
Vol.:(0123456789)

Machine Learning (2022) 111:4217–4247
https://doi.org/10.1007/s10994-022-06242-4

1 3

A taxonomy for similarity metrics between Markov decision 
processes

Javier García1   · Álvaro Visús2 · Fernando Fernández2

Received: 14 July 2021 / Revised: 13 May 2022 / Accepted: 8 September 2022 /  
Published online: 14 October 2022 
© The Author(s) 2022

Abstract
Although the notion of task similarity is potentially interesting in a wide range of areas 
such as curriculum learning or automated planning, it has mostly been tied to transfer 
learning. Transfer is based on the idea of reusing the knowledge acquired in the learning 
of a set of source tasks to a new learning process in a target task, assuming that the tar-
get and source tasks are close enough. In recent years, transfer learning has succeeded in 
making reinforcement learning (RL) algorithms more efficient (e.g., by reducing the num-
ber of samples needed to achieve (near-)optimal performance). Transfer in RL is based on 
the core concept of similarity: whenever the tasks are similar, the transferred knowledge 
can be reused to solve the target task and significantly improve the learning performance. 
Therefore, the selection of good metrics to measure these similarities is a critical aspect 
when building transfer RL algorithms, especially when this knowledge is transferred from 
simulation to the real world. In the literature, there are many metrics to measure the sim-
ilarity between MDPs, hence, many definitions of similarity or its complement distance 
have been considered. In this paper, we propose a categorization of these metrics and ana-
lyze the definitions of similarity proposed so far, taking into account such categorization. 
We also follow this taxonomy to survey the existing literature, as well as suggesting future 
directions for the construction of new metrics.
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1  Introduction

Markov decision processes (MDPs) are a common way of encoding decision-making prob-
lems in Reinforcement Learning (RL) tasks (Sutton and Barto, 2011). In RL, an MDP is 
considered to be solved when a policy (i.e., a way of behaving for each state) has been dis-
covered which maximizes the long-term expected return. However, although RL is known 
as an effective machine learning technique, it might perform poorly in complex problems, 
leading to a slow rate of convergence. This issue magnifies when facing realistic continu-
ous problems where the curse of dimensionality is inevitable. Transfer learning in RL is 
a successful technique to remedy such a problem. Specifically, rather than learning a new 
policy for every MDP, a policy could be learned on one MDP, then transferred to another, 
similar MDP, and either used as is, or treated as a starting point from which to learn the 
new policy. Clearly, this transfer cannot be done successfully between any two MDPs, but 
only in the case they are similar.

Therefore, in this context, one question arises: when are two MDPs similar? In this 
paper, we consider the concept of similar to be related to the notion of “positive trans-
fer”  (Taylor and Stone, 2009). Formally, positive transfer happens when the knowledge 
in the source task contributes to the improved performance of learning in the target task, 
and it is considered a negative transfer otherwise, i.e., when the transfer hurts the learn-
ing performance when compared with learning from scratch. Additionally, the greater 
the improvement in the target task, i.e., the greater the positive transfer, the more simi-
lar the tasks have to be considered. It is important to be aware of the fact that, based on 
this description, the concept of similarity might not be related to the structural similarities 
between the MDPs. So the correct selection of metrics that allows us to measure the simi-
larity between MDPs is a critical issue in transfer learning, precisely to avoid the negative 
transfer. Obviously, the use of the positive transfer to measure the similarity between two 
tasks has a major drawback: the similarity measure between MDPs is obtained after the 
transfer has been run, when really the ideal would be to compute this similarity before 
it, particularly if the point is to use the task similarity measure to choose a task to use in 
transfer. This issue magnifies when the transfer happens between simulation and the real 
world, where it is imperative for the efficient and safe deployment of previously learned 
knowledge.

The literature in transfer learning has proposed different metrics to measure the level 
of similarity between MDPs, hence, different definitions of the concept of similarity 
have been considered so far. This paper surveys the existing task similarity metrics 
and contributes a taxonomy that, in its roots, classifies them into two clearly distinct 
categories: model-based, and performance-based metrics. We consider such a distinc-
tion as a core contribution, allowing us to categorize metrics in a novel and useful way. 
Model-based metrics are based on the structural similarities between the MDP models. 
Such model-based metrics can be computed in different ways depending on what ele-
ments of the MDP models come into play to compute the similarity  (Ammar et  al., 
2014; Taylor et al., 2008c; Milner, 1982; Castro and Precup, 2011; Svetlik et al., 2017). 
The major strength of these approaches lies in that they can be computed a priori, i.e., 
before the transfer happens. Therefore, they are independent of the transfer algorithm 
that is later used to transfer knowledge from one task to another. However, most of 
them require to know in advance the exact MDP models or accurate approximations 
of them. Instead, performance-based metrics are computed by comparing the perfor-
mance of the learning agents in the source task and the target task. Such a performance 
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comparison can be done in two different ways: by comparing the resulting policies 
from learning in the source task and the target task (Carroll and Seppi, 2005; Karimpa-
nal and Bouffanais, 2018) or, from a transfer point of view, by measuring the transfer 
gain, i.e., the positive transfer (Mahmud et al., 2013; Sinapov et al., 2015; Fernández 
and Veloso, 2013). Many metrics can be used to measure such a transfer gain (e.g., 
jumpstart, asymptotic performance, total reward)  (Taylor and Stone, 2009). In some 
ways, this transfer gain could be the best method for measuring similarity between two 
tasks (Carroll and Seppi, 2005). Unfortunately, it is often difficult to compute all of 
these performance-based measures before actually solving the target task, since most 
of them require to be computed a posteriori, i.e., after the learning processes. How-
ever, there are a few exceptions to this rule, within which, for example, the similarity 
is computed on-line, i.e., during solving the target task (Fernández and Veloso, 2013).

Therefore, it is important to bear in mind that, despite their different nature, both 
model-based and performance-based metrics allow us to measure the similarity 
between tasks. This survey aims to categorize and discuss the main lines of current 
research within the computation of similarity metrics between MDPs. Our main pur-
pose is to highlight the advantages and disadvantages of the surveyed metrics, making 
it easier to identify crossing points and open problems for which research communities 
could merge their expertise to work on, bridging the gap between the literature and 
the application of all of these metrics in real-world complex problems. To the best of 
our knowledge, this is the first survey focused on similarity metrics between MDPs. 
Previously, Lan et al. (2021) published an extraordinary paper surveying and propos-
ing new similarity metrics, but it is focused on metrics between states and not between 
MDPs, which is the real purpose of this paper. In other words, Lan et al. (2021) focus 
on  state similarity, whilst this paper focuses on  task similarity. Nevertheless, the 
metrics presented by Lan et  al. (2021) are discussed here as a good starting point to 
compose similarity metrics between MDPs. We hope our taxonomy applies to a wide 
range of researchers, not just those interested in transfer learning. For example, the 
proposed metrics could also be a critical step forward to sort the samples and tasks in 
Curriculum Learning (Narvekar et al., 2020), or could be used to measure the distance 
between simulation and the real world in a Sim-to-Real context  (Zhao et  al., 2020). 
They could also be used to understand the similarities within a set of tasks in Multi-
task Learning (Shui et al., 2019), or Automated Planning (Fernández et al, 2011).

Since different audiences are expected to read this survey, the following guide pro-
vides forward references to key insights and sections for target groups with different 
needs and motivations:

–	 If you are familiarized with the main concepts of RL and transfer learning, you can 
skip Sect. 2 and go directly to Sect. 3.

–	 If you are interested in just an overview of the similarity metrics and how they are 
organized, go to Sect. 3.

–	 If you are interested in a deep understanding of the different approaches, you will 
need to read Sects. 4 and 5 .

–	 If you want a comparative analysis about what is the best method to use for a spe-
cific task, you will find your answer in Sect. 6.

–	 If you are interested in this area and willing to go forward, see Sect. 7 to see the 
future directions.
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2 � Background

This section introduces key concepts required to better understand the rest of the paper. 
First, some background in RL is introduced (Sect.  2.1), then the main concepts of 
RL transfer are visited (Sect.  2.2), and finally the concepts of similarity and distance 
(Sect. 2.3).

2.1 � Reinforcement learning

Typically, RL tasks are described as Markov Decision Processes (MDPs) represented 
by tuples in the form M = ⟨S,A,T ,R⟩ , where S is the state space, A is the action space, 
T ∶ S × A → S is the transition function between states, and R ∶ S × A → ℝ is the reward 
function (Sutton and Barto, 2011). At each step, the agent is able to observe the current 
state, and choose an action according to its policy � ∶ S → A . The goal of the RL agent 
is to learn an optimal policy �∗ that maximizes the return J(�):

where rk is the immediate reward obtained by the agent on step k, � is the discount factor, 
which determines how relevant the future is (with 0 ≤ � ≤ 1 ), and K is a final time step for 
finite-horizon models (including the possibility of K = ∞ and 0 ≤ 𝛾 < 1 for infinite-horizon 
models). On the one hand, if the task is an episodic task, the interaction between the agent 
and the environment tends to be divided into episodes. In finite- and infinite-horizon epi-
sodic tasks, an episode always ends when reaching a terminal state but, for finite-horizon 
tasks, it also ends when a fixed number of steps K has passed. On the other hand, a task can 
be infinity-horizon continuing, which means the task will never end. With the goal of learn-
ing the policy � , Temporal Differences methods (Sutton and Barto, 2011) estimate the sum 
of rewards represented in Eq. (1). The function that estimates the sum of rewards, i.e., the 
return for each state s given the policy � is called the value-function V�(s) = E[J(�)|s0 = s] . 
Similarly, the action-value function Q�(s, a) = E[J(�)|s0 = s, a0 = a] is the estimation of 
the value of performing a given action a at a state s being � the policy followed. The cor-
responding value function and action-value function for the optimal policy �∗ are denoted 
respectively V∗ and Q∗.

The Q-learning algorithm (Watkins, 1989) is one of the most widely used for com-
puting the action-value function. In small domains with a small number of states and 
actions, the Q� function and � can be fully represented with a lookup table. However, as 
the state and action spaces grow, a different approach is required. One way to extend the 
Q� function to continuous state-action space, is to discretize the environment in order 
to reduce such space (García et al., 2010), thus the use of a tabular representation of Q� 
is still possible. However, in such continuous scenarios, both V� and Q� functions are 
typically estimated using a universal function approximation such as an artificial neural 
network (Wiering and van Otterlo, 2014). In this case, the value function is expressed 
as a linear V�(s) = �T�(s) or non-linear V�(s) = V�(�(s), �) combination of a parameter 
vector � and a feature vector �(s) . Equivalently, the Q� function can also be expressed in 
terms of � and � (Van Hasselt, 2012).

(1)J(�) =

K∑

k=0

�krk
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2.2 � Transfer learning for reinforcement learning

In the transfer learning scenario we assume there is an agent who previously has addressed 
a set of source tasks represented as a sequence of MDPs, M1,… ,Mn . If these tasks 
are somehow “similar” to a new task Mn+1 , then it seems reasonable the agent uses the 
acquired knowledge solving M1,… ,Mn to solve the new task Mn+1 faster than it would 
be able to from scratch. Transfer learning is the problem of how to obtain, represent and, 
ultimately, use the previous knowledge of an agent (Torrey and Shavlik, 2010; Taylor and 
Stone, 2009).

However, transferring knowledge is not an easy endeavour. On the one hand, we can 
distinguish different transfer settings depending on whether the source and the target tasks 
share or not the state and action spaces, the transition probabilities and the reward func-
tions. It is common to assume that the tasks share the state space and the action set, but 
differing the transition probabilities and/or reward functions. However, in case the tasks 
do not share the state and/or the action spaces, it is required to build mapping functions, 
XS(st) = ss , XA(at) = as , able to map a state st or action at in the target task to a state ss or 
action as in the source task. Such mapping functions require not only knowing if two tasks 
are related, but how they are related, which means an added difficulty. On the other hand, 
it is required to select what type of information is going to be transferred. Different types 
of information have been transferred so far ranging from instance transfer (a set of samples 
collected in the source task) to policy transfer (i.e., the policy � learned in the source task). 
Nor is this a simple task, because depending on how much and how the source and the tar-
get tasks are related, it could be transferred one type of information or another.

Finally, the most “similar” task among M1,… ,Mn to solve Mn+1 should be selected 
in the hope that it produces the most positive transfer. For this purpose, similarity metrics 
could be used, which translate into a measurable quantity of how related two tasks are.

2.3 � Similarity and distance metrics

Similarity metrics are a very important part of transfer learning, as they provide a meas-
ure of distance between tasks. A similarity function s(⋅, ⋅) , or its complementary distance 
function d(⋅, ⋅) , is a mathematical function that assigns a numerical value to each pair of 
concepts or objects in a given domain. This value measures how similar these two concepts 
or objects are: if they are very similar, it is assigned a very low distance, and if they are 
very dissimilar, it is assigned a larger distance (Ontañón, 2020). Intuitively, for each dis-
tance function d(⋅, ⋅) we can define its associated similarity function s(⋅, ⋅) = u∕(1 + d(⋅, ⋅)) , 
where u is the maximum similarity value, usually u = 1 . For simplicity, in this survey we 
use the distance function d(⋅, ⋅) to formulate the distance between MDPs, knowing that this 
distance also captures the similarity between tasks.

3 � Taxonomy of similarity metrics for MDPs

We consider there are two tasks, Mi and Mj , described formally by the tuples 
Mi = ⟨Si,Ai, Ti,Ri⟩ and Mj = ⟨Sj,Aj, Tj,Rj⟩ , where they could share (or not) the state 
space, the action space, or the transition and reward dynamics.
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Definition 1  Given two tasks Mi and Mj , we define a task distance metric as a heuristic 
function d(Mi,Mj) → [0,∞) , such that if d(Mi,Mj) < d(Mk,Mj) , then Mi is consid-
ered more similar to Mj than Mk.1

Definition 1 allows us to use the function d(⋅, ⋅) to obtain a partial order between tasks 
in such a way that we can select the more similar one. Ideally, the concept of similarity 
should be related to the concept of positive transfer: the smaller the distance d(Mi,Mj) , 
the greater the positive transfer. However, in most of the cases, similarity metrics do not 
provide guarantees for this ideal behavior. Additionally, d(Mi,Mj) should be computed 
before or, at least, during the transfer experiment, in order to select an adequate task to use 
in transfer. However, the literature proposes different ways to compute d(Mi,Mj).

In this paper, we consider two main trends for the computation of the distance metric 
d(Mi,Mj) . Such trends are depicted in Table 1. The first one measures the structural or 
model similarities between the given MDPs. The second measures the similarities by using 
the performance of the learning agent in both the source and the target tasks.

Model-Based Metrics As regards to the first, they measure the degree of similarity 
between a source and a target task by using their corresponding MDP models (i.e., states, 
actions, transition and rewards dynamics). There are several alternatives to these model-
based metrics depending on what components of the MDPs are taken into account. In this 
survey, we categorize these metrics in four groups: (i) transition and reward dynamics, (ii) 
transitions, (iii) state and actions and (iv) states:

•	 Transition and reward dynamics They require complete knowledge of the MDP models 
both of the source task and the target task. We distinguish three ways of computing 
similarity metrics using such a complete knowledge: (i) by a sort of metrics based on 
state abstraction (or state aggregation) techniques  (Li et al., 2006; Ferns et al., 2004, 
2012; Castro, 2020), (ii) by compliance metrics  (Lazaric et  al., 2008; Lazaric, 2008; 
Fachantidis et al., 2015; Fachantidis, 2016) and (iii) by metrics based on the construc-
tion of MDP graphs (Kuhlmann and Stone, 2007; Wang et al., 2019).

–	 State abstraction In RL, it is a common practice to aggregate states in order to 
obtain an abstract description of the problem, i.e., a more compact and easier rep-
resentation of the task to work with (Giunchiglia and Walsh, 1992; Li et al., 2006). 
These approaches are based on the same common principle: if a number of states 
are considered to be similar, they can be aggregated as a single one. This same prin-
ciple can be also used to compute the similarity between two states belonging to 
different MDPs. In fact, the cumulative similarity between each pair of these states 
could be used to compute a sort of similarity metric between the MDPs. In this 
paper, we survey two of these methods which actually have been used for transfer 
in RL: bisimulation (Ferns et al., 2004, 2012; Castro and Precup, 2011; Song et al., 
2016), and homomorphism  (Ravindran and Barto, 2002; Sorg and Singh, 2009), 
where both of them require complete knowledge or accurate approximations of the 
MDP models to compute the similarity between states. Although only bisimulation 

1  It should be noted that in the context of task similarity such a measure of distance need does not need 
to be a “metric” in the mathematical sense of this term, but it needs to allow us to define a partial order 
between tasks.
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Table 1   Taxonomy and summary of the similarity metrics considered in this survey
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and homomorphism are discussed in detail in this paper, we consider other state 
abstraction techniques might be also used as similarity metrics between MDPs.

–	 Compliance The compliance measure is defined as the probability of a sample 
⟨s, a, s′, r⟩ in the target task of being generated in the source task  (Lazaric et  al., 
2008; Fachantidis, 2016; Fachantidis et  al., 2015). Therefore, it is easy to deduce 
that the compliance between the entire target task and the entire source task allows 
us to measure the similarity between the two tasks.

–	 MDP graphs. They are based on the construction of graphs that represent the transi-
tion and the reward functions both of the source task and the target task (Kuhlmann 
and Stone, 2007; Liu and Stone, 2006; Wang et al., 2019). Then, they find structural 
similarities between tasks based on graph-similarity or graph-matching algorithms. 
Such approaches are based on an interesting idea for similarity computation: the 
alternative representation of tasks through descriptive structures that allow an easy 
comparison between them.

•	 Transitions The metrics considered in this category use tuples in the form ⟨s, a, s′⟩ to 
measure the similarity between MDPs (Taylor et al., 2008c; Ammar et al., 2014). By 
using such tuples, they model the behavioral dynamics of the two MDPs to be com-
pared, and then they try to find differences between them.

•	 Rewards The metrics considered in this category use tuples in the form ⟨s, a, r⟩ to meas-
ure the similarity between MDPs. This set includes different techniques (Carroll and 
Seppi, 2005; Tao et al, 2021; Gleave et al, 2020).

•	 State & actions These metrics use pairs in the form ⟨s, a⟩ both in the source task and the 
target task to compute the similarity between MDPs. Such pairs can be used in differ-
ent ways resulting in different similarity metrics (Carroll and Seppi, 2005; Taylor et al, 
2008b; Narayan and Leong, 2019).

•	 States Finally, metrics in this category use the state space both in the source and the tar-
get task to compute the similarity between them (Svetlik et al., 2017). Another area of 
research that is relevant in this category is that of case-based reasoning (CBR) (Aamodt 
and Plaza, 1994). RL approaches based on CBR use a similarity function between the 
states in the target task and the states stored in a case base corresponding to a previous 
source task (Celiberto Jr et al., 2011). Such similarity function could be used to meas-
ure the similarity between the state spaces, hence, the similarity between the two tasks.

Performance Based. As regards the second major category in the proposed taxonomy, per-
formance-based metrics are based on the performance of the agents in the source task and 
the target task, where this performance can be related to the policies themselves learned by 
the agents in these tasks, or to the transfer gain an agent obtains reusing the knowledge of a 
source task in a target task. So, we distinguish two different approaches to overcoming the 
problem of computing such performance-based similarities: (i) by the policy similarity and 
(ii) by the transfer gain obtained transferring the knowledge from a source task to the target 
task.

–	 Policy similarity They are based on the use of the learned value function V� or the 
action-value function Q� , or equivalently, on the behavioral policies � obtained in the 
source task and the target task. Therefore, these metrics require the full (or partial) 
learning of these policies before the computation of the similarity between tasks. Such 
a comparison can be conducted in two different ways depending on what is being com-
pared: (i) the policy values, or (ii) the policy parameters.
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–	 Policy values In this case, the comparison is conducted by observing the specific 
values of the Q�-function or the V�-function corresponding to the source and the 
target tasks (Carroll and Seppi, 2005; Zhou and Yang, 2020). Therefore, in this case, 
it is really being measured the degree of similarity of the policies obtained in both 
tasks.

–	 Policy parameters. In RL, the value function V� or the action-value function Q� usu-
ally are represented as a parameter vector � . Intuitively, the metrics within this cat-
egory compare the particular weights of the parameter vectors corresponding to the 
value functions of the source task and the target task in order to measure the simi-
larity between them  (Karimpanal and Bouffanais, 2018). Therefore, these metrics 
are only applicable with parametric representations of policies, and not with tabular 
representations. Such an approach opens the door to the comparison of other policy 
representations (Ferrante et al., 2008).

–	 Transfer gain In these techniques, the level of similarity is an approximation to the 
advantage gained by using the knowledge in one source task to speed the learning of 
another target task (Carroll and Seppi, 2005; Carroll, 2005; Taylor and Stone, 2009). 
So, it is important to bear in mind that these metrics actually require that the trans-
fer experiment be entirely or partially run before measuring the degree of similarity 
between tasks. Many metrics to measure such a transfer gain are possible, including 
jumpstart, asymptotic performance, total reward (see  (Taylor and Stone, 2009) for a 
complete listing of metrics for transfer gain). However, regardless of the particular tech-
nique used to compute such a transfer gain, the higher the transfer gain, the greater the 
similarity between the tasks. In this paper, we distinguish two approaches within this 
category depending on whether the transfer gain is computed after or during the trans-
fer process: (i) off-line transfer gain, and (ii) on-line transfer gain.

–	 Off-line transfer gain The transfer gain is estimated as the difference in performance 
between the learning process with and without transfer  (Carroll, 2005; Mahmud 
et al., 2013; Sinapov et al., 2015). Therefore, it is important to be aware of the fact 
that, in these approaches, the gain is computed once the learning processes are con-
sidered to be finished.

–	 On-line transfer gain On the contrary, in these approaches, the gain is estimated 
on-line at the same time that the policy in the target task is computed (Azar et al., 
2013; Fernández and Veloso, 2013; Li and Zhang, 2017). In this way, it is possible 
to decide on-line which is the closest task within a library composed of past tasks, 
so that the knowledge of the selected closest task can have a greater influence on 
learning about the policy in the new task.

4 � Model‑based metrics

This section presents in detail the model-based metrics considered in this paper, i.e., the 
metrics that evaluate the similarity between tasks using the components of their respective 
MDPs. As presented in Sect. 2.1, the structure of an MDP is formally described by a tuple 
⟨S,A, T ,R⟩ . Different model-based metrics result depending on what components of the 
MDPs take part in the computation of the similarity. Therefore, this survey categorizes the 
model-based metrics in five groups: (i) transition and reward dynamics, (ii) transitions, (iii) 
rewards, (iv) state and actions and (v) states.
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4.1 � Transition and reward dynamics

This first group of techniques make use of all the components of the MDPs (i.e., the state 
and action spaces, and the transition and reward dynamics) to compute the similarity met-
rics. Depending on the use of this information, we can distinguish three different groups 
of metrics: (i) by a sort of metrics based on state abstraction (or state aggregation) tech-
niques  (Li et  al., 2006; Ferns et  al., 2004, 2012; Castro, 2020), (ii) by compliance met-
rics (Lazaric et al., 2008; Lazaric, 2008; Fachantidis et al., 2015; Fachantidis, 2016) and 
(iii) by metrics based on the construction of MDP graphs  (Kuhlmann and Stone, 2007; 
Wang et al., 2019).

4.1.1 � State abstraction

Learning in a high-dimensional state space not only increases the time and memory 
requirements of learning algorithms, but also degenerates performance due to the curse 
of dimensionality  (Kaelbling et  al., 1996). This motivates the need for state abstraction, 
the process of grouping states into abstract representations, more compact and easier to 
work with, while preserving dynamics of the original system. In this paper, we survey two 
methods for state abstraction: bisimulation  (Ferns et al., 2004, 2012; Castro and Precup, 
2011; Song et al., 2016), and homomorphism (Ravindran and Barto, 2002; Sorg and Singh, 
2009).

Bisimulation Bisimulation considers two states are equivalent (hence, they can be 
grouped) when for every action, they achieve the same immediate reward and have the 
same probability of transitioning to classes of equivalent states (Givan et al., 2003; Phil-
lips, 2006). Figure 1 shows an example of bisimulation reduction by transforming an MDP 
M of four states to an abstract MDP M′ with two states. Based on the equivalence relation 
of bisimulation between each pair of states in M , s0, s1 ∈ M can be grouped as s0 ∈ M

� , 
and s2,, s3 ∈ M

� can be grouped as s1 ∈ M.
However, we are interested in metrics and not in equivalence relations. Such a metric 

could assign a distance of 1 to states that are not bisimilar, and 0 otherwise, not possessing 
more distinguishing power than that of bisimulation itself. Therefore, as a desirable prop-
erty of this metric, it should vary smoothly and proportionally with differences in rewards 
and transition probabilities. Such a bisimulation metric was first proposed by Ferns et al. 
(2004) and, although it was originally defined as the distance between states belonging to 

Fig. 1   A bisimulation example where an MDP M of four state (left) is reduced to an MDP M′ with two 
abstract states (right). In both M and M′ there is a single action a that allows a transition from a state si to a 
state sj . The arcs between the nodes are labeled with R(si, a)/T(si, a, sj)
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the same MDP, the definition can be easily extended as the distance between states belong-
ing to different MDPs.

Definition 2  Given two MDPs, Mi and Mj , the distance between two states si ∈ Si and 
sj ∈ Sj is defined as:

where c ∈ [0, 1) , (Ri)
a
si
 and (Ti)asi are the immediate reward and the probabilistic transition 

when action a ∈ A is taken at state si in Mi (resp. (Rj)
a
sj
 and (Tj)asj in Mj ), and 

W((Ti)
a
si
, (Tj)

a
sj
;d) is the Kantorovich 2 distance between the two probabilistic transitions.

The bisimulation metric d(si, sj) is constructed by comparing the transition and reward 
dynamics of si ∈ Si and sj ∈ Sj : the more similar the reward and transition structures of si 
and sj are, the smaller d(si, sj) . d(si, sj) is a (unique) fixed-point metric and it can be calcu-
lated iteratively by starting with a metric that is zero everywhere, and iterating until the 
difference in metric distances between iterations drops below a certain threshold (we refer 
the reader to Ferns et al. (2004, 2006)). However, bisimilation metrics are difficult to use at 
scale and compute online, which is why other bisimulation-inspired metrics have recently 
appeared such as �-bisimulation (Castro, 2020), deep bisimulation for control (Zhang et al., 
2021), policy similarity metric (Agarwal et al., 2021), or the MICo distance (Castro et al., 
2021). Finally, it would be worth noting that the model-irrelevance metric (Li et al., 2006) 
and its approximate version (Abel et al., 2016) share the same principles of bisimulation: 
two states are considered similar if they have similar transition and reward functions.

Homomorphism One of the shortcomings of the bisimulation metric presented in Defi-
nition 2 is that it requires both MDPs, Mi and Mj , to have the same action sets, i.e., it 
requires that the behavior matches for exactly the same actions, which is not always the 
case. In many practical problems, actions with the exact same label may not match, so it 
should be allowed correspondences between states by matching their behavior with dif-
ferent actions. This idea is formalized as MDP homomorphism  (Ravindran and Barto, 
2002; Sorg and Singh, 2009). The aim of abstraction in MDP homomorphism is to group 
similar state-action pairs instead of just states (Castro and Precup, 2010). Therefore, MDP 
homomorphisms do not require behavioral equivalence under the same action labels, and 
this idea was elegantly extended with the lax bisimulation metric proposed by Taylor et al. 
(2008a).

Definition 3  Given two MDPs Mi and Mj the distance between the state-action pairs 
(si, ai) and (sj, aj) is defined as:

where c ∈ [0, 1) , (Ri)
a
si
 and (Ti)asi are the immediate reward and the probabilistic transition 

when action ai is taken at state si in Mi (resp. (Rj)
aj
sj
 and (Tj)

aj
sj
 in Mj ), and W((Ti)

ai
si
, (Tj)

aj
sj
;d) 

is the Kantorovich distance between the two probabilistic transitions. From the distance 
between state-action pairs in Eq. (3) we can then define a state metric as:

(2)d(si, sj) = max
a∈A

{(1 − c) ⋅ |(Ri)
a
si
− (Rj)

a
sj
| + c ⋅W((Ti)

a
si
, (Tj)

a
sj
;d)}

(3)dL((si, ai), (sj, aj)) = {(1 − c) ⋅ |(Ri)
ai
si
− (Rj)

aj
sj
| + c ⋅W((Ti)

ai
si
, (Tj)

aj
sj
;d)}

2  Also known as Monge-Kantorovich, Kantorovich-Rubinstein, Hutchinson, Mallows, Wasserstein, Vasser-
stein, Earth Mover’s Distance, Fortet-Mourier, and Dudley.
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Taylor et  al. (2008a) demonstrate that the lax bisimulation metric relates more states 
allowing for more compression than bisimulation metrics (Ferns et al., 2004), as it allows 
capturing different regularities and other types of special structures in the environment. 
Bisimulation-based metrics have been successfully used as measures of similarity between 
states with applications including state aggregation (Li et al., 2006) or representation learn-
ing (Comanici et al., 2015). It has also been used to discover regions of state space that can 
be transferred from one task to another  (Castro and Precup, 2010). However, few works 
have been proposed on how the individual distances between states can be used to deter-
mine how similar two tasks are in toto  (Song et  al., 2016). Using the metrics in Defini-
tions 2 and 3 we can compute the distance between all state pairs in Mi and Mj . Once the 
distance between all state pairs in Mi and Mj is computed, it is required to composite them 
to compute the distance d(Mi,Mj) between the two MDPs.

Definition 4  Given two MDPs Mi and Mj , we can define the distance between them as:

where � measures the distance between the state spaces Si and Sj by using the individual 
distances between the state pairs, d(si, sj).

It could not be appropriate to simply accumulate or average the distances between all 
different state pairs. For this reason, Song et  al. (2016) define �(⋅, ⋅) as a function that 
measures the distance between the sets corresponding to the state spaces Si and Sj , by using 
the Hausdorff and the Kantorovich metrics. However, in the transfer experiments con-
ducted, the Kantorovich metric can avoid negative transfer by filtering the dissimilar tasks, 
while the Hausdorff one does not have such property. Additionally, Song et  al. (2016) 
are only focused on finite MDPs. Much work needs to be done to determine if �(⋅, ⋅) is 
also computable for continuous tasks, or if it is possible the use of other metrics between 
sets (Conci and Kubrusly, 2018).

4.1.2 � Compliance

Task compliance was first introduced by Lazaric et al. (Lazaric et al., 2008; Lazaric, 2008) 
with the goal of transferring samples from a source task to a target task. For this transfer to 
result in a positive transfer, it is required to select source tasks whose samples are similar 
to those produced in the target task. Such a problem could be stated as a model identi-
fication problem in which the goal is to identify a particular task from a distribution of 
tasks, by determining its transition dynamics and reward function (Mendonca et al., 2020). 
Compliance can assist to measure the similarity between tasks by calculating the average 
probability of the source task generating target’s samples (Lazaric et al., 2008; Fachantidis, 
2016; Fachantidis et al., 2015).

Definition 5  Given two MDPs, Mi and Mj , and a set of experience tuples generated in 
Mi , DMi

= {�0,… , �m} with �k = ⟨sk, ak, s�k, rk⟩ , the probability of an experience tuple 
� = ⟨s, a, s�, r⟩ in the task Mj of being generated by Mi is defined as:

(4)d(si, sj) = max(max
ai∈Ai

min
aj∈Aj

dL((si, ai), (sj, aj)), max
aj∈Aj

min
ai∈Ai

dL((si, ai), (sj, aj)))

(5)d(Mi,Mj) = �(Si, Sj)
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where (Ti)ass� is the probability of transiting to s′ , and (Ri)
a
sr

 is the probability of generating 
the reward r after executing the action a in state s in Mi.

Definition 5 provides a formal description of the probability of a sample � generated in 
an MDP Mj of having been generated in an MDP Mi . If instead of having a single � tuple 
of the target task Mj , we have a set of tuples, DMj

 , Definition 5 could be used to compute 
the compliance between the entire target task Mj and the entire source task Mi by repeat-
ing this operation for all samples in DMj

.

Definition 6  Given two MDPs, Mi and Mj , and two sets of experience tuples generated 
DMi

 and DMj
 gathered from Mi and Mj , the compliance between Mi and Mj is computed 

as:

where n is the number of samples in DMj
 , and �t is the t-th tuple in DMj

.

� is not strictly a distance metric but a probability: the more likely the samples of the 
target task are generated in the source task, the closer � to 1. Therefore, compliance could 
be used to obtain a distance metric between MDPs like the ones this survey is looking for, 
e.g., d(Mi,Mj) = 1 − �.

4.1.3 � MDP graphs

The methods in this section are based on an interesting principle: the translation of the 
MDPs into alternative representations that allow to more easily measure the similarities 
between them. In the particular case of the approaches in this section, such an alternative 
representation is based on a graph-theoretical perspective, i.e., the states, actions, transi-
tion and reward functions can be represented as a graph with nodes and edges (Wang et al., 
2019; Kuhlmann and Stone, 2007). Therefore, these approaches are in a way based on the 
concepts of bisimulation and homomorphism described in Sect. 4.1.1, with the difference 
that they use specific techniques of structural similarity between graphs to measure the 
similarity between MDPs.

Definition 7  Given two MDPs Mi and Mj and their corresponding alternative representa-
tion as graphs, GMi

 and GMj
 , we define d(Mi,Mj) as inversely related to �(GMi

,GMj
) , 

where �(⋅, ⋅) → [0,∞) is a function that measures the structural similarity between GMi
 

and GMj
.

Therefore, the representation of MDPs as graphs opens the door to using graph-the-
oretic similarity metrics to measure the similarity between MDPs. One of these metrics 
is SimRank (Jeh and Widom, 2002) which is based on the intuition that two nodes are 
similar iff their neighbors are similar. Formally, given a graph G = {V ,E} , where V is 
the set of nodes and E is the set of directed links between any two nodes in G, the Sim-
Rank metric between any two nodes i, j ∈ V  with i ≠ j is defined as in Eq.  (8), where 

(6)P(�|DMi
) = (Ti)

a
ss�
(Ri)

a
sr

(7)� =
1

n

n∑

t=0

P(�t|DMi
)
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I(i) = {j|(j, i) ∈ E, j ∈ V} denotes the set of neighbours of i, and c is called a decay fac-
tor. If i = j , then �ij = 1 . In addition, if i ≠ j and I(i) = or I(j) = , then �ij = 0.

Besides the SimRank metric, other node-to-node proximities in graphs have been proposed 
such as RoleSim (Jin et al., 2014) or MatchSim (Lin et al., 2012). Based on the principles 
of the graph-theoretic similarity metrics, Wang et al. (2019) propose to first represent an 
MDP as a bipartite directed graph GM = {V ,�,E,� , p, r} , where V are state nodes, � 
action nodes, E is a set of decision edges from state nodes to action nodes, and � is the set 
of transition edges with each edge (�, �) ∈ � weighted with a transition probability p(�, �) 
and a reward r(�, �) . Then, Wang et al. (2019) compute the similarities between the state 
nodes in GM using a SimRank-inspired metric. In the experimental results, Wang et  al. 
(2019) demonstrate the proposed metric is able to detect certain structural similarities 
which are undetectable by bisimulation metrics. Although the paper by Wang et al. (2019) 
only focuses on the computation of the similarity between states in the same MDP, such a 
computation could be easily extended to states belonging to different MDPs. Thus, the sim-
ilarities �ij between all state pairs belonging to Mi and Mj could be composite by a func-
tion �(⋅, ⋅) in order to compute the similarity between two graphs GMi

 and GMj
 , in a similar 

way as in Sect. 4.1.1.
Other graph similarity metrics studied in the context of task similarity are based on 

graph isomorphism (McKay and Piperno, 2014). The graph isomorphism problem asks 
whether two graphs Gi = {Vi,Ei} and Gj = {Vj,Ej} have the same structure, i.e., if there 
exist a mapping function f ∶ Vi → Vj , with |Vi| = |Vj| such that (u, v) ∈ Ei iff 
(f (u), f (v)) ∈ Ej . Kuhlmann and Stone (2007) investigate the use of graph isomorphism 
in the context of MDPs. Specifically, they represent the MDPs as rule graphs instead of 
bipartite graphs for the particular problem of General Game Playing (Genesereth et al., 
2005). Such a rule graph is an accurate abstraction of the MDP problem, and can be 
properly compared to other rule graphs. In this case, the similarity function �(⋅, ⋅) is a 
binary function with value of 1 if GMi

 and GMj
 are isomorphic, and 0 otherwise. How-

ever, it would be desirable that �(⋅, ⋅) vary smoothly with the difference in the MDPs. 
Therefore, it may be worth investigating the graph edit distance which denotes the num-
ber of edit steps (insertions, deletions, or updates to nodes or edges) required to trans-
form Gi to Gj  (Gao et  al., 2010). The function �(⋅, ⋅) could be inversely related to the 
number of steps required to transform one graph into the other. Additionally, Kuhlmann 
and Stone (2007) assumes full knowledge of the transition function. A more general 
approach is presented by Liu and Stone (2006) where the agent has only a qualitative 
understanding of the transition function. Liu and Stone (2006) models the problem as a 
Qualitative Dynamic Bayes Network (QDBN). This assigns types to the nodes and 
edges, providing additional characteristics to compare.

4.2 � Transitions

The metrics in this category use tuples in the form ⟨s, a, s′⟩ to measure the similarity 
between MDPs.

(8)�ij =
c

|I(i)||I(j)|
∑

a∈I(i)

∑

b∈I(j)

�ab
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Definition 8  Given two tasks Mi and Mj , and two sets DMi
 and DMj

 of experience tuples 
in the form � = ⟨s, a, s�⟩ gathered from Mi and Mj , we can define the distance between 
them as d(Mi,Mj) = d(DMi

,DMj
).

Ammar et al. (2014) use DMj
 to build a Restricted Boltzmann Machine (RBM) model 

which describes the transitions in Mj in a richer feature space. RBMs are stochastic two-
layered energy-based models with generative capabilities for unsupervised learning (Gho-
jogh et al., 2021). The first layer is the visible layer that represents input data, whereas the 
hidden layer is used to discover more informative spaces to describe the input data. RBMs 
have the capability of regenerating visible layer values given a hidden layer configuration. 
Therefore, the learning process consists of several forward and backward passes, where the 
RBM tries to reconstruct the input data. Such a reconstruction capability is particularly 
interesting to discover informative hidden features in unlabeled data (Hinton and Salakhut-
dinov, 2006). In the specific problem of task similarity, Ammar et al. (2014) first train a 
RBM model using the tuples in DMj

 . Then, they propose feeding the tuples �k ∈ DMi
 into 

this RBM model to obtain a reconstruction �′
k
 . Afterward, they compute the Euclidean dis-

tance ek between �k and �′
k
 . The distance d(DMi

,DMj
) between DMi

 and DMj
 is computed 

as the mean of all errors d(DMi
,DMj

) =
1

n

∑n

k=1
ek , where n is the number of tuples in 

DMi
 . If Mi and Mj are closely related, the reconstruction will be very accurate, and the 

distance d(DMi
,DMj

) , will be close to zero. Similarly, Taylor et  al. (2008c) use DMj
 to 

learn a one-step transition model M(s, a) → s� . Afterward, for each tuple �k = ⟨s, a, s�⟩ in 
DMi

 , they compute the Euclidean distance between s′ and the predicted state by the model, 
M(s,  a). In this case, the distance d(DMi

,DMj
) is also computed as the average of the 

Euclidean distances obtained for each �k ∈ DMi
 . Finally, Castro (2020) presents an inter-

esting approach for computing bisimulation metrics (Sect.  4.1.1) via access to transition 
tuples, and in this way to circumvent the problems for computing them in large or continu-
ous state spaces. However, the results are limited to deterministic MDPs.

4.3 � Rewards

The metrics can also measure the similarity between MDPs according to the distance 
between their reward dynamics.

Definition 9  Given two tasks Mi and Mj , we define the distance between them as d(Mi, 
Mj) = d(Ri,Rj).

For instance, Carroll and Seppi (2005) computes d(Ri,Rj) as in Eq. (9), where n is the 
total number of state-action pairs in the source and the target task.

Instead, Tao et al. (2021) assumes the reward functions are a linear combination of some 
common features �(⋅, ⋅) , Ri(s, a) = �(s, a)Twi and Rj(s, a) = �(s, a)Twj , and then use the 
cosine distance function between wi and wj to compute d(Ri,Rj) . Finally, Gleave et  al. 
(2020) introduce the Equivalent-Policy Invariant Comparison (EPIC) pseudometric which 

(9)d(Ri,Rj) =
1

n

∑

s∈S

∑

a∈A

(Ri(s, a) − Rj(s, a))
2
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is composed of two steps. First, transitions from an offline dataset are used to convert 
reward functions to a canonical form. This canonical form is invariant to reward transfor-
mations that do not affect the optimal policy. Second, the correlation between reward val-
ues on transition samples is computed, yielding a metric capturing reward function similar-
ity. A significant drawback of this approach is that it evaluates the rewards on transitions 
between all state-state combinations, regardless of whether such state-state combinations 
are possible in a transition or not, which in practice leads to unreliable reward values as 
these are outside the distribution of the transitions. For this reason, some recent works have 
focused on improving the EPIC metric by making it consider only feasible state transi-
tions (Wulfe et al., 2022). In any case, although the metrics in this category may function 
correctly in some particular cases, in others it is not a good approximation of the similarity 
between tasks (Carroll and Seppi, 2005). As a way of example, imagine two mazes, with 
the goal in different locations, but with everything else left the same. In both tasks, the 
agent receives a reward of 1 if it reaches the goal, -1 if it hits an obstacle, and 0 elsewhere. 
These metrics will consider as equally similar to two mazes where the goals are in close 
positions or in very different positions. These metrics cannot capture the distance that a 
goal is moved. However, it can easily capture the fact that new obstacles or goals have 
been added to the tasks. Similarity metrics based on the reward functions can be computed 
before the policy is learned but in general they are less sensitive to policy trends than those 
based on policy values (Carroll and Seppi, 2005).

4.4 � State and action spaces

In this case, the distance between MDPs is computed as the distance between the state-
action pairs ⟨s, a⟩ both in the source and the target tasks.

Definition 10  Given two MDPs Mi and Mj , and their corresponding state-action spaces, 
Si × Ai and Sj × Aj , we define the distance as d(Mi,Mj) = d(Si × Ai, Sj × Aj).

For instance, Narayan and Leong (2019) compute this distance as the difference between 
the corresponding state-action transition distributions between the two tasks. In particular, 
the proposed metric is based on the Jensen-Shannon Distance (JSD) which measures the 
difference between two probability distributions (Nielsen, 2019). The distance d(Mi,Mj) 
is computed as the averaged JSD over all the state-action pairs in order to composite a 
distance between both tasks. Instead, Taylor et al (2008b) compute the Euclidean distance 
between state-action pairs in the source and the target tasks. This work is not focused 
on the construction of a distance measure between MDPs, but such Euclidean distances 
between all the state-action pairs could be composited to obtain a sort of similarity metric.

4.5 � States

When comparing closely related tasks, it may be sufficient to use only the state space. The 
metrics in this category use precisely the state space in both the source and the target tasks 
to compute the similarity between them.
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Definition 11  Given two MDPs Mi and Mj , we can define the distance between them as 
d(Mi,Mj) = d(Si, Sj) , where d(Si, Sj) measures the distance between Si and Sj.

Svetlik et al. (2017) propose to compute d(Si, Sj) as described in Eq. (10):

Equation 10 compute d(Si, Sj) as the relation between the applicability of the value func-
tion (measured as the number of states in Mi that also appears in Mj ), and the experience 
required to learn in Mj (measured as the difference of size between Sj and Si ). Another area 
of research that is relevant in this category is that of case-based reasoning (CBR) (Aamodt 
and Plaza, 1994). CBR uses the knowledge of previous cases to solve new problems, by 
comparing the actual state to the previous ones, and finding the closest. This results in an 
action that was already used to solve a very similar case, and therefore it must be useful. 
RL approaches based on CBR use a similarity function between the states in the target task 
and the states stored in a case base corresponding to a previous source task (Celiberto Jr 
et al., 2011; Bianchi et al., 2009). Such similarity function could be used to measure the 
similarity between the state spaces, hence, the similarity between the two tasks.

5 � Performance‑based metrics

The metrics proposed in the second major category of this survey evaluate the similarity 
between tasks by either comparing policies, or by comparing the performance of the agent 
in the source and the target tasks. So, we distinguish two different approaches to overcom-
ing the problem of computing such performance-based similarities: (i) by the policy simi-
larity and (ii) by the transfer gain obtained transferring the knowledge from a source task to 
the target task.

5.1 � Policy similarity

These approaches measure the similarity between MDPs by comparing the learned value 
function V� or the action-value function Q� , hence, the behavioral policies � obtained in 
the source and the target tasks. Therefore, these metrics require the full (or partial) learning 
of these policies before the computation of the similarity between tasks. Such a compari-
son can be conducted in two different ways depending on what is being compared: (i) the 
policy values, or (ii) the policy parameters.

5.1.1 � Policy values

One approach to compare the similarity between MDPs is by comparing the specific q-val-
ues or v-values of their respective value or action-value functions. The approaches in this 
category aim to capture the difference between the policy trends in two MDPs. The more 
the policies of the two tasks overlap, the more similar the two tasks become.

(10)d(Si, Sj) =
|Si| ∩ |Sj|

1 + |Sj| − |Si|
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Definition 12  Given two tasks Mi and Mj and the q-values of Q�i and Q�j learned 
in these tasks, we define d(Mi,Mj) = d(Q�i ,Q�j ) . This metric is transformed into 
d(Mi,Mj) = d(V�i ,V�j ) if V�i and V�j are computed instead.

Carroll and Seppi (2005) propose to compute d(V�i ,V�j ) as the number of states in Mi 
and Mj with identical maximum v-value. The most obvious problem with this distance is 
that it is overly restrictive: it requires two states with exactly the same v-value to consider 
an overlap, which is not often realistic. Carroll and Seppi (2005) also propose to compute 
d(Q�i ,Q�j ) as described in Eq. (11):

where n is the total number of state-action pairs in the source and the target task, and which 
is less restrictive than d(V�i ,V�j ) . Carroll and Seppi (2005) demonstrate that these similar-
ity metrics are only accurate after the q-values or v-values have been learned. Additionally, 
similarity metrics based on the number of states with maximum v-value requires the task 
to be more thoroughly learned than those based on the mean squared error of the q-values. 
Instead, (Zhou and Yang, 2020) compute d(Q�i ,Q�j ) deriving latent structures of tasks and 
finding matches between Q�i and Q�j . Finally, Serrano et al. (2021) compute the similarity 
between tasks with different but discrete state-action spaces by analyzing the differences 
between Q�i and Q�j . In particular, they identify pairs of state-action pairs that perform 
similar roles in their respective task, based on their Q-values.

Other works also make use of the action-value function Q� to compute whether two 
states are similar, but they focus on state abstractions (i.e., on aggregating similar states 
belonging to the same MDP) and not on the definition of similarity metrics between differ-
ent MDPs. For instance, Li et al. (2006) present some abstractions which consider that two 
states s1, s2 ∈ S in an MDP M , can be aggregated if the condition in Eq. (12) is fulfilled.

In Eq. (12), if � = 0 we can obtain different forms of exact abstractions depending on the 
choice of f: Q� ( Q�-irrelevance), Q∗ ( Q∗-irrelevance), or maxA Q

∗ ( a∗-irrelevance). However, 
similarly to the distance d(V�i ,V�j ) proposed by Carroll and Seppi (2005), exact abstrac-
tions fail to find opportunities for abstraction in tasks where no two situations are exactly 
alike. For this reason, Abel et al. (2016) investigate approximate state abstractions, which 
treat nearly-identical situations as equivalent, and where � ≥ 0 and f is Q∗ . From these 
abstractions, we can construct discrete metrics from any state aggregation as d(s1, s2) = 0 
if Eq. (12) is fulfilled, and d(s1, s2) = 1 otherwise. In a similar line of research, Lan et al. 
(2021) present different value-based metrics for computing the similarity between states. 
The metric d(s1, s2) = maxa∈A |Q∗(s1, a) − Q∗(s2, a)| is a representative of such value-based 
metrics. It shares the same fundamentals of the policy irrelevance abstraction proposed 
by Jong and Stone (2005) which consider that two states can be aggregated if they have 
the same optimal action. Although all of these metrics have been proposed as distances 
between two states, they could also be used to calculate the distance between two MDPs as 
described in Sect. 4.1.1.

(11)d(Q�i ,Q�j ) =
1

n

∑

s∈S

∑

a∈A

(Q�i (s, a) − Q�j (s, a))2

(12)∀a |f (s1, a) − f (s2, a)| ≤ �
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5.1.2 � Policy approximation parameters

This section considers the value function is approximated by V�(�(s), �) ≈ V�(s) , where 
� denotes an adaptable parameter vector, �(s) is the feature vector of state s, and V� may 
be a linear (e.g., linear combination of features) or a non-linear function (e.g., a neural 
network)  (Van Hasselt, 2012). The action-value function Q� can be expressed in similar 
parameterized terms, Q�(�(s, a), �) ≈ Q�(s, a) . The metrics within this category compare 
the particular weights of the parameter vectors � corresponding to the value functions V� or 
Q� of the source task and the target task in order to measure the similarity between them. 
Such metrics reflect the authors intuition that two tasks are more likely to be similar to 
each other if they have similar parameter vectors.

Definition 13  Given two tasks Mi and Mj and the parameterize functions Q�i ≈ Q�i and 
Q�j ≈ Q�j learned in these tasks, we consider d(Mi,Mj) = d(�i, �j).3

The same definition applies if it is used the value functions V�i and V�j instead of the 
action-value functions Q�i and Q�j . For instance, Karimpanal and Bouffanais (2018) com-
pute the distance d(�i, �j) as described in Eq. (13):

i.e., by using the cosine similarity between two non-zero vectors. Karimpanal and Bouffa-
nais (2018) demonstrate the better the estimate of the agent’s parameter vector, the more 
accurate the distance d(Mi,Mj) . The cosine similarity has some advantages, such as 
boundedness and the ability to handle parameter vectors � with largely different magni-
tudes. However, Karimpanal and Bouffanais (2018) focused on linear function approxima-
tion. Computing the similarity between parameter vectors presents particular challenges for 
non-linear function approximations, such as neural networks, where neurons could learn 
the same information at different positions in different runs, and still have identical behav-
iors. Therefore, the design of d(�i, �j) should consider that two parameter vectors are simi-
lar if they lead to similar behaviors, regardless of the magnitude of the weights, or possible 
shuffled vectors. Some metrics have been proposed to measure the distance between neu-
ral networks (Ashmore, 2015), but they require further investigation in the context of task 
similarity. Anyway, we consider that this alternative representation of policies as parameter 
vectors opens the door to the comparison of other policy representations (Ferrante et al., 
2008).

5.2 � Transfer gain

One possible metric to measure the similarity between two MDPs is an approximation to 
the advantage gained by using one source task to speed up the learning of another target 
task, which is commonly known as transfer gain (Carroll and Seppi, 2005; Carroll, 2005; 
Taylor and Stone, 2009).

(13)c�i,�j =
�i ⋅ �j

|�i||�j|

3  For simplicity, we write Q� as an abbreviation for Q�(�(s, a), �).
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Definition 14  Given two tasks Mi and Mj , and g(Mi,Mj) which denotes the gain of 
transferring the knowledge learned in Mi to Mj , we can consider d(Mi,Mj) as inversely 
related to g(Mi,Mj).

Many forms to measure the advantage g(Mi,Mj) are possible. Some of them are 
graphically represented in Fig. 2:

•	 Jumpstart The performance at the initial steps of the learning process of an agent learn-
ing Mj may be improved by transfer from Mi.

•	 Asymptotic performance The final learned performance of an agent learning Mj may 
also be improved by transfer from Mi.

•	 Total reward The total reward accumulated by an agent learning Mj with transfer from 
Mi , may be improved if it uses transfer, compared to learning without transfer.

•	 Average reward The average reward received within some window of time by an agent 
learning Mj with transfer from Mi may also be improved.

•	 Time to convergence It is expected for a transfer learner to reach the asymptotic perfor-
mance earlier than another non-transfer learner.

Regardless of the particular technique used to compute g(Mi,Mj) , the higher the transfer 
gain, the greater the similarity between the tasks. While there is a general consensus that 
g(Mi,Mj) is the best similarity metric between tasks (Carroll, 2005; Carroll and Seppi, 
2005), since it allows to accurately measure positive transfer, it actually also requires that 
the transfer experiment be entirely or partially run before measuring the degree of similar-
ity between tasks. This fact precludes its use in tasks where it is mandatory to know the 
similarity between tasks before the transfer experiment takes place.

In this paper, we distinguish two approaches within this category depending on whether 
the transfer gain is computed after or during the transfer process: (i) off-line transfer gain, 
and (ii) on-line transfer gain.

Fig. 2   Different metrics for measuring the transfer gain, g(Mi,Mj) . This graph show benefits to the jump-
start, time to convergence, total reward, average reward received within some window of time, and asymp-
totic performance
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5.2.1 � Off‑line transfer gain

In this case, the transfer gain g(Mi,Mj) is estimated as the difference in performance 
between the learning process with and without transfer, and once the learning processes are 
considered to be finished (Carroll, 2005; Mahmud et al., 2013; Sinapov et al., 2015; Zhan 
et al., 2016). Such gain g(Mi,Mj) can be computed as the jumpstart (Sinapov et al., 2015; 
Carroll, 2005), the time to convergence (Carroll, 2005), the asymptotic performance (Mah-
mud et al., 2013), although other metrics such as the total reward or the transfer ratio could 
be also used (Taylor and Stone, 2009).

5.2.2 � On‑line transfer gain

On the contrary, in these approaches, the transfer gain is estimated on-line while the pol-
icy in the target task is computed (Fernández and Veloso, 2013; Azar et al., 2013; Li and 
Zhang, 2017). It is important to bear in mind that the on-line computation of this gain 
only makes sense if during the learning process we have several transfer sources to choose 
from. At the beginning of the learning process, these approaches have at their disposal the 
knowledge learned in solving a set of previous tasks {M1,… ,Mn} to learn the new task 
Mj . During learning, they compute g(Mi,Mj) of each past task Mi ∈ {M1,… ,Mn} . To 
do that, they transfer the knowledge acquired solving Mi to Mj during a limited number of 
episodes m. Then, g(Mi,Mj) is computed as the average reward obtained during those m 
episodes (Fernández and Veloso, 2013; Azar et al., 2013). Once all gains are computed, it 
is possible to decide on-line which is the closest task to Mj within {M1,… ,Mn} , so that 
the knowledge of the selected closest task can have a greater influence on learning about 
the policy in Mj.

6 � Discussion

From a transfer point of view, the ultimate goal of all similarity metrics is in some way 
to predict the relative advantage that would be gained by using a source task in a target 
task. The more similar the source and the target tasks are, the greater the positive transfer. 
However, there is probably no one best universal metric that works with all transfer tech-
niques and problems. Since each metric can capture different types of similarity and each 
transfer technique induces different bias in the learning process, the question of selecting 
the best metric turns into finding the correct metric for a transfer technique to be applied 
to a particular problem. For this reason, in order to facilitate the selection of the best met-
ric for a particular task, this section analyzes the distance metrics surveyed in this paper 
across five dimensions (Table 2): (i) nature of the state-action space (denoted by Spaces in 
Table 2), (ii) the required knowledge to compute the distance metric (denoted by Knowl.), 
(iii) allowed differences between the tasks (Differ.), (iv) the type of information that is 
transferred from the source tasks and the target tasks (Transfer), and (v) when the computa-
tion take places (Comp.). Table 3 provides a key for the abbreviations in Table 2. Further-
more, Table 2 and the proposed discussion will serve to analyze the pros and cons of the 
categories surveyed.
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6.1 � State‑action space

Obviously, the selection of the metric depends on the nature of the state-action space. 
Some approaches require a finite set of states and actions. This is particularly true in the 

Table 2   This table lists most of the metrics discussed in this survey and classifies each in terms of five 
dimensions. Use Table 3 as key

Citation Spaces Knowl. Differ. Transfer Comp. Category

Section 4: model-based
Ferns et al. (2004) s/a t,r - - b Bisimulation
Castro and Precup (2010) s/a t,r s,t,r � b
Song et al. (2016) s/a t,r s,t,r � b
Ferns et al. (2012) S/a t,r - - b
Castro et al. (2021) S/a I - - b
Ravindran and Barto (2002) s/a t,r - - b Homomorphism
Ravindran and Barto (2003) s/a t,r s,a,t,r �p b
Sorg and Singh (2009) S/a t,r s,a,t,r Q b
Taylor et al. (2008a) s/a t,r - - b
Lazaric et al. (2008) S/A t,r t,r I b Compliance
Fachantidis (2016) S/A t,r s,a,t,r I b
Fachantidis et al. (2015) S/A t,r s,a,t,r I b
Wang et al. (2019) s/a t,r t,r - b MDP graphs
Liu and Stone (2006) s/a t,r t,r V b
Kuhlmann and Stone (2007) s/a t,r t,r V b
Ammar et al. (2014) S/A I s,a,t,r Q, � b Transitions
Taylor et al. (2008c) S/a t s,a,t,r Q b
Castro (2020) S/a I - - b
Carroll and Seppi (2005) s/a r t,r Q,� b Rewards
Tao et al. (2021) S/A r t,r � b
Gleave et al. (2020) S/A r t,r - b
Narayan and Leong (2019) S/a s × a s,a,t,r � b S & A Spaces
Taylor et al. (2008b) S/a s × a s,a,t,r � b
Svetlik et al. (2017) s/a |s| s � b States
Celiberto Jr et al. (2011) S/A s s,a,t,r � b
Section 5: Performance-based
Carroll (2005) s/a Q t,r Q,� b Policy values
Zhou and Yang (2020) S/a Q r Q b
Serrano et al. (2021) s/a Q s,a Q b
Karimpanal and Bouffanais (2018) S/a Q r � b Policy param.
Carroll and Seppi (2005) s/a

∑
r, c t,r Q,� a Offline transfer

Mahmud et al. (2013) s/a V t,r � a
Sinapov et al. (2015) S/a j s Q a
Fernández and Veloso (2013) S/a

∑
r t,r � d Online transfer

Fernández et al. (2010) S/a
∑

r s,a,t,r � d
Li and Zhang (2017) S/a

∑
r t,r � d

Azar et al. (2013) S/a
∑

r t,r � d
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case of bisimulation and homomorphishm metrics. These metrics are expensive to compute 
and typically require enumerating all the states pairs even when using on-the-fly approxi-
mations (Comanici et al., 2012), sampling-based approximations (Ferns et al., 2012; Castro 
and Precup, 2010) or approximations using the structure in the state space  (Bacci et  al., 
2013). Such full state enumeration is impractical for large state spaces, and impossible 
for continuous state spaces. Additionally, these metrics can be overly pessimistic in the 
sense that they consider worst-case differences between states, which is overly restrictive 
for many problems (Castro and Precup, 2010). Although there have been positive steps to 
circumvent these drawbacks (Castro, 2020; Zhang et al., 2021; Castro et al., 2021), bisimu-
lation-based approaches compute distances between states (belonging to the same MDP or 
not), and few works have been proposed to compose these distances into a single distance 
between MDPs (Song et al., 2016). For this reason, significant work needs to be done to 
determine if such approaches are feasible in practice for this task. Metrics based on MDP 
graphs have similar limitations on the size of the state and action spaces (Wang and Liang, 
2019; Kuhlmann and Stone, 2007; Liu and Stone, 2006). Although they are based on an 
interesting principle, at the moment all of these graph-based approaches have limited appli-
cations. On the one hand, they require MDPs with a finite number of states and actions 
that can be adequately represented as a graph. On the other hand, graphs are required to 
be small since the computation of graph similarity metrics is computationally demanding. 
Regarding the latter, the computation of these measures can be accelerated via parallelism, 
but such approaches need to be investigated in the context of similarity between MDPs.

Table 3   Key that provides a reference to the abbreviations in Table 2

Spaces Transfer
s/S Finite/large state space � Policies
a/A Finite/large action space �p Partial policies (e.g., options)

Q Action-value function
Knowl. V Value function
t Transition function � Policy parameters
r Reward function I Experience instances
I Experiences instances – For a purpose other than transfer (e.g.,
s × a State-action pairs state aggregation)
s States
|s| States and size of the state spaces Comp.
Q/V Action-value or value function b Before transfer
∑

r Average reward within some window of time a After transfer
c Time to convergence d During transfer
j Jumpstart
Differ.
s/a State/action spaces
t/r Transition/reward functions
- For a purpose other than similarity between

tasks (e.g., state aggregation)
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6.2 � Required knowledge

Another issue that needs to be addressed is what and how much information is required 
to compute the similarity between tasks. As can be seen in Table 2, most model-based 
approaches require prior full information (or accurate approximations) about the tran-
sition and reward dynamics  (Castro and Precup, 2010; Lazaric et  al., 2008; Wang 
and Liang, 2019), or about the size of the state space  (Svetlik et  al., 2017). In this 
sense, performance-based metrics have a clear advantage over model-based ones: in 
general, performance-based metrics require less a priori information about the task 
to be solved, although as a counterpoint they need to fully or partially run the trans-
fer experiment to obtain accurate approximations of the Q-function (Carroll, 2005; 
Carroll and Seppi, 2005; Zhou and Yang, 2020; Karimpanal and Bouffanais, 2018) 
or the V-function  (Mahmud et  al., 2013). In other cases, only the average cumula-
tive reward obtained during a predetermined time window by the ongoing policy is 
required (Sinapov et al., 2015; Li and Zhang, 2017; Azar et al., 2013; Fernández and 
Veloso, 2013), which allows the fast computation of the similarity between tasks with-
out the need to fully run the transfer experiment.

In this dimension, the model-based approaches based on the structural comparison 
of the instances in the form ⟨s, a, s′⟩ gathered from the two tasks are highly attrac-
tive  (Ammar et  al., 2014). On the one hand, they are not computationally expensive 
because they do not need to approximate the dynamics of the environment, nor do they 
need to learn a behavior policy, just to gather instances in both tasks. On the other 
hand, the collection of these instances can be done with a random policy, but also 
with a safe suboptimal one. The latter is particularly interesting if we are dealing with 
tasks where random behaviors are not allowed or where a single bad action can lead 
to catastrophic consequences. In this same line of research, the approaches that only 
use partial information from the instances to carry out similar comparisons, such as 
state-action pairs ⟨s, a⟩ (Narayan and Leong, 2019; Taylor et al., 2008b), or simply the 
states ⟨s⟩ (Svetlik et al., 2017; Celiberto Jr et al., 2011), are also interesting. However, 
in these cases, it is required a strong relationship between the tasks to be compared, 
which is either learned  (Narayan and Leong, 2019; Taylor et al., 2008b) or taken for 
granted (Svetlik et al., 2017). As an example of the latter, Svetlik et al. (2017) assume 
that the only difference allowed between tasks is between the state spaces.

6.3 � Allowed tasks differences

Regarding the allowed tasks differences, distance metrics can be computed between 
tasks that have different transition and/or reward functions  (Ferns et  al., 2004; Cas-
tro and Precup, 2010; Song et  al., 2016; Lazaric et  al., 2008), and/or state-action 
spaces (Fachantidis et al., 2015; Fernández and Veloso, 2013). Most of the methods in 
Table 2 require that both tasks have the same state-action space (Lazaric et al., 2008; 
Azar et al., 2013). However, the latter can be partially alleviated by the construction of 
inter-task mapping functions between state and/or action variables that allows translat-
ing a state si ∈ Si in one task to its equivalent state sj ∈ Sj in another tasks, XS(si) = sj , 
and an action ai ∈ Ai to its equivalent aj ∈ Aj , XA(ai) = aj . In some cases, the map-
pings functions XS and XA are explicitly provided (Fernández et al., 2010), but in other 
cases they are learned (Fachantidis et al., 2015; Taylor et al., 2008c). However, current 
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approaches for autonomously learning such mapping functions require domain knowl-
edge or are inefficient. In this context, bisimulation and homomorphism metrics offer 
an interesting alternative to perform such a mapping between tasks. The mapping 
between the states of two MDPs is defined implicitly by the distance metric d(⋅, ⋅) as 
described in Definition 2: for each state in one MDP, finding the most similar state in 
the other MDP is equivalent to mapping the states from one MDP to the other. Instead, 
homomorphisms allow correspondences to be defined between state-action pairs, rather 
than just states (Definition  3). Therefore, one possibility is to allow the mapping to 
be determined automatically from bisimulation or homomorphism (Castro and Precup, 
2010; Sorg and Singh, 2009).

6.4 � Transferred knowledge

Different kinds of knowledge may transfer better or worse depending on the similarity 
between the tasks. The surveyed papers in Table 2 primarily transfer two types of knowl-
edge: policies (Castro and Precup, 2010; Tao et al., 2021), and value functions (Sorg and 
Singh, 2009; Carroll, 2005; Ammar et  al., 2014), and the type of knowledge transferred 
does not seem to depend on the way of computing the similarity between tasks. It should 
be noted that some approaches in Table 2 are not explicitly used for measuring the similar-
ity between tasks. This is the case of some bisimulation and homomorphism approaches 
which are focused on state aggregation, but, as discussed in Sect. 4.1.1, they can be also 
used to measure the similarity between MDPs.

6.5 � Computation

This leads us to the following issue: the computation moment. Ideally, the computation of 
the similarity metric should be before or, at least, during the transfer. Off-line transfer gain 
approaches are undoubtedly the best method for measuring similarity between two tasks: 
they produce such a measure after the transfer experiment has been run, in such a way that 
we can compute the real gain. However, if the point is to use the task similarity measure 
to choose a task to use in transfer, these metrics are useless. In this case, model-based 
metrics have an advantage over performance-based metrics: they allow to compute the 
metrics before the transfer process. These metrics can be used to choose the most similar 
MDP before the transfer, but as far as we know there are no theoretical guarantees that the 
most similar MDP is similar enough to produce a positive transfer. By contrast, the met-
rics based on the on-line transfer gain are at the point halfway between both. They allow 
computing the similarity metric during transfer, so that depending on the similarity of the 
source task, it will introduce a greater or lesser exploration bias in the learning process of 
the new task.

7 � Future directions

The previous discussion points out several future directions. On the one hand, since 
there is no best metric, it would be useful to use several of them. For instance, model-
based metrics can be used to return a useful approximation of task similarity before 
the tasks are learned, although this measure can be adapted on-line during the learning 
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process so that the bias that the source task induces in the exploration process is adjusted 
dynamically. On the other hand, given that different metrics compute different types 
of similarity (i.e., model-based metrics measure structural similarities, whilst perfor-
mance-based metrics measure performance similarities), the agent can be equipped with 
the ability not only to determine which source task to use, but also which transfer tech-
nique to use given the type of similarity between the source and the target tasks. The 
proposed taxonomy also suggests other holes that should be considered in future work. 
Sect.  6.2 considers model-based approaches based on the structural comparison of 
tuples in the form ⟨s, a, s′⟩ as highly attractive (Ammar et al., 2014). Surprisingly, these 
approximations leave the reward out of the tuples. We suggest that the comparison of 
tuples in the form ⟨s, a, s′, r⟩ would lead to better estimates of the similarity between two 
MDPs. Such metrics would not only be able to capture structural differences between 
MDPs, but also changes on the reward dynamics. The taxonomy also shows metrics that 
measures the similarity between two tasks as the similarity between their state spaces 
(Sect. 4.5). We suggest that this idea could also be applied to the action space: a novel 
metric not proposed in the taxonomy would be one that measure the similarity between 
two tasks by only considering the similarity between their action spaces. Such a metric 
can be particularly interesting in robotic tasks, where the robot skills could change from 
one task to another, but with everything else left the same.

Another interesting line of research is that based on building semantic representations 
of the tasks through domain-dependent features. For instance, we can define a particular 
Pac-Man task from features like the number of ghosts, behavior of the ghosts, or the type 
of the maze, and use these features to build a similarity metric between different Pac-Man 
tasks. In fact, one may heuristically combine structural, performance, but also semantic 
similarity aspects into the same metric. Thus, it could be obtained a metric more aligned 
with the way in which humans decides what is similar, since humans analyze the similarity 
between concepts or objects from different perspectives (Kemmerer, 2017).

There is also future work in the context of Sim-to-Real. Transferring learned models 
from simulation to the real world remains one of the hardest problems in control the-
ory  (Zhao et  al., 2020). In this case, similarity metrics can help to answer how similar 
simulations and the actual world are. They could be used to provide theoretical guaran-
tees that ensure the learned policies transferred from simulation to the actual world will 
perform as required, or to define mechanisms to tune/modify the simulated environments, 
so the gap between the simulated world and the actual one decreases. In another scenario, 
recent successes achieved by Deep Learning for learning feature representations have sig-
nificantly impacted RL, and the combination of both methods (known as Deep RL) has 
achieved impressive results in recent years (Silver et al., 2016). However, using Deep RL 
introduces additional challenges, especially, their sample complexity. Initial investigations 
show that Deep RL agents also benefit from reuse of knowledge, but the effects of negative 
transfer could be catastrophic if uninformed transfer is performed (Pan et al., 2018; Rusu 
et al., 2016). Therefore, similarity metrics should play an important role also in the context 
of Deep RL. Such metrics will have to deal with the particular characteristics of the MDPs 
in Deep RL, i.e., possibly huge (and continuous) state and action spaces. This complex-
ity makes most of the metrics discussed in this paper are not directly usable. However, 
some of these metrics could take advantage of advances in Deep Learning itself, e.g., using 
deep architectures instead of multi-layer perceptrons (Taylor et al., 2008c), or Deep RBMs 
instead of RBMs (Ammar et al., 2014). Therefore, the adaptation or the creation of new 
similarity metrics for Deep RL is a promising area of research.
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Finally, comparing similarity metrics from different publications and recreating results 
from the literature is problematic because there are few available standard implementa-
tions. Researchers who wish to compare their new similarity metrics to existing results 
must often re-implement everything from scratch using the (sometimes incomplete and/or 
unclear) parameter setting of the publications. In this scenario, comparisons can be inac-
curate and often not empirically verifiable. It would be required to establish ways to fairly 
compare results yielded by similarity metrics that leverage very different methodologies to 
understand their advantages and disadvantages. We need a benchmark suite consisting of 
implemented tasks and similarity metrics in order to better gauge the progress and appli-
cability of new metrics. It is worth noting that such tool can open the door to the stand-
ardization of the comparison between transfer learning algorithms: since existing metrics 
measure the similarity from different perspectives, they can determine the performance of 
a transfer learning algorithm depending on how and how much similar the source and the 
target tasks are.

8 � Concluding remarks

This paper contributes a compact and useful taxonomy of similarity metrics for Markov 
Decision Processes. The leaves of the taxonomy have been used to provide a literature 
review that surveys the existing work. We differentiated between model-based and per-
formance-based metrics, depending on whether a structural or performance criterion has 
been used in its creation. The proposed taxonomy permits to organize clearly the differ-
ent similarity metrics, or find commonalities between them. This can help the reader to 
choose similarity metrics for their tasks, or even define their own. We also discussed differ-
ent selection criteria and some promising future research directions.
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