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Abstract
Universal domain adaptation (UniDA) is a general unsupervised domain adaptation setting, 
which addresses both domain and label shifts in adaptation. Its main challenge lies in how 
to identify target samples in unshared or unknown classes. Previous methods commonly 
strive to depict sample “confidence” along with a threshold for rejecting unknowns, and 
align feature distributions of shared classes across domains. However, it is still hard to pre-
specify a “confidence” criterion and threshold which are adaptive to different tasks, and 
a mis-prediction of unknowns further incurs mis-alignment of features in shared classes. 
In this paper, we propose a new UniDA method with adaptive Unknown Authentication 
by Classifier Paradox (UACP), considering that samples with paradoxical predictions are 
probably unknowns belonging to none of the source classes. In UACP, a composite classi-
fier is jointly designed with two types of predictors. That is, a multi-class (MC) predictor 
classifies samples to one of the multiple source classes, while a binary one-vs-all predictor 
further verifies the prediction by MC predictor. Samples with verification failure or para-
dox are identified as unknowns. Further, instead of feature alignment for shared classes, 
implicit domain alignment is conducted in output space such that samples across domains 
share the same decision boundary, though with feature discrepancy. Empirical results vali-
date UACP under both open-set and universal UDA settings.
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1 Introduction

Unsupervised domain adaptation (UDA) (Ben-David et al., 2010; Tzeng et al., 2014; Long 
et al., 2015) aims to adopt a fully-labeled source domain to help the learning of unlabeled 
target domain. Existing UDA methods mainly attempt to generate domain-invariant rep-
resentations by reducing the distribution discrepancy across domains with some distance 
metrics, such as Maximum Mean Discrepancy (MMD) (Tzeng et al., 2014), or by adver-
sarial learning (Ganin et al., 2016) between the feature generator and domain discrimina-
tor. However, they commonly make a strong assumption that the source and target domains 
share the same label set, which limits their applicability to many real-world applications.

In real tasks, the label sets from source and target domains are usually different. For 
example, with the emergence of Big Data (Sagiroglu & Sinanc, 2013), large-scale labeled 
datasets like ImageNet-1K (Russakovsky et  al., 2015) and Google Open Images (Krasin 
et al., 2017) are readily accessible as the source domains, while the target domain may only 
contain a subset of the source classes, leading to a so-termed Partial Domain Adaptation 
(PDA) (Cao et al., 2018). On the other hand, in real open learning scenes, target domains 
usually have unknown classes not covered in the source domain, leading to Open-Set 
Domain Adaptation (OSDA) (Panareda Busto & Gall, 2017). The learning purpose is to 
classify the target data in known classes correctly, while reject data in all unknown classes 
as “unknown”. Recently, Universal Domain Adaptation (UniDA) (You et al., 2019), a gen-
eral learning setting without prior knowledge on label sets across domains, has attracted 
increasing attention. Obviously, UniDA is a more realistic UDA setting since the target 
ground-truth is commonly not available in real tasks.

A main learning challenge posed in such setting is how to identify the target samples in 
unshared or unknown classes. Previous methods mainly strive to depict the sample “con-
fidence” along with a pre-defined threshold to detect target unknowns, then align distri-
butions of shared classes across domains. The commonly adopted confidence criteria 
include prediction entropy (Saito et al., 2020), source similarity (Panareda Busto & Gall, 
2017), classifier discrepancy (Liang et al., 2021) and minimum inter-class distance (Saito 
& Saenko, 2021), etc. Though with great progress, it is still hard to pre-specify versatile 
“confidence” criterion and threshold which are adaptive to various complicated real tasks. 
Furthermore, the mis-prediction of unknowns further incurs mis-alignment of features in 
shared classes, probably leading to negative transfer. To this end, we propose a new UniDA 
method with adaptive unknown authentication by classifier paradox (UACP). Specifically, 
the prediction paradox from two types of predictors is adopted in UACP to adaptively iden-
tify target unknowns, since samples with paradoxical predictions are probably unknowns 
belonging to none of the source classes.

In UACP, a composite classifier is designed with two types of predictors for classifi-
cation and verification, respectively. The MC predictor classifies samples to one of the 
multiple source classes, and the corresponding binary OVA predictor further verifies if a 
sample belongs to the predicted class by MC predictor. Finally, samples with paradoxical 
predictions are rejected as unknowns. An illustration is shown in Fig. 1, the sample with 
true label (TL) “tiger” denoted by purple star is classified to “cat” by MC predictor, thus 
it is declined by the “airplane” and “dog”. But meanwhile, the corresponding OVA predic-
tor (cat vs others) gives a paradoxical prediction that it belongs to the “others” rather than 
“cat”, then it is predicted as an “unknown” sample not included in the source classes. At 
the same time, the sample with TL “cat” denoted by orange star has consistent predic-
tions from the two predictors, thus it is classified to the known “cat” class. In fact, the 
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decision space of MC contains only source classes, while the decision space of OVAs con-
tains both source and unknown classes, thus they commonly give consistent predictions for 
known-class samples, while paradoxical predictions for unknown-class samples. Moreover, 
different from previous feature alignment for shared classes, implicit domain alignment is 
conducted in the output space by a domain-invariant classifier. Specifically, features are 
generated for both domains such that the classifier correctly classifies source samples, and 
captures the target structure as well. In this way, samples across domains share the same 
decision boundary, though with different feature distributions. The main contributions of 
this paper are organized as follows,

• We propose adaptive unknown authentication for UniDA by classifier paradox, such 
that target unknowns are adaptively identified by prediction paradox from two types of 
predictors.

• We propose implicit domain alignment for UniDA in the output space, such that sam-
ples across domains share the same decision boundary, though exhibit feature discrep-
ancy.

• Empirical comparisons with state-of-arts validate the proposed UACP in both open-set 
and universal UDA settings.

2  Related works

In this section, we briefly review the related UDA methods, including closed-set UDA, 
OSDA, and UniDA methods in separate sub-sections.

2.1  Unsupervised domain adaptation

Closed-set UDA is the classical scenario in which source and target domains have distribu-
tion shift but consistent label sets. UDA approaches commonly attempt to reduce the distri-
bution discrepancy for domain-invariant features across domains. The two main categories 
are statistical-based methods and adversarial-based methods. Statistical-based UDA methods 
directly minimize a discrepancy metric across domains, such as MMD (Tzeng et al., 2014), 
multi-kernel MMD (Long et al., 2015), joint MMD (Long et al., 2017), and correlation (Sun 

Fig. 1  Illustration of adaptive unknown authentication by prediction paradox from MC predictor and the 
corresponding OVA predictor. If the predictions for sample x from MC and the OVA predictor are consist-
ent, the predicted label (PL) is among the known source classes, otherwise, it is predicted as an “unknown” 
sample
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& Saenko, 2016), etc. Adversarial-based methods maximize the domain confusion via adver-
sarial learning between feature generator and domain discriminator, or between different clas-
sifiers (Bousmalis et al., 2016; Ganin et al., 2016; Saito et al., 2018). Besides, some works also 
utilize learning strategies from other fields, such as curriculum learning (Choi et al., 2019), 
co-training (Wu et al., 2019), self-training (Yang et al., 2021), and entropy regularization (Wu 
et al., 2021), etc.

2.2  Open‑set domain adaptation

In OSDA, the target domain contains novel categories that are not observed in the source 
domain. Existing OSDA methods tackle this problem by first separating target unknowns 
from known data, and then performing feature alignment on shared classes across domains. 
Panareda  Busto and Gall (2017) assign target samples to one of the known and unknown 
classes based on their distance to source centroids. Saito et  al. (2018) adopt an adversarial 
framework for OSDA, and manually set a pre-defined threshold to either align target samples 
with source data or reject them as unknowns. Pan et al. (2020) present a self-ensemble method 
to exploit the category-agnostic clusters for unknown detection. Liu et al. (2019) employ a 
coarse-to-fine weighting mechanism to progressively identify target unknowns. Bucci et  al. 
(2020) utilize rotation recognition with tailed adjustments to separate known and unknown 
target samples, and align distributions of shared classes across domains.

2.3  Universal domain adaptation

In UniDA, both domains may contain unshared or private classes, while no prior information 
about the target label set is provided. You et al. (2019) quantify sample-level transferability 
to distinguish shared and private classes in each domain. Later on, Saito et al. (2020) apply 
neighborhood clustering and entropy separation to encourage known target samples close to 
source prototypes while away from unknown classes. Fu et al. (2020) present calibrated mul-
tiple uncertainty to detect open classes more accurately. Li et al. (2021) utilize the intrinsic 
structure of target samples and provide a unified framework to deal with different sub-cases 
of UniDA. Saito and Saenko (2021) adopt the minimum inter-class distance in source domain 
as the threshold to identify unknowns in target. Some recent researches also study UniDA in 
more complicated scenarios. Yu et al. (2021) adopt the divergence between two classifiers as 
sample confidence in noisy UniDA. Liang et al. (2021) develop an informative consistency 
score based on two classifiers to help distinguish unknown samples in source-free UniDA.

Different from existing works (Yu et al., 2021; Liang et al., 2021) that adopt the discrep-
ancy of two same-structured classifiers for describing sample “confidence”, our proposed 
UACP exploits the prediction paradox between two types of predictors (MC and OVA) to 
directly identify unknowns. Besides, OVANet (Saito & Saenko, 2021) utilizes OVA clas-
sifiers for unknown identification in UniDA, in order to seek the minimum source inter-
class distance as the unknown threshold, while UACP directly adopts prediction paradox 
between MC and OVA for adaptive unknown authentication.

3  Methodology

In this section, we first revisit the problem setting of UniDA, and describe the network 
architecture of UACP. After that, we show individual components in UACP in details.
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3.1  Problem setting and network architecture

In UniDA, we are given a labeled source domain Ds = {(xs
i
, ys

i
)}

Ns

i=1
 with Ns labeled source 

samples, and an unlabeled target domain Dt = {(xt
i
)}

Nt

i=1
 with Nt unlabeled target samples, 

where xs
i
 and xt

i
 denote the source and target samples, respectively. ys

i
∈ {1,… ,K} is the 

class label for sample xs
i
 , and K is the number of source classes. Define Ls and Lt as the 

label sets of source and target domains, respectively. Then the class set shared across 
domains is denoted as Ls ∩ Lt . Ls − Lt and Lt − Ls represent the source-private and target-
private class sets, respectively. We mainly focus on the scenario with Lt − Ls≠� , including 
both OSDA and UniDA, and the learning goal is to classify target samples into |Ls ∩ Lt| + 1 
classes, that is, to classify known target samples to the shared source classes, while recog-
nize unknown target samples in all target-private classes as well.

The architecture of UACP is given in Fig. 2. It contains two components: (i) a feature 
extractor F, which outputs �2 normalized feature vector, and (ii) a composite classifier CC 
composed of 2 × K neurons. In CC, a MC predictor w.r.t. the first K neurons is adopted 
to classify target samples to one of the K source classes. K OVA predictors are further 
adopted to verify the prediction from MC predictor, and the OVA predictor for the k-th 
class is built on the k-th and (K + k)-th neurons. The memory bank holds features for all 
target samples currently.

3.2  Composite classifier with MC and OVA predictors

In order to adaptively identify unknown target samples, a novel composite classifier with 
both MC and OVA predictors is designed in UACP. The MC predictor outputs a K-dimen-
sional vector, in order to classify samples to one of the source classes. Further, there are 
also K OVA predictors OVA = {ova1, ova2,… , ovaK} for verifying the prediction by MC 
predictor, one OVA predictor for each source class. Let pmc(x) = �(MC(F(x))) ∈ ℝ

K 
denote the probability output vector for sample x by MC predictor, where � is the soft-
max function, each dimension pk

mc
(x) describes the probability of x to the k-th class. 

povak (x) = �(ovak(F(x))) ∈ ℝ
2 denotes the probability output for x by the k-th OVA 

Fig. 2  Overall framework of UACP, which includes a shared feature extractor F for source and target 
domains, and a composite classifier with a MC predictor and binary OVA predictors. The MC and OVA 
predictors share the layer neurons, i.e., the first K neurons construct the MC predictor, while the k-th and 
(K + k)-th neurons construct the OVA predictor for the k-th class
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predictor, in which p+
ovak

(x) and p−
ovak

(x) are the probabilities of x to the k-th (positive) and 
rest (negative) classes, respectively.

For MC predictor, the cross-entropy loss is minimized with source supervision,

where �ce is the standard cross-entropy loss.
Since OVA predictor does not enforce samples to belong to only source classes, 

UACP adopts it to further verify the prediction by MC predictor. For each source class, 
an OVA predictor learns the decision boundary between the positive in-class and nega-
tive out-class categories, and the negative category actually includes both source and 
unknown classes. At the same time, UACP learns discriminative features among catego-
ries by maximizing the distance between similar categories (Padhy et al., 2020; Saito & 
Saenko, 2021). Specifically, for each source sample xs

i
 , the discrepancy between ovaysi 

and OVA predictor w.r.t. the closest negative class is further maximized,

where j represents the closest negative class for xs
i
 . Through minimizing the above loss, 

OVA predictors can not only identify in-class and out-class samples, but also separate simi-
lar classes with source supervision.

3.3  Prediction paradox for target unknown authentication

Since some target categories are absent in source domain, it is difficult to make accu-
rate predictions for target samples directly with source classifier, especially for target 
unknowns. To the end, UACP adopts classifier paradox for adaptive unknown authen-
tication, including a MC predictor to classify samples to one of the multiple source 
classes, and a corresponding OVA predictor to further verify whether the sample 
belongs to the predicted class or not. If the OVA predictor affirms the prediction by MC 
predictor, which means MC and OVA have consistent predictions, then it is confident 
to predict the sample to a known class in source domain. Otherwise, if there is verifica-
tion failure by OVA predictor, or the MC and OVA predictors have paradoxical predic-
tions, then the sample tends to belong to unknown class. Finally, for each sample xi , let 
k = argmax(pmc(xi)) denote the predicted class by MC predictor, then

where Ck and Cunknown denote the k-th known class and unknown class, respectively.
Further, we adopt an entropy-strengthened loss over target samples for MC predictor, 

in order to strengthen the consistency between MC and OVA predictors, and capture the 
low-density separation for target samples as well. Specifically, for a known target sam-
ple with MC prediction affirmed by OVA predictor, we further constrain a sharper prob-
ability distribution or more confident prediction in MC predictor, while for an unknown 
sample with prediction paradox, a more uniform distribution or less confident prediction 

(1)LCE = �(xs
i
,ys
i
)∈Ds

�ce(pmc(x
s
i
), ys

i
)

(2)LSOVA = �(xs
i
,ys
i
)∈Ds

{
−log(p+

ova
ys
i

(xs
i
)) + max

j≠ys
i

[log(p+
ovaj

(xs
i
))]

}

(3)xi ∈

{
Ck, if p+

ovak
(xi) ≥ p−

ovak
(xi)

Cunknown,if p
+
ovak

(xi) < p−
ovak

(xi)
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is further expected. Finally, for each target sample xt
i
 , the entropy-strengthened loss is 

expressed as,

and

where m is the margin for selecting confident known and unknown samples. It is noted that 
we adopt m to conduct constraint on confident target samples, in order to exclude the incor-
rect predictions from MC predictor. In particular, with our special design of composite 
classifier, MC and OVA tend to have consistent predictions for known-class samples due to 
their partial-shared neurons, and they cooperate with each other in learning.

3.4  Domain‑invariant classifier for implicit domain alignment

Previous UniDA methods commonly reduce the domain shift by feature alignment for 
shared classes across domains, while a mis-identification of target unknowns further incurs 
mis-alignment across domains. In UACP, an implicit domain alignment is conducted 
directly in the output space. Specifically, a domain-invariant classifier is trained such that 
samples across domains share the same decision boundary, though exhibit different feature 
distributions.

First, the source supervision is adopted for both feature extractor and classifier learning 
in Sect. 3.2. Due to the lack of target ground-truth, we further propose to leverage the self-
supervised knowledge from target data. Our idea is that nearby samples should be close 
to each other in feature space, so as to generate well-clustered features for target data. A 
memory bank is utilized as V = {v1, v2,… , vNt

} , where vi is the stored feature vector for xi , 
and it is updated with the mini-batch features in each iteration. Then the similarity between 
feature fi = F(xi) and stored feature vj with i ≠ j is calculated as,

where temperature � determines the level of concentration (Hinton et al., 2015). pi,j actu-
ally describes the probability that feature fi is a neighbor of vj . To enforce samples be close 
to its nearby neighbors, a self-supervised feature clustering loss is adopted for target sam-
ples as,

Minimizing the above loss actually minimizes the entropy of each target sample’s similar-
ity distribution to other target samples, thus helps gather similar target samples together 

(4)LESL(x
t
i
) =

⎧
⎪⎨⎪⎩

−pmc(x
t
i
)log(pmc(x

t
i
)), if p+

ovak
(xt

i
) > p−

ovak
(xt

i
) + m

pmc(x
t
i
)log(pmc(x

t
i
)), if p+

ovak
(xt

i
) < p−

ovak
(xt

i
) − m

0, otherwise

(5)LESL = �(xt
i
)∈Dt

LESL(x
t
i
)

(6)pi,j =
exp(v⊤

j
fi)∕𝜏

∑Nt

r=1,r≠i
exp(v⊤

r
fi)∕𝜏

(7)LSFC = −�(xt
i
)∈Dt

Nt∑
j=1,j≠i

pi,jlog(pi,j)
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to form compact clusters, and separate target samples from different clusters in the feature 
space.

Further, the low-density separation for target data has already been enforced over MC 
predictor in Eq.  (5). It is also conducted on OVA predictors to seek a domain-invariant 
classifier across domains. Specifically, entropy minimization (Saito et  al., 2019) is per-
formed over each OVA predictor by,

It is minimized to increase the prediction confidence of OVA predictors. In this way, the 
shared classes across domains are implicitly aligned, while the target unknowns are kept 
away from the known classes. 

3.5  Overall training objective for UACP

The final learning objective of UACP can be formulated as,

where � , � , and � control the trade-off for each component in Eq. (9). In each iteration, the 
memory bank updates a batch target features and the network updates parameters �F and 
�CC . The algorithm description for UACP is given in Algorithm 1.

(8)LTOVA = −�(xt
i
)∈Dt

K∑
k=1

{p+
ovak

(xt
i
)log(p+

ovak
(xt

i
)) + p−

ovak
(xt

i
)log(p−

ovak
(xt

i
))}

(9)min
�F ,�CC

(LCE + LSOVA) + (� ⋅ LSFC + � ⋅ LTOVA + � ⋅ LESL)
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4  Experiments

We validate the proposed UACP mainly with two adaptation settings, open-set domain 
adaptation and universal domain adaptation.

4.1  Setup

4.1.1  Datasets

We perform experiments on four popular benchmark datasets in UDA: Office-31 (Sae-
nko et  al., 2010), Office-Home (Venkateswara et  al., 2017), VisDA (Peng et  al., 2017), 
and DomainNet (Peng et al., 2019). Office-31 consists of 31 categories in 3 domains, i.e., 
DSLR(D), Amazon(A) and Webcam(W), with totally 4652 images. Office-Home contains 
15500 images from 4 different domains, i.e., Artistic images (Ar), Clipart images (Cl), 
Product images (Pr), and Real-World images (Re). VisDA is a more challenging dataset, 
which consists of 15K source synthetic images and 5K target natural images. DomainNet 
contains 345 classes and 6 domains, and following Fu et  al. (2020), we use 3 domains 
Painting(P), Real(R), and Sketch(S). Similar to Li et al. (2021), we split classes into three 
parts: common classes across domains |Ls ∩ Lt| , source-private classes |Ls − Lt| , and target-
private classes |Lt − Ls| . The details of category division in the four datasets are shown in 
Table 1.

4.1.2  Evaluation metrics

To better evaluate the performance of UACP under both OSDA and UniDA scenarios, we 
utilize the HOS metric (Bucci et al., 2020) defined as the harmonic mean of average per-
class accuracies over known and unknown samples, denoted by Acckn and Accunk , respec-
tively. HOS is formulated as,

It fairly considers the performance on known and unknown data. Besides, instance-wise 
accuracy on known classes (Acc) and area under the ROC curve (AUC ) are also adopted in 
Sect. 4.3.4, following the standard protocol of unknown detection (Hendrycks & Gimpel, 
2016).

(10)HOS = 2 ×
Acckn × Accunk

Acckn + Accunk

Table 1  The division on label 
sets in each setting

Tasks Datasets |L
s
∩ L

t
| |L

s
− L

t
| |L

t
− L

s
|

OSDA Office-31 10 0 11
Office-Home 25 0 40
VisDA 6 0 6

UniDA Office-31 10 10 11
Office-Home 10 5 50
VisDA 6 3 3
DomainNet 150 50 145
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4.1.3  Implementation details

We perform UACP in Pytorch (Paszke et al., 2017) framework. For fair comparisons, we 
implement our network based on ResNet-50 (He et  al., 2016) pre-trained on ImageNet 
(Russakovsky et al., 2015). Following Saito et al. (2019), the last linear layer is replaced by 
a new linear classification layer. The learning rates for the new linear layer and finetuned 
layers with inverse scheduling are set to 0.01 and 0.001, respectively. We exploit a mini-
batch SGD optimizer with momentum 0.9 and weight decay 0.0005 in all experiments. The 
value of temperature � is set to 0.05 following Ranjan et al. (2017). Trade-off parameters � , 
� , and � in UACP are fixed, i.e., � = � = 0.05, and � = 0.1. m is set to 0.4 for Office-31 and 
Office-Home, and 0.5 for VisDA and DomainNet.

4.2  Reults

In this section, we evaluate UACP by comparing with the state-of-the-arts. The bolded 
value in each column indicates the best performance of compared methods.

4.2.1  Open‑set domain adaptation

We perform comparisons under OSDA scenario over Office-31, Office-Home and VisDA 
datasets. There are 6 tasks for Office-31 and 12 tasks for Office-Home. We compare with 
OSDA methods OSBP (Saito et al., 2018), STA (Liu et al., 2019) and ROS (Bucci et al., 
2020), as well as UniDA methods UAN (You et al., 2019), DANCE (Saito et al., 2020), 
CMU (Fu et al., 2020), DCC (Li et al., 2021) and OVANet (Saito & Saenko, 2021).

The results over Office-31 and VisDA are reported in Table 2, and Table 3 records the 
performance over Office-Home. UACP achieves the best performance on 5 of the 6 tasks 
on Office-31. On average, it outperforms state-of-the-art method OVANet by 3.0%. As for 
VisDA, UACP significantly outperforms OVANet by 16.3%, and outperforms the second-
best method DCC by 1.7%. Note that DCC takes the prior of OSDA and UniDA settings 
into consideration, while our UACP has no prior knowledge of private classes. From 
Table 3, UACP achieves the best results on 7 of 12 tasks. On average, UACP surpasses all 
compared methods.

Table 2  HOS (%) on Office-31 and VisDA for OSDA

Method A → D A → W D → A D → W W → D W → A Avg VisDA

OSBP 82.4 82.7 75.1 97.2 91.1 73.7 83.7 46.9
STA 75.0 75.9 73.2 69.8 75.2 66.1 72.5 –
ROS 82.4 82.1 77.9 96.0 99.7 77.2 85.9 50.1
UAN 54.2 57.4 73.7 75.2 67.6 59.8 64.6 50.8
DANCE 82.0 74.7 68.0 82.1 82.5 52.5 73.6 59.7
CMU 71.6 70.5 80.2 81.2 70.8 70.8 74.2 24.1
DCC 85.5 87.1 85.5 91.2 87.1 84.4 86.8 70.7
OVANet 90.5 88.3 86.7 98.2 98.4 88.3 91.7 56.1
UACP 92.3 92.7 93.3 98.8 99.4 91.6 94.7 72.4
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4.2.2  Universal domain adaptation

For UniDA scenario, we perform UACP on Office-31, Office-Home, VisDA and Domain-
Net. We compare UACP with OSDA methods, including OSBP and ROS, and UniDA 
methods, including UAN, DANCE, CMU, DCC, and OVANet.

Table 4 shows the results over Office31 and VisDA, from which UACP outperforms all 
baselines on 5 of the 6 tasks, yielding 4.5% improvement over OVANet on Office31, and 
7.0% improvement on VisDA. The results on Office-Home are given in Table 5, in which 
UACP achieves the best performance of 74.7%, which has improvement of 2.9% over the 
second-best method OVANet. The performance on DomainNet is reported in Table  6. 
UACP outperforms the baselines on 2 of 6 tasks, and achieves the second-best HOS of 
50.3%, which is actually comparable to the best one of 50.7%. In terms of the comparison 
results, it can be observed that our proposed UACP is able to properly tackle different lev-
els of category shifts, and performs well in different UDA scenarios.

4.3  Analysis

In this section, more analyses will be provided to further investigate the effectiveness of 
UACP.

4.3.1  Varying the number of unknown classes

Performances by varying the number of unknown classes on 2 tasks (Ar → Re and Cl → Pr) 
of Office-Home in both OSDA and UniDA settings are presented in Fig. 3. We compare 
UACP with UniDA methods, including DANCE, CMU, DCC, and OVANet. Results under 
OSDA setting are illustrated in Fig. 3a, b, from which it can be found that both CMU and 
OVANet suffer from performance degradation with the increasing number of unknown 
classes, while UACP has smoother fluctuations. At the same time, from comparison perfor-
mance under UniDA setting in Fig. 3c, d, UACP obviously outperforms previous state-of-
the-arts with a large margin, indicating its effectiveness and robustness to different ratios of 
unknown classes. In summary, UACP yields consistent improvement on all tasks, demon-
strating that it can effectively handle different levels of label shifts among domains.

Table 4  HOS (%) on Office-31 and VisDA for UniDA

Method A → D A → W D → A D → W W → D W → A Avg VisDA

OSBP 51.1 50.2 49.8 55.5 57.2 50.2 52.3 37.7
ROS 71.4 71.3 81.0 94.6 95.3 79.2 82.1 30.3
UAN 59.7 58.6 60.1 70.6 71.4 60.3 63.5 30.5
DANCE 78.6 71.5 79.9 91.4 87.9 72.2 80.3 4.4
CMU 68.1 67.3 71.4 79.3 80.4 72.2 73.1 34.6
DCC 88.5 78.5 70.2 79.3 88.6 75.9 80.2 43.0
OVANet 85.8 79.4 80.1 95.4 94.3 84.0 86.5 53.1
UACP 89.2 85.8 89.7 94.2 97.6 89.4 91.0 60.1
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4.3.2  Ablation study

In this sub-section, we verify the effectiveness of individual components of UACP. Spe-
cifically, ablation studies over the difficult task Pr → Re of Office-Home for both OSDA 
and UniDA settings are presented in Table 7. Four variants of UACP are studied: (i) “w/o 

Table 6  HOS (%) on DomainNet 
for UniDA

Method P → R P → S R → P R → S S → P S → R Avg

OSBP 52.2 35.0 46.5 35.8 38.6 52.1 43.4
ROS 20.5 30.0 36.9 28.7 19.9 23.2 26.5
UAN 41.9 39.1 43.6 38.7 38.9 43.7 41.0
DANCE 21.0 37.0 47.3 46.7 27.7 21.0 33.5
CMU 50.8 45.1 52.2 45.6 44.8 51.0 48.3
DCC 56.9 43.7 50.3 43.3 44.9 56.2 49.2
OVANet 56.0 47.1 51.7 44.9 47.4 57.2 50.7
UACP 54.8 47.7 50.9 43.7 48.5 56.4 50.3

(a) (b)

(c) (d)

Fig. 3  HOS w.r.t. varying |L
s
− L

t
| on tasks Ar → Re and Cl → Pr for both OSDA and UniDA scenarios
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LESL + LSFC + LTOVA ” is the variant that only trained with source supervision. (ii) “w/o 
LESL ” discards entropy-strengthened loss for MC in Eq.  (5). (iii) “w/o LSFC ” discards 
self-supervised feature clustering on target samples in Eq.  (7). (iv) “w/o LTOVA ” discards 
entropy minimization on OVA predictors in Eq. (8).

From Table  7, each component of UACP contributes to the final target performance. 
Specifically, the entropy-strengthened loss LESL is essential for unknown detection, it 
increases the Accunk significantly from 56.4% to 72.9% under OSDA scenario, and from 
60.4% to 75.2% under UniDA scenario. Besides, removing the LSFC greatly hurts the 
Acckn . When employing entropy minimization LTOVA on OVA predictors, the HOS is 
improved from 70.5% to 74.8% under OSDA scenario, and from 79.1% to 83.3% under 
UniDA scenario.

4.3.3  Convergence comparison

The performance of UACP in each iteration is presented in Fig. 4, compared to OVANet. 
We plot Acckn , Accunk and HOS w.r.t. the number of iterations on the task A → D of OSDA 
setting, and A → W of UniDA setting, respectively. As illustrated in Fig. 4, UACP quickly 
converges within the first several hundreds of iterations and achieves better performance. 
Besides, its Acckn , Accunk and HOS have much less fluctuations than those of OVANet, 
demonstrating the stability and effectiveness of our proposal.

4.3.4  Hyper‑parameter analysis

To illustrate the sensitivity of UACP to trade-off parameters � , � , and � , we perform exper-
iments on the tasks of D → A and Ar → Pr under UniDA scenario. As shown in Fig. 5, 
we present the performance of HOS, Acc and AUC  w.r.t. trade-off parameters � , � , and � 
within the wide range of [0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]. Although the performance 
fluctuates as the values of parameters change to an extent, it remains relatively flat and sta-
ble within a certain range.

5  Conclusion

In this work, we propose a novel UniDA approach UACP to adaptively identify unknowns 
by classifier paradox. In UACP, a composite classifier is proposed to tackle both domain 
and category shifts. The composite classifier distinguishes different source categories using 

Table 7  Ablation on losses

Pr → Re(OSDA) Pr → Re(UniDA)

HOS Acc
kn

Acc
unk

HOS Acc
kn

Acc
unk

w/o ESL + SFC  + TOVA 63.5 70.5 57.9 71.3 79.4 64.8

w/o L
ESL

64.9 76.4 56.4 72.8 91.7 60.4

w/o L
SFC

72.6 72.5 72.7 81.4 90.7 73.9

w/o L
TOVA

70.5 75.4 66.2 79.1 92.6 69.1
ALL 74.8 76.7 72.9 83.3 93.3 75.2
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(a) (b)

(c) (d)

Fig. 4  Comparison results of convergence speed and performance difference on UACP and OVANet

(a)

(b)

Fig. 5  Sensitivity analysis for trade-off parameters over tasks a D → A of Office-31 and b Ar → Pr of 
Office-Home under UniDA scenario
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MC predictor, and captures the concept of “unknown” by verification from OVA predic-
tors. Moreover, self-supervised knowledge is utilized to pursue well-clustered target fea-
tures and low-density separation for target data, so as to conduct implicit domain alignment 
by domain-invariant classifier. Finally, extensive experiments on four benchmarks validate 
UACP in both OSDA and UniDA scenarios.
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