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Abstract
Graph Neural Networks (GNNs) have achieved state-of-the-art performance on vari-
ous graph-related learning tasks. Due to the importance of safety in real-life applications, 
adversarial attacks and defenses on GNNs have attracted significant research attention. 
While the adversarial attacks successfully degrade GNNs’ performance significantly, the 
internal mechanisms and theoretical properties of graph-based attacks remain largely 
unexplored. In this paper, we develop deeper insights into graph structure attacks. Firstly, 
investigating the perturbations of representative attacking methods such as Metattack, we 
reveal that the perturbations are unevenly distributed on the graph. By analyzing empiri-
cally, we show that such perturbations shift the distribution of the training set to break the 
i.i.d. assumption. Although degrading GNNs’ performance successfully, such attacks lack 
robustness. Simply training the network on the validation set could severely degrade the 
attacking performance. To overcome the drawbacks, we propose a novel k-fold training 
strategy, leading to the Black-Box Gradient Attack algorithm. Extensive experiments are 
conducted to demonstrate that our proposed algorithm is able to achieve stable attacking 
performance without accessing the training sets. Finally, we introduce the first study to 
analyze the theoretical properties of graph structure attacks by verifying the existence of 
trade-offs when conducting graph structure attacks.
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1  Introduction

Graph structured data is widely used in a variety of domains, such as social networks 
(Rossetti et al., 2016), academic publishing (Fricke, 2018), recommender systems (Liu 
et  al., 2016), financial transactions (Ron and Shamir, 2013), and public health (Chen 
et al., 2020). How to learn effective graph representations has long been an important 
research direction. Recently, Graph Neural Networks (GNNs) have become the main-
stream method for graph representation learning (Zhou et  al., 2020). Graph Convolu-
tional Network (GCN) (Kipf and Welling, 2017) achieved state-of-the-art performance 
in the node-classification task and is considered as the most representative GNN model. 
Then, numerous GNN models, such as GAT (Velickovic et  al., 2018), GraphSAGE 
(Hamilton et al., 2017), and JK-Net (Xu et al., 2018), have been proposed.

It has been revealed that deep learning models often lack robustness (Goodfellow 
et  al., 2015). It is possible to fool the model by generating perturbations deliberately. 
GNNs are no exceptions. Adversarial attacks against GNNs could be classified by vari-
ous standards (Jin et  al., 2020). According to the goal of the attackers, we can divide 
graph attacks into two groups: targeted attacks, which aim to misclassify a small set of 
target nodes, and non-targeted attacks, which aim to degrade the overall performance of 
GCN models without specifying any victim nodes. According to the amount of knowl-
edge available to the attackers, three different types of settings are proposed: white-box 
attacks allow the attackers to access all possible information, grey-box attacks prohibit 
the attackers to access model parameters and testing labels while in black-box attacks, 
even the information about training set is not available. The attacking method also var-
ies such that some methods modify the node features while other methods modify the 
edges.

Various defense methods have also been proposed. For instance, GCN-Jaccard (Wu 
et al., 2019) increases the robustness of GCNs by eliminating edges with low similar-
ity before the training process. R-GCN (Zhu et al., 2019) utilizes the attention mecha-
nism which regards node features as Gaussian distributions and assigns attention scores 
according to the variances. By introducing structure learning, Pro-GNN (Jin et  al., 
2020) achieves promising results when defending against structure perturbations.

Although defense algorithms have emerged to enhance the security of GNNs, studies on 
deep learning models show that it is possible to improve the adversarial attacks to degrade 
the defense performance (Athalye et al., 2018; Carlini and Wagner, 2017). Meanwhile, in-
depth studies on adversarial attacks are efficient tools to develop insights into deep learning 
models (Geirhos et  al., 2019). In comparison to Deep Neural Networks (DNNs), adver-
sarial attacks on GNNs remain poorly understood in general, despite the fact that many pat-
terns have been found by various studies (Zügner et al., 2020; Sun et al., 2020).

In order to make further improvements on attacking methods and to develop efficient 
defense methods, it is important to identify the patterns of the attacks. In this work, we 
focus on non-targeted structure attacks against GNNs. Particularly, we are interested in 
the following research questions:

•	 RQ1 Why are graph structure attacks effective?
•	 RQ2 Are there any drawbacks of the state-of-the-art algorithms? If so, is it possible 

to improve them?
•	 RQ3 Do any theoretical limitations and unavoidable trade-offs exist in graph struc-

ture attacks?
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In this paper, we make a leap towards the understanding of graph structure attacks. Con-
ducting case studies in representative methods, we show that the perturbations chosen by 
gradient-based methods are highly correlated with the training set and they are distributed 
unevenly on the graph. As a result, we reveal that a simple defense strategy is to train 
the GNN with the validation set. Based on the findings, we propose the Black-Box Gradi-
ent Attack (BBGA) algorithm to evenly perturb the graphs without accessing any ground 
truth labels. Extensive experiments demonstrate the effectiveness of our proposed method. 
Based on our empirical studies, we analyze the advantages and drawbacks of various 
attacking strategies and we illustrate the existence of trade-offs in graph structure attacks. 
In a nutshell, our contributions are summarized below:

•	 How state-of-the-art attacks work We study the patterns of two representative non-
targeted structure attacks, Mettack (Zügner and Günnemann, 2019) and PGD-Attack 
(Xu et al., 2019). Creating a taxonomy of the perturbations, we show that the pertur-
bations are unevenly distributed and such unevenness breaks the i.i.d. assumption. 
Although achieving remarkable attacking performance, we show that such unevenness 
could also be easily utilized by defenders.

•	 Black-box Gradient Attack (BBGA) While it is believed that training surrogate 
models without ground-truth labels is impossible, we propose the first gradient-based 
black-box attacking method to our best knowledge. It is also the first non-targeted graph 
structure attack without permission to do black-box queries. Exploiting the spectral 
clustering, we train the surrogate model with pseudo-labels and then evenly distribute 
the perturbations via a novel k-fold training strategy.

•	 Theoretical properties and trade-offs Conducting both empirical studies and mathe-
matical analysis, we reveal the existence of trade-offs in graph structure attacks. To our 
best knowledge, this is the first study on the theoretical limitations of graph structure 
attacks.

The rest of our paper is organized as follows. We list and review related works in Section 2, 
then we formally define the mathematical notations in Section 3. In Section 4, we analyze 
the patterns of notable attacks via a series of case studies. In Section 5, we introduce our 
proposed BBGA method, explain it in detail, and report the experimental results to demon-
strate its effectiveness. The theoretical limitations and trade-offs are discussed in Section 6. 
Finally, we conclude the paper and discuss the future directions in Section 7.

2 � Related works

We briefly review previous works on GNNs and graph adversarial attacks and defenses in 
this section.

2.1 � Graph neural networks (GNNs)

Graph Neural Networks (GNNs) are deep learning methods that focus on graph data. In 
this paper, we mainly focus on Graph Convolutional Networks (GCNs) which utilize con-
volution operations to pass messages between the nodes (Zhang et al., 2018). Based on the 
methodologies of message-passing, GCNs could be divided into various families. Spec-
tral-based GCNs utilize graph Fourier transform (GFT) to aggregate graph signals. It is 
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introduced by Bruna et al. (2014) at first. Then Defferrard et al. simplify spectral GCNs 
with Chebyshev polynomials (Defferrard et al., 2016). Spatial-based GCNs aggregate local 
information in the spatial domain. The representative GCN model proposed by Kipf and 
Welling (2017) is a hybrid model which could be considered as both spectral and spatial. 
Following that, a number of spatial methods are proposed (Velickovic et al., 2018; Hamil-
ton et al., 2017; Chen et al., 2018). Decoupled GCNs originate from spatial-based GCNs 
but they decouple the convolution operation, which propagates information, with the fea-
ture transformation process. Notable decoupled GCNs include APPNP (Klicpera et  al., 
2019) and PTA (Dong et al., 2021). For a thorough review of GCNs, we refer the readers 
to recent surveys (Zhang et al., 2018; Zhou et al., 2020; Wu et al., 2021) and texts (Liu and 
Zhou, 2020; Ma and Tang, 2020).

2.2 � Graph adversarial attacks and defenses

Extensive studies have revealed that GCNs are vulnerable to deliberate perturbations. 
Targeted attacks aim to fool the GCNs to misclassify certain target nodes. White-box 
approaches such as FGA (Chen et al., 2018) and IG-FGSM (Wu et al., 2019) are usually 
based on gradient information, which is considered to be inaccessible in real-life scenarios. 
Nettack, which is the most representative grey-box targeted attack algorithm, proposes to 
utilize a surrogate model to approximate the gradients (Zügner et al., 2018). Besides mod-
ifying features and edges, new attacking methods such as AFGSM (Wang et  al., 2020), 
which injects vicious nodes to the graph, and backdoor attack (Zhang et al., 2021), which 
creates a “backdoor” subgraph for injection, have been proposed. In black-box situations, 
reinforcement learning is utilized by RL-S2V (Dai et al., 2018) while GF-Attack (Chang 
et al., 2019) provides a framework to utilize both the graph structure and feature informa-
tion. TDGIA (Zou et al., 2021) is a black-box node injection attack. The recent develop-
ment of targeted attacks tries to limit the number of perturbations to one node (Finkelshtein 
et al., 2020) and to provide universal attacks via preparing a set of attack nodes and fake 
nodes (Dai et al., 2022).

In this paper, we mainly focus on non-targeted attacks, which are less studied. Repre-
sentative white-box methods include PGD Attack and Min-Max Attack (Xu et al., 2019) 
while in grey-box situations, Metattack (Zügner and Günnemann, 2019) utilizes a surro-
gate model and a meta-learning framework to modify edges according to the approximated 
gradients. NIPA (Sun et  al., 2020) is a non-targeted node injection attacking algorithm. 
Zhang et al. (2020) degrades model performance by flipping the labels of training nodes. 
Feature-based black-box non-targeted attacks include RWCS (Ma et al., 2020) and InfMax 
(Ma et  al., 2022). Geisler et  al. discussed adversarial attacks against large-scale graphs 
(Geisler et al., 2021). Although several new attacking methods have emerged, Metattack is 
regarded as a state-of-the-art algorithm and is used as a primary baseline in various studies 
(Jin et al., 2020, 2021; Guo et al., 2022).

Due to the importance of safety in the real world, various defense methods have also 
been proposed. We categorize representative defense algorithms into three groups. Atten-
tion-based methods such as R-GCN (Zhu et  al., 2019) and PA-GNN (Tang et  al., 2020) 
utilize attention scores to control the propagation of adversarial information. Preprocess-
ing methods such as GCN-Jaccard (Wu et al., 2019) and GCN-SVD (Entezari et al., 2020) 
purify the graph structure according to some criteria before the training of the model. 
Robust structure learning methods such as Pro-GNN (Jin et al., 2020) learn the optimal 
graph structure iteratively during the training. Besides the heuristic defense methods, a new 
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trend in defense research is to certify the robustness of the models. Zügner et al. Zügner 
and Günnemann (2019) provides a method to certify the robustness of nodes. Bojchevski 
et al. proposed a discrete certificate. Jin et al. (2020) utilizes Lagrange dualization and con-
vex envelope to certificate the robustness of GCN under topological attacks. Reliable GNN 
(Geisler et al., 2020) is a certified defense method based on a novel Soft Medoid aggrega-
tion function. Recently, Schuchardt et  al. (Schuchardt et  al., 2021) proposed a collective 
certificate method. For a more comprehensive review of graph-based attacks and defenses, 
we refer the readers to various survey articles (Jin et al., 2020; Sun et al., 2018; Günne-
mann, 2022).

3 � Preliminaries

In this section, we introduce the notations used in this paper as well as fundamental con-
cepts and experimental environments.

3.1 � Mathematical notations

In this paper, we denote a graph with N nodes as G = (V ,E) where V = {v1,⋯ , vN} is 
the node set and E = {e1,⋯ , eE} ⊆ V × V  is the edge set. The set of vertices V is usually 
divided into the training set Vtrain , the validation set Vval and the testing set Vtest . ℤn is a quo-
tient ring of integers modulo n and we use it to denote the set {0, 1,⋯ , n − 1} . Specifically, 
ℤ2 = {0, 1} . We denote the structure of the G via the adjacency matrix A ∈ ℤ

N×N
2

 whose 
element Aij = 1 if and only if ∃i ∈ [1,E] s.t. ei ∈ E connects vi and vj . Node features are 
stored in a matrix X ∈ ℝ

N×F where F is the number of dimensions of node features. Since 
the node features in graphs are often of the bag-of-words kind (Wu et al., 2019), we have 
X ∈ ℤ

N×F
2

 . The label set of a dataset is denoted by C while pseudo-labels used during train-
ing are denoted as Cp.

3.2 � Graph convolutional networks (GCNs)

Despite many GCN models have been proposed, in this paper, we mainly consider the most 
representative one introduced by Kipf and Welling (2017). Each layer of a GCN aggregates 
messages according to the graph structure and then performs space transformations on the 
node features. Such a graph convolutional layer could be denoted as the following equation:

where Â = D̃
−

1

2 ÃD̃
−

1

2 is the normalized adjacency matrix such that Ã = A + IN , 
D̃i,i =

∑
j Ãi,j . � is a non-linear activation function. A typical GCN network consists of two 

layers, the whole network is usually described as:

The GCN network is usually trained with a cross-entropy loss. Noticing that two-layer 
GCNs aggregate information within 2-hop neighborhoods for each node, a simplified and 
linearized version is usually used in adversarial attacks:

(1)H(l+1) = 𝜎(ÂH(l)W (l)),

(2)Z = f (X,A) = softmax(Â𝜎(ÂXW (0))W (1)).
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To utilize GCN in inductive settings, Hamilton et al. (2017) introduced a variant of GCN 
with a different normalization method:

where h(l)
v

 is the hidden representation of node v in the lth layer and Ñ(v) is the neighbor-
hood of node v in the self-looped graph with Ã as the adjacency matrix.

3.3 � Metattack

Zügner and Günnemann (2019) is a gradient-based grey-box graph attacking algorithm. 
Being directly connected to the training loss, gradients are widely used in deep learning 
adversarial attacks (Yuan et al., 2019). Being denied to access model parameters, Metat-
tack trains the surrogate model described in Eq. 3 to approximate the gradients of the GCN 
model. To find the best edge to perturb, the adjacency matrix is regarded as a hyperparam-
eter and the meta-gradients are computed after the training of the surrogate model:

where Latk is the target function that the attacker aims to optimize, opt is a training pro-
cedure and Ltrain is the training loss. It is revealed that when Latk = −Lself , where Lself is 
the cross-entropy loss on the unlabelled nodes with predicted pseudo-labels, the algorithm 
reaches its best performance.

A greedy algorithm, which chooses exactly one edge a step, is employed to perform per-
turbations. The score of a node pair (u, v) is defined as:

where A is the adjacency matrix. The signs of meta-gradients are flipped for connected 
node pairs to yield the gradients for removing the edge. In each iteration, the algorithm 
picks the potential perturbation with the highest score.

The total number of perturbations is controlled by a budget constraint Δ , which is usu-
ally defined via a perturbation rate � =

Δ

|E|.

3.4 � The set‑cover problem

The Set-Cover problem (Slavík, 1997) is a classic NP-hard problem. Given a universe of m 
elements U = {1,⋯ ,m} and k sets S = {S1,⋯ , Sk} such that 

⋃k

i=1
Si = U , the optimization 

version of Set-Cover aims to find a cover C ⊆ S with the fewest number of sets such that ⋃
S∈C S = U . Let x ∶ S → ℤ2 be an indicator function such that:

Then the optimization problem is formulated as (Vazirani, 2013):

(3)Z = f (A,X) = softmax(Â2XW).

(4)h(l)
v
= 𝜎

(
Wl ⋅

1

D̃(v,v)

∑

u∈Ñ(v)

h(l−1)
u

)
,

(5)∇meta
G

∶= ∇GLatk(f�∗ (G)) s.t. �
∗ = opt�(Ltrain(f�(G))),

(6)S(u, v) = ∇meta
Auv

⋅ (−2 ⋅ Auv + 1),

(7)∀S ∈ S, x(S) =

{
0, S ∉ C

1, S ∈ C
.
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3.5 � Experimental environments

This paper contains a series of case studies and experiments. In this subsection, we intro-
duce the datasets and models used in the paper.

3.5.1 � Datasets

This work mainly focuses on homogeneous graphs as both Zügner and Günnemann 
(2019) and our selected defense methods are designed for homogeneous graphs. Cora, Cit-
esser, and Cora-ML, which are three commonly-used real-world benchmark datasets, are 
employed in our studies. Following (Zügner and Günnemann, 2019), we only consider the 
largest connected components of the graphs. The statistics of the datasets are summarized 
in Table 1. Following (Jin et al., 2020), we randomly pick 10% of nodes for training, 10% 
of nodes for validation, and the remaining 80% of nodes for testing.

3.5.2 � Defense methods

When evaluating attacking performance, defense methods are employed. In our studies, 
both vanilla GCN and representative defense algorithms are utilized. For GCN and RGCN 
we use the official implementation along with its hyperparameters. For other models, we 
use the implementation and hyperparameters in Li et al. (2020).

•	 GCN (Kipf and Welling, 2017) In this work, we focus on attacking the representative 
Graph Convolutional Network (GCN).

•	 GCN-Jaccard (Wu et al., 2019) Noticing that existing graph adversarial attacks tend to 
connect dissimilar nodes, GCN-Jaccard removes the edges that connect nodes with Jac-
card similarity scores lower than a threshold � before training the GCN.

•	 R-GCN (Zhu et al., 2019) R-GCN utilizes the attention mechanism to defend against 
perturbations. Modeling node features as normal distributions, the R-GCN assigns 
attention scores according to the variances of the nodes.

•	 Pro-GNN (Jin et al., 2020) Exploring the low rank and sparsity properties of adjacency 
matrices, Pro-GNN combines structure learning with the GNN in an end-to-end man-
ner.

(8)

minimize
∑

S∈S

x(S)

subject to ∀e ∈ U,
∑

S∶e∈S

x(S) ≥ 1

∀S ∈ S, x(S) ∈ ℤ2

.

Table 1   Statistics of the datasets Dataset ∣ V ∣ ∣ E ∣ Classes Features Avg degree

Cora 2485 5069 7 1433 2.04
Citeseer 2110 3668 6 3703 1.74
Cora-ML 2810 7981 7 2879 2.84



2928	 Machine Learning (2024) 113:2921–2953

1 3

•	 GCN-SVD (Entezari et al., 2020) A preprocessing method based on low-rank approxi-
mation of the graph adjacency matrices.

3.5.3 � Attacking methods

Since we study the internal mechanisms of attacking methods and we propose BBGA, a 
novel attacking algorithm, we utilize a number of attacking methods as either investigating 
targets or baselines.

•	 Metattack Following previous studies (Jin et al., 2020), we choose Zügner and Günne-
mann (2019) as a primary object for our study. The perturbed graphs are attacked with 
the Meta-Self model without the log-likelihood constraint.

•	 PGD Attack We also choose PGD Attack (Xu et al., 2019) when investigating the pat-
terns of graph structure attacks. PGD Attack is a gradient-based white-box non-targeted 
attacking method, since it’s white-box and it requires even the gradient information, we 
only employ it as an investigating object.

•	 Random Attack The random attack is also investigated in this study. Since previous 
studies have revealed that attacking algorithms mostly choose to add edges (Wu et al., 
2019), in our settings Random Attack is not allowed to delete edges.

•	 DICE DICE, a white-box baseline introduced by Zügner and Günnemann (2019), is 
based on Random Attack but it only links nodes of different labels.

3.5.4 � Hardware and software packages

We conducted our experiments on an Ubuntu 16.04 LTS server with two E5-2650 CPUs 
and 4 GTX 1080Ti GPUs. Python packages we used include Pytorch 1.5.0, Scikit-Learn 
0.23.1, NumPy 1.18.5, and SciPy 1.3.1. Tensorflow 1.15.0 is used in R-GCN.

4 � Case studies on representative methods

We study the research question RQ1 in this section. Adversarial attacks generate deliber-
ate perturbations on graph data. Hence, to investigate why adversarial attacks work, it is 
necessary to analyze the perturbations made by attacking algorithms. Previous studies have 
found out that dissimilar nodes tend to be connected by attackers (Wu et al., 2019). In this 
work, we focus on the distributions of such carefully crafted perturbations.

Consisting of 2 graph convolutional layers, a typical GCN network is only able to aggre-
gate information with the 2-hop neighborhood of each node. Xu et al. proved the following 
theorem:

Theorem 1  (Xu et al. (2018)) If all paths in the computation graph of the model are acti-
vated with the same probability. Given an L-layer GCN with Eq. 4 as the normalization 
method, then ∀i, j ∈ V  , �[ �Hj

�Xi

] is equivalent to the probability of reaching node j via a 
k-step random walk starting at node i.

Inspired by Theorem 1, it is natural to raise the question that whether grey-box gradient 
attacks mainly perturb edges that are adjacent to the training set or not. To investigate the 
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patterns of the edges picked by representative methods, we create a taxonomy of edge per-
turbations and conduct a series of case studies.

4.1 � A taxonomy of perturbations

We propose a taxonomy for graph structure perturbations. For each perturbation, which is a 
flip of edge (i, j), three possible types are defined:

•	 Type 1 Both nodes i and j are inside the training set.
•	 Type 2 Exactly one of i, j is inside the training set.
•	 Type 3 Neither i nor j is inside the training set.

We compare four different attacking methods: Metattack, PGD Attack, Random Attack, 
and DICE. For all the methods, we use the implementations and hyperparameters in the 
DeepRobust library (Li et  al., 2020). For each attacking method, we run the attacks 10 
times on a random data split. For each attacking run, we also train the attacked graph with 
GCN once. Hence, for each attacking setting, 10 runs are conducted for both attack and 
defense. The Cora dataset is used in this case study.

The distributions of the 3 types of perturbations are reported in Table 2 and the attack-
ing performance against GCN is reported in Table 3.

As revealed in the tables, gradient-based methods, which produce fewer type 3 perturba-
tions, have better attacking performance than the randomized heuristics. Especially, more 

Table 2   Distributions of 
perturbations by different attacks

Ptb(%) Attack Type 1 (%) Type 2 (%) Type 3 (%)

5% Metattack 10.55% 88.97% 0.47%
PGD 21.97% 77.18% 0.84%
Random 0.99% 17.08% 81.94%
DICE 1.11% 17.31% 81.58%

10% Metattack 8.26% 90.47% 1.26%
PGD 19.33% 78.58% 2.09%
Random 0.93% 17.47% 81.60%
DICE 1.01% 17.32% 81.68%

15% Metattack 8.50% 89.64% 1.86%
PGD 19.15% 75.94% 4.91%
Random 0.91% 17.80% 81.29%
DICE 0.87% 18.76% 80.37%

20% Metattack 7.43% 90.51% 2.05%
PGD 19.30% 73.85% 6.85%
Random 0.97% 18.08% 80.95%
DICE 1.03% 17.26% 81.72%

25% Metattack 7.78% 89.91% 2.31%
PGD 18.47% 72.29% 9.24%
Random 1.19% 18.26% 80.54%
DICE 1.15% 17.57% 81.28%
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than 95% of perturbations generated by Metattack are of either type 1 or type 2. Another 
interesting finding is that although PGD Attack has more type 1 perturbations, which are 
intuitively most relevant to the training set, it’s inferior to Metattack in terms of attacking 
performance.

Hence, current methods, which utilize the gradient information in the attacking proce-
dures, perturb the graph unevenly such that they flip a much higher proportion of edges 
near the training set. What are the effects of such unevenness? Is it related to how attacking 
algorithms work? To answer the previous questions, we conduct an ablation study.

4.2 � An ablation study on unevenness

We create two variants of Metattack. The first one is R-Metattack, which is a restricted 
version of Metattack such that no type 3 perturbations are allowed. The second variant 
is 3-Metattack, in which a mask is utilized to prevent it from generating type 1 and type 
2 perturbations. We adopt the implementation and hyperparameters from DeepRobust (Li 
et al., 2020) and three commonly-used datasets: Cora, Citeseer, and Cora-ML are used for 
comparison.

As reported in Table  4, Metattack and R-Metattack have similar performances in all 
situations. Metattack has better performance in 8 attacking settings while R-Metattack 

Table 3   GCN performance on Cora against the 3 methods (Accuracy ± Std)

Attack 5% 10% 15% 20% 25%

Metattack 75.97±1.54 71.33±1.81 63.73±2.44 57.15±4.42 51.99±4.97
PGD attack 80.45±1.69 76.88±1.87 73.53±1.55 72.76±2.29 70.01±2.32
Random attack 82.25±1.13 80.56±1.18 79.28±0.88 78.48±0.76 76.55±0.83
DICE 81.27±1.06 79.55±1.06 77.97±0.99 75.00±2.04 72.99±1.26

Table 4   Performance of 
Metattack, R-Metattack, and 
3-Metattack

Dataset Ptb(%) Metattack R-Metattack 3-Metattack

Cora 5% 75.97% 76.95% 81.03%
10% 71.33% 71.61% 78.84%
15% 63.73% 65.26% 76.93%
20% 57.15% 55.81% 75.02%
25% 51.99% 51.57% 73.15%

Citeseer 5% 74.07% 73.60% 75.33%
10% 70.47% 69.61% 73.70%
15% 65.28% 64.99% 72.52%
20% 62.03% 62.18% 71.11%
25% 55.57% 55.47% 69.89%

Cora-ML 5% 78.55% 78.80% 81.94%
10% 67.28% 67.81% 76.73%
15% 58.47% 58.95% 74.45%
20% 47.00% 47.46% 70.68%
25% 42.63% 41.56% 66.52%
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wins in the other 7. Using the Friedman Test (Zhou, 2016; Friedman, 1940), we have 
N = 15, k = 2 , and the average ranks for Metattack and R-Metattack are 22

15
 and 23

15
 respec-

tively. Hence,

which is smaller than the critical value c = 4.600(� = 0.05) . This implies that Metattack 
and R-Metattack have similar performance. On the other hand, 3-Metattack performs sig-
nificantly worse than the other two methods. Hence, type 1 and type 2 perturbations, which 
lead to the unevenness, play major roles in Metattack. This implies that Metattack mostly 
relies on type 1 and type 2 perturbations.

4.3 � The distribution shift

In this subsection, we make one step further to show that the unevenness created by type 1 
and type 2 perturbations leads to a shift of the distributions of node purities.

Definition 1  (node purity) The purity Pv of a node v ∈ V  is the proportion of its neighbors 
with the same label of v. Formally, if ∣ {j ∣ j ∈ V ∧ Avj = 1} ∣≠ 0 , Pv =

∣{j∣j∈V∧Avj=1∧Lv=Lj}∣

∣{j∣j∈V∧Avj=1}∣
, 

if ∣ {j ∣ j ∈ V ∧ Avj = 1} ∣= 0 , we define Pv = 0.

Since perturbations generated by Metattack and PGD Attack are highly correlated to the 
training set, we study the purities of training nodes separately. The mean training purity 
P̄train and mean non-training purity P̄non are defined as:

For the Cora dataset, we calculate both P̄train and P̄non for 10 different attacked graphs and 
the results are averaged. The results for gradient-based attacks and randomized heuristics 
are reported in Figure 1.

As shown in Figure  1, Metattack and PGD Attack, which are gradient-based meth-
ods relying on uneven perturbations, severely shift the purity distributions of the training 
nodes. Metattack, which produces extremely uneven perturbations, influences the distribu-
tions most significantly. When the perturbation rates are 25%, the average value of P̄train 
is only 42.38%, while the average value of P̄non is at 70.34%. Although PGD Attack has 
a higher proportion of type 1 flips, it only shifts P̄train to 62.22%. In statistical learning, 
the nodes in the training set are usually sampled dependently and identically from a dis-
tribution (Shalev-Shwartz and Ben-David, 2014). However, the figures show that under 
Metattack and PGD Attack, the purities of training nodes and testing nodes are no longer 

(9)
��2 =

k − 1

k
⋅

12N

k2 − 1

k∑

i=1

(
ri −

k + 1

2

)2

=
1

15
,

�F =
(N − 1)��2

N(k − 1) − ��2

=
1

16
= 0.625,

(10)P̄train =

∑
i∈Vtrain

Pi

∣ Vtrain ∣
,

(11)P̄non =

∑
i∈Vval

Pi +
∑

i∈Vtest
Pi

∣ Vval ∪ Vtest ∣
.
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independently and identically distributed. Hence we identify the internal mechanism of 
gradient-based graph structure attacks such as Metattack.

5 � Black‑box gradient attack

5.1 � Vulnerability of existing methods

Although the distribution shift helps in attacking, it could be easily utilized by the 
defender. Since it works by changing the distribution of the training set, a natural idea is to 
use another training set. We develop Flip-GCN, which is a training strategy that trains the 
GCN with the validation set, to defend against Metattack. The network structure of Flip-
GCN is the same as the GCN and we adopt the hyperparameters in the official implementa-
tion of GCN (Kipf and Welling, 2017). The only difference is that we exchange the training 

Fig. 1   The purity distributions of both training and non-training nodes after being attacked
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set and the validation set. Following the experimental settings of Jin et  al. (2020), we 
choose 5 perturbation rates ranging from 5 to 25% and we randomly select 10% of nodes as 
the training set, 10% for validation, and the remaining 80% as the testing set. The graph is 
perturbed by Metattack without the log-likelihood restraint. As reported in Table 5, when 
Vtrain and Vval are flipped, the testing accuracy increased dramatically. Hence, such uneven 
attacks are not robust enough and they are only effective for certain training sets.

To increase the robustness of adversarial attacks, the perturbations should be unbi-
ased to any data splits. However, existing even attacks such as Random Attack and 
DICE have quite limited attacking performance. Hence, to alleviate the problem, we 
are supposed to have an advanced black-box attacking method, which has no access to 
the training data in order to prevent such biases.

While most black-box attacks are based on reinforcement learning (Dai et al., 2018; 
Ma et al., 2019), random walk-based attacks such as RWCS are also promoted recently 
to avoid model inquiries (Ma et  al., 2020). However, RWCS focuses on perturbing 
features instead of graph structures. To our best knowledge, no existing non-targeted 
black-box structure attack works without black-box inquiries. Meanwhile, gradients are 
not exploited in black-box attacks since a surrogate model is needed. However, gra-
dients are powerful tools to pick edges for perturbations. In this paper, by disengag-
ing gradients from any specific training set, we propose the novel Black-Box Gradient 
Attack (BBGA) algorithm to answer RQ2.

5.2 � Attack condition

In this subsection, we introduce the attacking condition of the BBGA algorithm.
Goal As a non-targeted attack, the attacker’s goal is to decrease the classification accu-

racies of GNNs.
Knowledge As a black-box attack, access to model parameters, training data, and 

ground-truth labels are denied. The graph G = (V ,E) and the node features are considered 
to be accessible.

Constraints The number of changes is restricted by a budget Δ such that 
‖A� − A‖0 ≤ 2Δ . Here A′ is the modified adjacency matrix and we have 2Δ due to the sym-
metry of adjacency matrices. In addition, various defense algorithms have taken advantage 
of the connections between dissimilar nodes (Wu et al., 2019; Jin et al., 2020). We believe 
that such easily detected modifications are supposed to be restricted since they could be 
easily eliminated by a preprocessing algorithm. Noticing that node features in common 
graph tasks are encoded in the one hot manner, we propose a similarity constraint such 
that for any pair of nodes v1, v2 ∈ V  , if their Jaccard similarity score Jv1,v2 is smaller than 
a threshold value � , the connection of v1 and v2 is disallowed. The definition of the Jaccard 
similarity score is:

Table 5   The experimental 
results of the flip strategy 
( Accuracy ± Std)

Ptb Rate GCN Flip-GCN

5% 76.82±1.10 81.76±1.23
10% 71.59±1.79 81.19±0.89
15% 63.61±2.54 80.36±1.33
20% 55.88±5.03 80.50±0.69
25% 52.21±4.71 79.26±1.10
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where Mab(a, b ∈ {0, 1}) represents the number of features which have value a 
in node v1 and value b in node v2 . The constraints are summarized as a function 
�(G) ∶ G → P(V × V) , where G is the graph to attack. The function � maps the graph to a 
set of valid node pairs.

5.3 � Pseudo‑label and surrogate model

Since no ground-truth labels are accessible, we need to have pseudo-labels to train the sur-
rogate model. We utilize spectral clustering to generate pseudo-labels (Pedregosa et  al., 
2011). Parameters of the spectral clustering algorithm are chosen according to the Calin-
ski-Harabasz Score.

Since it’s not accurate to approximate the gradients of GNNs with pseudo-labels gener-
ated by a spectral clustering algorithm, a simplified GCN described in 3 is employed as the 
surrogate model. The surrogate model is trained with the pseudo-labels on a random train-
ing set, which has no relation to the training set of the defense model.

5.4 � k‑fold greedy attack

As demonstrated in Section 2, a main drawback of Metattack is the uneven distribution of 
the modifications. In the black-box scenario in which the training set is not accessible, the 
attacker is supposed to distribute its modifications in the whole graph. In this paper, we 
proposed a novel k-fold greedy algorithm to solve this problem.

We divide the node set V into k partitions V1,V2,⋯ ,Vk . For the ith partition Vi(i ∈ [1, k]) , 
we predict Ĉi , which is the labels of nodes in V − Vi , with a GCN trained on it. The attacker 
loss function is defined as:

where L is the cross-entropy loss.
With the attacker’s loss, we compute the meta-gradients (gradients w.r.t. 

hyperparameters):

where Li is the cross-entropy loss on partition Vi . Similar to Metattack, the partition score 
function Si ∶ V × V → ℝ on the ith partition is defined as:

For each pair of nodes (u, v), we compute �uv , which is the standard deviation of its k parti-
tion scores. The greedy score for (u, v) is defined as:

where 𝜎̃ is the median of all �uv s. The definition eliminates all self-loops and ensures that 
the gradients of the chosen perturbation on the k partitions are not too diverse.

(12)Jv1,v2 =
M11

M01 +M10 +M11

,

(13)L
i
atk

= −L(V − Vi, Ĉi),

(14)∇i
G
∶= ∇GL

i
atk
(f�∗ (G)) s.t. �

∗ = opt�(Li(f�(G))),

(15)Si(u, v) = ∇i
u,v

⋅ (−2 ⋅ Auv + 1).

(16)S(u, v) =

�∑k

i=1
Si(u, v), 𝜎uv < 𝜎̃

0, (𝜎uv >= 𝜎̃) ∨ (u = v)
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In each step, we greedily pick exactly one perturbation e� = (u�, v�) with the highest 
score:

where e ∈ �(G) ensures that the modification does not conflict with the attack constraints. 
Then the algorithm updates G according to e� = (u�, v�) by flipping the value of Au′v′.

5.5 � Algorithm

Following the detailed description, we now present the pseudo-code of the BBGA 
algorithm in Algorithm 1.

The meta-gradients of all the N2 pairs of nodes will be computed in the algorithm, 
the computing of meta-gradients has T steps due to the chain rule and the meta-gradi-
ents are calculated for each of the k partitions. Thus, the computational complexity for 
the attacking procedure itself is bounded by O(k ⋅ T ⋅ N2) . Considering the computa-
tional efforts needed to find the pseudo-labels (Yan et al., 2009), the overall computa-
tional complexity of BBGA is O(k ⋅ T ⋅ N2) + O(N3) . The O(N3) part is brought by the 
spectral clustering process as we apply the classic version of the spectral clustering 
algorithm in our proposed method. It’s an open problem to improve efficiency of spec-
tral clustering. A number of studies have been conducted to utilize spectral clustering 
on large-scale datasets (Liu et  al., 2013; Cai and Chen, 2015; He et  al., 2019; Yang 
et al., 2019, 2020; Song et al., 2021). Since spectral clustering is not the main focus of 
this work, we utilize the classic spectral clustering algorithm, which is O(N3) , in our 
experiments. The application of fast spectral clustering algorithms in BBGA remains 
as a future work.

(17)e� = argmax
e=(u,v)∈�(G)

S(u, v),
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5.6 � Experiments

We evaluate our proposed BBGA algorithm against both vanilla GCN and several 
defense methods. By conducting various experiments, we aim to answer the following 
empirical questions:

•	 EQ1 How does BBGA works without accessing the training set of the model?
•	 EQ2 Are the attacked graph as expected such that the perturbations are not distrib-

uted mainly around the training set?
•	 EQ3 How do different components and hyperparameters affect the performance of 

BBGA?

5.6.1 � Experimental settings

To demonstrate the effectiveness of our proposed BBGA method, we compare BBGA 
with three baselines: Random Attack, DICE, and Metattack. Since DICE and Metattack 
need label information, spectral clustering is also utilized to derive the pseudo labels. 
The defense algorithms used in the experiment include GCN, GCN-Jaccard, R-GCN, 
Pro-GNN, and GCN-SVD. We utilize scikit-learn (Pedregosa et al., 2011) for spectral 
clustering with parameter � = 0.001 . Following (Li et  al., 2020) we set � = 0.01 . For 
other hyperparameters, we set k = 5 and T = 100.

For each perturbation rate, we ran the experiments 10 times. To verify that our pro-
posed BBGA algorithm is not engaged with any specific training set, we randomly 
altered the dataset splits with scikit-learn (Pedregosa et al., 2011) each time before the 
training of the defense algorithms. Following previous works, (Zügner and Günnemann, 
2019; Jin et al., 2020) we choose accuracy rate as the primary evaluation metric.

5.6.2 � Attack performance

To answer EQ1, we report the results when attacking against the original GCN in 
Table 6. The best results are highlighted in bold. As shown in the table, our proposed 
method outperforms the baselines in all situations when attacking against the original 
GCN model. Especially, BBGA outperforms the baselines by 20% in several experimen-
tal settings.

The performance when attacking against various defense methods is reported in 
Figs. 2, 3, and 4. As shown in the figures, our proposed BBGA algorithm achieves the 
best misclassification rates in most situations. The only exception is GCN-SVD. The 
experiments show that our proposed method is able to achieve higher misclassification 
rates when the training set is not accessible.

To further verify the effectiveness of the BBGA method, we employ both Friedman 
Test and Nemenyi Post-hoc Test (Zhou, 2016). The ranking distribution of the 4 attack-
ing algorithms is reported in Table  7. Having k = 4 algorithms and N = 60 different 
experimental conditions, we have:
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which exceeds the critical value c ≈ 2.6556(� = 0.05) . Hence, according to the Friedman 
Test (Friedman, 1940), the performances of the 4 algorithms are significantly dissimilar. 
Using Nemenyi Post-hoc Test (Nemenyi, 1963), we have q� ≈ 2.5690(� = 0.05, k = 4) and

Since ∣ 97

60
−

144

60
∣=

47

60
≈ 0.78 > 0.6055 , we reject the hypothesis that BBGA and Metattack 

have similar performance. However, as ∣ 144

60
−

152

60
∣=

8

60
≈ 0.13 < 0.6055 , the performance 

of Metattack and DICE don’t differ significantly. Hence, we conclude that in black-box 
environments, BBGA outperforms all the baselines significantly while Metattack doesn’t 
show notable improvements over DICE.

5.6.3 � Case study on perturbations

In this subsection, we answer the research question EQ2 with a case study on the perturba-
tions generated by BBGA. For a random split of the Cora dataset, we reveal distributions 

(18)
��2 =

k − 1

k
⋅

12N

k2 − 1

k∑

i=1

(
ri −

k + 1

2

)2

= 60.98,

�F =
(N − 1)��2

N(k − 1) − ��2

= 30.08,

(19)CD = q�

√
k(k + 1)

6N
≈ 0.6055.

Table 6   Performance of attacking methods when attacking against the GCN (Misclassification rates±Std)

Dataset Attack 20% 40% 60% 80%

Cora BBGA 23.90±1.28 28.98±1.69 33.48±2.01 37.12±2.09
DICE-BB 21.42± 1.16 

(−10.37%)
25.69±1.19 

(−10.71%)
29.43±1.31 

(−12.10%)
33.14±1.52 

(−10.72%)
Random 21.34±1.74 

(−10.71%)
25.77±1.19 

(−11.08%)
28.43±1.71 

(−15.08%)
32.73±1.76 

(−11.83%)
Metattack 22.58±1.19 

(−5.23%)
26.82±1.57 

(−7.45%)
28.88±1.26 

(−13.74%)
32.71±1.51 

(−11.88%)
Citeseer BBGA 29.44±1.22 32.17±1.15 35.69±1.24 39.46±2.01

DICE-BB 27.92±0.85 
(−5.16%)

30.85±1.41 
(−4.10%)

33.91±1.53 
(−4.99%)

37.22±2.21 
(−5.68%)

Random 27.25±1.10 
(−7.44%)

29.96±1.48 
(−6.87%)

32.12±0.85 
(−10.00%)

33.68±1.52 
(−14.65%)

Metattack 27.19±0.76 
(−7.64%)

30.55±1.29 
(−5.04%)

32.59±1.69 
(−8.69%)

36.70±1.67 
(−6.99%)

Cora-ML BBGA 30.29±3.03 45.10±3.58 52.69±5.26 60.36±4.96
DICE-BB 25.81±2.47 

(−14.79%)
34.10±4.35 

(−24.39%)
42.27±7.37 

(−19.78%)
55.77±5.60 

(−7.60%)
Random 24.79±1.64 

(−18.16%)
30.78±2.40 

(−31.75%)
40.74±3.79 

(−22.68%)
47.74±3.90 

(−20.91%)
Metattack 28.07±1.79 

(−7.33%)
36.81±3.11 

(−18.38%)
42.96±2.93 

(−18.47%)
46.92±2.93 

(−22.27%)
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of BBGA’s perturbations in Table 8. As illustrated in the table, the perturbations are not 
biased toward the training set as the proportion of Type 3 flips is around 80%. This dem-
onstrates the evenness of the modifications of our proposed method. It explains the reason 
why our BBGA algorithm works without accessing the training set.

5.6.4 � Ablation study and parameter analysis

To answer the research question EQ3, we conducted ablation studies and parameter analy-
sis. For the ablation study, we created two variants of our method. BBGA-� removes the 
filter of low-variance node pairs in Eq. 16. BBGA-� removes the k-fold greedy choice pro-
cedure and in each step, exactly one partition is chosen randomly to compute the meta-
gradient. We took Cora and the GCN model as an example. As revealed in Fig. 5a, BBGA 
has the best performance while BBGA-� performs the worst. This indicates that both 

Fig. 2   Misclassification rates when attacking against defense algorithms on Cora: a GCN-Jaccard, b 
R-GCN, c Pro-GNN, d GCN-SVD
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considering multiple partitions and filtering low-variance node pairs help in increasing the 
attack performance.

For parameter analysis, we varied the number of partitions k. Taking 80% perturbation 
rates on Cora as an example, it is revealed that the attack performance grows as k increases 
in general. However, since a larger k implies a longer training time, we suggest using the 
hyperparameter k = 5 . The results of the parameter analysis are reported in Figure 5b.

6 � Limitations and trade‑offs

As revealed in Section V, the misclassification rate of GCNs can be significantly 
improved by the BBGA algorithm. However, a higher perturbation rate is generally 
required in black-box scenarios compared to gray-box ones. Also, another discovery 
is that BBGA is relatively ineffective when attacking GCN-SVD, which is a defense 

Fig. 3   Misclassification rates when attacking against defense algorithms on Citeseer: a GCN-Jaccard, b 
R-GCN, c Pro-GNN, d GCN-SVD
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algorithm utilizing low-rank approximation (Entezari et  al., 2020). In this section, we 
analyze such discoveries and address the research question RQ3. Limitations are often 
reflected as trade-off points. For instance, in reinforcement learning, there is a trade-
off between exploration and exploitation (Sutton and Barto, 2005). In the area of deep 
learning robustness, Hermann et  al. discovered a trade-off between ImageNet top-1 

Fig. 4   Misclassification rates when attacking against defense algorithms on Cora-ML: a GCN-Jaccard, b 
R-GCN, c Pro-GNN, d GCN-SVD

Table 7   The ranking distribution 
of the 4 attacking methods

Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Avg. ranking

BBGA 45 2 4 9 97/60
DICE 4 26 24 6 152/60
Random 3 4 16 37 207/60
Metattack 8 28 16 8 144/60
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accuracy and shape bias (Hermann et al., 2020). We conduct theoretical analysis in two 
trade-offs:

•	 The robustness-budget trade-off When the distribution shift mechanism is dis-
allowed, the attacking algorithm is supposed to propagate adversarial informa-
tion among the whole graph. In this situation, a relatively high attacking budget is 
expected.

•	 The distribution-eigenvalue trade-off Evenly-distributed attacks generally have lower 
influences on the leading singular values of the graph adjacency matrices. This explains 
why BBGA is relatively ineffective against GCN-SVD while significantly outperform-
ing the baselines when attacking other models.

6.1 � The robustness‑budget trade‑off

Since GNN models suffer from over-smoothing (Li et al., 2018), many graph neural net-
works, such as GCN (Kipf and Welling, 2017), GAT (Velickovic et al., 2018), and R-GCN 
(Zhu et  al., 2019), contain only 2 layers. As a result, the impact range of an adversarial 
edge (i, j) is limited to 1-hop neighborhoods of nodes i and j. To discuss the trade-off math-
ematically, we define the following concepts at first.

Table 8   Distributions of 
perturbations by BBGA

Ptb Rate Type 1 (%) Type 2 (%) Type 3 (%)

20% 1.02% 18.30% 80.68%
40% 1.07% 17.89% 81.05%
65% 1.00% 18.14% 80.86%
80% 1.04% 18.23% 80.73%

Fig. 5   Results of the ablation study and parameter analysis
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Definition 2  (influence) In a 2-layer GNN, when adding an edge (i, j), all nodes adjacent 
to either vi or vj are influenced. Mathematically, ∀k ∈ V s.t. (k, i) ∈ E ∨ (k, j) ∈ E , k is 
influenced.

Definition 3  (the Node-Influence problem) An edge-adding sequence E of length k is a 
sequence e1, e2,⋯ , ek ( ∀i ∈ [1, k], ei ∈ P where P is the set of allowed perturbations). Let 
I1, I2,⋯ , Ik be the sets of nodes influenced by adding e1, e2,⋯ , ek in sequence. The Node-
Influence optimization problem aims to find the shortest possible edge-adding sequence 
EOPT = e1, e2,⋯ , ek such that 

⋃k

i=1
Ii = V .

Based on Definition 2 and Definition 3, we aim to show that the length of the shortest 
possible edge-adding sequence is related to the Set-Cover problem. More specifically, we 
show that Node-Influence is equivalent to Set-Cover in terms of computational complexity 
via polynomial-time reducibility. For an in-depth review of reductions, we refer the read-
ers to classic papers (Cook, 1971) and texts (Sipser, 2013; Goldreich, 2008) in theoretical 
computer science.

Theorem 2  When the victim GCN model has only 2 layers, and the attacker is only allowed 
to add edges, the Node-Influence problem is equivalent to the Set-Cover problem.

Proof  We show the equivalence by constructing polynomial-time reductions.

Part 1 Node-Influence is polynomial-time reducible to Set-Cover.
Let U = V  and k be the total number of allowed flips. Consider the ith possible perturba-

tion (si, ti) such that si, ti ∈ V  . Let Si = Nsi
∪Nti

 where Nsi
= {v ∣ v ∈ V ∧ Asiv

= 1} ∪ {si} 
and Nti

= {v ∣ v ∈ V ∧ Ativ
= 1} ∪ {ti} . The collection of sets is constructed as 

S = {S1,⋯ , Sk}.
We inductively show that when ei = (si, ti) ∈ E is added during the attacking procedure, 

the set of newly influenced nodes Īi = Ii −
⋃i−1

j=1
Ij is always a subset of Si.

Induction basis This obviously holds for the first step since the S is constructed on the 
original graph and by the definition S1 and Ī1 , S1 = Ī1.

Inductive step When adding the ith adversarial edge ei = (si, ti) , there are two possible 
situations:

(1) If no edge incident to si or ti has been added, adding ei = (si, ti) will only influence 
their 1-hop neighbors since the GCN has 2 layers. Hence by definitions we have Ii = Si . 
Thus, Īi = Ii −

⋃i−1

j=1
Ij ⊆ Si.

(2) Without the loss of generality, if any edge ek = (si, j) , which is incident to si , has 
been added ( (si, j) ∈ {e1,⋯ ei−1} ), then adding (si, ti) will also influence j. In this situation, 
we have j ∈ Ii but j ∉ Si . However, in this situation we must have j ∈ Ik(k ∈ [1, i − 1]) 
since it has been covered by a previous set when (si, j) is added. Hence, we must have 
Ī = Ii −

⋃i=1

j=1
Ij ⊆ Si.

Inductive conclusion Thus, Node-Influence is reducible to Set-Cover.
When constructing S , the algorithm needs to traverse all the N × N pairs of nodes in 

the graph. For each node, the algorithm needs linear time to visit its neighbors. Hence, the 
overall time complexity for the reduction is O(N3) and it’s a polynomial-time reduction.
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Part 2 Set-Cover is polynomial-time reducible to Node-Influence.
We prove it by constructing the reduction algorithm directly. For a Set-Cover problem 

with n elements in the universe U and k sets in S , we construct n element-level nodes 
ve1, ve2,⋯ , ven and k set-level nodes vs1, vs2,⋯ , vsk corresponding to the sets in S . Then 
we add a starting node v0 . In the graph, each set-level node vsi is adjacent to its elements. 
Also, every pair of set-level nodes is connected to each other. Then we mark all node pairs 
(v0, vsi), i ∈ [1, k] as allowed perturbations. The pseudocode of the construction algorithm 
is reported in Algorithm 2.

When the first perturbation (v0, vsa) is selected, all set-level nodes are influenced. Also, 
since vsa is adjacent to the nodes representing elements in Sa , all elements in Sa are influ-
enced. After the first perturbation, each allowed perturbation adds a new edge vsi and influ-
ences the nodes representing elements in Si . Hence, a set of perturbations that influences 
the whole graph exactly corresponds to a set cover of the universe U . Thus, Set-Cover can 
be reduced to Node-Influence.

The reduction algorithm traverses all elements in the Set-Cover problem in O(n) time. 
For each set in the Set-Cover problem, its elements are traversed in O(nk) time. Finally, for 
pairs of sets, edges are constructed in O(k2) time. Hence, the overall time complexity for 
the reduction algorithm is O(n + nk + k2) , which is polynomial.

Since the two problems can be reduced to each other, they are equivalent. 	�  ◻
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Inspired by Theorem  2, the minimum number of perturbations needed to cover the 
whole graph could be estimated by solving the Set-Cover problem. Although being NP-
Hard, the Set-Cover problem could be approximated with a greedy algorithm, which 
selects the set that contains the most uncovered elements in each step. When the maximum 
size of the sets in S is d = maxi∈[1,k] |Si| , the approximation ratio of the greedy algorithm is 
bounded by the harmonic function H(d) =

∑d

i=1

1

i
 (Kleinberg and Tardos, 2005).

We approximate the minimum number of perturbations needed with Algorithm 3. Data-
sets used in this study include Cora, Citeseer, and Cora-ML. In reality, it is believed that 
it’s not realistic to perturb nodes with large degrees (Ma et al., 2020). High-degree nodes 
are also reported to be less vulnerable (Wang et al., 2019). Hence, we introduce a limit r on 
nodes such that any node whose degree is larger than r is ignored in the algorithm. This not 
only makes the approximation more realistic, but also improves the approximation bound. 
In the experiments, we choose r = 5 . Thus the largest possible cardinality of sets in S is 
d = 12 . The approximation ratio is bounded by:

The approximated numbers of perturbations are reported in Table 9. We report both the 
approximated and minimum possible number of perturbations.

•	 p: The approximated numbers of perturbations returned by Algorithm 3.
•	 p∕ ∣ E ∣ : The perturbation ratios needed to achieve p perturbations.
•	 p/3.10: The estimated minimum numbers of perturbations estimated by Equation (20). 

The values are rounded to the nearest integers.

(20)H(12) =

12∑

i=1

1

i
≈ 3.10.
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•	 p∕3.10 ∣ E ∣ : The estimated minimum perturbation ratio needed to influence the whole 
graph.

As revealed in Table 9, a relatively high proportion of perturbations is needed for sparse 
graphs. Since Set-Cover is NP-Hard and several works such as Lund and Yannakakis 
(1994) and Dinur and Steurer (2014) have addressed its hardness of approximation theo-
retically, it is not likely to reach the minimum perturbation ratio. Also, in the reality, it’s not 
enough to make GCN misclassify a node simply by covering it with any arbitrary adversar-
ial perturbation. Hence, a relatively high perturbation ratio is expected when solely relying 
on the message propagation mechanism.

6.2 � The distribution‑eigenvalue trade‑off

In this subsection, we show the existence of the distribution-eigenvalue trade-off under two 
assumptions. Consider an evenly distributed attack and a biased attack. The even attack is 
similar to Random Attack in the distributions of flips while the biased attack has a much 
higher proportion of type 1 and type 2 flips. Let A′ be the attacked adjacency matrix and 
we denote ΔA = A� − A as the attack matrix. We assume that the only difference between 
the two methods is the evenness and both methods flip � edges, i.e. the attacking budget is 
�.

The attack matrix of the even attack is denoted as E while the other is denoted as U. 
Noticing that the squares of the singular values of E and U are exactly the eigenvalues of 
ETE and UTU , we denote F ≜ ETE,W ≜ UTU . The eigenvalues of F and W are denoted as 
�f1,⋯ , �fN and �w1,⋯ , �wN respectively. For the simplicity of discussion, we focus on the 
eigenvalues of F and W instead of the singular values of E and U in the following proofs.

Based on previous findings that attacking algorithms tend to add edges instead of delet-
ing ones (Wu et al., 2019), we assume that both attacks are not allowed to delete edges.

Assumption 1  ∀i, j ∈ [1,N] , we have Eij ≥ 0 ∧ Uij ≥ 0.

When an edge (i, j) is added by the algorithm, a perturbation is incident to both node i 
and node j. Fii =

∑N

j=1
EijEji and Wii =

∑n

j=1
UijUji are the numbers of perturbations inci-

dent to node i under the two attacks respectively.
When adversarial edges (i, j) and (i, k) are added, nodes j and k have a common incident. 

For i ≠ j , Fij =
∑N

k=1
EikEkj and Wij =

∑N

k=1
UikUkj specify the number of their common 

incidents under the two attacks respectively.

Table 9   Approximated number 
of perturbations

Dataset p p∕ ∣ E ∣ p/3.10 p∕3.10 ∣ E ∣

Cora 702 13.85% 226 4.46%
Citeseer 604 16.47% 195 5.32%
Cora-ML 1006 12.60% 325 4.07%
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We assume that under the even attack, each node is more likely to be incident to the 
same number of perturbations. Similarly, each pair of nodes is more likely to have the same 
number of common incidents. This assumption is formally defined as:

Assumption 2  Let Fdiag = {Fii ∣ i ∈ [1,N]} , Wdiag = {Wii ∣ i ∈ [1,N]} , Fco = {Fij ∣ i, j ∈ [1,N] ∧ i ≠ j} 
and Wco = {Wij ∣ i, j ∈ [1,N] ∧ i ≠ j} , we have:

Based on the assumptions, the trade-off is mathematically stated as:

Theorem 3  (The Distribution-Eigenvalue Trade-off) For the eigenvalues of F = ETE and 
W = UTU , we have 

∑n

i=1
�fi =

∑n

i=1
�wi and Var(𝜆f ) < Var(𝜆w).

To prove the theorem, we state and prove several lemmas at first.

Lemma 1  For two sets of numbers X = {x1,⋯ , xn} and Y = {y1,⋯ , yn} , if 
∑n

i=1
xi ≤

∑n

i=1
yi 

and Var(X) < Var(Y) , we have 
∑n

i=1
x2
i
<
∑n

i=1
y2
i
.

Proof  Notice that Var(X) = �[X2] − (�[X])2 ,we have:

Since 
∑n

i=1
xi ≤

∑n

i=1
yi , �[X] ≤ �[Y] . As Var(X) < Var(Y) , we have 

nVar(X) + n(�[X])2 < nVar(Y) + n(�[Y])2 . Hence 
∑n

i=1
x2
i
<
∑n

i=1
y2
i
 . 	�  ◻

Lemma 2  �f1 +⋯ + �fN = �w1 +⋯ + �wN.

Proof  For all i ∈ [1,N] , the values of Fii and Wii are the number of perturbations incident 
to node i under the two attacks respectively. Since both attacks have the same budget � , we 
have tr(F) = tr(W) = 2� . Noticing that tr(F) = �f1 +⋯ + �fN , tr(W) = �w1 +⋯ + �wN , we 
have �f1 +⋯ + �fN = �w1 +⋯ + �wN . 	�  ◻

Now we consider the elements in F and W. Let F̃ and W̃ be the squared sum of their 
diagonal elements, F̂ and Ŵ be the squared sum of their non-diagonal elements. Formally, 
F̃ =

∑N

i=1
F2
ii
, W̃ =

∑N

i=1
W2

ii
 and F̂ =

∑
i≠j F

2
ij
, Ŵ =

∑
i≠j W

2
ij
.

Lemma 3  F̃ < W̃.

(21)Var(Fdiag) < Var(Wdiag),

(22)Var(Fco) < Var(Wco).

(23)

n∑

i=1

x2
i
= n�[X2] = nVar(X) + n(�[X])2

n∑

i=1

y2
i
= n�[Y2] = nVar(Y) + n(�[Y])2

.
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Proof  In the proof of Lemma 2, we have shown that tr(F) = tr(W) . Hence 
∑N

i=1
Fii =

∑N

i=1
Wii . According to Assumption 2, Var(Fii) < Var(Wii) . By Lemma 1, 

F̃ =
∑N

i=1
F2
ii
<
∑N

i=1
W2

ii
= W̃ . 	 � ◻

Lemma 4  F̂ < Ŵ.

Proof  Fij is a combinatorial counting of the number of common incidents between i and j 
under the even attack. 

∑
i≠j Fij is twice the total number of all common incidents caused by 

the attack. From another perspective, an arbitrary node i is incident to Fii adversarial edges. 
Each pair of adversarial edges incident to node i is exactly one distinct common incident 

and node i contributes to 
(
Fii

2

)
 common incidents. Hence, the total number of common 

occurrences is 
∑N

i=1

�
Fii

2

�
 . By a combinatorial argument, we have:

Similarly, we have:

According to Lemma 3, 
∑N

i=1
F2
ii
<
∑N

i=1
W2

ii
 . Noticing that 

∑N

i=1
Fii =

∑N

i=1
Wii , we have 

the following inequality:

According to Assumption 2, Var(Fij) < Var(Wij) . Thus, by Lemma 1, we immediately have:

	�  ◻

Now, we prove the existence of the evenness-eigenvalue trade-off.

Proof of Theorem 3 
∑n

i=1
�fi =

∑n

i=1
�wi is proven by Lemma 2.

(24)

∑

i≠j

Fij = 2 ×

N∑

i=1

(
Fii

2

)

=

N∑

i=1

2 ×
Fii(Fii − 1)

2

=

N∑

i=1

(F2
ii
− Fii)

=

N∑

i=1

F2
ii
−

N∑

i=1

Fii

.

(25)
∑

i≠j

Wij =

N∑

i=1

W2
ii
−

N∑

i=1

Wii.

(26)
∑

i≠j

Fij <
∑

i≠j

Wij.

(27)F̂ =
∑

i≠j

F2
ij
<
∑

i≠j

W2
ij
= Ŵ.
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We now consider the variances. Since E and U are symmetric, F and W are also sym-
metric. Hence F2 = FTF , W2 = WTW . We have:

Noticing that for any matrix M and its eigenvalue � , �2 is an eigenvalue of M2 . Thus we 
have:

By Lemma 3 and Lemma 4, we have:

Combining Equations (28), (29) and (30), we have:

Hence �[𝜆2
f
] =

1

n
(
∑N

i=1
𝜆2
fi
) =

1

n
(
∑N

i=1
𝜆2
wi
) < �[𝜆2

w
] . By Lemma 2, �[�f ] =

1
n
(
∑N

i=1 �fi) =
1
n
(
∑N

i=1 �wi) = �[�w] . Thus we have:

	�  ◻

Hence, we proved the existence of the distribution-eigenvalue trade-off under Assump-
tion 1 and Assumption 2.

Theorem  4  (Weyl’s inequality for singular values (Horn and Johnson, 1991)) For m × n 
matrices A, B, we have �j(A) + �k(B) ≥ �j+k−1(A + B) , in which �i(A) denotes the ith largest 
singular value of matrix A.

Theorem 3 shows that even attacks tend to have smaller leading singular values of the 
attack matrix. According to the Weyl’s inequality (Theorem 4), the uneven attack will have 
a stronger attack ability since it will have a higher upper bound on the leading singular val-
ues of the perturbed adjacent matrix. Since GCN-SVD is based on low-rank approximation 
such that small singular values are discarded, this explains the experimental results that the 
BBGA algorithm is relatively ineffective against GCN-SVD.

7 � Conclusions

In this work, we develop deeper insights into graph structure attacks and defenses. We iden-
tify an internal mechanism of the existing representative graph structure attacking algo-
rithms via various case studies. Revealing the advantages and drawbacks of the distribution 

(28)
tr(FTF) = tr(F2) = ‖F‖2

F
= F̃ + F̂

tr(WTW) = tr(W2) = ‖W‖2
F
= W̃ + Ŵ

.

(29)
tr(F2) = �2

f1
+⋯ + �2

fN

tr(W2) = �2
w1

+⋯ + �2
wN

.

(30)F̃ + F̂ < W̃ + Ŵ.

(31)𝜆2
f1
+⋯ + 𝜆2

fN
< 𝜆2

w1
+⋯ + 𝜆2

wN
.

(32)

Var(𝜆f ) = �[𝜆2
f
] − (�[𝜆f ])

2

< �[𝜆2
w
] − (�[𝜆w])

2

= Var(𝜆w).
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shift mechanism, we propose the novel Black-Box Gradient Attack (BBGA) algorithm. To 
the best of our knowledge, this is the first gradient-based black-box graph attack and the 
first non-targeted structure attack that doesn’t require any inquiry. Inspired by the experi-
mental result, we also conduct theoretical analysis to reveal two trade-off points in graph 
structure attacks.

Robustness is critical to the real-world applications of GNNs. This work provides 
insights for further studies in both graph adversarial attacks and graph defenses. At first, 
the theoretical properties found in our work could be utilized by both attacking methods 
and defense algorithms. Secondly, this work primarily focuses on small datasets. To apply 
BBGA on large-scale graphs, we aim to investigate the applications of fast spectral clus-
tering methods in our proposed method. Finally, it will be very meaningful to investigate 
black-box adversarial attacks against certificate robustness methods as well as adversarial 
attacks on heterogeneous graphs.
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