
Vol.:(0123456789)

Machine Learning (2022) 111:4039–4079
https://doi.org/10.1007/s10994-022-06243-3

1 3

Scaling up stochastic gradient descent for non‑convex
optimisation

Saad Mohamad1 · Hamad Alamri2 · Abdelhamid Bouchachia1 

Received: 5 July 2020 / Revised: 12 April 2022 / Accepted: 7 July 2022 /
Published online: 7 October 2022
© The Author(s) 2022

Abstract
Stochastic gradient descent (SGD) is a widely adopted iterative method for optimizing
differentiable objective functions. In this paper, we propose and discuss a novel approach to
scale up SGD in applications involving non-convex functions and large datasets. We address
the bottleneck problem arising when using both shared and distributed memory. Typically,
the former is bounded by limited computation resources and bandwidth whereas the latter
suffers from communication overheads. We propose a unified distributed and parallel
implementation of SGD (named DPSGD) that relies on both asynchronous distribution
and lock-free parallelism. By combining two strategies into a unified framework, DPSGD
is able to strike a better trade-off between local computation and communication. The
convergence properties of DPSGD are studied for non-convex problems such as those
arising in statistical modelling and machine learning. Our theoretical analysis shows that
DPSGD leads to speed-up with respect to the number of cores and number of workers
while guaranteeing an asymptotic convergence rate of O(1∕

√

T) given that the number of
cores is bounded by T1∕4 and the number of workers is bounded by T1∕2 where T is the
number of iterations. The potential gains that can be achieved by DPSGD are demonstrated
empirically on a stochastic variational inference problem (Latent Dirichlet Allocation) and
on a deep reinforcement learning (DRL) problem (advantage actor critic - A2C) resulting
in two algorithms: DPSVI and HSA2C. Empirical results validate our theoretical findings.
Comparative studies are conducted to show the performance of the proposed DPSGD
against the state-of-the-art DRL algorithms.

Keywords  Stochastic gradient descent · Large scale non-convex optimisation · Distributed
and parallel computation · Variational inference · Deep reinforcement learning

Editors: João Gama, Alípio Jorge, Salvador García.

 *	 Abdelhamid Bouchachia
	 abouchachia@bournemouth.ac.uk

1	 Department of Computing, Bournemouth University, Poole, UK
2	 WMG, Warwick University, Coventry, UK

http://orcid.org/0000-0002-1980-5517
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06243-3&domain=pdf

4040	 Machine Learning (2022) 111:4039–4079

1 3

1  Introduction

Stochastic gradient descent (SGD) is a general iterative algorithm for solving large-scale
optimisation problems such as minimising a differentiable objective function f (v) param-
eterised in v ∈ V:

In several statistical models and machine learning problems, f (v) = 1

n

∑n

i=1
fi(v) is the

empirical average loss where each fi(v) indicates that the function has been evaluated
at a data instance xi . SGD updates v using the gradients computed on some (or single)
data points. In this work, we are interested in problems involving non-convex objective
functions such as variational inference (Blei et al., 2017; Hoffman et al., 2013; Wainwright
et al., 2008; Jordan et al., 1999) and artificial neural networks (Chilimbi et al., 2014; Dean
et al., 2012; Li et al., 2014a; Xing et al., 2015; Zhang et al., 2015) amongst many others.
Non-convex problems abound in ML and are often characterised by a very large number of
parameters (e.g., deep neural nets), which hinders their optimisation. This challenge is often
compounded by the sheer size of the training datasets, which can be in order of millions of
data points. As the size of the available data increases, it becomes more essential to boost
SGD scalability by distributing and parallelising its sequential computation. The need for
scalable optimisation algorithms is shared across application domains.

Many studies have proposed to scale-up SGD by distributing the computation over
different computing units taking advantage of the advances in hardware technology. The
main existing paradigms exploit either shared memory or distributed memory architec-
tures. While shared memory is usually used to run an algorithm in parallel on a single
multi-core machine (Recht et al., 2011; Zhao et al., 2017; Lian et al., 2015; Huo & Huang,
2016), distributed memory, on the other hand, is used to distribute the algorithm on mul-
tiple machines (Agarwal & Duchi, 2011; Lian et al., 2015; Zinkevich et al., 2010; Lang-
ford et al., 2009). Distributed SGD (DSGD) is appropriate for very large-scale problems
where data can be distributed over massive (theoretically unlimited) number of machines
each with its own computational resources and I/O bandwidth. However DSGD efficiency
is bounded by the communication latency across machines. Parallel SGD (PSGD) takes
advantage of the multiple and fast processing units within a single machine with higher
bandwidth communication; however, the computational resources and I/O bandwidth are
limited.

In this paper, we set out to explore the potential gains that can be achieved by leveraging
the advantages of both the distributed and parallel paradigms in a unified approach. The
proposed algorithm, DPSGD, curbs the communication cost by updating a local copy of the
parameter vector being optimised, v , multiple times during which each machine performs
parallel computation. The distributed computation of DPSGD among multiple machines
is carried out in an asynchronous fashion whereby workers compute their local updates
independently (Lian et al., 2015). A master aggregates these updates to amend the global
parameters. The parallel implementation of DPSGD on each local machine is lock-free
whereby multiple cores are allowed equal access to the shared memory to read and update
the variables without locking (Zhao et al., 2017) (i.e., they can read and write the shared
memory simultaneously). We provide a theoretical analysis of the convergence rate of
DPSGD for non-convex optimisation problems and prove that linear speed-up with respect
to the number of cores and workers is achievable while they are bounded by T1∕4 and
T1∕2 , respectively, where T is the total number of iterations. Furthermore, we empirically

(1)min
v

f (v)

4041Machine Learning (2022) 111:4039–4079	

1 3

validate these results by developing two inferential algorithms relying on DPSGD. The first
one is an asynchronous lock-free stochastic variational inference algorithm (DPSVI) that
can be deployed on a wide family of Bayesian models (see the Appendix); its potential is
demonstrated here on a Latent Dirichlet Allocation problem. The second one is DPSGD-
based Deep Reinforcement Learning (DRL) that can be used to scale up the training of
DRL networks for multiple tasks (see the Appendix).

The rest of the paper is organised as follows. Section 2 presents the related work. Sec-
tion 3 presents the proposed algorithm and the theoretical study. In Sect. 4, we carry out
experiments and discuss the empirical results. Finally, Sect. 5 draws some conclusions
and suggests future work. The appendices present the proofs, the asynchronous distributed
lock-free parallel SVI and the highly-scalable actor critic algorithm.

2 � Related work

We divide this section into two parts. In the first part, we discuss the relevant literature
to distributed and parallel SGD focusing on the theoretical aspects (Lian et al., 2015;
Zhao et al., 2017; Fang & Lin, 2017; Huo & Huang, 2017; Bottou, 2010; Niu et al., 2011;
Tsitsiklis et al., 1986; Elgabli et al., 2020; Wang et al., 2019; Recht et al., 2011; Leblond
et al., 2017; Dean et al., 2012; Zhou & Cong, 2017; Yu et al., 2019; Lin et al., 2018; Stich,
2018). To keep the paper centred and due to space limitation, only SGD-based methods
for non-convex problems are covered. The second part covers related work focusing on
the implementation/application of the distributed and parallel algorithms (Hoffman et al.,
2013; Mohamad et al., 2018; Neiswanger et al., 2015; Dean et al., 2012; Paine et al., 2013;
Ruder, 2016; Li et al., 2014a; Abadi et al., 2016; Paszke et al., 2017; Babaeizadeh et al.,
2016; Mnih et al., 2016; Clemente et al., 2017; Horgan et al., 2018; Espeholt et al., 2018;
Nair et al., 2015; Adamski et al., 2018).

2.1 � Theoretical aspects

A handful of SGD-based methods have been proposed recently for large-scale non-convex
optimisation problems (De Sa et al., 2015; Lian et al., 2015; Zhao et al., 2017; Fang &
Lin, 2017; Huo & Huang, 2017), which embrace either a distributed or parallel paradigm.
HOGWILD presented by Niu et al. (2011) proposes several asynchronous parallel SGD
variants with locks and lock-free shared memory. Theoretical convergence analysis
for convex objectives presented in that study was inspiring and adopted for most of the
recent literature on asynchronous parallel optimisation algorithms. Similarly Leblond
et al. (2017), De Sa et al. (2015) provided convergence analysis for SGD asynchronous
lock-free parallel optimisation with shared memory for convex objectives where they
provide convergence analysis with relaxed assumptions on the sparsity of the problem.
De Sa et al. (2015) also analysed the HOGWILD convergence for non-convex objectives.
Asynchronous distributed and lock-free parallel SGD algorithms for non-convex objectives
have also been studied in Lian et al. (2015) showing that linear speed-up with respect to
the number of workers is achievable when bounded by O(

√

T) . Improved versions using
variance reduction techniques have recently been proposed in Huo and Huang (2017), Fang
and Lin (2017) to accelerate the convergence rate with a linear rate being achieved instead
of the sub-linear one of SGD. Although these and other algorithmic implementations are

4042	 Machine Learning (2022) 111:4039–4079

1 3

lock-free (Lian et al., 2015; Huo & Huang, 2017; Fang & Lin, 2017; De Sa et al., 2015),
the theoretical analysis of the convergence was based on the assumption that no over-
writing happens. Hence, write-lock or atomic operation for the memory are needed to
prove the convergence. In contrast, Zhao et al. (2017) proposed a completely parallel lock-
free implementation and analysis.

Different implementations exploiting both parallelism with shared memory and distrib-
uted computation across multiple machines have been proposed (Dean et al., 2012; Zhou
& Cong, 2017; Yu et al., 2019; Lin et al., 2018; Stich, 2018). Except for Stich (2018),
Dean et al. (2012), these methods adopted synchronous SGD implementation where Dean
et al. (2012), Lin et al. (2018) focused on the implementation aspects, providing extensive
empirical study on deep learning models. While the implementation ideas are very simi-
lar to ours, we consider lock-free local parallelism with asynchronous distribution and we
provide theoretical analysis. We also evaluate our approach on different ML problems i.e.,
SVI and DRL (to be discussed in the next part). Instead of using a parameter server, the
local learners in Zhou and Cong (2017) compute the average of their copies of parameters
at regular intervals through global reduction. Communication overhead is controlled by
introducing a communication interval parameter into the algorithm. However, the provided
theoretical analysis in Zhou and Cong (2017) does not establish a speedup and synchro-
nisation is required for global reduction. Authors in Yu et al. (2019) provide theoretical
study for the model averaging introduced in Zhou and Cong (2017) showing that linear
speedup of local SGD on non-convex objectives can be achieved as long the averaging
interval is carefully controlled. Similar study for convex problems with asynchronous
worker communication by Stich (2018) shows linear speedup in the number of workers
and the mini-batch size with reduced communication. The multiple steps local SGD update
by Stich (2018) aimed at reducing the communication overhead is similar to our proposed
algorithm. Nonetheless, we adopt local lock-free parallelism and asynchronous distribu-
tion with parameter server scheme instead of model averaging. Finally, we point out that
although we focus on SGD first-order method (Bottou, 2010; Niu et al., 2011; Tsitsiklis
et al., 1986; Elgabli et al., 2020; Wang et al., 2019), our study can be extended to second-
order methods (Shamir et al., 2014; Jahani et al., 2020a; Ba et al., 2016; Crane & Roosta,
2019; Jahani et al., 2020b) and variance reduction methods (Huo & Huang, 2017; Fang &
Lin, 2017), where the high noise of our local multiple-steps update can be reduced contrib-
uting to further speed-up. We leave this for future work.

2.2 � Implementation aspects

The first effort to scale-up variational inference is described in Hoffman et al. (2013)
where gradient descent updates are replaced with SGD updates. Inspired by this work,
Mohamad et al. (2018) replaces the SGD updates with asynchronous distributed SGD
ones. This was achieved by computing the SVI stochastic gradient on each worker based
on few (mini-batched or single) data points acquired from distributed sources. The update
steps are then aggregated to form the global update. In Neiswanger et al. (2015), the
strategy consists of distributing the entire dataset across workers and letting each one of
them perform VI updates in parallel. This requires that, at each iteration, the workers must

4043Machine Learning (2022) 111:4039–4079	

1 3

be synchronised to combine their parameters. However, this synchronisation requirement
limits the scalability so the maximum speed achievable is bounded by the slowest worker.
Approaches for scaling up VI that rely on Bayesian filtering techniques have been reviewed
in Mohamad et al. (2018).

Asynchronous SGD (ASYSG) (Lian et al., 2015), an implementation of SGD that
distributes the training over multiple workers, has been adopted by DistBelief (Dean
et al., 2012) (a parameter server-based algorithm for training neural networks) and Pro-
ject Adam (Chilimbi et al., 2014) (another DL framework for training neural networks).
Paine et al. (2013) showed that ASYSG can achieve noticeable speedups on small GPU
clusters. Other similar work (Ruder, 2016; Li et al., 2014a) have also employed ASYSG
to scale up deep neural networks. The two most popular and recent DL frameworks Ten-
sorFlow (Abadi et al., 2016) and Pytorch (Paszke et al., 2017) have embraced the Hog-
wild (Recht et al., 2011; Zhao et al., 2017) and ASYSG (Lian et al., 2015) implementations
to scale-up DL problems.1

Distributed and parallel SGD have also been employed in deep reinforcement learn-
ing (DRL) (Babaeizadeh et al., 2016; Mnih et al., 2016; Clemente et al., 2017; Horgan
et al., 2018; Espeholt et al., 2018; Nair et al., 2015; Adamski et al., 2018). In Babaeiza-
deh et al. (2016), a hybrid CPU/GPU version of the Asynchronous Advantage ActorCritic
(A3C) algorithm (Mnih et al., 2016) was introduced. The study focused on mitigating the
severe under-utilisation of the GPU computational resources in DRL caused by its sequen-
tial nature of data generation. Unlike (Mnih et al., 2016), the agents in RL do not compute
the gradients themselves. Instead, they send data to central learners that update the net-
work on the GPU accordingly. However, as the number of core increases, the central GPU
learner becomes unable to cope with the data. Furthermore, large amount of data requires
large storage capacity. Also the internal communication overhead can affect the speed-up
when the bandwidth reaches its ceiling. We note that a similar way for paralleling DRL is
proposed by Clemente et al. (2017). Similarly, Horgan et al. (2018) propose to generate
data in parallel using multi-cores CPU’s where experiences are accumulated in a shared
experience replay memory. Along the same trend, Espeholt et al. (2018) proposed to accu-
mulate data by distributed actors and communicate it to the centralised learner where the
computation is done. The architecture of these studies (Horgan et al., 2018; Espeholt et al.,
2018) allows the distribution of the generation and selection of data instead of distributing
locally computed gradients as in Nair et al. (2015). Hence, it requires sending large size
information over the network in case of large size batch of data making the communication
more demanding. Furthermore, the central learner has to perform most of the computation
limiting the scalability.

The work in Adamski et al. (2018) is the most similar to ours, where SGD based hybrid
distributed-parallel actor critic is studied. The parallel algorithm of Mnih et al. (2016) is
combined with parameter server architecture of Nair et al. (2015) to allow parallel dis-
tributed implementation of A3C on a computer cluster with multi-core nodes. Each node
applies the algorithm in Babaeizadeh et al. (2016) to queue data in batches, which are
used to compute local gradients. These gradients are then gathered from all workers, aver-
aged and applied to update the global parameters. To reduce the communication overhead,

1  See, for instance, https://​github.​com/​pytor​ch/​examp​les and https://​github.​com/​tmulc​18/​Distr​ibuted-​Tenso​
rFlow-​Guide

https://github.com/pytorch/examples
https://github.com/tmulc18/Distributed-TensorFlow-Guide
https://github.com/tmulc18/Distributed-TensorFlow-Guide

4044	 Machine Learning (2022) 111:4039–4079

1 3

authors carried out careful reexamination of Adam optimiser’s hyper-parameters allowing
large-size batches to be used. Detailed discussion of these methods and comparison to our
implementation is provided in the appendix.

3 � The DPSGD algorithm and its properties

Before delving into the details of the proposed algorithm, we introduce the list of symbols
in Table 1 that are used in the rest of the text.

3.1 � Overview of the algorithm

The proposed DPSGD algorithms assumes a star-shaped computer network architecture: a
master maintains the global parameter v (Algorithm 1) and the other machines act as work-
ers which independently and simultaneously compute local parameters u (Algorithm 2).
The workers communicate only with the master in order to access the state of the global
parameter (line 3 in Algorithm 2) and provide the master with their local updates (com-
puted based on local parameters) (line 10 in Algorithm 2). Each worker is assumed to be
a multi-core machine, and the local parameter are obtained by running a lock-free parallel
SGD (see Algorithm 2). This is achieved by allowing all cores equal access to the shared
memory to read and update at any time with no restriction at all (Zhao et al., 2017). The
master aggregates M predefined amounts of local updates coming from the workers (line 3
in Algorithm 1), and then computes its global parameter. The update step is performed as
an atomic operation such that the workers are locked out and cannot read the global param-
eter during this step (see Algorithm 1).

Table 1   List of symbols

Variable Description

v The parameter vector to be optimised, called the global parameter. It is maintained and updated
by the master machine

u Copy of the global parameter maintained and is updated by the workers
û Copy of the local parameter u and is stored in the worker’s shared memory
||x|| The Euclidean norm of vector x
fi(.) The objective function defined on the ith instance
∇f (v) The gradient vector of f (v)
t The global unique iterate used in the synthetic sequence - not required by the algorithm
b The local unique iterate used in the synthetic sequence - not required by the algorithm
m Index referring to the update vector computed by the worker nm and collected by the master
M The master batch size which is the number of local updates coming from the workers for each

global update by the master
p The total number of threads (cores)
nW The total number of workers (nodes)
S and P Binary diagonal matrices used to denote whether local over-writing happens (see Sect. 3.2)

4045Machine Learning (2022) 111:4039–4079	

1 3

Note that the local distributed computations are done in an asynchronous style, i.e.,
DPSGD does not lock the workers until the master starts updating the global parameter.
That is, the workers might compute some of the stochastic gradients based on early val-
ues of the global parameter. Similarly, the lock-free parallel implies that local parameter
can be updated by other cores in the time after being read and before being used for the
update computation. Given this non-synchronisation among workers and among cores,
the results of parameter update seem to be totally disordered, which makes the conver-
gence analysis very difficult.

Following Zhao and Li (2016), we introduce a synthetic process to generate the final
value of local and global parameters after all threads, workers have completed their
updates as shown in Algorithm 1 and 2. That is, we generate a sequence of synthetic
values of v and u with some order to get the final value of v . These synthetic values are
used for DPSGD convergence proof. The synthetic generation process is explained in
the following section.

3.2 � Synthetic process

Let t be the global unique iterate attached to the loop in Algorithm 1; b is the local
unique iterate attached to the inner loop in Algorithm 2 and m is an index referring to
the update vector computed by a worker nm ∈ {1, .., nW} . If we omit the outer loop of

4046	 Machine Learning (2022) 111:4039–4079

1 3

Algorithm 2, the key steps in Algorithm 2 are those related to the writing (updating) or
reading the local parameter.

3.2.1 � Local synthetic write (update) sequence

As in Zhao and Li (2016), we assume all threads will update the elements in u in the order
from 1 to B̃ , where B̃ = B ∗ p with p is the number of threads. Thus, {u1,… uB̃−1} is the syn-
thetics sequence which may never occur in the shared memory. However, it is employed to
obtain the final value uB̃ after all threads have completed their updates in the inner-loop of
Algorithm 2. In other terms, this ordered synthetic update sequence generating the same final
value as that of the disordered lock-free update process. At iterate b, the synthetic update done
by a thread can be written as follows:

where Sj is a diagonal matrix whose entries are 0 or 1, determining which dimensions of
the parameter vector ub have been successfully updated by the jth gradient computed on the
shared local parameter ûj . That is Sj(k, k) = 0 if dimension k is over-written by another
thread and Sj(k, k) = 1 if dimension k is successfully updated by ∇fij (ûj) without over-writ-
ing. Equation 2 can be rearranged in an iterative form as:

Including the outer loop and the global update in Algorithm 1, we define the synthetic
sequence {ut,m,b} equivalent to the updates for the bth per-worker loop of the mth update vec-
tor associated with the tth master loop:

where �t,m is the delay of the mth global update for the tth iteration caused by the asynchro-
nous distribution. To compute ∇fit+�t,m ,m,b

(ût,m,b) , ût,m,b is read from the shared memory by a
thread.

3.2.2 � Local memory read

As denoted earlier, ûb is the local parameter read from the shared memory which is used to
compute ∇fib (ûb) by a thread. Using the synthetic sequence {u1, ..uB̃−1} , ûb can be written as:

where a(b) < b is the step in the inner-loop whose updates have been completely written in
the shared memory. Pb,j−a(b) are diagonal matrices whose diagonal entries are 0 or 1.

(2)ub = u0 −

b−1
∑

j=0

�Sj∇fij (ûj)

(3)ub+1 = ub − �Sb∇fib (ûb)

(4)

Algorithm 2, line 3 refers to: ut,m,0 = vt−1

Algorithm 2, line 8 refers to: ut,m,b+1 = ut,m,b − 𝜂St+𝜏t,m,m,b∇fit+𝜏t,m ,m,b
(ût,m,b)

Algorithm 1, line 4 refers to: vt = vt−1 + 𝜌t−1(

M
∑

m=1

ut−𝜏t,m,m,B̃ − vt−1−𝜏t,m)

(5)ûb = ua(b) +

b−1
∑

j=a(b)

Pb,j−a(b)∇fij (ûj)

4047Machine Learning (2022) 111:4039–4079	

1 3

∑b−1

j=a(b)
Pb,j−a(b)∇fij (ûj) determine what dimensions of the new gradient updates, ∇fij (ûj) ,

from time a(b) to b − 1 have been added to ua(b) to obtain ûb . That is, ûb may read some
dimensions of new gradients between time a(b) to b − 1 including those which might have
been over-written by some other threads. Including the outer loop and the global update in
Algorithm 1, the local read becomes:

The partial updates of the remaining steps between a(b) and b − 1 are now defined by
{Pt,m

b,j−a(b)
}b−1
a(b)

.

3.3 � Convergence analysis

Using the synthetic sequence, we develop the theoretical results of DPSGD showing that
under some assumptions, we can guarantee linear speed-up with respect to the number of
cores (threads) and number of nodes (workers). Before presenting the studies, we introduce
and explain the require assumptions:

Assumption 1  The function f(.) is smooth, that is to say, the gradient of f(.) is Lipschitzian:
there exists a constant L > 0 , ∀x, y,

or equivalently,

Assumption 2  The per-dimension over-writing defined by St,m,b is a random variate, inde-
pendent of it,m,j.2

This assumption is reasonable since St,m,b is affected by the hardware, while it,m,j is inde-
pendent thereof.

Assumption 3  The conditional expectation of the random matrix St,m,b on ut,m,b and ût,m,b
is a strictly positive definite matrix, i.e., �[St,m,b|ut,m,b, ût,m,b] = S ≻ 0 with the minimum
eigenvalue 𝛼 > 0.

Assumption 4  The gradients are unbiased and bounded: ∇f (x) = �i[∇fi(x)] and
||∇fi(x)|| ≤ V  , ∀i ∈ {1, ...n}.

Then, it follows that the variance of the stochastic gradient is bounded.
�i[||∇fi(x) − ∇f (x)||2] ≤ �2 , ∀x , where �2 = V2 − ||∇f (x)||

(6)ût,m,b = ut,m,a(b) − �

b−1
∑

j=a(b)

P
t+�t,m,m

b,j−a(b)
∇fit+�t,m ,m,j

(ût,m,j)

||∇f (x) − ∇f (y)|| ≤ L||x − y||

f (y) ≤ f (x) + ∇f (x)T (y − x) +
L

2
||y − x||2.

2  Note that i can be a set of indices for a per-worker mini-batch. In this paper, i refers to a single index for
simplicity.

4048	 Machine Learning (2022) 111:4039–4079

1 3

Assumption 5  Delays between old local stochastic gradients and the new ones in the
shared memory are bounded: 0 ≤ b − a(b) ≤ D and the delays between stale distributed
update vectors and the current ones are bounded 0 ≤ maxt,m �t,m ≤ D′

Assumption 6  All random variables in {it,m,j}∀t,∀m,∀j are independent of each other.

Note that we are aware that this independence assumption is not fully accurate due to
the potential dependency between selected data samples for computing gradients at the
same shared parameters. For example, samples with fast computation of gradients for
the same shared variable leads to more frequent selection of these samples as they likely
to finish their gradient computation while the shared memory has not been overwritten.
Hence, the selected samples can be correlated. This can also affect the independence
assumption between the overwriting matrix and the selected sample (Assumption 2).
However, we follow existing studies (Zhao & Li, 2016; Zhao et al., 2017; Lian et al.,
2015; Reddi et al., 2015; Duchi et al., 2015; De Sa et al., 2015; Lian et al., 2018; Hsieh
et al., 2015), assuming DPSGD maintains the required conditions for independence via
Assumptions 2 and 6.

We are now ready to state the following convergence rate for any non-convex
objective:

Theorem 1  If Assumptions 1 to 6 hold and the following inequalities are true:

then, we can obtain the following results:

where B̃ = pB and v∗ is the global optimum of the objective function in Eq. 1.

We denote the expectation of all random variables in Algorithm 2 by �[.] . Theo-
rem 1 shows that the weighted average of the l2 norm of all gradients ||∇f (vt−1)||2 can be
bounded, which indicates an ergodic convergence rate. It can be seen that it is possible to
achieve speed-up by increasing the number of cores and workers. Nevertheless to reach
such speed-up, the learning rates � and �t have to be set properly (see Corollary 1).

(7)M2B̃2𝜂2L2𝜌t−1D
�

D�

∑

n=1

𝜌t+n ≤ 1

(8)
1

1 − � −
9�(D+1)L2(�D+1−1)

�−1

≤ �

1
∑T

t=1
𝜌t−1

T
�

t=1

𝜌t−1 �[��∇f (vt−1)��
2] ≤

2(f (v0) − f (v∗))

MB̃𝜂𝛼
∑T

t=1
𝜌t−1

+

𝜂2L2

B̃
∑T

t=1
𝜌t−1

T
�

t=1

𝜌t−1

�

V2

� B̃−1
�

b=0

𝜇(𝜇b − 1)

𝜇 − 1
+ B̃

𝜇(𝜇D − 1)

𝜇 − 1

�

+

MB̃2𝜎2

t−2
�

j=t−1−D�

𝜌2
j−1

�

+
L𝜂V2

𝛼
∑T

t=1
𝜌t−1

T
�

t=1

𝜌2
t−1

4049Machine Learning (2022) 111:4039–4079	

1 3

Corollary 1  By setting the learning rates to be equal and constant:

such that A = LV2

(

1

�
+

1

�2
+

2 L�

(1−�)�

)

 , V > 0 and � is a constant where 0 < 𝜇 < 1 , then the

bound in Eqs. 7 and 8 can lead to the following bound:

and Theorem 1 gives the following convergence rate:

This corollary shows that by setting the learning rates to certain values and setting the num-
ber of iterations T to be greater than a bound depending on the maximum delay allowed, a
convergence rate of O(1∕

√

TMpB) can be achieved and this is delay-independent. The nega-
tive effect of using old parameters (asynchronous distribution) and over-writing the shared
memory (lock-free parallel) vanish asymptotically. Hence, to achieve speed-up, the number of
iterations has to exceed a bound controlled by the maximum delay parameters, the number of
iterations B (line 5 in Algorithm 2), the number of global updates M (line 3 in Algorithm 1)
and the number of parallel threads (cores) p.

3.4 � Discussion

Using Corollary 1, we can derive the result of lock-free parallel optimisation algorithm (Zhao
et al., 2017) and the asynchronous distributed optimisation algorithm (Lian et al., 2015) as
particular cases. By setting the number of threads p = 1 and the number of local update B = 1 ,
we end up with the distributed asynchronous algorithm presented in Lian et al. (2015). The
convergence bound of Corollary 1 then becomes O(1∕

√

TM) which is equivalent to that of
Corollary 2 in Lian et al. (2015). By synchronising the global learning D� = 0 , setting the
master batch size M = 1 and the number of global iteration T = 1 , we end up with the parallel
lock free algorithm presented in Zhao et al. (2017). The convergence bound of Corollary 1
then becomes O(1∕

√

pB) which is equivalent to that of Theorem 1 in Zhao et al. (2017). The
experiments below will empirically demonstrate these two parallel and distributed particular
cases of DPSGD.

Since D′ and D are related to the number of workers and cores (threads) respectively,
bounding the latter allows speed-up with respect to the number of workers and cores with no
loss of accuracy. The satisfaction of Eq. 10 is guaranteed if:

(9)𝜌2 = 𝜂2 =

√

(f (v0) − f (v∗))

A𝛼
√

TMB̃

(10)

T ≥ max

{

MB̃L2D�2(f (v0) − f (v∗))

A2𝛼2
,

(

f (v0) − f (v∗)
)(

𝜇(𝜇 − 1) + 9L2𝜇(D + 1)(𝜇D+1 − 1)
)4

MB̃A2𝛼2(𝜇 − 1)8

}

(11)1

T

T
∑

t=1

�[||∇f (vt−1)||
2] ≤ 3A

√

f (v0) − f (v∗)

TMB̃

T ≥
MB̃L2D�2(f (v0) − f (v∗))

A2𝛼2

4050	 Machine Learning (2022) 111:4039–4079

1 3

and

The first inequality leads to O(T1∕2) > D� . Thus, the upper bound on the number of
workers is O(T1∕2) . Since 0 < 𝜇 < 1 , the second inequality can be written as follows:
O(T1∕4) ≥

(

�(1 − �) + 9 L2�(D + 1)(1 − �D+1)
)

 . Hence, O(T1∕4) ≥ D . Thus, the
upper bound on the number of number of cores (threads) is O(T1∕4) . The convergence
rate for serial and synchronous parallel stochastic gradient (SG) is consistent with
O(1∕

√

T) (Ghadimi & Lan, 2013; Dekel et al., 2012; Nemirovski et al., 2009). While the
workload for each worker running DPSGD is almost the same as the workload of the serial
or synchronous parallel SG, the progress done by DPSVG is Mp times faster than that of
serial SG.

In addition to the speed-up, DPSGD allows one to steer the trade-off between multi-
core local computation and multi-node communication within the cluster. This can be done
by controlling the parameter B. Traditional methods reduce the communication cost by
increasing the batch size which decreases the convergence rate, increase local memory load
and decrease local input bandwidth. On the contrary, increasing B for DPSGD can increase
the speed-up if some assumptions are met (see Theorem 1 and Corollary 1). This ability
makes DPSGD easily adaptable to diverse spectrum of large-scale computing systems with
no loss of speed-up.

Denote Tc the communication time need for each master-worker exchange. For
simplification, we assume that Tc is fixed and is the same for all nodes. If the time
needed for computing one update Tu ≤ Tc , then the total time needed by the distributed
algorithm DTT = T ∗ (Tu + Tc) could be higher than that of the sequential SGD
STT = M ∗ T ∗ Tu . In such cases, existing distributed algorithms increases the local batch
size so that Tu increases, resulting in lower stochastic gradient variance and allowing
higher learning rate to be used, hence better convergence rate. This introduces a trade-
off between computational efficiency and sample efficiency. Increasing the batch size
by a factor of k increases the time need for local computation by O(k) and reduces the
variance proportionally to 1/k (Bottou et al., 2018). Thus, higher learning rate can be used.
However, there is a limit on the size of the learning rate. In another words, maximising the
learning speed with respect to the learning rate and the batch size has a global solution.
This maximum learning speed can be improved using DPSGD, performing B times less
communication steps. For the mini-batch SGD with minibatch size G, the convergence
rate can be written as O(1∕

√

GT) . Since the total number of examples examined is GT
and there is only

√

G times improvement, the convergence speed degrades as mini-batch
size increases. The convergence rate of DPSGD with mini-batch G can be easily deduced
from Theorem 1 as O(1∕

√

BMGT) . Hence,
√

BM better convergence rate than mini-batch
SGD and

√

BM better convergence rate than standard asynchronous SGD with B times less
communication. These improvements are studied in the following.

4 � Experiments

In this section, we empirically verify the potential speed-up gains expected from the
theoretical analysis. First, we apply distributed parallel stochastic variational inference
(DPSVI) algorithm on a Latent Dirichlet Allocation (LDA) analysis problem. DPSVI

T ≥

(

f (v0) − f (v∗)
)(

𝜇(𝜇 − 1) + 9L2𝜇(D + 1)(𝜇D+1 − 1)
)4

MB̃A2𝛼2(𝜇 − 1)8

4051Machine Learning (2022) 111:4039–4079	

1 3

is derived from DPSGD by replacing the SG of SVI by DPSG to scale up the inference
computation over a multi-core cluster (see appendix for more details). For the Latent
Dirichlet Allocation analysis problem, we use the SVI algorithm (Hoffman et al., 2013)
as benchmark. The evaluation is done on 300, 000 news articles from the New York Times
corpus.

Furthermore, we use DPSGD to scale up the training of DRL algorithm, namely
Advantage Actor Critic (A2C) algorithm, implementing highly scalable A2C (HSA2C)
(details in the appendix). We compare HSA2C against other distributed A2C imple-
mentations using a testbed of six Atari games and demonstrate an average training time
of 21.95 min compared to over 13.75 h by the baseline A3C. In particular, HSA2C
shows a significant speed-up on Space invaders with learning time below 10 min com-
pared to the 30 min achieved by the best competitor.

4.1 � Variational inference

The development of the proposed DPSVI algorithm follow from DPSGD, but in the
context of VI. In Appendix 7, we characterise the entire family of models where
DPSVI is applicable, which is shown to be equivalent to the models for which SVI
applies. Next, DPSVI is derived from DPSGD. Finally, we derive an asynchronous dis-
tributed lock-free parallel inference algorithm for LDA as a case study for DPSVI.

Datasets We use the NYTimes corpus (Lichman, 2013) containing 300, 000 news
articles from the New York Times corpus. The data is pre-processed by removing all the
words not found in a dictionary containing 102, 660 most frequent words - see (Lich-
man, 2013) for more information. We reserve 5, 000 documents from NYTimes data as
a validation set and another 5, 000 documents as a testing set.

Performance The performance of the LDA model is assessed using a model fit
measure, perplexity, which is defined as the geometric mean of the inverse marginal
probability of each word in the held-out set of documents (Blei et al., 2003). We also
compute the running time speed-up (TSP) (Lian et al., 2015) defined as

where T(⋅) denotes the running time and is taken when both models achieve the same final
held-out perplexity of 5000 documents.

Parameters In all experiments, the LDA number of topics is K = 50 . SVI
LDA is run on the training set for � ∈ {0.5, 0.7, 0.9} , �0 ∈ {1, 24, 256, 1024} , and
batch ∈ {16, 64, 256, 1024} . The best performing parameters batch = 1024 , � = 0.5
and �0 = 1 providing preplexity of 5501 are used (Table 1 in Mohamad et al. (2018)
summarises the best settings with the resulting perplexity on the test set). As for the
DPSGD LDA version, the local learning rate G (see Eq. 52) is set to 64 and M equal
to 16. We evaluate a range of learning rates � = � ∈ {0.2, 0.1, 0.05, 0.01} where M, p
and B are set to 1. The best learning rate 0.1 providing held-out perplexity of 5501 was
used. For different B, M and p, the learning rate is changed according to Corollary 1:

(12)TSP =
T(SVI)

T(DPSVI)

(13)�� = �

(

pBM

p�B�M�

)0.25

=
0.1

(p�B�M�)0.25

4052	 Machine Learning (2022) 111:4039–4079

1 3

All DPSGD LDA experiments were performed on a high-performance computing (HPC)
environment using message passing interface (MPI) for python (MPI4py). The cluster
consists of 10 nodes, including the head node, with each node being a 1-sockets-6-cores-2-
thread processor.

4.1.1 � Node speed‑up

Here, we study the speed-up of DPSVI with respect to the number of workers where
p = 1 and B = 1 . DSPSVI LDA is then compared against serial SVI ( B = 1 , p = 1
and nW = 1 ). We run DPSVI for various numbers of workers nW ∈ {4, 9, 14, 19} . The
number of nodes is nW as long as nW is less than 9. As nW becomes higher than the
available nodes, the processors’ cores of nodes are employed as workers until all cores
(threads) of each node are used i.e., 9 × 12 = 108 . The batch size M is fixed to 36.

Fig. 1   LDA analysis: Running
time speed-up (TSP) with respect
to the number of workers

Fig. 2   LDA analysis: Running
time speed-up (TSP) with respect
to the number of threads

4053Machine Learning (2022) 111:4039–4079	

1 3

Figure 1 summarises the total speed-up (i.e., TSP measured at the end of the algorithm)
with respect to the number of workers where the achieved pre-perplexity is almost the
same. The result shows linear speed-up as long as the number of workers is less than 14.
Then, linear speed-up slowly converts to sub-linear and is expected to drop for higher
number of workers due to reaching the maximum communication bandwidth.

4.1.2 � Thread speed‑up

In this section, we study the speed-up of DPSVI with respect to the number of threads
where nW = 1 . We empirically set B to 15. Similar to the node-related speed-up analysis,
experiments are run for different p ∈ {3, 5, 8, 10} . Then, DPSVI is compared against serial
SVI. The results are shown in Fig. 2. The outcome shows linear speed-up as long as the
number of threads is less than 8. Then, the speed-up slowly converts to sub-linear and is
expected to become worse for higher number of threads. This drop in the speed-up is due
to hardware communication and other factors affecting the CPU power.

Fig. 3   LDA analysis: Running
time speed-up (TSP) with respect
to the number of workers and
threads

Fig. 4   LDA analysis using
DPSVI: perplexity (model fit)
with respect to running logarith-
mic time in seconds

4054	 Machine Learning (2022) 111:4039–4079

1 3

4.1.3 � Node‑thread speed‑up

Finally, we study the speed-up of DPSVI with respect to the number of nodes and threads.
To simplify the experiments, we take the number of cores to be equal to the number of
nodes. Experiments are run for different p = nW ∈ {2, 4, 6, 8} . We also present results
with different B ∈ {5, 10, 15, 20} in order to show the effect of steering the trade-off
between local computation and communication. DPSVI is compared against serial SVI and
the results are shown in Fig. 3. The result shows speed-up whose speed slows down as the
number of threads and nodes exceed 6. This is due to communication and other hardware
factors. However, the rate of this slowing down for higher B is less significant which illus-
trates the advantage of reducing the communication overhead when reaching its ceiling
point. Note that for very high number of workers, increasing B might not be very helpful
as our theoretical results show that high B tightens the bound on the number of workers
allowed for the speed-up to holds. Figure 4 reports the perplexity on the training set with
respect to running time in seconds (logarithmic scale) with B = 15 . Five curves are drawn
for different nodes-threads number, where DPSVI-n denotes our DPSVI with n nodes and
threads. The convergence and speed-up of DPSVI are clearly illustrated.

4.2 � Deep reinforcement learning

We use six different Atari games to study the performance gains that can be achieved by
the proposed HSA2C algorithm using the Atari 21600 emulator (Bellemare et al., 2013)
provided by the OpenAI Gym framework (Brockman et al., 2016). This emulator is one
of the most commonly used benchmark environments for RL algorithms. Here, we use
Pong, Boxing, Seaquest Space invaders, Amidar and Qbert which have been included in
related work (Mnih et al., 2016; Adamski et al., 2017, 2018; Babaeizadeh et al., 2016).
These games are used to evaluate the effects of reducing the communication bottleneck
when using an increasingly higher number of steps, B, with different numbers of nodes. We
also study the speed-up achieved by HSA2C with respect to the number of nodes. Finally,
we compare the performance reported by various state-of-the-art algorithms (Mnih et al.,
2016; Adamski et al., 2017, 2018; Babaeizadeh et al., 2016).

4.2.1 � Implementation details

HSA2C has been implemented and tested on a high-performance computing (HPC) envi-
ronment using message passing interface (MPI) for Python (MPI4py 3.0.0) and Pytorch
0.4.0. Our cluster consists of 60 nodes consisting of 28 2.4 GHz CPUs per node. In our
experiments, we used the same input pre-processing as Mnih et al. (2015). Each experi-
ment was repeated 5 times (each with an action repeat of 4) and the average results are
reported. The agents used the neural network architectures described in Mnih et al. (2013):
a convolutional layer with 16 filters of size 8 x 8 with stride 4, followed by a convolutional
layer with with 32 filters of size 4 x 4 with stride 2, followed by a fully connected layer
with 256 hidden units. All three hidden layers were followed by a rectifier nonlinearity. The
network has two sets of outputs – a softmax output with one entry per action represent-
ing the probability of selecting the action and a single linear output representing the value
function. Local learning rate, mini-batch size and the optimiser setting are contrasted with
those reported in Adamski et al. (2018) in order to provide a fair comparison with their
asynchronous mini-batch implementation. The global learning rate was set to 0.01 for the

4055Machine Learning (2022) 111:4039–4079	

1 3

SGD optimiser with 0.5 momentum. The global batch was set to the number of utilised
nodes.

4.2.2 � Speed‑up analysis

In this section, we study the effect of B on various aspects of the scalability of HSA2C with
respect to the number of nodes. Figure 5 shows the average speed of data generated by the
distributed actors measured in data-points per seconds on the Space invader game. Com-
parable figures can be obtained for other games, but they are not reported here. It is notice-
able that at B = 1 , the speed of data generation is about the same as the number of nodes
increases. This is due to the communication cost which increases with the number of nodes
used. That is, the expected waiting time of each node’s exchange with the master increases.
Increasing B will reduce the number of exchanges while performing the same number of
updates locally. This is illustrated in Fig. 5 where the data generation speed increases with
the number of nodes as B increases.

Figure 6 shows the time (in seconds) required to reach the highest score of Pong, Box-
ing, Seaquest, Space invader, Amidar and Qbert reached with B = 1 in a 30-minute run over
different number of nodes and B. The aim of these figures is to demonstrate the potential
performance gains achieved by HSA2C as B increases in comparison to distributed deep
reinforcement learning (DDRL) A3C, which is algorithmically equivalent to HSA2C when
B = 1 (our baseline). In order to produce these figures, we initially carried out a search
to empirically determine the highest score that can be achieved by HSA2C within a time
period of 30 minutes when B = 1 . The search for the highest score is performed on four
different cluster sizes: 20, 30, 40, and 60. The figures present the time required for various
HSA2C parameters to reach that benchmark score. These experimental results clearly show
the impact of B on the communication costs and confirm the findings of Fig. 5. By using a
larger number of nodes, more communication exchanges are required for each update and
performing more local update (i.e., increasing B) reduces the communication exchanges

Fig. 5   The average data generation speed of HSA2C measured in points per second within 30 min run on
Space invader game

4056	 Machine Learning (2022) 111:4039–4079

1 3

needed to reach certain score without much sacrificing the learning performance. Thus,
a better speed-up can be achieved. On the other hand, with a smaller number of nodes,
increasing B does not make a significant difference in reducing the communication whilst
the negative effect of an increased variance becomes significant as the size of the learning
batch becomes smaller (depending on the number of nodes). Overall, there is evidence for
a variance-communication trade-off controlled by B.

Fig. 6   The time (in seconds) required to reach reference solution (the highest score with B = 1 in a 30 min
run) over a range of node numbers and B 

4057Machine Learning (2022) 111:4039–4079	

1 3

The multiple local updates B mitigates the speed-up limit caused by higher commu-
nication cost with higher number of nodes. Choosing the right B for different numbers
of nodes allows HSA2C to scale better than HSA2C when B = 1 . For all the six games,
we have found that increasing the number of nodes over 40 does not lead to better per-
formance. This is due to the higher variance entailed by a higher B. That is, the per-
formance improvement coming from the communication reduction is overtaken by the
entailed variance when using more than 40 nodes. This limit could be overcome in two
different ways, either by decreasing the communication without further increasing the
variance or by directly mitigating the variance problems.

4.2.3 � Comparison

We show the effectiveness of the proposed approach by comparing it against similar
scalable Actor-critic optimisation approaches. The most similar work in speeding up
Atari games training is presented in Adamski et al. (2018), Mnih et al. (2016), Adamski
et al. (2017), Babaeizadeh et al. (2016). The algorithm in Adamski et al. (2018) (DDRL
A3C) is a particular case of HSA2C, where the communication is synchronised and the
number of iterations of per-worker loop is set to one ( B = 1 ). GA3C is a hybrid GPU/
CPU algorithm which is a flavour of A3C focusing on batching the data points in order
to better utilise the massively parallel nature of GPU computations. This is similar to
the single-node algorithm called BA3C (Adamski et al., 2017).

Table 2 presents the best score and time (in minutes) HSA2C archives using the
best B values found in Fig. 6 in comparison to the competitors. The reported scores are
taken from the original papers. As GA3C, BA3C and A3C are parallel single-node algo-
rithms, their experimental settings are not comparable to ours. This comparison shows
that our approach achieves a better score than all competitors. In particular, we achieve
an average score of 665 in 30.63 minutes average time using 560 total CPU cores com-
pared to the DDRL A3C score of 650 in 82.5 average time with 778 total CPU cores.
Most importantly, this comparison validates the effectiveness of our proposed approach
to reduce communication while preserving performance. This is clearly shown in the

Table 2   Best scores and the corresponding time in minutes achieved by HSA2C using the best B from
Table 2 and considering 20, 30, 40 and 60 nodes compared to the best reported results by competitors

Algorithms Pong Boxing Seaquest Space invaders Amidar Qbert

HSA2C (20
nodes)

20 (63 m) 98 (19.8 m) 1858 (21.7 m) 684 (17.9 m) 251 (26 m) 1210 (20 m)

HSA2C (30
nodes)

19 (40 m) 98 (19.8 m) 1874 (19.1 m) 671 (14.7 m) 234 (15 m) 1420 (27 m)

HSA2C (40
nodes)

20 (32.6 m) 95 (20.7 m) 1894 (20.5 m) 681 (9.9 m) 282 (20 m) 1620 (28 m)

HSA2C (60
nodes)

19 (38 m) 96 (23.2 m) 1874 (22.3 m) 667 (9.4 m) 243 (24 m) 800 (30 m)

DDRL A3C 20 (240 m) 98 (30 m) 1832 (30 m) 650 (30 m) – –
GA3C 18 (60 m) 92 (120 m) 1706 (1440 m) 600 (1440 m) 218 (1440 m) 395 (30 m)
BA3C 17 (1440 m) – 1840 (1440 m) 700 (1440 m) – –
A3C 20 (480 m) 95 (660 m) 2300 (1440 m) 1400 (900 m) 280 (1440 m) 400 (30 m)

4058	 Machine Learning (2022) 111:4039–4079

1 3

comparison between our approach and our implementation of DDRL A3C (the top com-
petitor in Table 2) using the same setting (see Sect. 4.2.2).

For this study, we have decided not to include GPU-based implementations such
as Stooke and Abbeel (2018) as our focus here is on CPU-enabled methods. However,
HSA2C is generic and lends itself to GPU-based implementations whereby each node
consists of multiple CPUs and a GPU. In such a case, local computation and simulation
can be done using CPUs/GPU units, where our multiple local update approach can
further speed up the standard DA3C communication-based (Stooke & Abbeel, 2018).
The empirical work reported here provides an initial validation of the underlying idea.

5 � Conclusion

We have proposed a novel asynchronous distributed and lock-free parallel optimisation
algorithm. The algorithm has been implemented on a computer cluster with multi-core
nodes. Both theoretical and empirical results have shown that DPSGD leads to speed-up
on non-convex problems. The paper shows how DPSVI and HSA2C have been derived
from DPSGD. Both are an asynchronous distributed and lock-free parallel implementa-
tion for respectively stochastic variational inference (SVI) and advantage actor critic
(A2C). Empirical results have allowed to validate the theoretical findings and to com-
pare against similar state-of-the-art methods.

Going forward, further improvements and validations could be achieved by pursuing
research along five directions: (1) employing variance reduction techniques to improve
the convergence rate (from sub-linear to linear) while guaranteeing multi-node and
multi-core speed-up; (2) proposing a framework enabling dynamic trade-offs between
local computation and communication; (3) proposing techniques to improve the local
optimum of the distributed parallel algorithms; (4) applying DPSVI to other members
of the family of models stated in the appendix; (5) applying DPSGD to other large-scale
deep learning problems.

6  Proofs

Let q(x) =
1

n

∑n

i=1
��∇fi(x)��

2 . We have �i[||∇fi(x)||
2] = q(x) . Hence, �i[q(x)] = �i

[||∇fi(x)||2] . Taking the full expectation on both sides, we get �[q(x)] = �[||∇fi(x)||
2] . It

can be proven that:

Lemma 1 
given � and � satisfying

where �t[.] denotes �it,∗,∗,St,∗,∗
[.] . The proof can be derived from that in Zhao et al. (2017)

using Assumptions 1 and 5. The stars means for all, ∀.

(14)�t[q(ût,m,j)] < 𝜇�t[q(ût,m,j+1)]

(15)
1

1 − � −
9�(D+1)L2(�D+1−1)

�−1

≤ �

4059Machine Learning (2022) 111:4039–4079	

1 3

Proof to Theorem 1  From the smoothness Assumption 1, we have:

where the last equality uses the update in Eq. (4). Taking expectation of the above inequal-
ity with respect to it,∗,∗ , and St,∗,∗ , we obtain:

where we used Assumptions 2, 3, 4 and 6. Since S is a strictly definite matrix with the
largest eigenvalue less or equal than 1 and the minimum eigenvalue is 𝛼 > 0 and from the
fact⟨a, b⟩ = 1

2
(��a��2 + ��b��2 − ��a − b��2) , we have:

Next, we obtain an upper bound for H1. Using the triangular inequality and Assumption 1,
we can write the following:

(16)

f (vt) − f (vt−1) ≤ ⟨∇f (vt−1), vt − vt−1⟩ +
L

2
��vt − vt−1��

2

= −⟨∇f (vt−1), 𝜂𝜌t−1

M
�

m=1

B̃−1
�

b=0

St,m,b∇fit,m,b (ût−𝜏t,m,m,b)⟩

+
L

2
��𝜂𝜌t−1

M
�

m=1

B̃−1
�

b=0

St,m,b∇fit,m,b (ût−𝜏t,m,m,b)��
2

(17)

Et[f (vt)] − f (vt−1) ≤ −MB̃𝜂𝜌t−1⟨∇f (vt−1),
1

MB̃

M
�

m=1

B̃−1
�

b=0

S∇f (ût−𝜏t,m,m,b)⟩

+
L𝜂2𝜌2

t−1

2
Et��

M
�

m=1

B̃−1
�

b=0

St,m,b∇fit,m,b (ût−𝜏t,m,m,b)��
2

(18)

Et[f (vt)] − f (vt−1) ≤ −
MB̃𝜂𝜌t−1𝛼

2

(

||∇f (vt−1)||
2 + ||

1

MB̃

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2−

||∇f (vt−1) −
1

MB̃

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2

���
H1

)

+

L𝜂2𝜌2
t−1

2
Et||

M
∑

m=1

B̃−1
∑

b=0

St,m,b∇fit,m,b (ût−𝜏t,m,m,b)||
2

���
H2

(19)

H1 = ||∇f (vt−1) −
1

MB̃

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2

≤
1

MB̃

M
∑

m=1

B̃−1
∑

b=0

||∇f (vt−1) − ∇f (ût−𝜏t,m,m,b)||
2

≤
L2

B̃

B̃−1
∑

b=0

||vt−1 − ût−𝜏t,y,y,b||
2

4060	 Machine Learning (2022) 111:4039–4079

1 3

where y = argmaxm∈{1,...M}||vt−1 − ût−�t,m,m,b||
2 . Using triangular inequality and the updates

in Eq. (4), we obtain:

Using the triangular inequality again, we have the following:

By taking the expectation on both sides with respect to all random variables associated
with k ∈ {t − 1 − �t,y, ..., t − 2} and using Assumptions 4, 5 and 6 and , we obtain:

Taking the full expectation, we have

(20)

H1 ≤
L2

B̃

B̃−1
∑

b=0

(

||vt−1 − ut−𝜏t,y,y,a(b)||
2 + 𝜂2||

b−1
∑

j=a(b)

∇fit,y,j (ût−𝜏t,y,y,j)||
2

)

≤
L2

B̃

B̃−1
∑

b=0

(

||vt−1 − vt−1−𝜏t,y ||
2 + 𝜂2||

b−1
∑

j=0

∇fit,y,j (ût−𝜏t,y,y,j)||
2 + 𝜂2||

b−1
∑

j=a(b)

∇fit,y,j (ût−𝜏t,y,y,j)||
2

)

=
L2

B̃

B̃−1
∑

b=0

(

𝜂2 ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

∇fij,m,b (ûj−𝜏j,m,m,b)||
2

���
H11

+𝜂2||

b−1
∑

j=0

∇fit,y,j (ût−𝜏t,y,y,j)||
2

+ 𝜂2||

b−1
∑

j=a(b)

∇fit,y,j (ût−𝜏t,y,y,j)||
2

)

(21)

H11 = ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

∇fij,m,b (ûj−𝜏j,m,m,b)||
2

= ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

(

∇fij,m,b (ûj−𝜏j,m,m,b) − ∇f (ûj−𝜏j,m,m,b) + ∇f (ûj−𝜏j,m,m,b)

)

||

2

≤ ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

(

∇fij,m,b (ûj−𝜏j,m,m,b) − ∇f (ûj−𝜏j,m,m,b)

)

||

2

+ ||

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

(22)

Ek[H11] ≤

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

Ek||

M
∑

m=1

B̃−1
∑

b=0

(

∇fij,m,b (ûj−𝜏j,m,m,b) − ∇f (ûj−𝜏j,m,m,b)

)

||

2

+ D�

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

Ek||

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

≤ MB̃𝜎2

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

+ D�

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

Ek||

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

4061Machine Learning (2022) 111:4039–4079	

1 3

Using Assumption 4 and Lemma 1 we have the following:

Using Assumption 4, the full expectation of H2 can be bounded as follows:

By taking the full expectation of Eq. 18 and applying the upper bound of E[H1] and E[H2],
we obtain:

Summarising the inequality Eq. 26, from t = 1 to T, we end up with:

(23)

E[H1] ≤
L2𝜂2

B̃

B̃−1
∑

b=0

(

MB̃𝜎2

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

+ D�

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

Ek||

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

+ ||

b−1
∑

j=0

∇fit,y,j (ût−𝜏t,y,y,j)||
2 + ||

b−1
∑

j=a(b)

∇fit,y,j (ût−𝜏t,y,y,j)||
2

)

(24)

E[H1] ≤
L2𝜂2

B̃

B̃−1
∑

b=0

(

MB̃𝜎2

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

+ D�

t−2
∑

j=t−1−𝜏t,y

𝜌2
j−1

E||

M
∑

m=1

B̃−1
∑

b=0

∇f (ûj−𝜏j,m,m,b)||
2

+
𝜇(𝜇b − 1)

𝜇 − 1
V2 +

𝜇(𝜇D − 1)

𝜇 − 1
V2

)

(25)E[H2] ≤
L𝜂2𝜌2

t−1

2
MB̃V2

(26)

E[f (vt)] − E[f (vt−1)] ≤ −
MB̃𝜂𝜌t−1𝛼

2

�

E[��∇f (vt−1)��
2] + E

⎡

⎢

⎢

⎣

��

1

MB̃

M
�

m=1

B̃−1
�

b=0

∇f (ût−𝜏t,m,m,b)��
2

⎤

⎥

⎥

⎦

−
L2𝜂2

B̃

B̃−1
�

b=0

�

MB̃𝜎2

t−2
�

j=t−1−𝜏t,y

𝜌2
j−1

+ D�

t−2
�

j=t−1−𝜏t,y

𝜌2
j−1

E��

M
�

m=1

B̃−1
�

b=0

∇f (ûj−𝜏j,m,m,b)��
2

+
𝜇(𝜇b − 1)

𝜇 − 1
V2 +

𝜇(𝜇D − 1)

𝜇 − 1
V2

��

+
L𝜂2𝜌2

t−1

2
MB̃V2

≤ −
MB̃𝜂𝜌t−1𝛼

2
E[��∇f (vt−1)��

2] +
M𝜂3𝜌t−1𝛼L

2V2

2

B̃−1
�

b=0

𝜇(𝜇b − 1)

𝜇 − 1

+
MB̃𝜂3L2𝜌t−1𝛼V

2

2

𝜇(𝜇D − 1)

𝜇 − 1
+

L𝜂2𝜌2
t−1

2
MB̃V2 +

M2B̃2𝜂3L2𝜌t−1𝛼

2
𝜎2

t−2
�

j=t−1−D�

𝜌2
j−1

−

𝜂𝜌t−1𝛼

2MB̃
E[��

M
�

m=1

B̃−1
�

b=0

∇f (ût−𝜏t,m,m,b)��
2] +

MB̃𝜂3L2𝜌t−1𝛼D
�

2

t−2
�

j=t−1−D�

𝜌2
j−1

E��

M
�

m=1

B̃−1
�

b=0

∇f (ûj−𝜏j,m,m,b)��
2

4062	 Machine Learning (2022) 111:4039–4079

1 3

Assuming that ∀t ∈ {1, 2, ...}:

We have Theorem 1;

	� ◻

(27)

E[f (vT)] − f (v
0
) ≤ −

MB̃𝜂𝛼

2

T
∑

t=1

𝜌t−1E[||∇f (vt−1)||
2]

+

(B̃−1
∑

b=0

𝜇(𝜇b − 1)

𝜇 − 1
+ B̃

𝜇(𝜇D − 1)

𝜇 − 1

)

M𝜂3L2V2𝛼

2

T
∑

t=1

𝜌t−1

+
L𝜂2

2
MB̃V2

T
∑

t=1

𝜌2
t−1

+
M2B̃2𝜂3L2𝛼

2
𝜎2

T
∑

t=1

𝜌t−1

t−2
∑

j=t−1−D�

𝜌2
j−1

−
𝜂𝛼

2MB̃

T
∑

t=1

𝜌t−1E[||

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2]

+
MB̃𝜂3L2𝛼D�

2

T
∑

t=1

𝜌2
t−1

E||

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2

D�

∑

n=1

𝜌t+n

= −
MB̃𝜂𝛼

2

T
∑

t=1

𝜌t−1E[||∇f (vt−1)||
2]

+
M𝜂3L2𝛼

2

T
∑

t=1

𝜌t−1

[

V2

(B̃−1
∑

b=0

𝜇(𝜇b − 1)

𝜇 − 1
+ B̃

𝜇(𝜇D − 1)

𝜇 − 1

)

+MB̃2𝜎2

t−2
∑

j=t−1−D�

𝜌2
j−1

]

+
L𝜂2

2
MB̃V2

T
∑

t=1

𝜌2
t−1

+
𝜂𝛼

2

T
∑

t=1

𝜌t−1E[||

M
∑

m=1

B̃−1
∑

b=0

∇f (ût−𝜏t,m,m,b)||
2]

(

MB̃𝜂2L2𝜌t−1D
�

D�

∑

n=1

𝜌t+n −
1

MB̃

)

(28)M2B̃2𝜂2L2𝜌t−1D
�

D�

∑

n=1

𝜌t+n ≤ 1

(29)

T
∑

t=1

𝜌t−1E[||∇f (vt−1)||
2] ≤

2(f (v
0
) − f (v∗))

MB̃𝜂𝛼
+

𝜂2L2

B̃

T
∑

t=1

𝜌t−1

[

V2

(B̃−1
∑

b=0

𝜇(𝜇b − 1)

𝜇 − 1
+ B̃

𝜇(𝜇D − 1)

𝜇 − 1

)

+MB̃2𝜎2

t−2
∑

j=t−1−D�

𝜌2
j−1

]

+
L𝜂V2

𝛼

T
∑

t=1

𝜌2
t−1

4063Machine Learning (2022) 111:4039–4079	

1 3

Proof to Corollary 1  According to Theorem 1, we have:

By setting the learning rate �t to be a constant and equal to � , we obtain the following:

The inequalities shown in Theorem 1 can be re-arranged as follows:

Assuming � ≤ 1 and 0 < 𝜇 < 1,

By setting the learning rate as follows:

where A is a constant:

We end up with the following bound on the delayed parameters that if holds, Theorem 1 is
satisfied:

Hence, from Theorem 1, we obtain:

(30)

1
∑T

t=1
𝜌t−1

T
�

t=1

𝜌t−1E[��∇f (vt−1)��
2] ≤

2(f (v
0
) − f (v∗))

MB̃𝜂𝛼
∑T

t=1
𝜌t−1

+
𝜂2L2

B̃
∑T

t=1
𝜌t−1

T
�

t=1

𝜌t−1

�

V2

� B̃−1
�

b=0

𝜇(𝜇b − 1)

𝜇 − 1

+ B̃
𝜇(𝜇D − 1)

𝜇 − 1

�

+MB̃2𝜎2

t−2
�

j=t−1−D�

𝜌2
j−1

�

+
L𝜂V2

𝛼
∑T

t=1
𝜌t−1

T
�

t=1

𝜌2
t−1

(31)

1

T

T
∑

t=1

E[||∇f (vt−1)||
2] ≤

2(f (v
0
) − E[f (v∗)])

TMB̃𝜂2𝛼

+ 𝜂2LV2

(

1

𝛼
−

L𝜇(1 − 𝜇B̃)

(1 − 𝜇)2B̃
+

L𝜇

(1 − 𝜇)
+ L

𝜇(1 − 𝜇D)

1 − 𝜇

)

+ 𝜂4L2MB̃𝜎2D�

(32)𝜂4 ≤
1

M2B̃2L2D′2

(33)�4 ≤
(� − 1)8

(

�(� − 1) + 9L2�(D + 1)(�D+1 − 1)
)4

(34)𝜂2 =

√

(f (v0) − f (v∗))

A𝛼
√

TMB̃

A = LV2

(

1

�
+

1

�2
+

2L�

(1 − �)�

)

(35)T ≥
MB̃L2D�2(f (v0) − f (v∗))

A2𝛼2

(36)T ≥

(

f (v0) − f (v∗)
)(

𝜇(𝜇 − 1) + 9L2𝜇(D + 1)(𝜇D+1 − 1)
)4

MB̃A2𝛼2(𝜇 − 1)8

4064	 Machine Learning (2022) 111:4039–4079

1 3

Therefore, Corollary 1 has been proven. 	� ◻

7  Asynchronous Distributed Lock‑free Parallel Stochastic Variational
Inference

In this section, we describe our proposed distributed parallel implementation of the asyn-
chronous lock-free stochastic variational inference algorithm (DPSVI) on a computer clus-
ter with multi-core nodes. The steps of the algorithm follow from the proposed DPSGD
but in the context of VI. First, we derive the model family applicable with DPSVI and
review SVI following the same steps in Hoffman et al. (2013). Then, we derive DPSVI
from DPSGD.

Model family The family of models considered here consists of three random variables:
observations x = x1∶n , local hidden variables z = z1∶n , global hidden variables � and fixed
parameters � . The model assumes that the distribution of the n pairs of (xi, zi) is condition-
ally independent given � . Furthermore, their distribution and the prior distribution of � are
in the exponential family.

Here, we overload the notation for the base measures h(.), sufficient statistics t(.) and log
normaliser a(.). While the proposed approach is generic, for simplicity we assume a con-
jugacy relationship between (xi, zi) and � . That is, the distribution p(�|x, z) is in the same
family as the prior p(�|�) . Note that this family of models includes, but is not limited to,
latent Dirichlet allocation, Bayesian Gaussian mixture, probabilistic matrix factorisation,
hidden Markov models, hierarchical linear and probit regression and many Bayesian non-
parametric models.

Mean-field variational inference Variational inference (VI) approximates intracta-
ble posterior p(�, z|x) by positing a family of simple distributions q(�, z) and find the

(37)

1

T

T
∑

t=1

E[||∇f (vt−1)||
2] ≤

2(f (v0) − f (v∗))

TMB̃𝜂2𝛼
+ 𝜂2LV2

(

1

𝛼
+

2L𝜇

(1 − 𝜇)

)

+ 𝜂2L𝜎2

≤
2(f (v0) − f (v∗))

TMB̃𝜂2𝛼
+ 𝜂2𝛼A

= 3A

√

f (v0) − f (v∗)

TMB̃

(38)p(�, x, z|�) = p(�|�)

n
∏

i=1

p(zi, xi|�)

(39)p(zi, xi|�) = h(xi, zi) exp
(

�
T t(xi, zi) − a(�)

)

(40)p(�|�) = h(�) exp
(

�
T t(�) − a(�)

)

4065Machine Learning (2022) 111:4039–4079	

1 3

member of the family that is closest to the posterior (closeness is measured with KL
divergence). The resulting optimisation problem is equivalent to maximising the evi-
dence lower bound (ELBO).

Mean-field is the simplest family of distribution, where the distribution over the hidden
variables factorises as follows:

Further, each variational distribution is assumed to come from the same family of the true
one. Mean-field variational inference optimises the new ELBO with respect to the local
and global variational parameters � and �.

It iteratively updates each variational parameter holding the other parameters fixed. With
the assumptions taken so far, each update has a closed form solution. The local parameters
are a function of the global parameters.

We are interested in the global parameters which summarise the whole dataset (clusters in
the Bayesian Gaussian mixture, topics in LDA).

To find the optimal value of � given that � is fixed, we compute the natural gradient of
L(�) and set it to zero by setting:

Thus, the new optimal global parameters are �t+1 = �
∗ . The algorithm works by iterating

between computing the optimal local parameters given the global ones (Eq. 44) and com-
puting the optimal global parameters given the local ones (Eq. 46).

Stochastic variational inference. Instead of analysing all of the data to compute
�
∗ at each iteration, stochastic optimisation can be used. Assuming that the data sam-

ples are uniformly randomly selected from the dataset, an unbiased noisy estimator of
L(�,�) can be developed based on a single data point:

(41)L(q) = Eq[log p(x, z, �)] − Eq[log p(z�)] ≤ log p(x)

(42)q(�, z) = q(�|�)

n
∏

i=1

p(zi|�i)

(43)L(�,�) = Eq

[

log
p(�)

q(�)

]

+

n
∑

i=1

Eq

[

log
p(xi, zi|�)

q(zi)

]

(44)�(�t) = argmax
�

L(�t,�)

(45)L(�) = max
�

L(�,�)

(46)�
∗ = � +

n
∑

i=1

E
�i(�t)

[t(xi, zi)]

(47)Li(�,�i) = Eq

[

log
p(�)

q(�)

]

+ nEq

[

log
p(xi, zi|�)

q(zi)

]

4066	 Machine Learning (2022) 111:4039–4079

1 3

 The unbiased stochastic approximation of the ELBO as a function of � can be written as
follows:

Following the same steps in the previous section, we end up with a noisy unbiased estimate
of Eq. 45:

At each iteration, we move the global parameters a step-size �t (learning rate) in the direc-
tion of the noisy natural gradient:

With certain conditions on �t , the algorithm converges ( 
∑∞

t=1
�t = ∞ ,

∑∞

t=1
𝜌2
t
< ∞) (Rob-

bins & Monro, 1951).
Based on a batch of data points, the unbiased noisy estimator of L(�,�) can be written

as follows:

where Gg = {(g − 1)G + 1, ..., gG} . Equation 49 can be written as follows:

Following this derivation, DPSVI, Algorithm 3 and 4, can be simply obtained from
DPSGD by amending line (7) and (8) of Algorithm 2. Specifically, in line (7) we compute
the local variational parameters �i(�

∗) corresponding to the data point xi and the global
variational parameter �∗ , �i(�

∗) = argmax
�i
Li(�

∗,�i) . The index i is randomly picked
from {1, ...n} and �∗ replaces û . In line (8) we perform the update after replacing the
stochastic gradient ∇fi(û) by negative stochastic natural gradient with respect to the global

parameter �∗ , gi(�
∗) = −

�

� +
n

G

∑

j∈Gi
E
�j(�

∗)[t(xj, zj)] − �
∗

�

.

Finally, the derivation of LDA from the presented model family can be found
in Mohamad et al. (2018).

(48)Li(�) = max
�i

Li(�,�i)

(49)𝝀̂ = 𝜻 + nE
𝝓i(𝝀t)

[t(xi, bzi)]

(50)𝝀t+1 = (1 − �t)𝝀t + �t𝝀̂

(51)Lg(�,�g) = Eq

[

log
p(�)

q(�)

]

+
n

G

∑

i∈Gg

Eq

[

log
p(xi, zi|�)

q(zi)

]

(52)𝝀̂g = 𝜻 +
n

G

∑

i∈Gg

E
𝝓i(𝝀t)

[t(xi, zi)]

4067Machine Learning (2022) 111:4039–4079	

1 3

8  Highly scalable advantage actor critics

The impressive results that have been achieved by deep artificial neural networks in sev-
eral application domains are often driven by the availability of very large training data
sets (Krizhevsky et al., 2012). In reinforcement learning (RL) (Sutton & Barto, 2018), an
agent learns how to behave by interacting with its environment and has to experiment by
trial and error, over and over again, often accumulating millions of repeated experiences.
In order to enable learning in complex, real-world environments, recent advances in RL
have successfully incorporated function approximation through deep networks resulting in
deep reinforcement learning (DRL) (Sutton & Barto, 2018). The already data hungry DL
function is then aggravated by the data inefficiency of RL motivating the development of
more scalable learning algorithms.

Policy gradient methods directly maximise the expected rewards of a parameterised pol-
icy using gradient-based iterative methods such as the Stochastic Gradient Descent method
(SGD). Advantage actor-critic incorporates control variate techniques to reduce the vari-
ance of the approximated gradient (Sutton et al., 2000). Thus, different versions of SGD
can be used directly for learning. Various SGD implementations have been exploited to
scale up DRL including distributed (Agarwal & Duchi, 2011; Lian et al., 2015) and paral-
lel algorithms (Recht et al., 2011; Zhao et al., 2017) resulting in different scalable DRL
algorithms (Ong et al., 2015; Nair et al., 2015; Adamski et al., 2018; Mnih et al., 2016;
Babaeizadeh et al., 2016; Clemente et al., 2017; Horgan et al., 2018). These developments
are particularly relevant to DRL due to its inherently sequential nature and the massive
amount of data required for learning complex tasks such as playing games (Silver et al.,
2016), controlling robots (Abbeel et al., 2007), optimising memory control (Ipek et al.,
2008), and personalising web services (Theocharous et al., 2015), amongst others.

More recently, a few hybrid DRL algorithms have been proposed that combine both
aspects of parallel (i.e. shared) and distributed computation (i.e., distributed mem-
ory) (Adamski et al., 2018; Babaeizadeh et al., 2016). A typical problem of distributed
learning is the communication overhead arising from the necessity to share the weight

4068	 Machine Learning (2022) 111:4039–4079

1 3

updates between nodes. Traditionally, large batches and step sizes have been used to curb
the communication while preserving scalability. These strategies introduce a trade-off
between computational and sample efficiency: a large batch increases the time needed to
calculate the gradient locally, but decreases its variance allowing higher learning rate to be
used. However, there is a limit on the speed-up that can be achieved by tuning the learning
rate and batch sizes (Li et al., 2014b; Bottou et al., 2018).

Here, we apply DPSGD to steer off communication computation in a hybrid distributed-
parallel implementation of DRL, with initial focus on advantage actor critic (A2C), which
has been extensively studied (Ong et al., 2015; Adamski et al., 2018; Mnih et al., 2016;
Babaeizadeh et al., 2016; Clemente et al., 2017; Horgan et al., 2018). We use a cluster
network with a given number of computational nodes equipped with multiple CPUs. Each
node maintains a copy of the actor and critic’s models; for instance, the weights of the
corresponding neural network implementing those models. A few of these nodes act as
a master and the remaining nodes are the workers. The models maintained by the master
are called global models. Within each worker node, the A2C’s models are shared locally
among its multiple CPUs, and are denoted as local.

Each worker performs multiple lock-free parallel updates (Zhao & Li, 2016) for the
models shared across the CPUs. The global model is then updated by the master using
the asynchronously aggregated local multiple steps updates. This simple strategy yields
a highly-scalable advantage actor-critics (HSA2C), and harnesses distributed and local
computation and storage resources. By updating the local variables multiple times, HSA2C
mitigates the communication cost converting time speed-up.

8.1  Background

In reinforcement learning (RL), an agent interacts sequentially with an environment,
with the goal of maximising cumulative rewards. At each step t the agent observes a
state st , selects an action at according to its policy �(at|st) , and receives the next state st+1
along with a reward rt . This continues until the agent reaches a terminal state at t = T  .
The cumulative rewards, called return, at time t can be then written as Rt =

∑∞

i=0
� irt+i ,

where the goal is to learn a policy that maximises the expected return from each state st :
E[Rt|st = s] . The action value function of policy �,Q�(s, a) = E[Rt|st = s, at = a,�] is the
expected return for taking action a in state s and following policy � . The value function
V�(s) = E[Rt|st = s] is the expected return of policy � from state s.

Two main approaches of RL have been studied: value-based and policy based RL. In
value-based RL, the policy is inferred from the value function which is represented by a
function approximator such as a neural network. Hence, the value function can be written
as Q(s, a; w), where w represents the approximator parameters. Then, the goal of the RL
algorithms is to iteratively update w to find the optimal action value function representing
the optimal policy � . Alternatively, policy based DRL directly parameterises the policy
�(a|s,�) and updates its parameter by performing, typically approximate, gradient ascent
on

e.g. see (Williams, 1992). Hence, the gradient of the objective function can be expressed as
follows:

L(�) = E[Q�� (a, s)|�]

4069Machine Learning (2022) 111:4039–4079	

1 3

An unbiased estimate of the gradient in Eq. 53 can be obtained by computing the update
from randomly sampled tuples of form (s, a, r).

8.1.1  Advantage actor critic (A2C) methods

To reduce the variance of the estimate in Eq. (53) while keeping it unbiased, the Q function
can be replaced with an advantage function, A�� (a, s) = (Q�� (a, s) − V�� (s)) (Sutton et al.,
2000) where V is the state value function. This approach can be viewed as an actor-critic
architecture where the policy is the actor and the advantage function is the critic (Sutton &
Barto, 1998).

Deep neural networks are used to approximate the actor and critics functions. Typically,
two neural networks are deployed, one parameterised by � approximating the actor and the
other parameterised by �v approximating the critic. Hence, the gradient of the objective
function can be expressed as follows:

where

In the next section we provide a brief overview of existing scalable SGD approaches and
how they have been adopted to scale-up A2C.

8.1.2  Scalable SGD algorithms for DRL

Stochastic gradient descent (SGD) and its variants are used to optimise the A2C objec-
tive function (Eq. (54)) (Sutton & Barto, 2018). SGD updates the actor and the critics net-
work weights (�,�v) based on the approximate gradient of the objective function L(�,�v)
computed using an experience trajectory (or batch of trajectories) sampled using policy
�� . Various scalable SGD-based approaches have recently been proposed to scale up DRL
algorithms (Ong et al., 2015; Nair et al., 2015; Mnih et al., 2016; Babaeizadeh et al.,
2016; Clemente et al., 2017; Horgan et al., 2018; Adamski et al., 2018). In general, these
approaches can be viewed as derivations from either distributed SGD (DSGD) or parallel
SGD (PSGD).

A DSGD-like architecture called Gorila, proposed by Nair et al. (2015), relies on asyn-
chronous training of RL agents in a distributed setting. Gorila distributes Deep Q-Net-
work DQN (Mnih et al., 2015) across multiple machines. Each machine runs an actor that
interacts with the environment, samples data from the replay memory and computes the
gradients of the DQN loss with respect to the policy parameters. The gradients are asyn-
chronously sent to a central parameter server which updates a central copy of the model.
The updated policy parameters are sent to the actor-learners at fixed intervals. In Mnih
et al. (2016), PSGD-like parameter updates and data generation have been used within a

(53)∇L(�) = E[∇
�
log�(a|s,�)Q�� (a, s)|�]

(54)∇L(�,�v) =

(

∇
�
L(�,�v)

∇
�v
L(�,�v)

)

(55)
∇

�
L(�,�v) =E[∇�

log�(a|s,�)A�v (a, s)|�]

∇
�v
L(�,�v) =E[∇�v

A�v (a, s)|�]

4070	 Machine Learning (2022) 111:4039–4079

1 3

single-machine, in a multi-threaded rather than a distributed context. The shared parameter
is then updated in an asynchronous DSGD-like fashion.

Scaling-up A2C using this two architectures lead to the asynchronous distributed A2C
(DA3C) in Algorithm 6 and Algorithm 7 and the lock-free parallel A2C (PA3C) in Algo-
rithm 5. The lock-free PSGD presented in Algorithm 5 employs (Recht et al., 2011) style
of updates for training A2C. The actors and critics networks are stored in a shared memory
where different threads can update their parameters without any memory locking. There-
fore, in theory, linear speed-ups with respect to the number of threads can be achieved.
On the other hand, the asynchronous DSGD presented in Algorithm 6 and Algorithm 7
employs (Agarwal & Duchi, 2011) style of updates for training A2C. Here, the algorithms
are deployed on a cluster where a master machine maintains a copy of A2C’s networks (the
global networks (�,�v) , see Algorithm 6). Other machines serve as workers which inde-
pendently and simultaneously compute the local stochastic gradients of a copy of A2C’s
networks (the local networks, see Algorithm 7). The workers only communicate with the
master to exchange information in which they access the state of the global networks and

4071Machine Learning (2022) 111:4039–4079	

1 3

provide the master with the stochastic gradients. The master aggregates predefined amounts
of gradients from the workers. Then, it updates its global networks. Note that the local dis-
tributed computations are done in an asynchronous style where the workers are not locked
until the master starts updating the global networks. That is, the workers might compute
some stochastic gradients based on early value of the global networks.

Inspired by these two approaches, different improvements have been proposed.
In Babaeizadeh et al. (2016), a hybrid CPU/GPU version of the Asynchronous Advantage

4072	 Machine Learning (2022) 111:4039–4079

1 3

Actor Critic (A3C) algorithm (Mnih et al., 2016) was introduced. This study focused on
mitigating the severe under-utilization of the GPU computational resources in DRL caused
by its sequential nature of data generation. In this work, each agent queues policy requests
in a Prediction Queue before each action, and periodically submits a batch of reward expe-
riences to a Training Queue. Thus, unlike (Mnih et al., 2016), the agents do not compute
the gradients themselves. Instead, they send experiences to central learners that update the
network on the GPU accordingly. Such architecture reduces the GPU idle during the train-
ing. However, as the number of core increases, the leaner becomes unable to cope with
the data. Furthermore, such amount of data requires large storage capacity. Besides, the
internal communications can affect the speed-up when bandwidth reach its ceiling. These
issues limit the scalability of Babaeizadeh et al. (2016). The approach is also limited to
Off-policy DRL methods. We also note that a similar way for parallelisation of DRL is pro-
posed by Clemente et al. (2017).

Similarly, Horgan et al. (2018) proposes to generate experience data in parallel using
multi-cores CPUs where experiences are accumulated by actors in a shared experience
replay memory. Each actor interacts with the environment takes actions, gets rewards and
states. The learner, then, replays samples of experience and updates the shared neural net-
work. The architecture relies on prioritised experience replay (Schaul et al., 2015) to focus
only on the most significant data generated by the actors. Along the same trend, in Esp-
eholt et al. (2018), all the data (states, actions and rewards) is also accumulated by distrib-
uted actors and communicated to a centralised learner where the computation takes place.
To correct the policy-lag between the learner and actors generating the data, these authors
introduce the V-trace off-policy actor-critic algorithm. It is an importance weighting tech-
nique used to learn the target policy (learner policy) from behaviour ones (actors policy).
The architecture of these studies (Horgan et al., 2018; Espeholt et al., 2018) allows distrib-
uting the generation and selection of experience data instead of distributing locally com-
puted gradients as in Nair et al. (2015). Hence, it requires sending large size information
over the network in case of large size batch of data making the communications more prob-
lematic. Furthermore, the central learner has to perform most of the computation which
limits the scalability. Moreover, these approach is limited to Off-policy DRL methods.

The work in Adamski et al. (2018) presents an SGD-based hybrid distributed-parallel
actor critic approach, and is the most closely related to our approach. These authors com-
bine PA3C with DA3C to allow parallel distributed implementation of A3C on a computer
cluster with multi-core node. Each node applies (Babaeizadeh et al., 2016) to queue data
in batches, which are used to compute local gradients. These gradients are gathered from
all workers, averaged and applied to update the global network parameters. To reduce the
communication overhead, a careful reexamination of Adam optimizer’s hyper-parameters
is carried out allowing large batch sizes to be used.

8.2  Scalable actor‑critic through multiple local updates

We propose a hybrid distributed-parallel actor critic algorithm whereby, unlike (Adam-
ski et al., 2018), workers communicate update vectors rather than gradients to the master.
These update vectors are the discrepancy between the initial copy of the advantage actor
critic (A2C)’s local network parameters pulled from the master and the results of multiple

4073Machine Learning (2022) 111:4039–4079	

1 3

local iterations performed over the networks using PSGD-like updating style. As in DA3C-
like algorithms, the master aggregates predefined amounts of these local updates, updates
its global networks and broadcast the updated networks to the workers. Such multi-steps
updating vectors allow large global update steps with less communication exchanges. The
local A2C’s actor model keeps interacting with the environment, taking actions and receiv-
ing rewards and next states. The data being collected is constantly used to compute the
gradient of the objective function of A2C’s actor and critic networks and updating these
networks. The data collection and updates are done in PA3C-like style. Once a pre-defined
number of updates is reached the local update vector is computed and pushed to the master
in DA3C style preventing any locking or synchronisation (unlike (Adamski et al., 2018))
from halting the actor infraction with the environment.

One issue of this approach is that the variance of policy gradient DRL combinato-
rially increases with each step because of their Markovian dependency. Hence, there
is a trade-off between variance and communication cost. Higher number of multi-step
update results in higher variance, but reduces the communication cost. In our approach,
the variance issue is slightly mitigated by the control variate technique used by the A2C
algorithm. We also adopt a local mini-batch along with multi-step TD error to further
reduce the variance. The variance can also be reduced when increasing the global batch
size (i.e., the number of aggregated update vectors). Thus, adding more nodes reduces
the variance allowing a higher number of multi-step updates. As the number of nodes
increases, communication exchanges also increase. Therefore, our approach is benefi-
cial when the number of nodes increases, as this involves increased communication, up
to a certain breaking point after which the higher variance associated with higher num-
ber of multi-step updates counterbalances the benefits.

8.2.1  Overview of the algorithm

HSA2C is presented in Algorithm 8 and 9. On a single node agents work in parallel with-
out any locking for the shared memory. Each agent interacts with an instance of the game
environment producing experience data (state, action and reward) (line 8 to 10 in Algo-
rithm 9). HSA2C uses k steps TD error along with the function approximation to allow
better bias-variance trade-off (line 14 to 19 in Algorithm 9). Since the steps are taken in
parallel by multiple independent actors, data correlation is reduced resulting in lower bias
without the need for experience replay making the proposed approach applicable for both
off-policy and on-policy DRL methods (Mnih et al., 2016). HSA2C uses local mini-batch
(line 20 to line 24 in Algorithm 9) to reduce the stochastic gradient variance which is cru-
cial to achieve the speed-up. That is HSA2C uses mini-batch of stochastic gradients, com-
puted in parallel from different experiences, to estimate lower variance gradient. Such gra-
dients allow more stable multiple updates (line 24 to 29 in Algorithm 9). Finally, HSA2C’s
workers send the computed multiple steps update vectors (in lock-free parallel) to the mas-
ter (line 30 to 32 in Alg 9) which asynchronously collect these vectors and update its global
parameters (Alg 8). The workers then pull the update global parameters and update their
local parameters (line 33 to 34 in Alg 9).

The convergence rate for serial and synchronous parallel stochastic gradient (SG)
is consistent with O(1∕

√

T) (Ghadimi & Lan, 2013; Dekel et al., 2012; Nemirovski

4074	 Machine Learning (2022) 111:4039–4079

1 3

et al., 2009). As per corollary 1, HSA2C achieves O(1∕
√

T) convergence rate with
almost p ∗ nw times less computation than A2C, where p is the number of threads
and nw is the number of nodes. Hence, HSA2C achieves p ∗ nw iteration-speed-up.
This iteration-speed-up converts to time-speed-up (real speed-up) provided that the
communication between the nodes takes no time. The total communication time for
HSA2C algorithms can be bounded as follows:

where T is the number of iterations, Tc is the communication time need for each master -
worker exchange and m is the global batch (see Algorithm 8). For simplicity, we assume
that the Tc is fixed and the same for all nodes. If the time needed for computing one update
Tu ≤ Tc , the total time needed by the distributed algorithm DTT could be higher than that
of the sequential A2C STT:

where STT ≤ T ∗ Tc , hence

In such cases, exiting distributed algorithms like (Adamski et al., 2018) increase the local
batch size so that Tu increases resulting in lower stochastic gradient variance and allowing
for higher learning rate to be used, hence better convergence rate. This introduces a trade-
off between computational efficiency and sample efficiency. Increasing the batch size by a
factor of k increases the time needed for local computation by O(k) and reduces the vari-
ance proportionally to 1/k (Bottou et al., 2018). Thus, a higher learning rate can be used.
However, there is a limit on the size of the learning rate. This maximum learning speed can
be improved on using HSA2C (Algorithm 8 and Algorithm 9) which performs B times less
communication steps. These improvements are empirically studied in the main paper.

(56)T ∗ Tc ≤ TTc ≤ M ∗ T ∗ Tc

(57)T ∗ Tc + STT∕M ≤ DTT ≤ M ∗ T ∗ Tc + STT∕nw

(58)STT < STT(1 + 1∕M) ≤ DTT

4075Machine Learning (2022) 111:4039–4079	

1 3

Acknowledgements  The authors thank the HPC team at Warwick University for providing the computa-
tional resources to run the experiments.

Author contributions  SM developed and implemented the concepts. He wrote the draft and supported the
subsequent revision. HB initiated the idea of the research and followed up its development. He worked on
the manuscript throughout the publication process. HA contributed to the implementation of the reinforce-
ment learning part of the manuscript.

4076	 Machine Learning (2022) 111:4039–4079

1 3

Funding  This work was partly funded through the European Horizon 2020 Framework Programme under
Grant 687691 related to the Project: PROTEUS: Scalable Online Machine Learning for Predictive Analytics
and Real-Time Interactive Visualization.

Data availibility  Not applicable.

Declarations 

Conflict of interest  None.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Code availability  Code could be make available at a later stage.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). Tensorflow: A system for large-
scale machine learning. OSDI, 16, 265–283.

Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (2007). An application of reinforcement learning to aero-
batic helicopter flight. In Advances in neural information processing systems (pp. 1–8).

Adamski, I., Adamski, R., Grel, T., Jędrych, A., Kaczmarek, K., & Michalewski, H. (2018). Distributed
deep reinforcement learning: Learn how to play atari games in 21 minutes. arXiv preprint arXiv:​1801.​
02852.

Adamski, R., Grel, T., Klimek, M., & Michalewski, H. (2017). Atari games and intel processors. Workshop
on Computer Games (pp. 1–18). Springer.

Agarwal, A., & Duchi, J.C. (2011). Distributed delayed stochastic optimization. In Neural Information Pro-
cessing Systems.

Ba, J., Grosse, R., & Martens, J. (2016). Distributed second-order optimization using kronecker-factored
approximations.

Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., & Kautz, J. (2016). Reinforcement learning through
asynchronous advantage actor-critic on a gpu. arXiv preprint arXiv:​1611.​06256.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47, 253–279.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112, 859–877.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning
research, 3, 993–1022.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010 (pp. 177–186). Springer.

Bottou, L., Curtis, F. E., & Nocedal, J. (2018). Optimization methods for large-scale machine learning.
SIAM Review, 60(2), 223–311.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
Openai gym. arXiv preprint arXiv:​1606.​01540.

Chilimbi, T. M., Suzue, Y., Apacible, J., & Kalyanaraman, K. (2014). Project adam: Building an efficient
and scalable deep learning training system. In OSDI.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1801.02852
http://arxiv.org/abs/1801.02852
http://arxiv.org/abs/1611.06256
http://arxiv.org/abs/1606.01540

4077Machine Learning (2022) 111:4039–4079	

1 3

Clemente, A.V., Castejón, H.N., & Chandra, A. (2017). Efficient parallel methods for deep reinforcement
learning. arXiv preprint arXiv:​1705.​04862.

Crane, R., & Roosta, F. (2019). Dingo: Distributed newton-type method for gradient-norm optimization.
arXiv preprint arXiv:​1901.​05134.

De Sa, C., Zhang, C., Olukotun, K., & Ré, C. (2015). Taming the wild: A unified analysis of hogwild!-style
algorithms. Advances in Neural Information Processing Systems, 28, 2656.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K., & Le,
Q.V., et al. (2012). Large scale distributed deep networks. In Advances in neural information process-
ing systems (pp. 1223–1231).

Dekel, O., Gilad-Bachrach, R., Shamir, O., & Xiao, L. (2012). Optimal distributed online prediction using
mini-batches. Journal of Machine Learning Research, 13, 165–202.

Duchi, J.C., Chaturapruek, S., & Ré, C. (2015). Asynchronous stochastic convex optimization. arXiv pre-
print arXiv:​1508.​00882.

Elgabli, A., Park, J., Bedi, A. S., Issaid, C. B., Bennis, M., & Aggarwal, V. (2020). Q-GADMM: Quan-
tized group ADMM for communication efficient decentralized machine learning. IEEE Transactions
on Communications, 69, 164–181.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., &
Dunning, I., et al. (2018). Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. arXiv preprint arXiv:​1802.​01561.

Fang, C., & Lin, Z. (2017). Parallel asynchronous stochastic variance reduction for nonconvex optimization.
In AAAI.

Ghadimi, S., & Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochastic program-
ming. SIAM Journal on Optimization, 23, 2341–2368.

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. Journal of
Machine Learning Research, 14, 1303–1347.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H., & Silver, D. (2018). Dis-
tributed prioritized experience replay. arXiv preprint arXiv:​1803.​00933.

Hsieh, C.-J., Yu, H.-F., & Dhillon, I. (2015). Passcode: Parallel asynchronous stochastic dual co-ordinate
descent. In International Conference on Machine Learning (pp. 2370–2379). PMLR.

Huo, Z., & Huang, H. (2016). Asynchronous stochastic gradient descent with variance reduction for non-
convex optimization. arXiv preprint arXiv:​1604.​03584.

Huo, Z., & Huang, H. (2017). Asynchronous mini-batch gradient descent with variance reduction for non-
convex optimization. In AAAI.

Ipek, E., Mutlu, O., Martínez, J. F., & Caruana, R. (2008). Self-optimizing memory controllers: A reinforce-
ment learning approach. ACM SIGARCH Computer Architecture News, 36, 39–50.

Jahani, M., He, X., Ma, C., Mokhtari, A., Mudigere, D., Ribeiro, A., & Takác, M. (2020a). Efficient dis-
tributed hessian free algorithm for large-scale empirical risk minimization via accumulating sample
strategy. In International Conference on Artificial Intelligence and Statistics (pp. 2634–2644). PMLR.

Jahani, M., Nazari, M., Rusakov, S., Berahas, A. S., & Takáč, M. (2020b). Scaling up quasi-newton algo-
rithms: Communication efficient distributed sr1. In International Conference on Machine Learning,
Optimization, and Data Science (pp. 41–54). Springer.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods
for graphical models. Machine Learning, 37, 183–233.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neu-
ral networks. In Advances in Neural Information Processing Systems (pp. 1097–1105).

Langford, J., Smola, A.J., & Zinkevich, M. (2009). Slow learners are fast. Neural Information Processing
Systems.

Leblond, R., Pedregosa, F., & Lacoste-Julien, S. (2017). Asaga: asynchronous parallel saga. In Artificial
Intelligence and Statistics (pp. 46–54). PMLR.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., Long, J., Shekita, E. J., & Su,
B.-Y. (2014a). Scaling distributed machine learning with the parameter server. In OSDI.

Li, M., Zhang, T., Chen, Y., & Smola, A. J. (2014b). Efficient mini-batch training for stochastic optimiza-
tion. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 661–670). ACM.

Lian, X., Huang, Y., Li, Y., & Liu, J. (2015). Asynchronous parallel stochastic gradient for nonconvex opti-
mization. In Neural Information Processing Systems.

Lian, X., Zhang, W., Zhang, C., & Liu, J. (2018). Asynchronous decentralized parallel stochastic gradient
descent. In International Conference on Machine Learning (pp. 3043–3052). PMLR.

Lichman, M. (2013). UCI machine learning repository.

http://arxiv.org/abs/1705.04862
http://arxiv.org/abs/1901.05134
http://arxiv.org/abs/1508.00882
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1604.03584

4078	 Machine Learning (2022) 111:4039–4079

1 3

Lin, T., Stich, S. U., Patel, K. K., & Jaggi, M. (2018). Don’t use large mini-batches, use local sgd. arXiv
preprint arXiv:​1808.​07217.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforcement learning. In International Conference on
Machine Learning (pp. 1928–1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv preprint arXiv:​1312.​5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540), 529.

Mohamad, S., Bouchachia, A., & Sayed-Mouchaweh, M. (2018). Asynchronous stochastic variational
inference. arXiv preprint arXiv:​1801.​04289.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., Panneershelvam, V., Suley-
man, M., Beattie, C., & Petersen, S., et al. (2015). Massively parallel methods for deep reinforce-
ment learning. arXiv preprint arXiv:​1507.​04296.

Neiswanger, W., Wang, C., & Xing, E. (2015). Embarrassingly parallel variational inference in noncon-
jugate models. arXiv preprint arXiv:​1510.​04163.

Nemirovski, A., Juditsky, A., Lan, G., & Shapiro, A. (2009). Robust stochastic approximation approach
to stochastic programming. SIAM Journal on Optimization, 19(4), 1574–1609.

Niu, F., Recht, B., Ré, C., & Wright, S. J. (2011). Hogwild!: A lock-free approach to parallelizing sto-
chastic gradient descent. arXiv preprint arXiv:​1106.​5730.

Ong, H. Y., Chavez, K., & Hong, A. (2015). Distributed deep q-learning. arXiv preprint arXiv:​1508.​
04186.

Paine, T., Jin, H., Yang, J., Lin, Z., & Huang, T. (2013). Gpu asynchronous stochastic gradient descent to
speed up neural network training. arXiv preprint arXiv:​1312.​6186.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
& Lerer, A. (2017). Automatic differentiation in pytorch.

Recht, B., Re, C., Wright, S., & Niu, F. (2011). Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Neural Information Processing Systems.

Reddi, S. J., Hefny, A., Sra, S., Poczos, B., & Smola, A. (2015). On variance reduction in stochastic gra-
dient descent and its asynchronous variants. arXiv preprint arXiv:​1506.​06840.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Sta-
tistics, 22, 400–407.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:​1609.​
04747.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized experience replay. arXiv preprint
arXiv:​1511.​05952.

Shamir, O., Srebro, N., & Zhang, T. (2014). Communication-efficient distributed optimization using an
approximate newton-type method. In International Conference on Machine Learning (pp. 1000–
1008). PMLR.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Master-
ing the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.

Stich, S. U. (2018). Local sgd converges fast and communicates little. arXiv preprint arXiv:​1805.​09767.
Stooke, A., & Abbeel, P. (2018). Accelerated methods for deep reinforcement learning. arXiv preprint

arXiv:​1803.​02811.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). MIT Press.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods for rein-

forcement learning with function approximation. Advances in Neural Information Processing Sys-
tems, 12, 1057–1063.

Theocharous, G., Thomas, P.S., & Ghavamzadeh, M. (2015). Personalized ad recommendation systems
for life-time value optimization with guarantees. In IJCAI (pp. 1806–1812).

Tsitsiklis, J., Bertsekas, D., & Athans, M. (1986). Distributed asynchronous deterministic and stochastic
gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9), 803–812.

Wainwright, M.J., & Jordan, M.I., et al. (2008). Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning.

Wang, J., Sahu, A. K., Yang, Z., Joshi, G., & Kar, S. (2019). Matcha: Speeding up decentralized sgd via
matching decomposition sampling. In 2019 Sixth Indian Control Conference (ICC) (pp. 299–300).
IEEE.

Williams, R.J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning. In Reinforcement Learning (pp. 5–32). Springer.

http://arxiv.org/abs/1808.07217
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1801.04289
http://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1510.04163
http://arxiv.org/abs/1106.5730
http://arxiv.org/abs/1508.04186
http://arxiv.org/abs/1508.04186
http://arxiv.org/abs/1312.6186
http://arxiv.org/abs/1506.06840
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1805.09767
http://arxiv.org/abs/1803.02811

4079Machine Learning (2022) 111:4039–4079	

1 3

Xing, E. P., Ho, Q., Dai, W., Kim, J. K., Wei, J., Lee, S., Zheng, X., Xie, P., Kumar, A., & Yu, Y. (2015).
Petuum: A new platform for distributed machine learning on big data. IEEE Transactions on Big Data.

Yu, H., Yang, S., & Zhu, S. (2019). Parallel restarted SGD with faster convergence and less communica-
tion: Demystifying why model averaging works for deep learning. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33, 5693–5700.

Zhang, S., Choromanska, A. E., & LeCun, Y. (2015). Deep learning with elastic averaging sgd. In Neu-
ral Information Processing Systems.

Zhao, S.-Y., & Li, W.-J. (2016). Fast asynchronous parallel stochastic gradient descent: A lock-free approach
with convergence guarantee. In AAAI.

Zhao, S.-Y., Zhang, G.-D., & Li, W.-J. (2017). Lock-free optimization for non-convex problems. In AAAI.
Zhou, F., & Cong, G. (2017). On the convergence properties of a k-step averaging stochastic gradient

descent algorithm for nonconvex optimization. arXiv preprint arXiv:​1708.​01012.
Zinkevich, M., Weimer, M., Li, L., & Smola, A. J. (2010). Parallelized stochastic gradient descent. In Neu-

ral Information Processing Systems.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1708.01012

	Scaling up stochastic gradient descent for non-convex optimisation
	Abstract
	1 Introduction
	2 Related work
	2.1 Theoretical aspects
	2.2 Implementation aspects

	3 The DPSGD algorithm and its properties
	3.1 Overview of the algorithm
	3.2 Synthetic process
	3.2.1 Local synthetic write (update) sequence
	3.2.2 Local memory read

	3.3 Convergence analysis
	3.4 Discussion

	4 Experiments
	4.1 Variational inference
	4.1.1 Node speed-up
	4.1.2 Thread speed-up
	4.1.3 Node-thread speed-up

	4.2 Deep reinforcement learning
	4.2.1 Implementation details
	4.2.2 Speed-up analysis
	4.2.3 Comparison

	5 Conclusion
	Acknowledgements
	References

