1, � ∣ � < 0)p(� < 0)d�

p(�)d�

(A17)= �Z

𝜌tCp(� ∣ � ≥ 0) + 𝜌�
t
p(� ∣ � < 0)0

𝜌tp(� ∣ � ≥ 0) + 𝜌�tp(� ∣ z < 0)
p(�)d�

(A18)= �X

𝜌tCp(� ∣ � ≥ 0)

𝜌tp(� ∣ � ≥ 0) + 𝜌�tp(� ∣ � < 0)
p(�)d�.

(A19)�[ŷ1 ∣ t = 1] = �X

𝜌tCp(� ∣ � ≥ 0)

𝜌tp(� ∣ � ≥ 0) + 𝜌�tp(� ∣ � < 0)
p(�)d�

(A20)= �X

Cp(� ∣ � ≥ 0)

p(� ∣ � ≥ 0) + p(� ∣ � < 0)
p(�)d�

(A21)= Cp(� ∣ � ≥ 0).

(A22)�[ŷ1 ∣ t = 1] = ∫X ∫Z

p(y ∣ t = 1, �)p(� ∣ �)p(�)d�d�

(A23)=
1

2 ∫Z

p(y ∣ t = 1, �)p(� ∣ � = 1)d� +
1

2 ∫Z

p(y ∣ t = 1, �)p(� ∣ � = −1)d�

(A24)=
1

2
Cp(�i ≥ 0 ∣ � = 1) +

1

2
Cp(�i ≥ 0 ∣ � = −1)

(A25)≃
1

2
C.

(A26)�[ŷ0 ∣ t = 0] = ∫X ∫Z

p(y ∣ t = 0, �)p(� ∣ �)p(�)d�d�
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