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Abstract
Stochastic gradient descent (SGD) is a widely adopted iterative method for optimizing 
differentiable objective functions. In this paper, we propose and discuss a novel approach to 
scale up SGD in applications involving non-convex functions and large datasets. We address 
the bottleneck problem arising when using both shared and distributed memory. Typically, 
the former is bounded by limited computation resources and bandwidth whereas the latter 
suffers from communication overheads. We propose a unified distributed and parallel 
implementation of SGD (named DPSGD) that relies on both asynchronous distribution 
and lock-free parallelism. By combining two strategies into a unified framework, DPSGD 
is able to strike a better trade-off between local computation and communication. The 
convergence properties of DPSGD are studied for non-convex problems such as those 
arising in statistical modelling and machine learning. Our theoretical analysis shows that 
DPSGD leads to speed-up with respect to the number of cores and number of workers 
while guaranteeing an asymptotic convergence rate of O(1∕

√

T) given that the number of 
cores is bounded by T1∕4 and the number of workers is bounded by T1∕2 where T is the 
number of iterations. The potential gains that can be achieved by DPSGD are demonstrated 
empirically on a stochastic variational inference problem (Latent Dirichlet Allocation) and 
on a deep reinforcement learning (DRL) problem (advantage actor critic - A2C) resulting 
in two algorithms: DPSVI and HSA2C. Empirical results validate our theoretical findings. 
Comparative studies are conducted to show the performance of the proposed DPSGD 
against the state-of-the-art DRL algorithms.
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1  Introduction

Stochastic gradient descent (SGD) is a general iterative algorithm for solving large-scale 
optimisation problems such as minimising a differentiable objective function f (v) param-
eterised in v ∈ V:

In several statistical models and machine learning problems, f (v) = 1

n

∑n

i=1
fi(v) is the 

empirical average loss where each fi(v) indicates that the function has been evaluated 
at a data instance xi . SGD updates v using the gradients computed on some (or single) 
data points. In this work, we are interested in problems involving non-convex objective 
functions such as variational inference (Blei et al., 2017; Hoffman et al., 2013; Wainwright 
et al., 2008; Jordan et al., 1999) and artificial neural networks (Chilimbi et al., 2014; Dean 
et al., 2012; Li et al., 2014a; Xing et al., 2015; Zhang et al., 2015) amongst many others. 
Non-convex problems abound in ML and are often characterised by a very large number of 
parameters (e.g., deep neural nets), which hinders their optimisation. This challenge is often 
compounded by the sheer size of the training datasets, which can be in order of millions of 
data points. As the size of the available data increases, it becomes more essential to boost 
SGD scalability by distributing and parallelising its sequential computation. The need for 
scalable optimisation algorithms is shared across application domains.

Many studies have proposed to scale-up SGD by distributing the computation over 
different computing units taking advantage of the advances in hardware technology. The 
main existing paradigms exploit either shared memory or distributed memory architec-
tures. While shared memory is usually used to run an algorithm in parallel on a single 
multi-core machine (Recht et al., 2011; Zhao et al., 2017; Lian et al., 2015; Huo & Huang, 
2016), distributed memory, on the other hand, is used to distribute the algorithm on mul-
tiple machines (Agarwal & Duchi, 2011; Lian et al., 2015; Zinkevich et al., 2010; Lang-
ford et al., 2009). Distributed SGD (DSGD) is appropriate for very large-scale problems 
where data can be distributed over massive (theoretically unlimited) number of machines 
each with its own computational resources and I/O bandwidth. However DSGD efficiency 
is bounded by the communication latency across machines. Parallel SGD (PSGD) takes 
advantage of the multiple and fast processing units within a single machine with higher 
bandwidth communication; however, the computational resources and I/O bandwidth are 
limited.

In this paper, we set out to explore the potential gains that can be achieved by leveraging 
the advantages of both the distributed and parallel paradigms in a unified approach. The 
proposed algorithm, DPSGD, curbs the communication cost by updating a local copy of the 
parameter vector being optimised, v , multiple times during which each machine performs 
parallel computation. The distributed computation of DPSGD among multiple machines 
is carried out in an asynchronous fashion whereby workers compute their local updates 
independently (Lian et al., 2015). A master aggregates these updates to amend the global 
parameters. The parallel implementation of DPSGD on each local machine is lock-free 
whereby multiple cores are allowed equal access to the shared memory to read and update 
the variables without locking (Zhao et al., 2017) (i.e., they can read and write the shared 
memory simultaneously). We provide a theoretical analysis of the convergence rate of 
DPSGD for non-convex optimisation problems and prove that linear speed-up with respect 
to the number of cores and workers is achievable while they are bounded by T1∕4 and 
T1∕2 , respectively, where T is the total number of iterations. Furthermore, we empirically 

(1)min
v

f (v)
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validate these results by developing two inferential algorithms relying on DPSGD. The first 
one is an asynchronous lock-free stochastic variational inference algorithm (DPSVI) that 
can be deployed on a wide family of Bayesian models (see the Appendix); its potential is 
demonstrated here on a Latent Dirichlet Allocation problem. The second one is DPSGD-
based Deep Reinforcement Learning (DRL) that can be used to scale up the training of 
DRL networks for multiple tasks (see the Appendix).

The rest of the paper is organised as follows. Section 2 presents the related work. Sec-
tion 3 presents the proposed algorithm and the theoretical study. In Sect. 4, we carry out 
experiments and discuss the empirical results. Finally, Sect.  5 draws some conclusions 
and suggests future work. The appendices present the proofs, the asynchronous distributed 
lock-free parallel SVI and the highly-scalable actor critic algorithm.

2 � Related work

We divide this section into two parts. In the first part, we discuss the relevant literature 
to distributed and parallel SGD focusing on the theoretical aspects  (Lian et  al., 2015; 
Zhao et al., 2017; Fang & Lin, 2017; Huo & Huang, 2017; Bottou, 2010; Niu et al., 2011; 
Tsitsiklis et al., 1986; Elgabli et al., 2020; Wang et al., 2019; Recht et al., 2011; Leblond 
et al., 2017; Dean et al., 2012; Zhou & Cong, 2017; Yu et al., 2019; Lin et al., 2018; Stich, 
2018). To keep the paper centred and due to space limitation, only SGD-based methods 
for non-convex problems are covered. The second part covers related work focusing on 
the implementation/application of the distributed and parallel algorithms (Hoffman et al., 
2013; Mohamad et al., 2018; Neiswanger et al., 2015; Dean et al., 2012; Paine et al., 2013; 
Ruder, 2016; Li et al., 2014a; Abadi et al., 2016; Paszke et al., 2017; Babaeizadeh et al., 
2016; Mnih et al., 2016; Clemente et al., 2017; Horgan et al., 2018; Espeholt et al., 2018; 
Nair et al., 2015; Adamski et al., 2018).

2.1 � Theoretical aspects

A handful of SGD-based methods have been proposed recently for large-scale non-convex 
optimisation problems  (De Sa et  al., 2015; Lian et  al., 2015; Zhao et  al., 2017; Fang & 
Lin, 2017; Huo & Huang, 2017), which embrace either a distributed or parallel paradigm. 
HOGWILD presented by Niu et  al. (2011) proposes several asynchronous parallel SGD 
variants with locks and lock-free shared memory. Theoretical convergence analysis 
for convex objectives presented in that study was inspiring and adopted for most of the 
recent literature on asynchronous parallel optimisation algorithms. Similarly Leblond 
et  al. (2017), De Sa et  al. (2015) provided convergence analysis for SGD asynchronous 
lock-free parallel optimisation with shared memory for convex objectives where they 
provide convergence analysis with relaxed assumptions on the sparsity of the problem. 
De Sa et al. (2015) also analysed the HOGWILD convergence for non-convex objectives. 
Asynchronous distributed and lock-free parallel SGD algorithms for non-convex objectives 
have also been studied in Lian et al. (2015) showing that linear speed-up with respect to 
the number of workers is achievable when bounded by O(

√

T) . Improved versions using 
variance reduction techniques have recently been proposed in Huo and Huang (2017), Fang 
and Lin (2017) to accelerate the convergence rate with a linear rate being achieved instead 
of the sub-linear one of SGD. Although these and other algorithmic implementations are 
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lock-free (Lian et al., 2015; Huo & Huang, 2017; Fang & Lin, 2017; De Sa et al., 2015), 
the theoretical analysis of the convergence was based on the assumption that no over-
writing happens. Hence, write-lock or atomic operation for the memory are needed to 
prove the convergence. In contrast, Zhao et al. (2017) proposed a completely parallel lock-
free implementation and analysis.

Different implementations exploiting both parallelism with shared memory and distrib-
uted computation across multiple machines have been proposed (Dean et al., 2012; Zhou 
& Cong, 2017; Yu et  al., 2019; Lin et  al., 2018; Stich, 2018). Except for  Stich (2018), 
Dean et al. (2012), these methods adopted synchronous SGD implementation where Dean 
et al. (2012), Lin et al. (2018) focused on the implementation aspects, providing extensive 
empirical study on deep learning models. While the implementation ideas are very simi-
lar to ours, we consider lock-free local parallelism with asynchronous distribution and we 
provide theoretical analysis. We also evaluate our approach on different ML problems i.e., 
SVI and DRL (to be discussed in the next part). Instead of using a parameter server, the 
local learners in Zhou and Cong (2017) compute the average of their copies of parameters 
at regular intervals through global reduction. Communication overhead is controlled by 
introducing a communication interval parameter into the algorithm. However, the provided 
theoretical analysis in Zhou and Cong (2017) does not establish a speedup and synchro-
nisation is required for global reduction. Authors in Yu et  al. (2019) provide theoretical 
study for the model averaging introduced in  Zhou and Cong (2017) showing that linear 
speedup of local SGD on non-convex objectives can be achieved as long the averaging 
interval is carefully controlled. Similar study for convex problems with asynchronous 
worker communication by Stich (2018) shows linear speedup in the number of workers 
and the mini-batch size with reduced communication. The multiple steps local SGD update 
by Stich (2018) aimed at reducing the communication overhead is similar to our proposed 
algorithm. Nonetheless, we adopt local lock-free parallelism and asynchronous distribu-
tion with parameter server scheme instead of model averaging. Finally, we point out that 
although we focus on SGD first-order method  (Bottou, 2010; Niu et  al., 2011; Tsitsiklis 
et al., 1986; Elgabli et al., 2020; Wang et al., 2019), our study can be extended to second-
order methods (Shamir et al., 2014; Jahani et al., 2020a; Ba et al., 2016; Crane & Roosta, 
2019; Jahani et al., 2020b) and variance reduction methods (Huo & Huang, 2017; Fang & 
Lin, 2017), where the high noise of our local multiple-steps update can be reduced contrib-
uting to further speed-up. We leave this for future work.

2.2 � Implementation aspects

The first effort to scale-up variational inference is described in   Hoffman et  al. (2013) 
where gradient descent updates are replaced with SGD updates. Inspired by this work, 
Mohamad et  al. (2018) replaces the SGD updates with asynchronous distributed SGD 
ones. This was achieved by computing the SVI stochastic gradient on each worker based 
on few (mini-batched or single) data points acquired from distributed sources. The update 
steps are then aggregated to form the global update. In Neiswanger et  al. (2015), the 
strategy consists of distributing the entire dataset across workers and letting each one of 
them perform VI updates in parallel. This requires that, at each iteration, the workers must 
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be synchronised to combine their parameters. However, this synchronisation requirement 
limits the scalability so the maximum speed achievable is bounded by the slowest worker. 
Approaches for scaling up VI that rely on Bayesian filtering techniques have been reviewed 
in Mohamad et al. (2018).

Asynchronous SGD (ASYSG)  (Lian et  al., 2015), an implementation of SGD that 
distributes the training over multiple workers, has been adopted by DistBelief  (Dean 
et  al., 2012) (a parameter server-based algorithm for training neural networks) and Pro-
ject Adam  (Chilimbi et  al., 2014) (another DL framework for training neural networks). 
Paine et  al. (2013) showed that ASYSG can achieve noticeable speedups on small GPU 
clusters. Other similar work  (Ruder, 2016; Li et al., 2014a) have also employed ASYSG 
to scale up deep neural networks. The two most popular and recent DL frameworks Ten-
sorFlow  (Abadi et  al., 2016) and Pytorch (Paszke et  al., 2017) have embraced the Hog-
wild (Recht et al., 2011; Zhao et al., 2017) and ASYSG (Lian et al., 2015) implementations 
to scale-up DL problems.1

Distributed and parallel SGD have also been employed in deep reinforcement learn-
ing (DRL)  (Babaeizadeh et  al., 2016; Mnih et  al., 2016; Clemente et  al., 2017; Horgan 
et al., 2018; Espeholt et al., 2018; Nair et al., 2015; Adamski et al., 2018). In Babaeiza-
deh et al. (2016), a hybrid CPU/GPU version of the Asynchronous Advantage ActorCritic 
(A3C) algorithm (Mnih et al., 2016) was introduced. The study focused on mitigating the 
severe under-utilisation of the GPU computational resources in DRL caused by its sequen-
tial nature of data generation. Unlike (Mnih et al., 2016), the agents in RL do not compute 
the gradients themselves. Instead, they send data to central learners that update the net-
work on the GPU accordingly. However, as the number of core increases, the central GPU 
learner becomes unable to cope with the data. Furthermore, large amount of data requires 
large storage capacity. Also the internal communication overhead can affect the speed-up 
when the bandwidth reaches its ceiling. We note that a similar way for paralleling DRL is 
proposed by Clemente et  al. (2017). Similarly, Horgan et  al. (2018) propose to generate 
data in parallel using multi-cores CPU’s where experiences are accumulated in a shared 
experience replay memory. Along the same trend, Espeholt et al. (2018) proposed to accu-
mulate data by distributed actors and communicate it to the centralised learner where the 
computation is done. The architecture of these studies (Horgan et al., 2018; Espeholt et al., 
2018) allows the distribution of the generation and selection of data instead of distributing 
locally computed gradients as in Nair et al. (2015). Hence, it requires sending large size 
information over the network in case of large size batch of data making the communication 
more demanding. Furthermore, the central learner has to perform most of the computation 
limiting the scalability.

The work in  Adamski et al. (2018) is the most similar to ours, where SGD based hybrid 
distributed-parallel actor critic is studied. The parallel algorithm of Mnih et al. (2016) is 
combined with parameter server architecture of  Nair et  al. (2015) to allow parallel dis-
tributed implementation of A3C on a computer cluster with multi-core nodes. Each node 
applies the algorithm in  Babaeizadeh et  al. (2016) to queue data in batches, which are 
used to compute local gradients. These gradients are then gathered from all workers, aver-
aged and applied to update the global parameters. To reduce the communication overhead, 

1  See, for instance, https://​github.​com/​pytor​ch/​examp​les and https://​github.​com/​tmulc​18/​Distr​ibuted-​Tenso​
rFlow-​Guide

https://github.com/pytorch/examples
https://github.com/tmulc18/Distributed-TensorFlow-Guide
https://github.com/tmulc18/Distributed-TensorFlow-Guide
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authors carried out careful reexamination of Adam optimiser’s hyper-parameters allowing 
large-size batches to be used. Detailed discussion of these methods and comparison to our 
implementation is provided in the appendix.

3 � The DPSGD algorithm and its properties

Before delving into the details of the proposed algorithm, we introduce the list of symbols 
in Table 1 that are used in the rest of the text.

3.1 � Overview of the algorithm

The proposed DPSGD algorithms assumes a star-shaped computer network architecture: a 
master maintains the global parameter v (Algorithm 1) and the other machines act as work-
ers which independently and simultaneously compute local parameters u (Algorithm  2). 
The workers communicate only with the master in order to access the state of the global 
parameter (line 3 in Algorithm 2) and provide the master with their local updates (com-
puted based on local parameters) (line 10 in Algorithm  2). Each worker is assumed to be 
a multi-core machine, and the local parameter are obtained by running a lock-free parallel 
SGD (see Algorithm  2). This is achieved by allowing all cores equal access to the shared 
memory to read and update at any time with no restriction at all (Zhao et al., 2017). The 
master aggregates M predefined amounts of local updates coming from the workers (line 3 
in Algorithm 1), and then computes its global parameter. The update step is performed as 
an atomic operation such that the workers are locked out and cannot read the global param-
eter during this step (see Algorithm 1).

Table 1   List of symbols

Variable Description

v The parameter vector to be optimised, called the global parameter. It is maintained and updated 
by the master machine

u Copy of the global parameter maintained and is updated by the workers
û Copy of the local parameter u and is stored in the worker’s shared memory
||x|| The Euclidean norm of vector x
fi(.) The objective function defined on the ith instance
∇f (v) The gradient vector of f (v)
t The global unique iterate used in the synthetic sequence - not required by the algorithm
b The local unique iterate used in the synthetic sequence - not required by the algorithm
m Index referring to the update vector computed by the worker nm and collected by the master
M The master batch size which is the number of local updates coming from the workers for each 

global update by the master
p The total number of threads (cores)
nW The total number of workers (nodes)
S and P Binary diagonal matrices used to denote whether local over-writing happens (see Sect. 3.2)
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Note that the local distributed computations are done in an asynchronous style, i.e., 
DPSGD does not lock the workers until the master starts updating the global parameter. 
That is, the workers might compute some of the stochastic gradients based on early val-
ues of the global parameter. Similarly, the lock-free parallel implies that local parameter 
can be updated by other cores in the time after being read and before being used for the 
update computation. Given this non-synchronisation among workers and among cores, 
the results of parameter update seem to be totally disordered, which makes the conver-
gence analysis very difficult.

Following Zhao and Li (2016), we introduce a synthetic process to generate the final 
value of local and global parameters after all threads, workers have completed their 
updates as shown in Algorithm 1 and 2. That is, we generate a sequence of synthetic 
values of v and u with some order to get the final value of v . These synthetic values are 
used for DPSGD convergence proof. The synthetic generation process is explained in 
the following section.

3.2 � Synthetic process

Let t be the global unique iterate attached to the loop in Algorithm  1; b is the local 
unique iterate attached to the inner loop in Algorithm 2 and m is an index referring to 
the update vector computed by a worker nm ∈ {1, .., nW} . If we omit the outer loop of 
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Algorithm 2, the key steps in Algorithm 2 are those related to the writing (updating) or 
reading the local parameter.

3.2.1 � Local synthetic write (update) sequence

As in Zhao and Li (2016), we assume all threads will update the elements in u in the order 
from 1 to B̃ , where B̃ = B ∗ p with p is the number of threads. Thus, {u1,… uB̃−1} is the syn-
thetics sequence which may never occur in the shared memory. However, it is employed to 
obtain the final value uB̃ after all threads have completed their updates in the inner-loop of 
Algorithm 2. In other terms, this ordered synthetic update sequence generating the same final 
value as that of the disordered lock-free update process. At iterate b, the synthetic update done 
by a thread can be written as follows:

where Sj is a diagonal matrix whose entries are 0 or 1, determining which dimensions of 
the parameter vector ub have been successfully updated by the jth gradient computed on the 
shared local parameter ûj . That is Sj(k, k) = 0 if dimension k is over-written by another 
thread and Sj(k, k) = 1 if dimension k is successfully updated by ∇fij (ûj) without over-writ-
ing. Equation 2 can be rearranged in an iterative form as:

Including the outer loop and the global update in Algorithm  1, we define the synthetic 
sequence {ut,m,b} equivalent to the updates for the bth per-worker loop of the mth update vec-
tor associated with the tth master loop:

where �t,m is the delay of the mth global update for the tth iteration caused by the asynchro-
nous distribution. To compute ∇fit+�t,m ,m,b

(ût,m,b) , ût,m,b is read from the shared memory by a 
thread.

3.2.2 � Local memory read

As denoted earlier, ûb is the local parameter read from the shared memory which is used to 
compute ∇fib (ûb) by a thread. Using the synthetic sequence {u1, ..uB̃−1} , ûb can be written as:

where a(b) < b is the step in the inner-loop whose updates have been completely written in 
the shared memory. Pb,j−a(b) are diagonal matrices whose diagonal entries are 0 or 1. 

(2)ub = u0 −

b−1
∑

j=0

�Sj∇fij (ûj)

(3)ub+1 = ub − �Sb∇fib (ûb)

(4)

Algorithm 2, line 3 refers to: ut,m,0 = vt−1

Algorithm 2, line 8 refers to: ut,m,b+1 = ut,m,b − 𝜂St+𝜏t,m,m,b∇fit+𝜏t,m ,m,b
(ût,m,b)

Algorithm 1, line 4 refers to: vt = vt−1 + 𝜌t−1(

M
∑

m=1

ut−𝜏t,m,m,B̃ − vt−1−𝜏t,m )

(5)ûb = ua(b) +

b−1
∑

j=a(b)

Pb,j−a(b)∇fij (ûj)
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∑b−1

j=a(b)
Pb,j−a(b)∇fij (ûj) determine what dimensions of the new gradient updates, ∇fij (ûj) , 

from time a(b) to b − 1 have been added to ua(b) to obtain ûb . That is, ûb may read some 
dimensions of new gradients between time a(b) to b − 1 including those which might have 
been over-written by some other threads. Including the outer loop and the global update in 
Algorithm 1, the local read becomes:

The partial updates of the remaining steps between a(b) and b − 1 are now defined by 
{Pt,m

b,j−a(b)
}b−1
a(b)

.

3.3 � Convergence analysis

Using the synthetic sequence, we develop the theoretical results of DPSGD showing that 
under some assumptions, we can guarantee linear speed-up with respect to the number of 
cores (threads) and number of nodes (workers). Before presenting the studies, we introduce 
and explain the require assumptions:

Assumption 1  The function f(.) is smooth, that is to say, the gradient of f(.) is Lipschitzian: 
there exists a constant L > 0 , ∀x, y,

or equivalently,

Assumption 2  The per-dimension over-writing defined by St,m,b is a random variate, inde-
pendent of it,m,j.2

This assumption is reasonable since St,m,b is affected by the hardware, while it,m,j is inde-
pendent thereof.

Assumption 3  The conditional expectation of the random matrix St,m,b on ut,m,b and ût,m,b 
is a strictly positive definite matrix, i.e., �[St,m,b|ut,m,b, ût,m,b] = S ≻ 0 with the minimum 
eigenvalue 𝛼 > 0.

Assumption 4  The gradients are unbiased and bounded: ∇f (x) = �i[∇fi(x)] and 
||∇fi(x)|| ≤ V  , ∀i ∈ {1, ...n}.

Then, it follows that the variance of the stochastic gradient is bounded. 
�i[||∇fi(x) − ∇f (x)||2] ≤ �2 , ∀x , where �2 = V2 − ||∇f (x)||

(6)ût,m,b = ut,m,a(b) − �

b−1
∑

j=a(b)

P
t+�t,m,m

b,j−a(b)
∇fit+�t,m ,m,j

(ût,m,j)

||∇f (x) − ∇f (y)|| ≤ L||x − y||

f (y) ≤ f (x) + ∇f (x)T (y − x) +
L

2
||y − x||2.

2  Note that i can be a set of indices for a per-worker mini-batch. In this paper, i refers to a single index for 
simplicity.
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Assumption 5  Delays between old local stochastic gradients and the new ones in the 
shared memory are bounded: 0 ≤ b − a(b) ≤ D and the delays between stale distributed 
update vectors and the current ones are bounded 0 ≤ maxt,m �t,m ≤ D′

Assumption 6  All random variables in {it,m,j}∀t,∀m,∀j are independent of each other.

Note that we are aware that this independence assumption is not fully accurate due to 
the potential dependency between selected data samples for computing gradients at the 
same shared parameters. For example, samples with fast computation of gradients for 
the same shared variable leads to more frequent selection of these samples as they likely 
to finish their gradient computation while the shared memory has not been overwritten. 
Hence, the selected samples can be correlated. This can also affect the independence 
assumption between the overwriting matrix and the selected sample (Assumption  2). 
However, we follow existing studies (Zhao & Li, 2016; Zhao et al., 2017; Lian et al., 
2015; Reddi et al., 2015; Duchi et al., 2015; De Sa et al., 2015; Lian et al., 2018; Hsieh 
et al., 2015), assuming DPSGD maintains the required conditions for independence via 
Assumptions 2 and 6.

We are now ready to state the following convergence rate for any non-convex 
objective:

Theorem 1  If Assumptions 1 to 6 hold and the following inequalities are true:

then, we can obtain the following results:

where B̃ = pB and v∗ is the global optimum of the objective function in Eq. 1.

We denote the expectation of all random variables in Algorithm  2 by �[.] . Theo-
rem 1 shows that the weighted average of the l2 norm of all gradients ||∇f (vt−1)||2 can be 
bounded, which indicates an ergodic convergence rate. It can be seen that it is possible to 
achieve speed-up by increasing the number of cores and workers. Nevertheless to reach 
such speed-up, the learning rates � and �t have to be set properly (see Corollary 1).

(7)M2B̃2𝜂2L2𝜌t−1D
�

D�

∑

n=1

𝜌t+n ≤ 1

(8)
1

1 − � −
9�(D+1)L2(�D+1−1)

�−1

≤ �

1
∑T

t=1
𝜌t−1

T
�

t=1

𝜌t−1 �[��∇f (vt−1)��
2] ≤

2(f (v0) − f (v∗))

MB̃𝜂𝛼
∑T

t=1
𝜌t−1

+

𝜂2L2

B̃
∑T

t=1
𝜌t−1

T
�

t=1

𝜌t−1

�

V2
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Corollary 1  By setting the learning rates to be equal and constant:

such that A = LV2

(

1

�
+

1

�2
+

2 L�

(1−�)�

)

 , V > 0 and � is a constant where 0 < 𝜇 < 1 , then the 

bound in Eqs. 7 and  8 can lead to the following bound:

and Theorem 1 gives the following convergence rate:

This corollary shows that by setting the learning rates to certain values and setting the num-
ber of iterations T to be greater than a bound depending on the maximum delay allowed, a 
convergence rate of O(1∕

√

TMpB) can be achieved and this is delay-independent. The nega-
tive effect of using old parameters (asynchronous distribution) and over-writing the shared 
memory (lock-free parallel) vanish asymptotically. Hence, to achieve speed-up, the number of 
iterations has to exceed a bound controlled by the maximum delay parameters, the number of 
iterations B (line 5 in Algorithm 2), the number of global updates M (line 3 in Algorithm 1) 
and the number of parallel threads (cores) p.

3.4 � Discussion

Using Corollary 1, we can derive the result of lock-free parallel optimisation algorithm (Zhao 
et al., 2017) and the asynchronous distributed optimisation algorithm (Lian et al., 2015) as 
particular cases. By setting the number of threads p = 1 and the number of local update B = 1 , 
we end up with the distributed asynchronous algorithm presented in Lian et al. (2015). The 
convergence bound of Corollary 1 then becomes O(1∕

√

TM) which is equivalent to that of 
Corollary 2 in Lian et  al. (2015). By synchronising the global learning D� = 0 , setting the 
master batch size M = 1 and the number of global iteration T = 1 , we end up with the parallel 
lock free algorithm presented in Zhao et al. (2017). The convergence bound of Corollary 1 
then becomes O(1∕

√

pB) which is equivalent to that of Theorem 1 in Zhao et al. (2017). The 
experiments below will empirically demonstrate these two parallel and distributed particular 
cases of DPSGD.

Since D′ and D are related to the number of workers and cores (threads) respectively, 
bounding the latter allows speed-up with respect to the number of workers and cores with no 
loss of accuracy. The satisfaction of Eq. 10 is guaranteed if:

(9)𝜌2 = 𝜂2 =

√

(f (v0) − f (v∗))

A𝛼
√

TMB̃

(10)

T ≥ max

{

MB̃L2D�2(f (v0) − f (v∗))

A2𝛼2
,

(

f (v0) − f (v∗)
)(

𝜇(𝜇 − 1) + 9L2𝜇(D + 1)(𝜇D+1 − 1)
)4

MB̃A2𝛼2(𝜇 − 1)8

}

(11)1

T

T
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2] ≤ 3A

√

f (v0) − f (v∗)

TMB̃

T ≥
MB̃L2D�2(f (v0) − f (v∗))
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and

The first inequality leads to O(T1∕2) > D� . Thus, the upper bound on the number of 
workers is O(T1∕2) . Since 0 < 𝜇 < 1 , the second inequality can be written as follows: 
O(T1∕4) ≥

(

�(1 − �) + 9 L2�(D + 1)(1 − �D+1)
)

 . Hence, O(T1∕4) ≥ D . Thus, the 
upper bound on the number of number of cores (threads) is O(T1∕4) . The convergence 
rate for serial and synchronous parallel stochastic gradient (SG) is consistent with 
O(1∕

√

T) (Ghadimi & Lan, 2013; Dekel et al., 2012; Nemirovski et al., 2009). While the 
workload for each worker running DPSGD is almost the same as the workload of the serial 
or synchronous parallel SG, the progress done by DPSVG is Mp times faster than that of 
serial SG.

In addition to the speed-up, DPSGD allows one to steer the trade-off between multi-
core local computation and multi-node communication within the cluster. This can be done 
by controlling the parameter B. Traditional methods reduce the communication cost by 
increasing the batch size which decreases the convergence rate, increase local memory load 
and decrease local input bandwidth. On the contrary, increasing B for DPSGD can increase 
the speed-up if some assumptions are met (see Theorem 1 and Corollary 1). This ability 
makes DPSGD easily adaptable to diverse spectrum of large-scale computing systems with 
no loss of speed-up.

Denote Tc the communication time need for each master-worker exchange. For 
simplification, we assume that Tc is fixed and is the same for all nodes. If the time 
needed for computing one update Tu ≤ Tc , then the total time needed by the distributed 
algorithm DTT = T ∗ (Tu + Tc) could be higher than that of the sequential SGD 
STT = M ∗ T ∗ Tu . In such cases, existing distributed algorithms increases the local batch 
size so that Tu increases, resulting in lower stochastic gradient variance and allowing 
higher learning rate to be used, hence better convergence rate. This introduces a trade-
off between computational efficiency and sample efficiency. Increasing the batch size 
by a factor of k increases the time need for local computation by O(k) and reduces the 
variance proportionally to 1/k (Bottou et al., 2018). Thus, higher learning rate can be used. 
However, there is a limit on the size of the learning rate. In another words, maximising the 
learning speed with respect to the learning rate and the batch size has a global solution. 
This maximum learning speed can be improved using DPSGD, performing B times less 
communication steps. For the mini-batch SGD with minibatch size G, the convergence 
rate can be written as O(1∕

√

GT) . Since the total number of examples examined is GT 
and there is only 

√

G times improvement, the convergence speed degrades as mini-batch 
size increases. The convergence rate of DPSGD with mini-batch G can be easily deduced 
from Theorem 1 as O(1∕

√

BMGT) . Hence, 
√

BM better convergence rate than mini-batch 
SGD and 

√

BM better convergence rate than standard asynchronous SGD with B times less 
communication. These improvements are studied in the following.

4 � Experiments

In this section, we empirically verify the potential speed-up gains expected from the 
theoretical analysis. First, we apply distributed parallel stochastic variational inference 
(DPSVI) algorithm on a Latent Dirichlet Allocation (LDA) analysis problem. DPSVI 

T ≥

(

f (v0) − f (v∗)
)(

𝜇(𝜇 − 1) + 9L2𝜇(D + 1)(𝜇D+1 − 1)
)4

MB̃A2𝛼2(𝜇 − 1)8
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is derived from DPSGD by replacing the SG of SVI by DPSG to scale up the inference 
computation over a multi-core cluster (see appendix for more details). For the Latent 
Dirichlet Allocation analysis problem, we use the SVI algorithm  (Hoffman et  al., 2013) 
as benchmark. The evaluation is done on 300, 000 news articles from the New York Times 
corpus.

Furthermore, we use DPSGD to scale up the training of DRL algorithm, namely 
Advantage Actor Critic (A2C) algorithm, implementing highly scalable A2C (HSA2C) 
(details in the appendix). We compare HSA2C against other distributed A2C imple-
mentations using a testbed of six Atari games and demonstrate an average training time 
of 21.95  min compared to over 13.75  h by the baseline A3C. In particular, HSA2C 
shows a significant speed-up on Space invaders with learning time below 10 min com-
pared to the 30 min achieved by the best competitor.

4.1 � Variational inference

The development of the proposed DPSVI algorithm follow from DPSGD, but in the 
context of VI. In Appendix  7, we characterise the entire family of models where 
DPSVI is applicable, which is shown to be equivalent to the models for which SVI 
applies. Next, DPSVI is derived from DPSGD. Finally, we derive an asynchronous dis-
tributed lock-free parallel inference algorithm for LDA as a case study for DPSVI.

Datasets We use the NYTimes corpus   (Lichman, 2013) containing 300, 000 news 
articles from the New York Times corpus. The data is pre-processed by removing all the 
words not found in a dictionary containing 102, 660 most frequent words - see (Lich-
man, 2013) for more information. We reserve 5, 000 documents from NYTimes data as 
a validation set and another 5, 000 documents as a testing set.

Performance The performance of the LDA model is assessed using a model fit 
measure, perplexity, which is defined as the geometric mean of the inverse marginal 
probability of each word in the held-out set of documents (Blei et al., 2003). We also 
compute the running time speed-up (TSP)  (Lian et al., 2015) defined as

where T(⋅) denotes the running time and is taken when both models achieve the same final 
held-out perplexity of 5000 documents.

Parameters In all experiments, the LDA number of topics is K = 50 . SVI 
LDA is run on the training set for � ∈ {0.5, 0.7, 0.9} , �0 ∈ {1, 24, 256, 1024} , and 
batch ∈ {16, 64, 256, 1024} . The best performing parameters batch = 1024 , � = 0.5 
and �0 = 1 providing preplexity of 5501 are used (Table 1 in Mohamad et  al. (2018) 
summarises the best settings with the resulting perplexity on the test set). As for the 
DPSGD LDA version, the local learning rate G (see Eq. 52) is set to 64 and M equal 
to 16. We evaluate a range of learning rates � = � ∈ {0.2, 0.1, 0.05, 0.01} where M, p 
and B are set to 1. The best learning rate 0.1 providing held-out perplexity of 5501 was 
used. For different B, M and p, the learning rate is changed according to Corollary 1:

(12)TSP =
T(SVI)

T(DPSVI)

(13)�� = �

(

pBM

p�B�M�

)0.25

=
0.1

(p�B�M�)0.25
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All DPSGD LDA experiments were performed on a high-performance computing (HPC) 
environment using message passing interface (MPI) for python (MPI4py). The cluster 
consists of 10 nodes, including the head node, with each node being a 1-sockets-6-cores-2-
thread processor.

4.1.1 � Node speed‑up

Here, we study the speed-up of DPSVI with respect to the number of workers where 
p = 1 and B = 1 . DSPSVI LDA is then compared against serial SVI ( B = 1 , p = 1 
and nW = 1 ). We run DPSVI for various numbers of workers nW ∈ {4, 9, 14, 19} . The 
number of nodes is nW as long as nW is less than 9. As nW becomes higher than the 
available nodes, the processors’ cores of nodes are employed as workers until all cores 
(threads) of each node are used i.e., 9 × 12 = 108 . The batch size M is fixed to 36. 

Fig. 1   LDA analysis: Running 
time speed-up (TSP) with respect 
to the number of workers

Fig. 2   LDA analysis: Running 
time speed-up (TSP) with respect 
to the number of threads
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Figure 1 summarises the total speed-up (i.e., TSP measured at the end of the algorithm) 
with respect to the number of workers where the achieved pre-perplexity is almost the 
same. The result shows linear speed-up as long as the number of workers is less than 14. 
Then, linear speed-up slowly converts to sub-linear and is expected to drop for higher 
number of workers due to reaching the maximum communication bandwidth.

4.1.2 � Thread speed‑up

In this section, we study the speed-up of DPSVI with respect to the number of threads 
where nW = 1 . We empirically set B to 15. Similar to the node-related speed-up analysis, 
experiments are run for different p ∈ {3, 5, 8, 10} . Then, DPSVI is compared against serial 
SVI. The results are shown in Fig. 2. The outcome shows linear speed-up as long as the 
number of threads is less than 8. Then, the speed-up slowly converts to sub-linear and is 
expected to become worse for higher number of threads. This drop in the speed-up is due 
to hardware communication and other factors affecting the CPU power.

Fig. 3   LDA analysis: Running 
time speed-up (TSP) with respect 
to the number of workers and 
threads

Fig. 4   LDA analysis using 
DPSVI: perplexity (model fit) 
with respect to running logarith-
mic time in seconds
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4.1.3 � Node‑thread speed‑up

Finally, we study the speed-up of DPSVI with respect to the number of nodes and threads. 
To simplify the experiments, we take the number of cores to be equal to the number of 
nodes. Experiments are run for different p = nW ∈ {2, 4, 6, 8} . We also present results 
with different B ∈ {5, 10, 15, 20} in order to show the effect of steering the trade-off 
between local computation and communication. DPSVI is compared against serial SVI and 
the results are shown in Fig. 3. The result shows speed-up whose speed slows down as the 
number of threads and nodes exceed 6. This is due to communication and other hardware 
factors. However, the rate of this slowing down for higher B is less significant which illus-
trates the advantage of reducing the communication overhead when reaching its ceiling 
point. Note that for very high number of workers, increasing B might not be very helpful 
as our theoretical results show that high B tightens the bound on the number of workers 
allowed for the speed-up to holds. Figure 4 reports the perplexity on the training set with 
respect to running time in seconds (logarithmic scale) with B = 15 . Five curves are drawn 
for different nodes-threads number, where DPSVI-n denotes our DPSVI with n nodes and 
threads. The convergence and speed-up of DPSVI are clearly illustrated.

4.2 � Deep reinforcement learning

We use six different Atari games to study the performance gains that can be achieved by 
the proposed HSA2C algorithm using the Atari 21600 emulator  (Bellemare et al., 2013) 
provided by the OpenAI Gym framework  (Brockman et al., 2016). This emulator is one 
of the most commonly used benchmark environments for RL algorithms. Here, we use 
Pong, Boxing, Seaquest Space invaders, Amidar and Qbert which have been included in 
related work  (Mnih et  al., 2016; Adamski et  al., 2017, 2018; Babaeizadeh et  al., 2016). 
These games are used to evaluate the effects of reducing the communication bottleneck 
when using an increasingly higher number of steps, B, with different numbers of nodes. We 
also study the speed-up achieved by HSA2C with respect to the number of nodes. Finally, 
we compare the performance reported by various state-of-the-art algorithms  (Mnih et al., 
2016; Adamski et al., 2017, 2018; Babaeizadeh et al., 2016).

4.2.1 � Implementation details

HSA2C has been implemented and tested on a high-performance computing (HPC) envi-
ronment using message passing interface (MPI) for Python (MPI4py 3.0.0) and Pytorch 
0.4.0. Our cluster consists of 60 nodes consisting of 28 2.4 GHz CPUs per node. In our 
experiments, we used the same input pre-processing as Mnih et al. (2015). Each experi-
ment was repeated 5 times (each with an action repeat of 4) and the average results are 
reported. The agents used the neural network architectures described in  Mnih et al. (2013): 
a convolutional layer with 16 filters of size 8 x 8 with stride 4, followed by a convolutional 
layer with with 32 filters of size 4 x 4 with stride 2, followed by a fully connected layer 
with 256 hidden units. All three hidden layers were followed by a rectifier nonlinearity. The 
network has two sets of outputs – a softmax output with one entry per action represent-
ing the probability of selecting the action and a single linear output representing the value 
function. Local learning rate, mini-batch size and the optimiser setting are contrasted with 
those reported in Adamski et  al. (2018) in order to provide a fair comparison with their 
asynchronous mini-batch implementation. The global learning rate was set to 0.01 for the 
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SGD optimiser with 0.5 momentum. The global batch was set to the number of utilised 
nodes.

4.2.2 � Speed‑up analysis

In this section, we study the effect of B on various aspects of the scalability of HSA2C with 
respect to the number of nodes. Figure 5 shows the average speed of data generated by the 
distributed actors measured in data-points per seconds on the Space invader game. Com-
parable figures can be obtained for other games, but they are not reported here. It is notice-
able that at B = 1 , the speed of data generation is about the same as the number of nodes 
increases. This is due to the communication cost which increases with the number of nodes 
used. That is, the expected waiting time of each node’s exchange with the master increases. 
Increasing B will reduce the number of exchanges while performing the same number of 
updates locally. This is illustrated in Fig. 5 where the data generation speed increases with 
the number of nodes as B increases.

Figure 6 shows the time (in seconds) required to reach the highest score of Pong, Box-
ing, Seaquest, Space invader, Amidar and Qbert reached with B = 1 in a 30-minute run over 
different number of nodes and B. The aim of these figures is to demonstrate the potential 
performance gains achieved by HSA2C as B increases in comparison to distributed deep 
reinforcement learning (DDRL) A3C, which is algorithmically equivalent to HSA2C when 
B = 1 (our baseline). In order to produce these figures, we initially carried out a search 
to empirically determine the highest score that can be achieved by HSA2C within a time 
period of 30 minutes when B = 1 . The search for the highest score is performed on four 
different cluster sizes: 20, 30, 40, and 60. The figures present the time required for various 
HSA2C parameters to reach that benchmark score. These experimental results clearly show 
the impact of B on the communication costs and confirm the findings of Fig. 5. By using a 
larger number of nodes, more communication exchanges are required for each update and 
performing more local update (i.e., increasing B) reduces the communication exchanges 

Fig. 5   The average data generation speed of HSA2C measured in points per second within 30 min run on 
Space invader game
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needed to reach certain score without much sacrificing the learning performance. Thus, 
a better speed-up can be achieved. On the other hand, with a smaller number of nodes, 
increasing B does not make a significant difference in reducing the communication whilst 
the negative effect of an increased variance becomes significant as the size of the learning 
batch becomes smaller (depending on the number of nodes). Overall, there is evidence for 
a variance-communication trade-off controlled by B.

Fig. 6   The time (in seconds) required to reach reference solution (the highest score with B = 1 in a 30 min 
run) over a range of node numbers and B 
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The multiple local updates B mitigates the speed-up limit caused by higher commu-
nication cost with higher number of nodes. Choosing the right B for different numbers 
of nodes allows HSA2C to scale better than HSA2C when B = 1 . For all the six games, 
we have found that increasing the number of nodes over 40 does not lead to better per-
formance. This is due to the higher variance entailed by a higher B. That is, the per-
formance improvement coming from the communication reduction is overtaken by the 
entailed variance when using more than 40 nodes. This limit could be overcome in two 
different ways, either by decreasing the communication without further increasing the 
variance or by directly mitigating the variance problems.

4.2.3 � Comparison

We show the effectiveness of the proposed approach by comparing it against similar 
scalable Actor-critic optimisation approaches. The most similar work in speeding up 
Atari games training is presented in Adamski et al. (2018), Mnih et al. (2016), Adamski 
et al. (2017), Babaeizadeh et al. (2016). The algorithm in Adamski et al. (2018) (DDRL 
A3C) is a particular case of HSA2C, where the communication is synchronised and the 
number of iterations of per-worker loop is set to one ( B = 1 ). GA3C is a hybrid GPU/
CPU algorithm which is a flavour of A3C focusing on batching the data points in order 
to better utilise the massively parallel nature of GPU computations. This is similar to 
the single-node algorithm called BA3C (Adamski et al., 2017).

Table  2 presents the best score and time (in minutes) HSA2C archives using the 
best B values found in Fig. 6 in comparison to the competitors. The reported scores are 
taken from the original papers. As GA3C, BA3C and A3C are parallel single-node algo-
rithms, their experimental settings are not comparable to ours. This comparison shows 
that our approach achieves a better score than all competitors. In particular, we achieve 
an average score of 665 in 30.63 minutes average time using 560 total CPU cores com-
pared to the DDRL A3C score of 650 in 82.5 average time with 778 total CPU cores. 
Most importantly, this comparison validates the effectiveness of our proposed approach 
to reduce communication while preserving performance. This is clearly shown in the 

Table 2   Best scores and the corresponding time in minutes achieved by HSA2C using the best B from 
Table 2 and considering 20, 30, 40 and 60 nodes compared to the best reported results by competitors

Algorithms Pong Boxing Seaquest Space invaders Amidar Qbert

HSA2C (20 
nodes)

20 (63 m) 98 (19.8 m) 1858 (21.7 m) 684 (17.9 m) 251 (26 m) 1210 (20 m)

HSA2C (30 
nodes)

19 (40 m) 98 (19.8 m) 1874 (19.1 m) 671 (14.7 m) 234 (15 m) 1420 (27 m)

HSA2C (40 
nodes)

20 (32.6 m) 95 (20.7 m) 1894 (20.5 m) 681 (9.9 m) 282 (20 m) 1620 (28 m)

HSA2C (60 
nodes)

19 (38 m) 96 (23.2 m) 1874 (22.3 m) 667 (9.4 m) 243 (24 m) 800 (30 m)

DDRL A3C 20 (240 m) 98 (30 m) 1832 (30 m) 650 (30 m) – –
GA3C 18 (60 m) 92 (120 m) 1706 (1440 m) 600 (1440 m) 218 (1440 m) 395 (30 m)
BA3C 17 (1440 m) – 1840 (1440 m) 700 (1440 m) – –
A3C 20 (480 m) 95 (660 m) 2300 (1440 m) 1400 (900 m) 280 (1440 m) 400 (30 m)
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comparison between our approach and our implementation of DDRL A3C (the top com-
petitor in Table 2) using the same setting (see Sect. 4.2.2).

For this study, we have decided not to include GPU-based implementations such 
as Stooke and Abbeel (2018) as our focus here is on CPU-enabled methods. However, 
HSA2C is generic and lends itself to GPU-based implementations whereby each node 
consists of multiple CPUs and a GPU. In such a case, local computation and simulation 
can be done using CPUs/GPU units, where our multiple local update approach can 
further speed up the standard DA3C communication-based  (Stooke & Abbeel, 2018). 
The empirical work reported here provides an initial validation of the underlying idea.

5 � Conclusion

We have proposed a novel asynchronous distributed and lock-free parallel optimisation 
algorithm. The algorithm has been implemented on a computer cluster with multi-core 
nodes. Both theoretical and empirical results have shown that DPSGD leads to speed-up 
on non-convex problems. The paper shows how DPSVI and HSA2C have been derived 
from DPSGD. Both are an asynchronous distributed and lock-free parallel implementa-
tion for respectively stochastic variational inference (SVI) and advantage actor critic 
(A2C). Empirical results have allowed to validate the theoretical findings and to com-
pare against similar state-of-the-art methods.

Going forward, further improvements and validations could be achieved by pursuing 
research along five directions: (1) employing variance reduction techniques to improve 
the convergence rate (from sub-linear to linear) while guaranteeing multi-node and 
multi-core speed-up; (2) proposing a framework enabling dynamic trade-offs between 
local computation and communication; (3) proposing techniques to improve the local 
optimum of the distributed parallel algorithms; (4) applying DPSVI to other members 
of the family of models stated in the appendix; (5) applying DPSGD to other large-scale 
deep learning problems.

6  Proofs

Let q(x) =
1

n

∑n

i=1
��∇fi(x)��

2 . We have �i[||∇fi(x)||
2] = q(x) . Hence, �i[q(x)] = �i

[||∇fi(x)||2] . Taking the full expectation on both sides, we get �[q(x)] = �[||∇fi(x)||
2] . It 

can be proven that:

Lemma 1 
given � and � satisfying

where �t[.] denotes �it,∗,∗,St,∗,∗
[.] . The proof can be derived from that in Zhao et al. (2017) 

using Assumptions 1 and 5. The stars means for all, ∀.
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Proof to Theorem 1  From the smoothness Assumption 1, we have:

where the last equality uses the update in Eq. (4). Taking expectation of the above inequal-
ity with respect to it,∗,∗ , and St,∗,∗ , we obtain:

where we used Assumptions 2, 3, 4 and 6. Since S is a strictly definite matrix with the 
largest eigenvalue less or equal than 1 and the minimum eigenvalue is 𝛼 > 0 and from the 
fact⟨a, b⟩ = 1

2
(��a��2 + ��b��2 − ��a − b��2) , we have:

Next, we obtain an upper bound for H1. Using the triangular inequality and Assumption 1, 
we can write the following:
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S∇f (ût−𝜏t,m,m,b)⟩

+
L𝜂2𝜌2

t−1

2
Et��

M
�

m=1

B̃−1
�

b=0

St,m,b∇fit,m,b (ût−𝜏t,m,m,b)��
2

(18)

Et[f (vt)] − f (vt−1) ≤ −
MB̃𝜂𝜌t−1𝛼

2

(

||∇f (vt−1)||
2 + ||

1

MB̃

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2−

||∇f (vt−1) −
1

MB̃

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2

�������������������������������������������������������������
H1

)

+

L𝜂2𝜌2
t−1

2
Et||

M
∑

m=1

B̃−1
∑

b=0

St,m,b∇fit,m,b (ût−𝜏t,m,m,b)||
2

���������������������������������������������������
H2

(19)

H1 = ||∇f (vt−1) −
1

MB̃

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2

≤
1

MB̃

M
∑

m=1

B̃−1
∑

b=0

||∇f (vt−1) − ∇f (ût−𝜏t,m,m,b)||
2

≤
L2

B̃

B̃−1
∑

b=0

||vt−1 − ût−𝜏t,y,y,b||
2
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where y = argmaxm∈{1,...M}||vt−1 − ût−�t,m,m,b||
2 . Using triangular inequality and the updates 

in Eq. (4), we obtain:

Using the triangular inequality again, we have the following:

By taking the expectation on both sides with respect to all random variables associated 
with k ∈ {t − 1 − �t,y, ..., t − 2} and using Assumptions 4, 5 and 6 and , we obtain:

Taking the full expectation, we have

(20)

H1 ≤
L2

B̃

B̃−1
∑

b=0

(

||vt−1 − ut−𝜏t,y,y,a(b)||
2 + 𝜂2||

b−1
∑

j=a(b)

∇fit,y,j (ût−𝜏t,y,y,j)||
2

)

≤
L2

B̃

B̃−1
∑

b=0

(

||vt−1 − vt−1−𝜏t,y ||
2 + 𝜂2||

b−1
∑

j=0

∇fit,y,j (ût−𝜏t,y,y,j)||
2 + 𝜂2||

b−1
∑

j=a(b)

∇fit,y,j (ût−𝜏t,y,y,j)||
2

)

=
L2

B̃

B̃−1
∑

b=0

(

𝜂2 ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

∇fij,m,b (ûj−𝜏j,m,m,b)||
2

�������������������������������������������������������������
H11

+𝜂2||

b−1
∑

j=0

∇fit,y,j (ût−𝜏t,y,y,j)||
2

+ 𝜂2||

b−1
∑

j=a(b)

∇fit,y,j (ût−𝜏t,y,y,j)||
2

)

(21)

H11 = ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

∇fij,m,b (ûj−𝜏j,m,m,b)||
2

= ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

(

∇fij,m,b (ûj−𝜏j,m,m,b) − ∇f (ûj−𝜏j,m,m,b) + ∇f (ûj−𝜏j,m,m,b)

)

||

2

≤ ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

(

∇fij,m,b (ûj−𝜏j,m,m,b) − ∇f (ûj−𝜏j,m,m,b)

)

||

2

+ ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

(22)

Ek[H11] ≤

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

Ek||

M
∑

m=1

B̃−1
∑

b=0

(

∇fij,m,b (ûj−𝜏j,m,m,b) − ∇f (ûj−𝜏j,m,m,b)

)

||

2

+ D�

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

Ek||

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

≤ MB̃𝜎2

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

+ D�

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

Ek||

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2
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Using Assumption 4 and Lemma 1 we have the following:

Using Assumption 4, the full expectation of H2 can be bounded as follows:

By taking the full expectation of Eq. 18 and applying the upper bound of E[H1] and E[H2], 
we obtain:

Summarising the inequality Eq. 26, from t = 1 to T, we end up with:

(23)

E[H1] ≤
L2𝜂2

B̃

B̃−1
∑

b=0

(

MB̃𝜎2

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

+ D�

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

Ek||

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

+ ||

b−1
∑

j=0

∇fit,y,j (ût−𝜏t,y,y,j)||
2 + ||

b−1
∑

j=a(b)

∇fit,y,j (ût−𝜏t,y,y,j)||
2

)

(24)

E[H1] ≤
L2𝜂2

B̃

B̃−1
∑

b=0

(

MB̃𝜎2

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

+ D�

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

E||

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

+
𝜇(𝜇b − 1)

𝜇 − 1
V2 +

𝜇(𝜇D − 1)

𝜇 − 1
V2

)

(25)E[H2] ≤
L𝜂2𝜌2

t−1

2
MB̃V2

(26)

E[f (vt)] − E[f (vt−1)] ≤ −
MB̃𝜂𝜌t−1𝛼

2

�

E[��∇f (vt−1)��
2] + E

⎡

⎢

⎢

⎣

��

1
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M
�

m=1
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�

b=0

∇f (ût−𝜏t,m,m,b)��
2

⎤

⎥

⎥
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B̃
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�
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�

MB̃𝜎2

t−2
�
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𝜌2
j−1

+ D�

t−2
�

j=t−1−𝜏t,y

𝜌2
j−1

E��

M
�

m=1

B̃−1
�

b=0

∇f (ûj−𝜏j,m,m,b)��
2

+
𝜇(𝜇b − 1)

𝜇 − 1
V2 +

𝜇(𝜇D − 1)

𝜇 − 1
V2

��

+
L𝜂2𝜌2

t−1

2
MB̃V2
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MB̃𝜂𝜌t−1𝛼

2
E[��∇f (vt−1)��

2] +
M𝜂3𝜌t−1𝛼L

2V2

2

B̃−1
�

b=0

𝜇(𝜇b − 1)

𝜇 − 1

+
MB̃𝜂3L2𝜌t−1𝛼V

2

2

𝜇(𝜇D − 1)

𝜇 − 1
+

L𝜂2𝜌2
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2
MB̃V2 +

M2B̃2𝜂3L2𝜌t−1𝛼

2
𝜎2

t−2
�

j=t−1−D�

𝜌2
j−1

−

𝜂𝜌t−1𝛼

2MB̃
E[��

M
�

m=1

B̃−1
�

b=0

∇f (ût−𝜏t,m,m,b)��
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MB̃𝜂3L2𝜌t−1𝛼D
�

2
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�
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𝜌2
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E��

M
�

m=1

B̃−1
�
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∇f (ûj−𝜏j,m,m,b)��
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Assuming that ∀t ∈ {1, 2, ...}:

We have Theorem 1;

	�  ◻

(27)

E[f (vT )] − f (v
0
) ≤ −

MB̃𝜂𝛼

2

T
∑

t=1

𝜌t−1E[||∇f (vt−1)||
2]

+

( B̃−1
∑

b=0

𝜇(𝜇b − 1)

𝜇 − 1
+ B̃

𝜇(𝜇D − 1)

𝜇 − 1

)

M𝜂3L2V2𝛼

2
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∑
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+
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2
MB̃V2

T
∑
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∑
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2
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2
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[
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( B̃−1
∑
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L𝜂2

2
MB̃V2
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MB̃𝜂2L2𝜌t−1D
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𝜌t+n −
1

MB̃
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(28)M2B̃2𝜂2L2𝜌t−1D
�

D�

∑

n=1
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T
∑
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0
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+
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∑
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∑
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Proof to Corollary 1  According to Theorem 1, we have:

By setting the learning rate �t to be a constant and equal to � , we obtain the following:

The inequalities shown in Theorem 1 can be re-arranged as follows:

Assuming � ≤ 1 and 0 < 𝜇 < 1,

By setting the learning rate as follows:

where A is a constant:

We end up with the following bound on the delayed parameters that if holds, Theorem 1 is 
satisfied:

Hence, from Theorem 1, we obtain:

(30)

1
∑T

t=1
𝜌t−1

T
�

t=1

𝜌t−1E[��∇f (vt−1)��
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2(f (v
0
) − f (v∗))

MB̃𝜂𝛼
∑T
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�
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𝜇(𝜇b − 1)
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�
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�
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2(f (v
0
) − E[f (v∗)])

TMB̃𝜂2𝛼

+ 𝜂2LV2

(

1

𝛼
−

L𝜇(1 − 𝜇B̃)

(1 − 𝜇)2B̃
+

L𝜇

(1 − 𝜇)
+ L

𝜇(1 − 𝜇D)

1 − 𝜇

)

+ 𝜂4L2MB̃𝜎2D�
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(� − 1)8
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Therefore, Corollary 1 has been proven. 	�  ◻

7  Asynchronous Distributed Lock‑free Parallel Stochastic Variational 
Inference

In this section, we describe our proposed distributed parallel implementation of the asyn-
chronous lock-free stochastic variational inference algorithm (DPSVI) on a computer clus-
ter with multi-core nodes. The steps of the algorithm follow from the proposed DPSGD 
but in the context of VI. First, we derive the model family applicable with DPSVI and 
review SVI following the same steps in  Hoffman et  al. (2013). Then, we derive DPSVI 
from DPSGD.

Model family The family of models considered here consists of three random variables: 
observations x = x1∶n , local hidden variables z = z1∶n , global hidden variables � and fixed 
parameters � . The model assumes that the distribution of the n pairs of (xi, zi) is condition-
ally independent given � . Furthermore, their distribution and the prior distribution of � are 
in the exponential family.

Here, we overload the notation for the base measures h(.), sufficient statistics t(.) and log 
normaliser a(.). While the proposed approach is generic, for simplicity we assume a con-
jugacy relationship between (xi, zi) and � . That is, the distribution p(�|x, z) is in the same 
family as the prior p(�|�) . Note that this family of models includes, but is not limited to, 
latent Dirichlet allocation, Bayesian Gaussian mixture, probabilistic matrix factorisation, 
hidden Markov models, hierarchical linear and probit regression and many Bayesian non-
parametric models.

Mean-field variational inference Variational inference (VI) approximates intracta-
ble posterior p(�, z|x) by positing a family of simple distributions q(�, z) and find the 

(37)

1

T

T
∑

t=1

E[||∇f (vt−1)||
2] ≤

2(f (v0) − f (v∗))

TMB̃𝜂2𝛼
+ 𝜂2LV2

(

1

𝛼
+

2L𝜇

(1 − 𝜇)

)

+ 𝜂2L𝜎2

≤
2(f (v0) − f (v∗))

TMB̃𝜂2𝛼
+ 𝜂2𝛼A

= 3A

√

f (v0) − f (v∗)

TMB̃

(38)p(�, x, z|�) = p(�|�)

n
∏

i=1

p(zi, xi|�)

(39)p(zi, xi|�) = h(xi, zi) exp
(

�
T t(xi, zi) − a(�)

)

(40)p(�|�) = h(�) exp
(

�
T t(�) − a(�)

)
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member of the family that is closest to the posterior (closeness is measured with KL 
divergence). The resulting optimisation problem is equivalent to maximising the evi-
dence lower bound (ELBO).

Mean-field is the simplest family of distribution, where the distribution over the hidden 
variables factorises as follows:

Further, each variational distribution is assumed to come from the same family of the true 
one. Mean-field variational inference optimises the new ELBO with respect to the local 
and global variational parameters � and �.

It iteratively updates each variational parameter holding the other parameters fixed. With 
the assumptions taken so far, each update has a closed form solution. The local parameters 
are a function of the global parameters.

We are interested in the global parameters which summarise the whole dataset (clusters in 
the Bayesian Gaussian mixture, topics in LDA).

To find the optimal value of � given that � is fixed, we compute the natural gradient of 
L(�) and set it to zero by setting:

Thus, the new optimal global parameters are �t+1 = �
∗ . The algorithm works by iterating 

between computing the optimal local parameters given the global ones (Eq. 44) and com-
puting the optimal global parameters given the local ones (Eq. 46).

Stochastic variational inference. Instead of analysing all of the data to compute 
�
∗ at each iteration, stochastic optimisation can be used. Assuming that the data sam-

ples are uniformly randomly selected from the dataset, an unbiased noisy estimator of 
L(�,�) can be developed based on a single data point:

(41)L(q) = Eq[log p(x, z, �)] − Eq[log p(z�)] ≤ log p(x)

(42)q(�, z) = q(�|�)

n
∏

i=1

p(zi|�i)

(43)L(�,�) = Eq

[

log
p(�)

q(�)

]

+

n
∑

i=1

Eq

[

log
p(xi, zi|�)

q(zi)

]

(44)�(�t) = argmax
�

L(�t,�)

(45)L(�) = max
�

L(�,�)

(46)�
∗ = � +

n
∑

i=1

E
�i(�t)

[t(xi, zi)]

(47)Li(�,�i) = Eq

[

log
p(�)

q(�)

]

+ nEq

[

log
p(xi, zi|�)

q(zi)

]
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 The unbiased stochastic approximation of the ELBO as a function of � can be written as 
follows:

Following the same steps in the previous section, we end up with a noisy unbiased estimate 
of Eq. 45:

At each iteration, we move the global parameters a step-size �t (learning rate) in the direc-
tion of the noisy natural gradient:

With certain conditions on �t , the algorithm converges ( 
∑∞

t=1
�t = ∞ , 

∑∞

t=1
𝜌2
t
< ∞) (Rob-

bins & Monro, 1951).
Based on a batch of data points, the unbiased noisy estimator of L(�,�) can be written 

as follows:

where Gg = {(g − 1)G + 1, ..., gG} . Equation 49 can be written as follows:

Following this derivation, DPSVI, Algorithm  3 and 4, can be simply obtained from 
DPSGD by amending line (7) and (8) of Algorithm 2. Specifically, in line (7) we compute 
the local variational parameters �i(�

∗) corresponding to the data point xi and the global 
variational parameter �∗ , �i(�

∗) = argmax
�i
Li(�

∗,�i) . The index i is randomly picked 
from {1, ...n} and �∗ replaces û . In line (8) we perform the update after replacing the 
stochastic gradient ∇fi(û) by negative stochastic natural gradient with respect to the global 

parameter �∗ , gi(�
∗) = −

�

� +
n

G

∑

j∈Gi
E
�j(�

∗)[t(xj, zj)] − �
∗

�

.

Finally, the derivation of LDA from the presented model family can be found 
in Mohamad et al. (2018).

(48)Li(�) = max
�i

Li(�,�i)

(49)𝝀̂ = 𝜻 + nE
𝝓i(𝝀t)

[t(xi, bzi)]

(50)𝝀t+1 = (1 − �t)𝝀t + �t𝝀̂

(51)Lg(�,�g) = Eq

[

log
p(�)

q(�)

]

+
n

G

∑

i∈Gg

Eq

[

log
p(xi, zi|�)

q(zi)

]

(52)𝝀̂g = 𝜻 +
n

G

∑

i∈Gg

E
𝝓i(𝝀t)

[t(xi, zi)]
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8  Highly scalable advantage actor critics

The impressive results that have been achieved by deep artificial neural networks in sev-
eral application domains are often driven by the availability of very large training data 
sets (Krizhevsky et al., 2012). In reinforcement learning (RL) (Sutton & Barto, 2018), an 
agent learns how to behave by interacting with its environment and has to experiment by 
trial and error, over and over again, often accumulating millions of repeated experiences. 
In order to enable learning in complex, real-world environments, recent advances in RL 
have successfully incorporated function approximation through deep networks resulting in 
deep reinforcement learning (DRL) (Sutton & Barto, 2018). The already data hungry DL 
function is then aggravated by the data inefficiency of RL motivating the development of 
more scalable learning algorithms.

Policy gradient methods directly maximise the expected rewards of a parameterised pol-
icy using gradient-based iterative methods such as the Stochastic Gradient Descent method 
(SGD). Advantage actor-critic incorporates control variate techniques to reduce the vari-
ance of the approximated gradient  (Sutton et al., 2000). Thus, different versions of SGD 
can be used directly for learning. Various SGD implementations have been exploited to 
scale up DRL including distributed (Agarwal & Duchi, 2011; Lian et al., 2015) and paral-
lel algorithms  (Recht et  al., 2011; Zhao et al., 2017) resulting in different scalable DRL 
algorithms (Ong et al., 2015; Nair et al., 2015; Adamski et al., 2018; Mnih et al., 2016; 
Babaeizadeh et al., 2016; Clemente et al., 2017; Horgan et al., 2018). These developments 
are particularly relevant to DRL due to its inherently sequential nature and the massive 
amount of data required for learning complex tasks such as playing games (Silver et al., 
2016), controlling robots  (Abbeel et  al., 2007), optimising memory control  (Ipek et  al., 
2008), and personalising web services (Theocharous et al., 2015), amongst others.

More recently, a few hybrid DRL algorithms have been proposed that combine both 
aspects of parallel (i.e. shared) and distributed computation (i.e., distributed mem-
ory)  (Adamski et  al., 2018; Babaeizadeh et  al., 2016). A typical problem of distributed 
learning is the communication overhead arising from the necessity to share the weight 
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updates between nodes. Traditionally, large batches and step sizes have been used to curb 
the communication while preserving scalability. These strategies introduce a trade-off 
between computational and sample efficiency: a large batch increases the time needed to 
calculate the gradient locally, but decreases its variance allowing higher learning rate to be 
used. However, there is a limit on the speed-up that can be achieved by tuning the learning 
rate and batch sizes (Li et al., 2014b; Bottou et al., 2018).

Here, we apply DPSGD to steer off communication computation in a hybrid distributed-
parallel implementation of DRL, with initial focus on advantage actor critic (A2C), which 
has been extensively studied  (Ong et al., 2015; Adamski et al., 2018; Mnih et al., 2016; 
Babaeizadeh et  al., 2016; Clemente et  al., 2017; Horgan et  al., 2018). We use a cluster 
network with a given number of computational nodes equipped with multiple CPUs. Each 
node maintains a copy of the actor and critic’s models; for instance, the weights of the 
corresponding neural network implementing those models. A few of these nodes act as 
a master and the remaining nodes are the workers. The models maintained by the master 
are called global models. Within each worker node, the A2C’s models are shared locally 
among its multiple CPUs, and are denoted as local.

Each worker performs multiple lock-free parallel updates  (Zhao & Li, 2016) for the 
models shared across the CPUs. The global model is then updated by the master using 
the asynchronously aggregated local multiple steps updates. This simple strategy yields 
a highly-scalable advantage actor-critics (HSA2C), and harnesses distributed and local 
computation and storage resources. By updating the local variables multiple times, HSA2C 
mitigates the communication cost converting time speed-up.

8.1  Background

In reinforcement learning (RL), an agent interacts sequentially with an environment, 
with the goal of maximising cumulative rewards. At each step t the agent observes a 
state st , selects an action at according to its policy �(at|st) , and receives the next state st+1 
along with a reward rt . This continues until the agent reaches a terminal state at t = T  . 
The cumulative rewards, called return, at time t can be then written as Rt =

∑∞

i=0
� irt+i , 

where the goal is to learn a policy that maximises the expected return from each state st : 
E[Rt|st = s] . The action value function of policy �,Q�(s, a) = E[Rt|st = s, at = a,�] is the 
expected return for taking action a in state s and following policy � . The value function 
V�(s) = E[Rt|st = s] is the expected return of policy � from state s.

Two main approaches of RL have been studied: value-based and policy based RL. In 
value-based RL, the policy is inferred from the value function which is represented by a 
function approximator such as a neural network. Hence, the value function can be written 
as Q(s, a; w), where w represents the approximator parameters. Then, the goal of the RL 
algorithms is to iteratively update w to find the optimal action value function representing 
the optimal policy � . Alternatively, policy based DRL directly parameterises the policy 
�(a|s,�) and updates its parameter by performing, typically approximate, gradient ascent 
on

e.g. see (Williams, 1992). Hence, the gradient of the objective function can be expressed as 
follows:

L(�) = E[Q�� (a, s)|�]



4069Machine Learning (2022) 111:4039–4079	

1 3

An unbiased estimate of the gradient in Eq. 53 can be obtained by computing the update 
from randomly sampled tuples of form (s, a, r).

8.1.1  Advantage actor critic (A2C) methods

To reduce the variance of the estimate in Eq. (53) while keeping it unbiased, the Q function 
can be replaced with an advantage function, A�� (a, s) = (Q�� (a, s) − V�� (s)) (Sutton et al., 
2000) where V is the state value function. This approach can be viewed as an actor-critic 
architecture where the policy is the actor and the advantage function is the critic (Sutton & 
Barto, 1998).

Deep neural networks are used to approximate the actor and critics functions. Typically, 
two neural networks are deployed, one parameterised by � approximating the actor and the 
other parameterised by �v approximating the critic. Hence, the gradient of the objective 
function can be expressed as follows:

where

In the next section we provide a brief overview of existing scalable SGD approaches and 
how they have been adopted to scale-up A2C.

8.1.2  Scalable SGD algorithms for DRL

Stochastic gradient descent (SGD) and its variants are used to optimise the A2C objec-
tive function (Eq. (54)) (Sutton & Barto, 2018). SGD updates the actor and the critics net-
work weights (�,�v) based on the approximate gradient of the objective function L(�,�v) 
computed using an experience trajectory (or batch of trajectories) sampled using policy 
�� . Various scalable SGD-based approaches have recently been proposed to scale up DRL 
algorithms  (Ong et  al., 2015; Nair et  al., 2015; Mnih et  al., 2016; Babaeizadeh et  al., 
2016; Clemente et al., 2017; Horgan et al., 2018; Adamski et al., 2018). In general, these 
approaches can be viewed as derivations from either distributed SGD (DSGD) or parallel 
SGD (PSGD).

A DSGD-like architecture called Gorila, proposed by Nair et al. (2015), relies on asyn-
chronous training of RL agents in a distributed setting. Gorila distributes Deep Q-Net-
work DQN (Mnih et al., 2015) across multiple machines. Each machine runs an actor that 
interacts with the environment, samples data from the replay memory and computes the 
gradients of the DQN loss with respect to the policy parameters. The gradients are asyn-
chronously sent to a central parameter server which updates a central copy of the model. 
The updated policy parameters are sent to the actor-learners at fixed intervals. In  Mnih 
et al. (2016), PSGD-like parameter updates and data generation have been used within a 

(53)∇L(�) = E[∇
�
log�(a|s,�)Q�� (a, s)|�]

(54)∇L(�,�v) =

(

∇
�
L(�,�v)

∇
�v
L(�,�v)

)

(55)
∇

�
L(�,�v) =E[∇�

log�(a|s,�)A�v (a, s)|�]

∇
�v
L(�,�v) =E[∇�v

A�v (a, s)|�]
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single-machine, in a multi-threaded rather than a distributed context. The shared parameter 
is then updated in an asynchronous DSGD-like fashion.

Scaling-up A2C using this two architectures lead to the asynchronous distributed A2C 
(DA3C) in Algorithm 6 and Algorithm 7 and the lock-free parallel A2C (PA3C) in Algo-
rithm 5. The lock-free PSGD presented in Algorithm 5 employs (Recht et al., 2011) style 
of updates for training A2C. The actors and critics networks are stored in a shared memory 
where different threads can update their parameters without any memory locking. There-
fore, in theory, linear speed-ups with respect to the number of threads can be achieved. 
On the other hand, the asynchronous DSGD presented in Algorithm 6 and Algorithm 7 
employs (Agarwal & Duchi, 2011) style of updates for training A2C. Here, the algorithms 
are deployed on a cluster where a master machine maintains a copy of A2C’s networks (the 
global networks (�,�v) , see Algorithm 6). Other machines serve as workers which inde-
pendently and simultaneously compute the local stochastic gradients of a copy of A2C’s 
networks (the local networks, see Algorithm 7). The workers only communicate with the 
master to exchange information in which they access the state of the global networks and 



4071Machine Learning (2022) 111:4039–4079	

1 3

provide the master with the stochastic gradients. The master aggregates predefined amounts 
of gradients from the workers. Then, it updates its global networks. Note that the local dis-
tributed computations are done in an asynchronous style where the workers are not locked 
until the master starts updating the global networks. That is, the workers might compute 
some stochastic gradients based on early value of the global networks.

Inspired by these two approaches, different improvements have been proposed. 
In Babaeizadeh et al. (2016), a hybrid CPU/GPU version of the Asynchronous Advantage 
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Actor Critic (A3C) algorithm (Mnih et al., 2016) was introduced. This study focused on 
mitigating the severe under-utilization of the GPU computational resources in DRL caused 
by its sequential nature of data generation. In this work, each agent queues policy requests 
in a Prediction Queue before each action, and periodically submits a batch of reward expe-
riences to a Training Queue. Thus, unlike (Mnih et al., 2016), the agents do not compute 
the gradients themselves. Instead, they send experiences to central learners that update the 
network on the GPU accordingly. Such architecture reduces the GPU idle during the train-
ing. However, as the number of core increases, the leaner becomes unable to cope with 
the data. Furthermore, such amount of data requires large storage capacity. Besides, the 
internal communications can affect the speed-up when bandwidth reach its ceiling. These 
issues limit the scalability of  Babaeizadeh et al. (2016). The approach is also limited to 
Off-policy DRL methods. We also note that a similar way for parallelisation of DRL is pro-
posed by Clemente et al. (2017).

Similarly, Horgan et  al. (2018) proposes to generate experience data in parallel using 
multi-cores CPUs where experiences are accumulated by actors in a shared experience 
replay memory. Each actor interacts with the environment takes actions, gets rewards and 
states. The learner, then, replays samples of experience and updates the shared neural net-
work. The architecture relies on prioritised experience replay (Schaul et al., 2015) to focus 
only on the most significant data generated by the actors. Along the same trend, in Esp-
eholt et al. (2018), all the data (states, actions and rewards) is also accumulated by distrib-
uted actors and communicated to a centralised learner where the computation takes place. 
To correct the policy-lag between the learner and actors generating the data, these authors 
introduce the V-trace off-policy actor-critic algorithm. It is an importance weighting tech-
nique used to learn the target policy (learner policy) from behaviour ones (actors policy). 
The architecture of these studies (Horgan et al., 2018; Espeholt et al., 2018) allows distrib-
uting the generation and selection of experience data instead of distributing locally com-
puted gradients as in Nair et al. (2015). Hence, it requires sending large size information 
over the network in case of large size batch of data making the communications more prob-
lematic. Furthermore, the central learner has to perform most of the computation which 
limits the scalability. Moreover, these approach is limited to Off-policy DRL methods.

The work in  Adamski et al. (2018) presents an SGD-based hybrid distributed-parallel 
actor critic approach, and is the most closely related to our approach. These authors com-
bine PA3C with DA3C to allow parallel distributed implementation of A3C on a computer 
cluster with multi-core node. Each node applies (Babaeizadeh et al., 2016) to queue data 
in batches, which are used to compute local gradients. These gradients are gathered from 
all workers, averaged and applied to update the global network parameters. To reduce the 
communication overhead, a careful reexamination of Adam optimizer’s hyper-parameters 
is carried out allowing large batch sizes to be used.

8.2  Scalable actor‑critic through multiple local updates

We propose a hybrid distributed-parallel actor critic algorithm whereby, unlike  (Adam-
ski et al., 2018), workers communicate update vectors rather than gradients to the master. 
These update vectors are the discrepancy between the initial copy of the advantage actor 
critic (A2C)’s local network parameters pulled from the master and the results of multiple 
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local iterations performed over the networks using PSGD-like updating style. As in DA3C-
like algorithms, the master aggregates predefined amounts of these local updates, updates 
its global networks and broadcast the updated networks to the workers. Such multi-steps 
updating vectors allow large global update steps with less communication exchanges. The 
local A2C’s actor model keeps interacting with the environment, taking actions and receiv-
ing rewards and next states. The data being collected is constantly used to compute the 
gradient of the objective function of A2C’s actor and critic networks and updating these 
networks. The data collection and updates are done in PA3C-like style. Once a pre-defined 
number of updates is reached the local update vector is computed and pushed to the master 
in DA3C style preventing any locking or synchronisation (unlike (Adamski et al., 2018)) 
from halting the actor infraction with the environment.

One issue of this approach is that the variance of policy gradient DRL combinato-
rially increases with each step because of their Markovian dependency. Hence, there 
is a trade-off between variance and communication cost. Higher number of multi-step 
update results in higher variance, but reduces the communication cost. In our approach, 
the variance issue is slightly mitigated by the control variate technique used by the A2C 
algorithm. We also adopt a local mini-batch along with multi-step TD error to further 
reduce the variance. The variance can also be reduced when increasing the global batch 
size (i.e., the number of aggregated update vectors). Thus, adding more nodes reduces 
the variance allowing a higher number of multi-step updates. As the number of nodes 
increases, communication exchanges also increase. Therefore, our approach is benefi-
cial when the number of nodes increases, as this involves increased communication, up 
to a certain breaking point after which the higher variance associated with higher num-
ber of multi-step updates counterbalances the benefits.

8.2.1  Overview of the algorithm

HSA2C is presented in Algorithm 8 and  9. On a single node agents work in parallel with-
out any locking for the shared memory. Each agent interacts with an instance of the game 
environment producing experience data (state, action and reward) (line 8 to 10 in Algo-
rithm 9). HSA2C uses k steps TD error along with the function approximation to allow 
better bias-variance trade-off (line 14 to 19 in Algorithm 9). Since the steps are taken in 
parallel by multiple independent actors, data correlation is reduced resulting in lower bias 
without the need for experience replay making the proposed approach applicable for both 
off-policy and on-policy DRL methods (Mnih et al., 2016). HSA2C uses local mini-batch 
(line 20 to line 24 in Algorithm 9) to reduce the stochastic gradient variance which is cru-
cial to achieve the speed-up. That is HSA2C uses mini-batch of stochastic gradients, com-
puted in parallel from different experiences, to estimate lower variance gradient. Such gra-
dients allow more stable multiple updates (line 24 to 29 in Algorithm 9). Finally, HSA2C’s 
workers send the computed multiple steps update vectors (in lock-free parallel) to the mas-
ter (line 30 to 32 in Alg 9) which asynchronously collect these vectors and update its global 
parameters (Alg 8). The workers then pull the update global parameters and update their 
local parameters (line 33 to 34 in Alg 9).

The convergence rate for serial and synchronous parallel stochastic gradient (SG) 
is consistent with O(1∕

√

T)  (Ghadimi & Lan, 2013; Dekel et  al., 2012; Nemirovski 
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et  al., 2009). As per corollary  1, HSA2C achieves O(1∕
√

T) convergence rate with 
almost p ∗ nw times less computation than A2C, where p is the number of threads 
and nw is the number of nodes. Hence, HSA2C achieves p ∗ nw iteration-speed-up. 
This iteration-speed-up converts to time-speed-up (real speed-up) provided that the 
communication between the nodes takes no time. The total communication time for 
HSA2C algorithms can be bounded as follows:

where T is the number of iterations, Tc is the communication time need for each master - 
worker exchange and  m is the global batch (see Algorithm 8). For simplicity, we assume 
that the Tc is fixed and the same for all nodes. If the time needed for computing one update 
Tu ≤ Tc , the total time needed by the distributed algorithm DTT could be higher than that 
of the sequential A2C STT:

where STT ≤ T ∗ Tc , hence

In such cases, exiting distributed algorithms like (Adamski et al., 2018) increase the local 
batch size so that Tu increases resulting in lower stochastic gradient variance and allowing 
for higher learning rate to be used, hence better convergence rate. This introduces a trade-
off between computational efficiency and sample efficiency. Increasing the batch size by a 
factor of k increases the time needed for local computation by O(k) and reduces the vari-
ance proportionally to 1/k (Bottou et al., 2018). Thus, a higher learning rate can be used. 
However, there is a limit on the size of the learning rate. This maximum learning speed can 
be improved on using HSA2C (Algorithm 8 and Algorithm 9) which performs B times less 
communication steps. These improvements are empirically studied in the main paper.

(56)T ∗ Tc ≤ TTc ≤ M ∗ T ∗ Tc

(57)T ∗ Tc + STT∕M ≤ DTT ≤ M ∗ T ∗ Tc + STT∕nw

(58)STT < STT(1 + 1∕M) ≤ DTT
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