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Abstract
Conformal prediction constructs a confidence set for an unobserved response of a fea-
ture vector based on previous identically distributed and exchangeable observations of 
responses and features. It has a coverage guarantee at any nominal level without additional 
assumptions on their distribution. Its computation deplorably requires a refitting proce-
dure for all replacement candidates of the target response. In regression settings, this cor-
responds to an infinite number of model fits. Apart from relatively simple estimators that 
can be written as pieces of linear function of the response, efficiently computing such sets 
is difficult, and is still considered as an open problem. We exploit the fact that, often, con-
formal prediction sets are intervals whose boundaries can be efficiently approximated by 
classical root-finding algorithms. We investigate how this approach can overcome many 
limitations of formerly used strategies; we discuss its complexity and drawbacks.

Keywords  Prediction Set · Uncertainty Quantification · Distribution-Free · Inference · 
Conformal Prediction · Reliability

1  Introduction

Gammerman et  al. (1998), Vovk et  al. (2005), Shafer and Vovk (2008) introduced Con-
formal Prediction (CP) as a general method for predicting a confidence set of a random 
variable from its point prediction. Given an observed data set Dn = {(x1, y1),… , (xn, yn)} 
sampled from a distribution ℙ , it constructs a 100(1 − �)% confidence set that contains 
the unobserved response yn+1 of a new instance xn+1 . In this way, it equips traditional 
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statistical learning algorithms with a confidence value when predicting the response of a 
new test example. The general idea is to learn a predictive model on the augmented data-
base Dn+1(z) = Dn ∪ (xn+1, z) where z replaces the unknown response yn+1 . We can there-
fore define a prediction loss for each observation, and rank them. A candidate z will be 
considered as conformal or typical if the rank of its loss is sufficiently small. The confor-
mal prediction set will merely collect the most typical z as a confidence set for yn+1 . As 
long as the sequence {(xi, yi)}n+1i=1

 is exchangeable1, and the predictive model is invariant 
with respect to permutation of the data, this method benefits from a strong coverage guar-
antee without any assumption on the distribution. This holds for any finite sample size n.

Several extensions, and applications of conformal prediction have been developed for 
designing uncertainty sets in active learning (Ho & Wechsler, 2008), anomaly detection 
(Laxhammar & Falkman, 2015; Bates et  al., 2021b), image classification (Angelopoulos 
et  al., 2020), few shot learning (Fisch et  al., 2021), time series (Xu & Xie, 2021) or to 
infer the performance guarantee for statistical learning algorithms (Holland, 2020; Cella 
& Ryan, 2020; Bates et al., 2021a). We refer to the extensive reviews in Balasubramanian 
et al. (2014) for other applications to artificial intelligence.

Despite these attractive properties, the computation of conformal prediction sets is chal-
lenging for regression problems since an infinite number of models must be fitted with an 
augmented training set Dn+1(z) , for all possible z ∈ ℝ . This is not only expensive, it is sim-
ply impossible in most cases. In general, efficiently computing conformal sets with the full 
data remains an open problem. The current successful approaches for calculating the set of 
conformal predictions are twofold.

–	 Exhaustive search with a homotopy continuation.2 The fundamental idea is to rely on 
the fact that the typicalness function that maps each candidate with the rank of its pre-
diction loss is piecewise constant. As follows, if we carefully manage to list all its tran-
sition points, we can find exactly where it is above the prescribed confidence level. For 
estimators that have a closed-form formula, e.g., Ridge (Hoerl, 1962) or Lasso (Tibshi-
rani, 1996), it is possible to draw the solutions curve w.r.t. the input candidate z. They 
are often pieces of linear function which enable the exhaustive listing of the change 
points of the rank function; see Nouretdinov et al. (2001), and Lei (2019).

–	 Inductive confidence machine also called Splitting (Papadopoulos et al., 2002; Lei et al., 
2018). The observed dataset is divided into two parts. A proper training set to fit the 
regression model, and an independent calibration set to calculate prediction losses, and 
ranks. This method is the most computationally efficient because it requires only a sin-
gle model fit on a sub-part of the data. Separating the roles of the data to build the 
model, and to evaluate its performance avoids refitting without loss of coverage guaran-
tees. The use of splitting techniques in statistics can be dated at least to Cox (1975)

These strategies have some noticeable limitations. The homotopy methods rely on strong 
assumptions on the model fit, and are numerically unstable due to multiple matrix inver-
sions that are potentially poorly conditioned. They can suffer from exponential complexity 

1  Their joint probability distribution is invariant w.r.t. permutation of the data.
2  Also called numerical continuation or path following methods (Allgower & Georg, 2012) are techniques 
for numerical approximation of a solution curve implicitly defined by a system of equations. In our context, 
we are interested in solving optimization problems, and we need to describe the solution curve w.r.t. param-
eter changes of the first order optimality conditions.
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in the worst cases, and must frequently be abandoned because of extremely small step sizes 
(Gärtner et al., 2012; Mairal & Yu, 2012). The data splitting approach does not use all the 
data in the training phase. It generally results in a wider confidence region, i.e., of wider 
size. As an alternative, a common heuristic unduly restricts the function evaluations to an 
arbitrary discrete grid of trial values z, and select the most typical one among them. These 
strategies might lose the coverage guarantee, and are still computationally inefficient. As 
a viable alternative, one relaxes the exact computation of the regression model at every 
step, and then approximately follows the homotopy continuation path by tightly control-
ling the optimization error as in Giesen et  al. (2010), Ndiaye et  al. (2019). Ndiaye and 
Takeuchi (2019) has shown this is a safer discretization strategy, and that it can cope with 
more general nonlinear regressions. Still, it is so far limited to convex problems with strong 
regularity assumptions on the model fit, and fails to be applicable to most machine learning 
prediction methods.

1.1 � Summary of the contributions

We build on the striking remark that for common practical situations, the conformal pre-
diction set is a bounded interval of the real line. Its boundaries are the roots of coverage 
level � minus the typicalness function, and these can be efficiently computed by a root-
finding algorithm such as bisection search, with high precision, and without suffering from 
the limitations mentioned above. Despite its simplicity, it overcomes the limitations of the 
aforementioned strategies, and significantly improves, and extends the applicability of full 
conformal prediction to problems where it was considered intractable so far.

We highlight some advantages of our approach.

–	 Efficiency We demonstrate that computing a full conformal prediction set is tractable 
under mild assumptions. Relying on a bisection search, approximating the bounda-
ries of the full exact conformal set at a prescribed accuracy 𝜖 > 0 , requires about 
O(log2(1∕�)) number of model fit. The latter, trained on the whole data, allows to obtain 
a more informative confidence set than splitting methods. Accordingly, we maintain 
both statistical, and computational efficiency.

–	 Flexibility Our strategy offers considerable freedom on the choice of the regression 
estimator. For example, it can be defined as an output of a gradient descent process that 
maximizes a likelihood. It can be terminated when the norm of the gradient is smaller 
than a tolerance �0 or after 100 iterations of the algorithm. Consequently, the estima-
tor can be parameterized by the number of iterations or the optimization error result-
ing from an iterative process as long as the symmetry of the data is preserved. The 
proposed root-finding approaches are easily applicable to more sophisticated recent 
machine learning techniques, such as deep neural networks or models involving a non-
convex regularization.

–	 Simplicity The proposed methods are straightforward to implement. One substantially 
benefits from freely available scientific computing software packages like scikit-
learn (Pedregosa et al., 2011) or scipy (Virtanen et al., 2020) to adjust models, and 
find the endpoints of the conformal set.

We also introduce an interpolation point of view of grid based approaches that properly 
justifies how the coverage guarantee can be maintained along with reduced computational 
time. In the case where a piecewise linear (or constant) interpolation scheme, and a simple 
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conformity score (for example the absolute value) is used, the assumption that the confor-
mal set is an interval is not required. The computations can be easily carried following a 
homotopy strategy. To further reduce the number of model evaluations, we additionally 
provide a differentiable approximation of the rank function which effectively improves 
the computational efficiency of the root-finding solvers. We carefully analyze its coverage 
guarantee, and point out the trade-off between calibration, and number of model evalua-
tions when such smoothing techniques are used. Such smoothing is mainly beneficial when 
a high precision is required.

Notation. For a non zero integer n, we denote [n] the set {1,… , n} . We denote by Q1−� , 
the (1 − �)-quantile of a real valued sequence (Ui)i∈[n+1] , defined as the variable 
Q1−� = U(⌈(n+1)(1−�)⌉) , where U(i) are the i-th order statistics. The interval [a − �, a + �] will 
be denoted [a ± �] . For an index j in [n + 1] , the rank of Uj among U1,… ,Un+1 is defined as 
Rank(Uj) =

∑n+1

i=1
�Ui≤Uj

.

2 � Conformal prediction

We recall the arguments presented in Vovk et al. (2005), Shafer and Vovk (2008), Lei et al. 
(2018) while underlining in details the intuitions, and principles that sustain the construc-
tion, and validity of conformal prediction. Let us consider an input random variable X, and 
output Y. The goal is to construct a confidence set for the variable Y , i.e., find a set C(X) 
such that

Given a prediction function �(⋅) that maps the input to the output space, and a loss meas-
ure S, one can assess the prediction error as E = S(Y ,�(X)) . It is a random variable 
with cumulative distribution function F and quantile Q defined as F(z) = ℙ(E ≤ z) and 
Q(�) = inf{z ∈ ℝ ∶ F(z) ≥ �} . The main tool for building a set C(X) that satisfies the prob-
abilistic guarantee in Equation (1), is the following classical result3:

It implies F(E) = F(S(Y ,�(X)) ≤ 1 − � with probability larger than or equal to the confi-
dence level � = 1 − � . One then defines a confidence set for Y as the collection of candi-
date z that satisfy the same inequality, i.e., 

It turns out that the same principle can be applied to compute a confidence set for sequen-
tial observations. To do so, the coverage bound in Equation (2) can be extended to empiri-
cal cumulative distribution and empirical quantile functions defined as:

(1)ℙ(Y ∈ C(X)) ≥ 1 − �, ∀� ∈ (0, 1).

(2)∀� ∈ (0, 1), ℙ(F(E) ≤ �) ≥ �.

C(X) = {z ∶ F(S(z,�(X)) ≤ 1 − �}.

Fn+1(z) =
1

n + 1

n+1∑
i=1

𝟙Ei≤z
, Qn+1(�) = inf{z ∈ ℝ ∶ Fn+1(z) ≥ �}.

3  By definition, we have Q(�) is the smallest real value z such that F(z) ≥ � . Thus 
� ≤ F(Q(�)) = ℙ(E ≤ Q(�)) = ℙ(F(E) ≤ �).
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Lemma 1  For a sequence of exchangeable random variables E1,… ,En+1 , it holds 
ℙ(Fn+1(En+1) ≤ �) ≥ � , for any � ∈ (0, 1).

Proof  We follow the proof in Romano et al. (2019). By definition of the empirical quantile, 
we have

Taking the expectation on both side, we have

Moreover, we have for any i in [n], ℙ(Fn+1(Ei) ≤ �) = ℙ(Fn+1(En+1) ≤ �) by excheange-
ability. Hence the result. 	�  ◻

Using Lemma 1, we have Fn+1(En+1) ≤ 1 − � with probability larger than or equal to the 
confidence level � = 1 − � . Given the n previous observations, one can define a confidence 
set for an unobserved variable En+1 as the random set

In supervised statistical learning problems, where we observe both the responses, and the 
features, one can apply this principle while taking benefits of an underlying model trained 
on the observed data. For the augmented dataset Dn+1(z) = Dn ∪ {(xn+1, z)} for z ∈ ℝ , an 
example of predictive model is given as 𝜇z(x) = 𝛷(x, 𝛽(z)) , where � is a regression model, 
e.g., a kernel machine or a Deep Neural Network with parameter 𝛽(z) adjusted on the data. 
For example, by using empirical risk minimization principle, one defines

where 𝜆 > 0 and L(� ∣ Dn+1(z)) =
∑n

i=1
�(yi,�(xi, �)) + �(z,�(xn+1, �)) is the data fitting 

term and the regularization function � enforces structured solutions, e.g., sparsity.

Examples  A popular example of an instance-wise loss function found in the literature is 
the power norm, where �(a, b) = |a − b|q . When q = 2 , this corresponds to classical lin-
ear regression. Cases where q ∈ (0, 2) are common in robust statistics. In particular, q = 1 
is known as least absolute deviation. The logcosh loss �(a, b) = � log(cosh(a − b)∕�) 
is a differentiable alternative to the �∞-norm. One can also have the Linex loss func-
tion (Gruber, 2010; Chang & Hung, 2007) which provides an asymmetric loss 
�(a, b) = exp(�(a − b)) − �(a − b) − 1 , for � ≠ 0 . The regularization functions � , 
e.g., Ridge (Hoerl & Kennard, 1970) or sparsity inducing norms (Bach et al., 2012; Oboz-
inski & Bach, 2016) can be considered as well as non convex penalties (Xie & Huang, 
2009).

Given the fitted model �z(⋅) and a loss measure S, let us define the sequence of instance-
wise prediction errors as:

� ≤ Fn+1(Qn+1(�)) =
1

n + 1

n+1∑
i=1

�Ei≤Qn+1(�)
.

� ≤
1

n + 1

n+1∑
i=1

ℙ(Ei ≤ Qn+1(�)) =
1

n + 1

n+1∑
i=1

ℙ(Fn+1(Ei) ≤ �).

{z ∶ Fn+1(z) ≤ 1 − �}.

(3)𝛽(z) ∈ argmin
𝛽∈ℝp

L(𝛽 ∣ Dn+1(z)) + 𝜆𝛺(𝛽),
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The sequence {E1(yn+1),… ,En(yn+1),En+1(yn+1)} is exchangeable as long as the data 
{(xi, yi)}

n+1
i=1

 is exchangeable, and the model fit �z(⋅) is invariant w.r.t. permutation of the 
data. We can then apply Lemma 1 to obtain a coverage guarantee.

Definition 1  The full conformal prediction set is formally defined as

where

The term “full” refers to the fact that the entire data set is used to fit the regression model; 
in contrast to the splitting approach presented in detail below.

Lemma 1 implies that the set � (�)(xn+1) is a valid confidence set for yn+1 in the sense of 
Equation 1, i.e.,   ℙ(yn+1 ∈ � (�)(xn+1)) ≥ 1 − � for any � in (0, 1). Somehow, the refitting 
procedure with the extended dataset Dn+1(z) , puts all the variables on equal feet, and pre-
serves the exchangeability of the sequence of prediction errors. Using the rank function, we 
have (n + 1)Fn+1(En+1(z)) = Rank(En+1(z)) , and one can rewrite the CP set as (which is in 
fact the traditional notation)

where z ↦ �(z) is the typicalness function that measures how conformal a candidate is. It 
is defined as

Lemma 1 reads ℙ(�(yn+1) ≤ �) ≤ � , i.e.,  the random variable �(yn+1) takes small values 
with small probability. Thus, it is unlikely that yn+1 will take the value z when �(z) is small. 
More precisely, �(yn+1) is (sub) uniformly distributed as usual for classical statistics for 
hypothesis testing. For example p-value function satisfies such a property under the null 
hypothesis; see (Lehmann & Romano, 2006,  Lemma 3.3.1). One can then interpret the 
typicalness �(⋅) as a p-value function for testing the null hypothesis H0 ∶ yn+1 = z against 
the alternative H1 ∶ yn+1 ≠ z , for z in ℝ . The conformal prediction set merely corresponds 
to the collection of candidate z for which the null hypothesis H0 is not rejected.

3 � Computing conformal prediction set

For regression problem where yn+1 lies in a subset of ℝ , one need to evaluate �(z) in Equa-
tion (6), and so refitting the model �z(⋅) for infinitely many candidate z. This merely renders 
the overall computation challenging, and leaves the problem open in general. Nevertheless, 
some peculiar regularity structure of the typicalness function �(⋅) can be exploited. For 
example, by utilizing the fact that it is piecewise constant, it is sufficient to enumerate the 
transition points (when they are finite) to compute the conformal set. This is possible for 

∀i ∈ [n], Ei(z) = S(yi, �z(xi)), and En+1(z) = S(z, �z(xn+1)).

(4)� (�)(xn+1) = {z ∶ Fn+1(En+1(z)) ≤ 1 − �},

(5)Fn+1(En+1(z)) =
1

n + 1

n+1∑
i=1

�Ei(z)≤En+1(z)
.

� (�)(xn+1) = {z ∶ �(z) ≥ �},

(6)�(z) = 1 −
1

n + 1
Rank(En+1(z)) = 1 − Fn+1(En+1(z)).
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a limited number of cases, e.g., Ridge or Lasso where the map z ↦ �z(⋅) can be explicitly 
described. Unfortunately, only a very small class of statistical learning problems has such 
nice regularity structure. For other estimators, the computation of CP set when yn+1 can 
take countless number of values, is unclear.

3.1 � Splitting

To overcome this issue, the split conformal prediction set introduced in Papadopoulos et al. 
(2002), separates the model fitting, and the score ranking step. Let us define

–	 the training set Dtr = {(x1, y1),… , (xm, ym)} with m < n,
–	 the calibration set Dcal = {(xm+1, ym+1),… , (xn, yn)}.

Then the model is fitted on the training set Dtr to get �tr (⋅) , and define the score function on 
the calibration set Dcal:

Thus, we obtain the split typicalness function as

The latter is proportional to the rank of the (n + 1) th score on the calibration set. Finally, 
we define

where Qcal
1−�

 is the (1 − �) quantile of the calibration scores {Ecal
m+1

,… ,Ecal
n+1

} . When the 
score function is the absolute value S(a, b) = |a − b| , the split CP set is the interval 
�

(�)

split
(xn+1) = [�tr (xn+1) ± Qcal

1−�
] . While this approach avoids the computational bottleneck, 

the statistical efficiency of the model can be reduced due to a significantly smaller sample 
available during the training, and calibration phase. Moreover, the length of the split con-
formal set tends to have a higher variance. In general, the proportion of training vs calibra-
tion set is a hyperparameter that requires appropriate tuning: a small calibration set leads to 
highly variable conformity scores, and a small training set leads to poor model fitting. In all 
our experiments, we set the splitting proportion to 2, which means that the two sets play 
symmetric roles. Since the sequence of scores {Ecal

m+1
,… ,Ecal

n
,Ecal

n+1
(z)} is exchangeable, the 

Lemma 1 implies that ℙ(yn+1 ∈ �
(�)

split
(xn+1)) ≥ 1 − �.

3.2 � Cross‑conformal predictors

The trade-off mentioned above is very recurrent in machine learning, and often appears 
in the debate between bias reduction, and variance reduction. It is often decided by the 
cross-validation method with several folds (Arlot & Celisse, 2010). Cross-conformal pre-
dictors (Vovk, 2015) follow the same ideas, and exploit the full dataset for calibration, and 
significant proportions for training the model. The dataset is partitioned into K folds, and 

∀i ∈ [m + 1, n], Ecal
i

= S(yi, �tr (xi)), and Ecal
n+1

(z) = S(z, �tr (xn+1)).

�split (z) = 1 − Fsplit (E
cal
n+1

(z)), where

Fsplit (E
cal
n+1

(z)) =
1

n − m + 1

n+1∑
i=m+1

�Ecal
i
≤Ecal

n+1
(z).

�
(�)

split
(xn+1) = {z ∶ �split (z) ≥ �} = {z ∶ Ecal

n+1
(z) ≤ Qcal

1−�
},



158	 Machine Learning (2023) 112:151–176

1 3

one performs a split conformal set by sequentially defining the kth fold as calibration set, 
and the remaining as training set for k ∈ {1,… ,K} . However, aggregating the different 
pi-values is not straightforward, and the validity of the method might be jeopardized with-
out stronger assumptions on the score function, see (Carlsson et al., 2014; Linusson et al., 
2017). More precisely, it can be shown that the confidence level is inflated by a factor of 2, 
i.e., the (not improvable) theoretical coverage level is 1 − 2� instead of 1 − � , see (Barber 
et al., 2021). Under additional stability assumption, Cross-conformal predictors can only 
approximately achieve the target coverage 1 − � . Otherwise, without approximation, in 
order to remove the factor 2, one can consider an overly conservative set whose extrem-
ity are defined as the smallest, and largest residual over all leave-one-out residuals. The 
leave-one-out (also called Jackknife) CP set, will require K = n model fit which is prohibi-
tive even when n is moderately large. On the other hand, the K-fold version will require 
K model fit but will come at the cost of fitting on a lower sample size, and will leads to 
an additional excess coverage of O(

√
2∕n) . A Bootstrap version (Vovk, 2015, Appendix 

B) will suffer from the same inflation (Kim et  al., 2020). In all cases, we are not aware 
of a (variant of) cross-conformal predictors that simultaneously achieves 1 − � provable 
coverage guarantee, and a non-conservative prediction set. Nevertheless, the practical per-
formance is fairly acceptable both computationally, and statistically. In this paper, we only 
compare with the methods that provably achieve the prescribed 1 − � confidence level, 
namely the splitting method, and the oracle conformal prediction described in Sect. 4.

3.3 � Approximation to a prescribed accuracy

In this paper, we promptly take advantage of the remarkable fact that the conformal regions 
are often intervals. We subsequently take an alternative direction which carefully avoids 
tracking the integral path of all model fit, and also avoids any data splitting. When the 
(1 − �)-level set of the function z ↦ Fn+1(En+1(z)) is convex, e.g., Fig.  1, we propose to 

(a) (b)

Fig. 1   Illustration of the initialization steps when both the initial prediction based on observed data 
z0 = �Dn

(xn+1) , and midpoint of split conformal interval �tr (xn+1) fails to be in the conformal prediction set 
whose boundaries are delimited by the red crosses. The synthetic data are generated with ������� as X, y = 
make_regression(n = 300, p = 50) . We choose an optimization accuracy of �0 = ‖‖(y1,… , yn)

‖‖22∕104 
for approximating the ridge estimator. The trial points are Cd = {z1,… , zd} with d = 10 , and we denoted 
z(�) ∈ argmax

z∈Cd

�(�)(z) is the most conformal trial candidate at precision � ≥ 0 . To be more explicit, the 

approximated conformity functions obtained from the Cd grid are denoted �(�0)(⋅ ∣ Cd) when early stopping 
at optimization accuracy �0 is used, and �(⋅ ∣ Cd) when the exact solution is used
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employ a numerical root-finding solver to approximate the endpoints of the interval. The 
statistical validity is automatic, we obtain simultaneously an upper, and lower bound on 
each extremity of the confidence set, and the approximation error � can be made arbitrarily 
small at the cost of O(log(1∕�)) number of model fit; without inflation of the confidence 
level.

3.4 � Outline of the algorithm: rootCP

Assuming that the conformal set is a non empty interval of finite length, we denote

Given a tolerance 𝜖 > 0 , we proceed as follows: 

1.	 find zmin < z0 < zmax such that 

2.	 Perform a bisection search in [zmin, z0] . It will output a point �̂  such that ��(xn+1) belongs 
to [�̂ ± 𝜖] after at most log2(

z0−zmin

�
) iterations.

3.	 Perform a bisection search in [z0, zmax] . It will output a point û such that u�(xn+1) belongs 
to [û ± 𝜖] after at most log2(

zmax−z0

�
) iterations.

3.5 � Initialization

For the initial lower, and upper bounds, we suggest

For most of the situations encountered in our numerical experiments, we consistently get 
�(zmin) , and �(zmax) both smaller than the threshold level � . Otherwise, we can always 
take values even farther apart without affecting the complexity thanks to the logarith-
mic dependence in the length of the initialization brackets. This is especially necessary 
when the total number of samples n is small4. The most crucial part is to choose z0 so that 
𝜋(z0) > 𝛼 . It is equivalent to get a point in the interior of the conformal set itself. In the 
ideal case where the length of the conformal set is extremely small, finding an initialization 
point might be notoriously hard. Indeed, it corresponds to a rare event equivalent to sam-
pling a point in a low probability region. We adopted a simple strategy which consists in 
estimating yn+1 with the observed data Dn . We subsequently denote it

In our sequence of repetitive numerical experiments, this choice rarely fails. Naturally, its 
success depends on the prediction capabilities of the model fit. In the rare cases where it 

� (�)(xn+1) = [��(xn+1), u�(xn+1)].

(7)𝜋(zmin) < 𝛼 < 𝜋(z0) and 𝛼 > 𝜋(zmax).

zmin = min
i∈[n]

yi and zmax = max
i∈[n]

yi.

z0 = �Dn
(xn+1).

4  Indeed, we have ℙ(yn+1 ∈ [zmin, zmax]) ≥ 1 −
1

n+1
 . Hence when n is sufficiently large, i.e.,   n ≥ 1 + 1∕� , 

then [zmin, zmax] is a (1 − �) confidence set.
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fails, we propose to test the initialization condition on some query points selected on an 
initial estimation [z−

�
, z+

�
] of the CP set. This localization step aims to exploit additional 

problem structure, and can be interpreted as an iterative importance sampling to maintain a 
reasonably low computational cost. 

1.	 Localization Given an easy to compute estimate set [z−
�
, z+

�
] that is potentially larger5 

than the targeted conformal set, we select its mid point 

 If z0 satisfies 𝜋(z0) > 𝛼 , then we have a valid initialization by paying only a single 
model fit. Otherwise, we run the next step on the bracket [z−

�
, z+

�
].

	   For instance, one can use the interval obtained from the splitting approach 
[z−

�
, z+

�
] = �

(�)

split
(xn+1) or a rough approximation [z−

𝛼
, z+

𝛼
] = {z ∶ 𝜋Dn

(z) > 𝛼} where �Dn
(⋅) 

is an unsafe estimation of �(⋅) with �z(x) replaced by �Dn
(x) for any candidate z, and any 

input feature x.
2.	 Sampling For a small number d , e.g.,  d = 5 , and given a bracket search [z−, z+] , select 

candidates Cd = {z1,… , zd} uniformly. If there is 𝜋(z0) > 𝛼 for a z0 in Cd , we have a valid 
initialization. Otherwise, we use these query points to interpolate the model fit as in eq. 
(9). Thus, by selecting additional points that have a higher typicalness according to the 
interpolated model, one can refine the sampling set Cd , and repeat the process.

	   For completeness, we summarize the procedure in Algorithm 1.

z0 =
z+
�
+ z−

�

2
.

5  One can slightly enlarge the set by taking [z−
�
− 0.5(z+

�
− z−

�
), z+

�
+ 0.5(z+

�
− z−

�
)].
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Additionally, we explain below how this model fit interpolation can be used to obtain an 
alternative CP set. Note that its midpoint can also be used as a candidate for initialization. For 
computational efficiency, one can rely predominantly on the fact that for the usual prediction 
problems in machine learning, it is unneeded to optimize below the inevitable statistical error 
(Bousquet & Bottou, 2008). This means that a high optimization accuracy in the model fit 
might be unnecessary to achieve better generalization performances. Therefore, with a coarse 
optimization tolerance, we can preview the final shape of the conformity function. Whence, 
one can replace �(z) by �(�0)(z) which is computed with a rough optimization error �0 in order 
to guess the shape of the function �(⋅) . Similarly, if �(z0) fails to be a valid initialization, then 
decrease �0 , and repeat the process. In all our experiments, it works fine after a very few num-
ber of iterations. Nonetheless, we do not have strategies to avoid worst-case situations or any 
mathematical guarantee in the total number of iterations needed to find a valid initialization. We 
illustrate this strategy in Fig. 1 in both situations of failure, and success.

3.6 � Further complexity reduction

In cases where the regression map z ↦ �z(x) for any feature x, can be traced with homot-
opy as in Ridge (Nouretdinov et  al., 2001), and Lasso (Lei, 2019), it takes O(n2) to 
compute the exact conformal set. This can be reduced to O(n log n) by sorting the roots 
of the instance-wise scores Ei(z) − En+1(z) for i in [n], and cleverly flattening the double 
loop when evaluating the ranks of the score functions (Vovk et al., 2005, Chapter 2.3). 
By relaxing the exactness, none of these two steps is needed in our approach. We obtain 
an asymptotic improvement to O(n log2(1∕�)) , and an easier to implement algorithm.

When the model fit is parameterized by the solution of optimization problem in Equation 
(3), the regularity of the loss function, and penalty terms play a major role in the computa-
tional tractability of the full conformal prediction set. Leveraging smoothness, and convex-
ity assumptions on the loss or penalty functions, it has been shown in Ndiaye and Takeuchi 
(2019) that approximate solutions can be used without refitting the model for close candidates 
z. The resulting conformal set is 𝛤

(𝛼,𝜖)
= {z ∈ ℝ ∶ 𝜋(z, 𝜖) > 𝛼} where the corresponding typ-

icalness function incorporates the optimization error, i.e., 
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One can further show that the typicalness function based on exact solution 𝜋̂(⋅) is uni-
formly upper bounded by �(⋅, �) , and then 𝛤 (𝛼) ⊂ 𝛤

(𝛼,𝜖)
 . This can be equally used to reduce 

the number of model fit, and also to wrap the CP set based on exact solution by applying 
rootCP directly to �(⋅, �) instead of computing a whole approximation path.

Compared with the homotopy approach, rootCP will always make a smaller number 
of model fits. By merely storing each model evaluation, it benefits from warm-start boost-
ing by employing the solutions of the previous function call. Alas, the homotopy 
approaches require either an exact solution or an approximate one with a strict control of 
the optimization error. This control is not always available if one does not provide a com-
putable upper bound of it, for example by precisely evaluating the duality gap. Such bounds 
are hardly available in non-convex settings which greatly reduce its applicability in modern 
machine learning techniques. Meanwhile, the complexity of the approximate homotopy 
algorithm is O( zmax−zmin√

�0
) where �0 is the optimization error of the model fit. Additionally to 

the linear dependence in the initial interval length, it cannot be launched for small �0 
whereas the number of model fit in the root-finding approach is not degraded. In a nutshell, 
the proposed method avoids the computation of the whole path. Hence, it enjoys an expo-
nential improvement over the homotopy approach w.r.t.  to the initial interval length 
zmax − zmin , and an overall complexity that is independent of �0 . It can then be used with 
highly optimized model fit where the homotopy method cannot even be launched.

3.7 � Drawbacks

Full conformal prediction set is not always an interval. When it is a union of few well 
separated intervals, our proposed method cannot be applied without finely bracketing 
these intervals. One can include a human in the loop. The discrete function �(�0) offers a 
cheap pre-visualization of the landscape of the conformity function that allows to detect 
these situations, and infer a proper bracketing. At this point, efficiently enumerating all 
the roots remains a challenging task that we leave as an open problem. In the following 
proposition, we provide a sufficient condition so that the conformal set is an interval. It 
essentially consists of a simple condition so that the conformity function is monotoni-
cally increasing until it reaches its maximum value, and then monotonically decreasing.

Proposition 1  If for any i in [n], the difference of instance-wise error function 
z ↦ Ei(z) − En+1(z) is quasi-concave, and has two zeros ai ≤ bi such that

then the typicalness function �(⋅) is quasi-concave, and the conformal prediction set at a 
level � ∈ (0, 1) is either empty or an interval.

Proof  The function �i(z) ∶= Ei(z) − En+1(z) is quasi-concave implies that its 0-level set is 
convex, and {z ∶ �(z) ≤ 0} = (−∞, ai] ∪ [bi,+∞) or empty. Whence,

�(z, �) =
1

n + 1

n+1�
i=1

�
Ei(z)≥En+1(z)−2

√
2��

.

max
i∈[n]

ai ≤ min
i∈[n]

bi,
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where, without loss of generality, we assume that all intervals are non-empty. Those that 
are not have a zero contribution to the sum and can therefore be deleted. Now, the con-
dition maxi∈[n] ai ≤ mini∈[n] bi implies that the function z ↦ �(z) = 1 − Fn+1(En+1(z)) is 
monotonically increasing in (−∞, a(n+1)] , and decreasing in [b(1),+∞) . Hence the result. 	
� ◻

Proposition 1 generalizes (Lei, 2019, Theorem 3.3) which provides a sufficient condi-
tion so that the Lasso conformal set is an interval. Unfortunately, such sufficient condi-
tions are not testable for most problems. Indeed, it requires knowing all the zero cross-
ing points of the function z ↦ Ei(z) − En+1(z) for all indices i ∈ [n] which is as hard as 
computing the whole function z ↦ �(z).

In the literature, similar assumptions are made to obtain a conformal predictive dis-
tribution by enforcing a monotonicity on the score functions, see Vovk et al. (2017). We 
remind that even when the typicalness function z ↦ �(z) is not quasi-concave, our algo-
rithm is still valid as long as the conformal set is an interval; which is a much weaker 
assumption than quasi-concavity. It would be interesting to study in more detail how to 
characterize the class of score function that systematically leads to a CP set being an 
interval. This is not necessarily obvious since it is easy to build an adversarial example. 
Indeed, consider a sinusoidal score function S(a, b) = | sin(a − b)| . It treats the data sym-
metrically across the instances, and then satisfies all the assumptions. The correspond-
ing CP set is a union of an infinite number of intervals even for very simple regression 
models such as least squares. Which is a reminiscence of No-Free-Lunch: without 
any assumption, computations of a CP set is impossible, even with splitting approaches!

3.8 � Interpolated conformal prediction

The full conformal prediction set is computationally expensive since it requires knowing 
exactly the map z ↦ �z(⋅) . The splitting approach does not use all the data in the learning 
phase but is computationally efficient since it requires a single model fit. Alternatively, it 
was proposed in Lei et al. (2018) to use an arbitrary discretization, and its theoretical anal-
ysis in Chen et al. (2018) unfortunately failed to preserve the coverage guarantee. In this 
section, we argue that grid based strategy with an interpolation point of view, stands as an 
"in-between" strategy that exploits full data with a restricted computational time while pre-
serving the coverage guarantee. We propose to compute a conformal prediction set based 
on an interpolation of the model fit map given a finite number of query points. The main 
insight is that the underlying model fit plays a minor role in the coverage guarantee; the 
only requirement is to be symmetric with respect to permutation of the data. As such, the 
model path z ↦ 𝜇z(⋅) can be replaced by an interpolated map z ↦ 𝜇̃z(⋅) based on query 

Fn+1(En+1(z)) =
1

n + 1

n+1∑
i=1

�(−∞,ai]∪[bi,+∞)(z),
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points z1,… , zd . It reads to a valid prediction set as long as the interpolation preserves the 
symmetry6. For instance, one can rely on a piecewise linear interpolation

where 𝜇z(x) is a prediction map trained on the augmented dataset Dn+1(z) as in Equation 
(3).

As before, one defines the instance-wise score functions

The conformal set based on interpolated model fit is then defined as

Since the map z ↦ 𝜇̃z(⋅) is (or can be made) symmetric, it is immediate to see that 
𝛤 (𝛼)(xn+1) is a valid conformal set following the same proof technique.

We remind that the conformal set can be highly concentrated around its midpoint, and 
the typicalness of most candidates is close to zero. Whence, we suggest restricting the 
query points around an estimate of the conformal set provided by a localization step. Also, 
it could be interesting to evaluate the performance of more sophisticated interpolation 
methods like splines in order to have more symbiosis between the interpolation, and the 
smoothing of the rank function introduced in the next section. Nevertheless, the simplicity 
of linear interpolation allows an exact calculation of the conformal prediction set because 
one can easily enumerate the change points of the rank function. This is not necessarily 
preserved with higher order interpolation, and requires further investigation.

Remark 1  (Interpolation of the typicalness map) Given the query points, and their corre-
sponding typicalness (z1,�(z1)),… , (zd,�(zd)) , one can also directly learn a function that 
approximate the typicalness z ↦ �(z) . However, in this case, we could not establish the 
theoretical coverage guarantee of this method. Moreover, when the conformal set is highly 
localized, most of the �(zi) might be close to zero leading to a flat, and poorly interpolated 
typicalness map.

Previous discretization approaches did not preserve the coverage guarantee or did it at 
expensive cost by approximating a model fit path on a wide range, with a high precision at 
every step, and was restricted to convex problems. The interpolation point of view that we 
provided allows us to compute a valid conformal prediction set with arbitrary discretiza-
tion without loss in the coverage guarantee, and without restriction to convex problems. 
Also note that depending on the interpolation used, there is no need to assume that the 

(9)𝜇̃z =

⎧
⎪⎨⎪⎩

z1−z

z1−zmin

𝜇̂zmin
+

zmin−z

z1−zmin

𝜇̂z1
if z ≤ zmin,

z−zt+1

zt−zt+1
𝜇̂zt

+
z−zt

zt+1−zt
𝜇̂zt+1

if z ∈ [zt, zt+1],
z−zd

zmax−zd
𝜇̂zmax

+
zmax−z

zmax−zd
𝜇̂zd

if z ≥ zmax,

∀i ∈ [n], Ẽi(z) = S(yi, 𝜇̃z(xi)) and Ẽn+1(z) = S(z, 𝜇̃z(xn+1)).

𝛤 (𝛼)(xn+1) = {z ∶ 𝜋̃(z) ≥ 𝛼}, where

𝜋̃(z) = 1 −
1

n + 1

n+1∑
i=1

�Ẽi(z)≤Ẽn+1(z)
.

6  Otherwise one can always perform a symmetrization, e.g.,  using a model parameter �̃(z) = 1
(n+1)!

∑

�∈�n+1
�(w�(1),… ,w�(n),w�(n+1)) , where wi = (xi, yi) if i in [n], wn+1 = (xn+1, z) , and �n+1 is the group of 

permutation of [n + 1].
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conformal prediction set is an interval. Indeed, in the case below of piecewise linear inter-
polation, one can easily enumerate all the change points of the conformal function as in 
homotopy methods. However, in general we also recommend the use of rootCP. Finally, 
note that in the case of the ridge estimator (which is linear in z), the exact conformal pre-
diction coincides with that of the interpolation.

3.9 � Smoothed conformal prediction

Conformal prediction sets rely on rank computations. The latter function is piecewise con-
stant, and has no useful first order information in the sense that it is either null or undefined. 
We propose a smooth approximation of the typicalness function to reduce the number of 
query points. In addition to exchangeability, we merely use the fact that Fn+1 is increasing, 
and the linearity of the sum to obtain the coverage guarantee. Likewise, one should be able 
to replace �Ei−z≤0

 with a continuously differentiable, and increasing function �� (Ei − z) . 
Hence, replacing the function z ↦ Fn+1(En+1(z)) by a smoother one allows the use of more 
efficient gradient or quasi-Newton-based root finding methods. We further investigate the 
influence of such smoothing on the coverage guarantee. In practice, we simply choose the 
sigmoid function �� (x) =

e−�x

1+e−�x
 as in Qin et al. (2010). We have

The main advantage is that the map sRank(⋅, �) improves the regularity of Rank(⋅) , and 
allows faster convergence.

The smooth approximation of the typicalness function is then defined as

and the smoothed conformal prediction set (illustrated in Fig. 2) as

Now computing an approximation of the conformal prediction set is equivalent to finding 
the smallest, and largest solution of the equation �(z, �) = � which is often easier to solve 
than �(z) = � . Using different root-finding solvers, we illustrate the computational advan-
tages by displaying the reduction of the number of model fit in Fig. 2.

Remark 2  (Gradient Based Solvers) When, for any feature x, the regression map z ↦ �z(x) 
is differentiable, the solutions of equation �(z, �) = � could be approximated with more 
efficient gradient based root-finding algorithm. However, the function z ↦ �(z, �) is mostly 
flat except at a tiny vicinity of the conformal set which makes the convergence difficult 
unless a good initialization is found. One could also rely on a regularized version by mini-
mizing (�(z, �) − �)2 + �z2 which requires a proper tuning of the hyper parameter � . Both 
of these strategies turn out to be less stable, and need further investigations.

Remark 3  Here it is clear that the term “smooth” refers to the differentiability of the con-
formity function; and was introduced for computational reasons. This is not to be con-
fused with the “Smoothed Conformal Predictors” introduced in Vovk et al. (2005, Page 
27) where the borderline cases Ei(z) = En+1(z) are treated more carefully, i.e.,   smoothly 

Rank(uj) ∶=

n+1∑
i=1

�ui−uj≤0
≈

n+1∑
i=1

�� (ui − uj) =∶ sRank(uj, �).

�(z) ≈ �(z, �) ∶= 1 −
1

n + 1
sRank(En+1(z), �),

𝛤 (𝛼,𝛾)(xn+1) = {z ∶ 𝜋(z, 𝛾) > 𝛼}.
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penalized with a random parameter between 0, and 1 instead of increasing the rank with 1. 
This randomization essentially breaks the ties to ensure an exact coverage guarantee. All 
the computational methods we introduce in this article apply immediately to this case.

We analyze the statistical consequences of using a continuous version of the indicator 
function. We recall the definition of the smoothed version of the empirical cumulative dis-
tribution, and empirical quantile:

F̃n+1(z) =
1

n + 1

n+1∑
i=1

𝜙𝛾 (Ei − z), Q̃n+1(𝛼) = inf{z ∈ ℝ ∶ F̃n+1(z) ≥ 𝛼}.

Fig. 2   Illustration of the smoothed conformal set with data generated from ������� as X, y = make_
regression(n = 300, p = 50) . The smoothed typicalness function �(⋅, �) is evaluated with several val-
ues for the hyperparameter � . The underlying estimator is the ridge regressor with parameter � = p∕‖�LS‖2 
where �LS is the Least-squares estimator on the observed dataset Dn
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Proposition 2  (Coverage guarantee of the smooth relaxation) For a sequence of exchange-
able random variable E1,… ,En+1 , it holds for any 𝛼̃ in (0, 1),

where �(�) = supx(�� − �
⋅≤0)(x).

Proof  By definition of F̃n+1 , and Q̃n+1 , we have

We conclude by taking the expectation on both sides along with exchangeability. 	�  ◻

In order to display a probabilistic statement, one needs to maintain the indicator func-
tion when defining the typicalness function. Replacing it with a continuous version will 
distort the coverage guarantee as described in Proposition 2. To obtain a well �-calibrated 
confidence set, one must take into account such approximation error by choosing (𝛼̃, 𝛾) 
such that

If 𝛼̃ is fixed, one needs to be careful when choosing � . Otherwise, we obtain a vacuous 
upper bound, and all the coverage guarantee is lost. Meanwhile, if � is chosen such that �� 
is a lower approximation of the indicator function, then 𝛼̃ can be taken as � , and there is 
no calibration loss. However, when �(�) is close to zero, �� will be flat almost everywhere, 
and we will not get useful first order information. This brings a trade-off between number 
of model fitting (which influences the computational time), and efficiency, i.e.,  length of 
the interval (wider 𝛼̃-level set).

Building a gap. To finely assess how the vanilla conformal, and smoothed conformal set 
can be related in practice, one can simply design both a lower, and upper approximation of 
the indicator function, i.e.,  �+

�
 and �−

�
.

In that case, it is easy to see that

which is equivalent to

The overall complexity is moderately expanded (we now need to compute two different 
conformal prediction sets), and not too time consuming as long as the underlying model fit 
is reasonably computable.

ℙ(F̃n+1(En+1) ≤ 𝛼̃) ≥ 𝛼̃ − 𝛥(𝛾),

𝛼̃ ≤ F̃n+1(Q̃n+1(𝛼̃)) =
1

n + 1

n+1∑
i=1

𝜙𝛾 (Ei − Q̃n+1(𝛼̃))

=
1

n + 1

n+1∑
i=1

�Ei≤Q̃n+1(𝛼̃)
+ (𝜙𝛾 − �

⋅≤0)(Ei − Q̃n+1(𝛼̃))

≤
1

n + 1

n+1∑
i=1

�F̃n+1(Ei)≤𝛼̃
+ 𝛥(𝛾).

𝛼̃ − 𝛥(𝛾) ≥ 𝛼.

�
+
�
≤ ��(xn+1) ≤ �

−
�
and u−

�
≤ u�(xn+1) ≤ u+

�
,

𝛤 (𝛼,−)
𝛾

(xn+1) ⊂ 𝛤 (𝛼)(xn+1) ⊂ 𝛤 (𝛼,+)
𝛾

(xn+1).
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(a) (b)

Fig. 3   Benchmark on ridge regression. Conformal prediction set computed with various regu-
larization parameter on synthetic dataset generated from ������� as X, y = make_regres-
sion(n = 1000, p = 100) with 90 informative features. For the splitting method, we average the results of 
100 independent run. For the proposed root finding method, we approximate the boundaries of the exact set 
at precision 10−12

Fig. 4   Benchmarking conformal sets for ridge regression models on real datasets. We display the lengths of 
the confidence sets over 100 random permutation of the data. We denoted cov the average coverage, and T  
the average computational time normalized with the average time for computing oracleCP which requires 
a single model fit on the whole data
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4 � Experiments

We numerically examine the performance of the root-finding methods to compute various 
conformal prediction sets for regression problems on both synthetic, and real databases. 
We summarize the datasets in Table 1.

The experiments were conducted with a coverage level of 0.9, i.e.,   � = 0.1 . For 
comparisons, we run the evaluations on 100 repetitions of examples, and display the 
average of the following performance statistics for different methods: 1) the empirical 
coverage, i.e.,  the percentage of times the prediction set contains the held-out target 
yn+1 ; 2) the length of the confidence intervals; 3) the execution time. For each run, 
we randomly select a couple of input/output (xi, yi) to constitute the targeted variables 
for which we will compute the conformal prediction set, and the rest is considered as 
observed data Dn . Similar experimental setting was considered in Lei (2019).

From Lemma 1, we have �(yn+1) ≥ � with probability larger than 1 − � . Whence 
one can define the OracleCP as �−1([�,+∞)) where � is obtained with a model fit 
optimized on the oracle data Dn+1(yn+1) . In the case where the conformity function is 
the absolute value, we obtain the reference prediction set as in Ndiaye and Takeuchi 
(2019)

Fig. 5   Benchmarking conformal sets for Lasso regression models on real datasets. We display the lengths 
of the confidence sets over 100 random permutation of the data. We denoted cov the average coverage, 
and T  the average computational time normalized with the average time for computing oracleCP which 
requires a single model fit on the whole data
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We remind that the target variable yn+1 is not available in practice.
In the case of Ridge regression, exact conformal prediction sets can be computed 

by homotopy without data splitting, and without additional assumptions (Nouretdinov 
et al., 2001). This allows us to finely assess the precisions of the proposed approaches, 
and illustrate the speed up benefit in Fig. 3.

We also illustrate the performance of our approach compared to the approximate 
homotopy method for the Lasso problem on a real data set from climate measure-
ments. We first note that splitCP has a strictly, and significantly larger confidence 
set while the other approaches are quite close to the oracle performance. The approxi-
mate homotopy method uses all the data, and does not lose statistical efficiency if the 
model tolerance error is moderately small. However, as already noted in Ndiaye and 
Takeuchi (2019), it becomes unusable when the accuracy of the optimization becomes 
low. This is because its complexity depends directly on the accuracy of the model opti-
mization, see the discussion in Sect. 3.3. We have shown that this does not affect our 
method because the number of model fits does not increase as the optimization error 
decreases. In particular, we can observe in Table 2 that rootCP is two to fifteen times 
faster when the tolerance errors range from 10−2 to 10−6 . This is mainly because the 
complexity of the root finding approach, i.e., the number of times it calls the model, 

�������� ∶[�yn+1
(xn+1) ± Q1−�(yn+1)].

Fig. 6   Benchmarking conformal sets for orthogonal Matching Pursuit regression models on real datasets. 
We display the lengths of the confidence sets over 100 random permutation of the data. We denoted cov the 
average coverage, and T  the average computational time normalized with the average time for computing 
oracleCP which requires a single model fit on the whole data
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is independent of the optimization error of the underlying model fit. Whence, it allows 
the use of highly accurate estimators while maintaining feasible computations.

We run experiments on more complex regression models such as ridge in Fig.  4, 
Lasso in Fig. 5, orthogonal matching pursuit (OMP) in Fig. 6, feedforward neural net-
work also called Multi-Layer Perceptron (MLP) in Fig. 7, Random Forest in Fig. 8, and 
Gradient Boosting in Fig. 9 (with warm start). In most of these settings, the estimator 
is obtained by approximating a solution of a non-convex optimization problem where 
none of the homotopy methods are available. We can observe in Figs. 4, 5, 6, 7 and 8 
that the root-finding approach computes a full conformal prediction set while main-
taining a reasonable computational time. In the worst cases observed, it costs about 
30 times a single model fit which roughly corresponds to the 15 model fit for each root 
as predicted by the complexity (e.g.,   � = 10−4 ). Moreover, this computational time is 
significantly reduced by the interpolationCP while achieving a statistical perfor-
mance almost identical to the vanilla one in all our simulations. In all our experiments, 
we have chosen d = 8 number of query points for the interpolation method.

Fig. 7   Benchmarking conformal sets for Multi-layer Perceptron regression models on real datasets. We dis-
play the lengths of the confidence sets over 100 random permutation of the data. We denoted cov the aver-
age coverage, and T  the average computational time normalized with the average time for computing ora-
cleCP which requires a single model fit on the whole data
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5 � Conclusion

Since its introduction, the computation of a confidence region with full conformal pre-
diction methods has been a major weakness to its adoption by a broader audience. The 
algorithms available until now were based on too strong assumptions that limited them 
to estimators whose map z ↦ �z(⋅) can be traced, e.g., by using homotopy methods. We 
have shown that the limitations of the previous methods can be overcome by directly 
estimating the endpoints of the �-level set of the typicalness function with a root find-
ing algorithm. Therefore, it is unnecessary to train the regression estimator an infinite 
number of times nor to make strong additional assumptions on the prediction model. As 
long as the conformal set represents an interval containing the point prediction obtained 
from the observed data, it can easily be estimated with only about ten numbers of model 
fits. The proposed approach can be readily applied to recent generalizations of the con-
formal prediction set beyond the exchangeability assumption as in Chernozhukov et al. 
(2018), Chernozhukov et al. (2021).

Nevertheless, we insist that a full conformal prediction set is not always an interval. 
In this case, our approach fails without properly bracketing these intervals. Both, testing 
the interval assumption or finding a proper bracketing are still difficult. Another severe, 

Fig. 8   Benchmarking conformal sets for Random Forest regression models on real datasets. We display the 
lengths of the confidence sets over 100 random permutation of the data. We denoted cov the average cover-
age, and T  the average computational time normalized with the average time for computing oracleCP 
which requires a single model fit on the whole data
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and silent disadvantage is that the conformal set itself might be ill-defined when applied 
to regression estimators that depend on solving a non-convex optimization problem or 
a stochastic scheme (e.g., stochastic gradient descent). Indeed, in these cases, given a 
fixed candidate z, �(z) can take multiple values depending on the initialization or the 
random seed. Moreover, the symmetry assumptions might be violated if the instances 
are not used evenly (e.g., when using stochastic gradient descent with importance sam-
pling). As a future work, it would therefore be interesting to understand how these 
points can negatively affect the coverage guarantee, and the computational complexity.

Fig. 9   Benchmarking conformal sets for Gradient Boosting regression models on real datasets. We display 
the lengths of the confidence sets over 100 random permutation of the data. We denoted cov the average 
coverage, and T  the average computational time normalized with the average time for computing orac-
leCP which requires a single model fit on the whole data
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