
Vol.:(0123456789)

Machine Learning (2022) 111:4081–4137
https://doi.org/10.1007/s10994-022-06232-6

1 3

Smoothing policies and safe policy gradients

Matteo Papini1  · Matteo Pirotta2 · Marcello Restelli3

Received: 18 November 2021 / Revised: 13 May 2022 / Accepted: 9 August 2022 /
Published online: 20 October 2022
© The Author(s) 2022

Abstract
Policy gradient (PG) algorithms are among the best candidates for the much-anticipated
applications of reinforcement learning to real-world control tasks, such as robotics. How-
ever, the trial-and-error nature of these methods poses safety issues whenever the learning
process itself must be performed on a physical system or involves any form of human-com-
puter interaction. In this paper, we address a specific safety formulation, where both goals
and dangers are encoded in a scalar reward signal and the learning agent is constrained
to never worsen its performance, measured as the expected sum of rewards. By studying
actor-only PG from a stochastic optimization perspective, we establish improvement guar-
antees for a wide class of parametric policies, generalizing existing results on Gaussian
policies. This, together with novel upper bounds on the variance of PG estimators, allows
us to identify meta-parameter schedules that guarantee monotonic improvement with high
probability. The two key meta-parameters are the step size of the parameter updates and
the batch size of the gradient estimates. Through a joint, adaptive selection of these meta-
parameters, we obtain a PG algorithm with monotonic improvement guarantees.

Keywords  Reinforcement learning · Safe learning · Policy gradient · Monotonic
improvement

 Editors: Dana Drachsler Cohen, Javier Garcia, Mohammad Ghavamzadeh, Marek Petrik, Philip S.
Thomas.

 *	 Matteo Papini
	 matteo.papini@upf.edu

	 Matteo Pirotta
	 pirotta@fb.com

	 Marcello Restelli
	 marcello.restelli@polimi.it

1	 Universitat Pompeu Fabra, Barcelona, Spain
2	 Meta, Paris, France
3	 Politecnico di Milano, Milan, Italy

http://orcid.org/0000-0002-3807-3171
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06232-6&domain=pdf

4082	 Machine Learning (2022) 111:4081–4137

1 3

1  Introduction

Reinforcement Learning (RL) (Sutton & Barto, 2018) has achieved astounding successes in
games (Mnih et al., 2015; Silver et al., 2018; OpenAI, 2018; Vinyals et al., 2019), match-
ing or surpassing human performance in several occasions. However, the much-anticipated
applications of RL to real-world tasks such as robotics (Kober et al., 2013), autonomous
driving (Okuda et al., 2014) and finance (Li & Hoi, 2014) seem still far. This technological
delay may be due to the very nature of RL, which relies on the repeated interaction of the
learning machine with the surrounding environment, e.g., a manufacturing plant, a traf-
ficked road, a stock market. The trial-and-error process resulting from this interaction is
what makes RL so powerful and general. However, it also poses significant challenges in
terms of sample efficiency (Recht, 2019) and safety (Amodei et al., 2016).

In reinforcement learning, the term safety can actually refer to a variety of prob-
lems (Garca & Fernandez, 2015). The general concern is always the same: avoiding or
limiting damage. In financial applications, it is typically a loss of money. In robotics and
autonomous driving, one should also consider direct damage to people and property. In
this work, we do not make assumptions about the nature of the damage, but we assume it is
entirely encoded in the scalar reward signal that is presented to the agent in order to evalu-
ate its actions. Other works (e.g., Turchetta et al., 2016) employ a distinct safety signal,
separate from rewards.

A further distinction is necessary on the scope of safety constraints with respect to the
agent’s life. One may simply require the final behavior, the one that is deployed at the end
of the learning process, to be safe. This is typically the case when learning is performed
in simulation, but the final controller has to be deployed in the real world. The main chal-
lenges there are in transferring safety properties from simulation to reality (e.g., Tan et al.,
2018). In other cases, learning must be performed, or at least finalized, on the actual sys-
tem, because no reliable simulator is available (e.g., Peters & Schaal 2008). In such a sce-
nario, safety must be enforced for the whole duration of the learning process. This poses
a further challenge, as the agent must necessarily go through a sequence of sub-optimal
behaviors before learning its final policy. The problem of learning while containing the
damage is also known as safe exploration (Amodei et al., 2016) and will be the focus of
this work.1

Garca and Fernandez (2015) provide a comprehensive survey on safe RL, where the
existing approaches are organized into two main families: methods that modify the explo-
ration process directly in order to explicitly avoid dangerous actions (e.g., Gehring & Pre-
cup 2013), and methods that constrain exploration in a more indirect way by modifying
the reward optimization process. The former typically require some sort of external knowl-
edge, such as human demonstrations or advice (e.g., (Abbeel et al., 2010; Clouse & Utgo,
1992)). In this work, we only assume online access to a sufficiently informative reward

1  We only use "safe exploration" in the general sense of (Amodei et al., 2016). Indeed, in this work, we
are not concerned with how exploration should be performed to maximize efficiency, but only with ensur-
ing safety in a context where some form of exploration is necessary. Exploration in RL is a very profound
problem with a vast research tradition (Fruit et al., 2019). The problem of efficient exploration under per-
formance-improvement constraints has been studied in the multi-armed-bandit literature under the name of
conservative bandits (Wu et al., 2016; Kazerouni et al., 2017; Garcelon et al., 2020b), with recent exten-
sions to finite MDPs (Garcelon et al., 2020). In RL, safe exploration is mainly concerned with avoiding
unsafe states during the learning process (Hans et al., 2008; Pecka & Svoboda, 2014; Dalal et al., 2018;
Turchetta et al., 2016; Berkenkamp, 2019).

4083Machine Learning (2022) 111:4081–4137	

1 3

signal and prior knowledge of some worst-case constants that are easy to obtain. Optimiza-
tion-based methods (those belonging to the second class) are more suited for this scenario.
A particular kind, identified by García and Fernández as constrained criteria (Moldovan
& Abbeel, 2012; Castro et al., 2012; Kadota et al., 2006), enforces safety by introducing
constraints in the optimization problem, i.e., reward maximization.2

A typical constraint is that the agent’s performance, i.e., the sum of rewards, must never
be less than a user-specified threshold (Geibel & Wysotzki, 2005; Thomas et al., 2015),
which may be the average performance of a trusted baseline policy. Under the assumption
that the reward signal also encodes danger, low performances can be matched with danger-
ous behaviors, so that the performance threshold works as a safety threshold. This falls into
the general framework of Seldonian machine learning introduced by Thomas et al. (2019).

If we only cared about the safety of the final controller, the traditional RL objective—
maximizing cumulated reward—would be enough. However, most RL algorithms are
known to yield oscillating performances during the learning phase. Regardless of the final
solution, the intermediate ones may violate the threshold, hence yield unsafe behavior. This
problem is known as policy oscillation (Bertsekas, 2011; Wagner, 2011).

A similar constraint, which confronts the policy oscillation problem even more directly,
is Monotonic Improvment (MI, S. Kakade & Langford, 2002; Pirotta et al., 2013), and is
the one adopted in this work. The requirement is that each new policy implemented by the
agent during the learning process does not perform worse than the previous one. In this
way, if the initial policy is safe, so will be all the subsequent ones.

The way safety constraints such as MI can be imposed on the optimization process
depends, of course, on what kind of policies are considered as candidates and on how
the optimization itself is performed. These two aspects are often tied and will depend on
the specific kind of RL algorithm that is employed. Policy Search or Optimization (PO,
Deisenroth et al., 2013) is a family of RL algorithms where the class of candidate poli-
cies is fixed in advance and a direct search for the best one within the class is performed.
This makes PO algorithms radically different from value-based algorithms such as Deep
Q-Networks (Mnih et al., 2015), where the optimal policy is a byproduct of a learned value
function. Although value-based methods gained great popularity from their successes in
games, PO algorithms are better suited for real-world tasks, especially the ones involving
cyber-physical systems. The main reasons are the ability of PO methods to deal with high-
dimensional continuous state and action spaces, convergence guarantees (Sutton et al.,
2000), robustness to sensor noise, and the superior control on the set of feasible policies.
The latter allows introducing domain knowledge into the optimization process, possibly
including some safety constraints.

In this work, we focus on Policy Gradient methods (PG, Peters & Schaal, 2008; Sutton
et al., 2000), where the set of candidate policies is a class of parametric distributions and
the optimization is performed via stochastic gradient ascent on the performance objective
as a function of the policy parameters. In particular, we analyze the prototypical PG algo-
rithm, REINFORCE (Williams, 1992) and see how the MI constraints can be imposed by
adaptively selecting its meta-parameters during the learning process. To achieve this, we
study in more depth the stochastic gradient-based optimization process that is at the core

2  Notably, the approach proposed by Chow et al. (2018) lays between the two classes. It relies on the frame-
work of constrained MDPs to guarantee the safety of a behavior policy during training via a set of local,
linear constraints defined using an external cost signal. Similar techniques have been used by Berkenkamp
et al. (2017) to guarantee the ability to re-enter a “safe region” during exploration.

4084	 Machine Learning (2022) 111:4081–4137

1 3

of all PG methods (Robbins & Monro, 1951). In particular, we identify a general family
of parametric policies that makes the optimization objective Lipschitz-smooth (Nesterov,
2013) and allows easy upper-bounding of the related smoothness constant. This family,
referred to as smoothing policies, includes commonly used policy classes from the PG
literature, namely Gaussian and Softmax policies. Using known properties of Lipschitz-
smooth functions, we then provide lower bounds on the performance improvement pro-
duced by gradient-based updates, as a function of tunable meta-parameters. This, in turn,
allows identifying those meta-parameter schedules that guarantee MI with high probability.
In previous work, a similar result was achieved only for Gaussian policies (Pirotta et al.,
2013; Papini et al., 2017).3

The meta-parameters studied here are the step size of the policy updates, or learning
rate, and the batch size of gradient estimates, i.e., the number of trials that are performed
within a single policy update. These meta-parameters, already present in the original
REINFORCE algorithm, are typically selected by hand and fixed for the whole learning
process (Duan et al., 2016). Besides guaranteeing monotonic improvement, our proposed
method removes the burden of selecting these meta-parameters. This safe, automatic selec-
tion within the REINFORCE algorithmic framework yields SPG, our Safe Policy Gradient
algorithm.

The paper is organized as follows: in Sect. 2 we introduce the necessary background
on Markov decision processes, policy optimization, and smooth functions. In Sect. 3, we
introduce smoothing policies and show the useful properties they induce on the policy
optimization problem, most importantly a lower bound on the performance improvement
yielded by an arbitrary policy parameter update (Theorem 7). In Sect. 4, we exploit these
properties to select the step size of REINFORCE in a way that guarantees MI with high
probability when the batch size is fixed, then we achieve similar results with an adaptive
batch size. In Sect. 5, we design a monotonically improving policy gradient algorithm with
adaptive batch size, called safe policy gradient (SPG), and show how the latter can also be
adapted to weaker improvement constraints. In Sect. 6, we offer a detailed comparison of
our contributions with the most closely related literature. In Sect. 7 we empirically evalu-
ate SPG on simulated control tasks. Finally, we discuss the limitations of our approach and
propose directions for future work in Sect. 8.

2 � Preliminaries

In this section, we revise continuous Markov decision processes (MDPs, Puterman, 2014),
actor-only Policy Gradient algorithms (PG, Deisenroth et al., 2013), and some general
properties of smooth functions.

2.1 � Markov decision processes

A Markov decision process (MDP, Puterman, 2014) is a tuple M = ⟨S,A, p, r, � ,�⟩ ,
comprised of a measurable state space S , a measurable action space A , a Markovian
transition kernel p ∶ S ×A → ΔS , where ΔS denotes the set of probability distributions
over S , a reward function r ∶ S ×A → ℝ , a discount factor � ∈ (0, 1) and an initial-state

3  See Sect. 6 for a discussion of related approaches, like the popular TRPO (Schulman et al., 2015).

4085Machine Learning (2022) 111:4081–4137	

1 3

distribution � ∈ ΔS . We only consider bounded-reward MDPs, and denote with
R ≥ sups∈S,a∈A |r(s, a)| (a known upper bound on) the maximum absolute reward. This is
the only prior knowledge we have on the task. The MDP is used to model the interaction
of a rational agent with the environment. We model the agent’s behavior with a policy
� ∶ S → ΔA , a stochastic mapping from states to actions. The initial state is drawn as
s0 ∼ � . For each time step t = 0, 1,… , the agent draws an action at ∼ �(⋅|st) , conditional
on the current state st . Then, the agent obtains a reward rt+1 = r(st, at) and the state of
the environment transitions to st+1 ∼ p(⋅|st, at) . The goal of the agent is to maximize the
expected sum of discounted rewards, or performance measure:

We focus on continuous MDPs, where states and actions are real vectors: S ⊆ ℝ
dS and

A ⊆ ℝ
dA . However, all the results naturally extend to the discrete case by replacing inte-

grals with summations. See (Puterman, 2014; Bertsekas & Shreve, 2004) on matters of
measurability and integrability, which just require common technical assumptions. We
slightly abuse notation by denoting probability measures (assumed to be absolutely con-
tinuous) and density functions with the same symbol.

Given an MDP, the purpose of RL is to find an optimal policy �∗ ∈ argmax� J(�)
without knowing the transition kernel p and the reward function r in advance, but only
through interaction with the environment. To better characterize this optimization objec-
tive, it is convenient to introduce further quantities. We denote with p� the transition
kernel of the Markov Process induced by policy � , i.e., p�(⋅|s)∶= ∫

A
�(a|s)p(⋅|s, a) da .

The t-step transition kernel under policy � is defined inductively as follows:

for all s ∈ S and t ≥ 1 . The t-step transition kernel allows to define the following condi-
tional state-occupancy measure:

measuring the (discounted) probability of visiting a state starting from s and following pol-
icy � . The following property of ��

s
 —a variant of the generalized eigenfunction property

by Ciosek and Whiteson (2020, Lemma20)—will be useful (proof in "Appendix A.1"):

Proposition 1  Let � be any policy and f be any integrable function on S satisfying the fol-
lowing recursive equation:

for all s ∈ S and some integrable function g on S . Then:

(1)J(�)∶=�

[
∞∑
t=0

� trt+1|s0 ∼ �, at ∼ �(⋅|st), st+1 ∼ p(⋅|st, at)
]
.

(2)

p0�(⋅|s) = 1
{
s = s�

}
,

p1�(⋅|s)∶=p�(⋅|s),
pt+1� (⋅|s)∶=∫

S

pt�(s
�|s)p�(⋅|s�) ds�,

(3)��
s
(⋅) = (1 − �)

∞∑
t=0

� tpt�(⋅|s),

f (s) = g(s) + � ∫
S

p�(s
�|s)f (s�) ds�,

4086	 Machine Learning (2022) 111:4081–4137

1 3

for all s ∈ S.

The state-value function V�(s) = ��

�∑∞

t=0
r(St,At)�S0 = s

�
 is the discounted sum of

rewards obtained, in expectation, by following policy � from state s, and satisfies Bell-
man’s equation (Puterman, 2014):

Similarly, the action-value function:

is the discounted sum of rewards obtained, in expectation, by taking action a in state s and
following � afterwards.

The two value functions are closely related:

For bounded-reward MDPs, the value functions are bounded for every policy �:

where ‖V�‖∞ = sups∈S �V�(s)� and ‖Q�‖∞ = sups∈S,a∈A �Q�(s, a)� . Using the definition of
state-value function we can rewrite the performance measure as follows:

where:

is the state-occupancy probability under the starting-state distribution �.

2.2 � Parametric policies

In this work, we only consider parametric policies. Given a d-dimensional parameter vector
� ∈ Θ ⊆ ℝ

d , a parametric policy is a stochastic mapping from states to actions para-
metrized by � , denoted with �� . The search for the optimal policy is thus limited to the
policy class ΠΘ =

{
�� ∣ � ∈ Θ

}
 . This corresponds to finding an optimal parameter, i.e.,

�∗ ∈ argmax�∈Θ J(��) . For ease of notation, we often write � in place of �� in function

f (s) =
1

1 − � ∫
S

��
s
(s�)g(s�) ds�,

(4)V�(s) = �
a∼�(⋅|s)

[
r(s, a) + � �

s�∼p(⋅|s,a)
[
V�(s�)

]]
,

(5)Q�(s, a) = r(s, a) + � �
s�∼p(⋅|s,a)

[
V�(s�)

]
,

(6)V�(s) = ∫
A

�(a|s)Q�(s, a) da,

(7)Q�(s, a) = r(s, a) + � ∫
S

p(s�|s, a)V�(s
�) ds�.

(8)‖V�‖∞ ≤ ‖Q�‖∞ ≤ R

1 − �
,

(9)J(�) = ∫
S

�(s)V�(s) ds =
1

1 − � ∫
S

��(s)∫
A

�(a|s)r(s, a) da ds,

(10)��(⋅) = ∫
S

�(s)��
s
(⋅) ds,

4087Machine Learning (2022) 111:4081–4137	

1 3

arguments and superscripts, e.g., J(�) , ��(s) and V�(s) in place of J(��) , ��� and V�� (s) ,
respectively.4 We restrict our attention to policies that are twice differentiable w.r.t. � , for
which the gradient ∇���(a|s) and the Hessian ∇2

�
��(a|s) are defined everywhere and finite.

For ease of notation, we omit the � subscript in ∇� when clear from the context. Given any
twice-differentiable scalar function f ∶ Θ → ℝ , we denote with Dif the i-th gradient
component, i.e., �f

��i
 , and with Dijf the Hessian element of coordinates (i, j), i.e., �2f

��i��j
 . We

also write ∇f (�) to denote ∇
�̃
f (�̃)

|||�̃=� when this does not introduce any ambiguity.
The Policy Gradient Theorem (Sutton et al., 2000; Konda & Tsitsiklis, 1999) allows us

to characterize the gradient of the performance measure J(�) as an expectation over states
and actions visited under ��:5

The gradient of the log-likelihood ∇ log��(⋅|s) is called score function, while the Hessian
of the log-likelihood ∇2 log��(⋅|s) is sometimes called observed information.

2.3 � Actor‑only policy gradient

In practice, we always consider finite episodes of length T. We call this the effective hori-
zon of the MDP, chosen to be sufficiently large so that the problem does not lose general-
ity.6 We denote with �∶=(s0, a0, s1, a1,… , sT−1, aT−1) a trajectory, i.e., a sequence of states
and actions of length T such that s0 ∼ � , at ∼ �(⋅|st) , st ∼ p(⋅|st−1, at−1) for t = 0,… , T − 1
and some policy � . In this context, the performance measure of a parametric policy �� can
be defined as:

where p�(�) is the probability density of the trajectory � that can be generated by following
policy �� , i.e., p�(�) = �(s0)��(a0|s0)p(s1|s0, a0)…��(aT−1|sT−1) . Let D ∼ p� be a batch
{�1, �2,… , �N} of N trajectories generated with �� , i.e., �i ∼ p� i.i.d. for i = 1,… ,N . Let
∇̂J(�;D) be an estimate of the policy gradient ∇J(�) based on D . Such an estimate can be
used to perform stochastic gradient ascent on the performance objective J(�):

(11)∇J(�) =
1

1 − � ∫
S

��(s)∫
A

��(a|s)∇ log��(a|s)Q�(s, a) da ds.

(12)J(�) = �
�∼p�

[
T−1∑
t=0

� tr(st, at)

]
,

4  Note that J ∶ Θ → ℝ , as a function of policy parameters, may have a different geometry than
J ∶ ΠΘ → ℝ , as a function of the policy. In particular, policy parametrization can be an additional source of
non-convexity.
5  As observed by Nota and Thomas (2020), it is important that the state-occupancy measure is discounted
as in (3) for the Policy Gradient Theorem to hold. An intuitive way to see the discounted occupancy ��(s)
is as the probability of visiting state s in an indefinite-horizon undiscounted MDP that is reset to the initial
state distribution with probability 1 − � at each step.
6  We consider infinite-horizon discounted MDPs in our theoretical analysis, but consider a finite horizon
when introducing specific policy gradient estimators. This mismatch is justified by the following result:
when the reward is uniformly bounded by R , by setting T = O(log(R∕�)∕(1 − �)) , the discounted truncated
sum of rewards is �-close to the infinite sum (see, e.g., (Kakade, 2003), Sec. 2.3.3). See "Appendix C.2" for
a way to remove this bias by randomizing the horizon.

4088	 Machine Learning (2022) 111:4081–4137

1 3

where � ≥ 0 is a step size and N = |D| is called batch size. This yields an Actor-only Policy
Gradient method, summarized in Algorithm 1.

Under mild conditions, this algorithm is guaranteed to converge to a local optimum (Sut-
ton et al., 2000). This is reasonable since the objective J(�) is non-convex in general.7 As
for the gradient estimator, we can use REINFORCE (Williams, 1992; Glynn, 1986):8

or its refinement, G(PO)MDP (Baxter & Bartlett, 2001), which typically suffers from less
variance (Peters & Schaal, 2008):

where the superscript on states and actions denotes the i-th trajectory of the dataset and
b is a (possibly time-dependent and vector-valued) control variate, or baseline. Both esti-
mators are unbiased for any action-independent baseline.9Peters and Schaal (2008) prove
that Algorithm 1 with the G(PO)MDP estimator is equivalent to Monte-Carlo PGT (Policy
Gradient Theorem, (Sutton et al., 2000)), and provide variance-minimizing baselines for
both REINFORCE and G(PO)MDP.

Algorithm 1 is called actor-only to discriminate it from actor-critic policy gradient
algorithms (Konda & Tsitsiklis, 1999), where an approximate value function, or critic,
is employed in the gradient computation. In this work, we will focus on actor-only algo-
rithms, for which safety guarantees are more easily proven.10 Generalizations of Algo-
rithm 1 include reducing the variance of gradient estimates through baselines and other
stochastic-optimization techniques (e.g., (Papini et al., 2018; Shen et al., 2019; Xu et al.,

(13)��
← � + �∇̂J(�;D),

(14)∇̂J(�;D) =
1

N

N∑
i=1

(
T−1∑
t=0

� tr(ai
t
, si

t
) − b

)(
T−1∑
t=0

∇ log��(a
i
t
|si

t
)

)
,

(15)∇̂J(�;D) =
1

N

N∑
i=1

T−1∑
t=0

[(
� tr(ai

t
, si

t
) − bt

) t∑
h=0

∇ log��(a
i
h
|si

h
)

]
,

10  The distinction is not so sharp, as a critic can be seen as a baseline and vice-versa. We call critic an
explicit value function estimate used in policy gradient estimation.

7  Recent works show that policy gradient algorithms can converge to globally optimal policies in some
interesting special cases (Bhandari & Russo, 2019; Zhang et al., 2020; Agarwal et al., 2020).
8  In the literature, the term REINFORCE is often used to denote actor-only policy gradient methods in
general. In this paper, REINFORCE refers to the algorithm by Williams (1992), which also applies to more
general stochastic optimization problems.
9  Also valid action-dependent baselines have been proposed. See (Tucker et al., 2018) for a discussion.

4089Machine Learning (2022) 111:4081–4137	

1 3

2020)) using a vector step size (Yu et al., 2006; Papini et al., 2017); making the step size
adaptive, i.e., iteration and/or data-dependent (Pirotta et al., 2013); making the batch size
N also adaptive (Papini et al., 2017); applying a preconditioning matrix to the gradient, as
in Natural Policy Gradient (Kakade, 2002) and second-order methods (Furmston & Barber,
2012).

2.4 � Smooth functions

In the following we denote with ‖x‖p the �p-norm of vector x , which is the Euclidean norm
for p = 2 . . For a matrix A, ‖A‖p = sup{‖Ax‖p ∶ ‖x‖p = 1} denotes the induced norm,
which is the spectral norm for p = 2 . When the p subscript is omitted, we always mean
p = 2.

Let g ∶ X ⊆ ℝ
d
→ ℝ

n be a (non-convex) vector-valued function. We call g Lipschitz
continuous if there exists L > 0 such that, for every x, x� ∈ X :

Let f ∶ X ⊆ ℝ
d
→ ℝ be a real-valued differentiable function. We call f Lipschitz smooth if

its gradient is Lipschitz continuous, i.e., there exists L > 0 such that, for every x, x� ∈ X :

Whenever we want to specify the Lipschitz constant L of the gradient, we call f L-smooth.11
We also call L the smoothness constant of f. For a twice-differentiable function, the follow-
ing holds:12

Proposition 2  Let X be a convex subset of ℝd and f ∶ X → ℝ be a twice-differen-
tiable function. If the Hessian is uniformly bounded in spectral norm by L > 0 , i.e.,
supx∈X

‖‖∇2f (x)‖‖2 ≤ L , then f is L-smooth.

Lipschitz smooth functions admit a quadratic bound on the deviation from linear
behavior:

Proposition 3  (Quadratic Bound) Let X be a convex subset of ℝd and f ∶ X → ℝ be an
L-smooth function. Then, for every x, x� ∈ X :

where ⟨⋅, ⋅⟩ denotes the dot product.

This bound is often useful for optimization purposes (Nesterov, 2013).

(16)‖‖g(x�) − g(x)‖‖ ≤ L‖‖x� − x‖‖.

(17)‖‖∇f (x�) − ∇f (x)‖‖ ≤ L‖‖x� − x‖‖.

(18)|||f (x
�) − f (x) −

⟨
x� − x,∇f (x)

⟩||| ≤ L

2
‖‖x� − x‖‖2,

11  The Lipschitz constant is usually defined as the smallest constant satisfying the Lipschitz condition. In
this paper, we accept any constant for which the Lipschitz condition holds.
12  The results from this section are well known in the optimization literature (Nesterov, 2013). However,
proofs of Lemma 2 and 3 are reported in "Appendix A.2" for the sake of completeness.

4090	 Machine Learning (2022) 111:4081–4137

1 3

3 � Smooth policy gradient

In this section, we provide lower bounds on performance improvement based on general
assumptions on the policy class.

3.1 � Smoothing policies

We introduce a family of parametric stochastic policies having properties that we deem
desirable for policy-gradient learning. We call them smoothing, as they are characterized
by the smoothness of the performance measure:

Definition 1  Let ΠΘ = {�� ∣ � ∈ Θ} be a class of twice-differentiable parametric sto-
chastic policies, where Θ ⊂ ℝ

d is convex. We call it smoothing if there exist non-negative
constants �1, �2, �3 such that, for every state and in expectation over actions, the Euclidean
norm of the score function:

the squared Euclidean norm of the score function:

and the spectral norm of the observed information:

are upper-bounded.

Note that the definition requires that the bounding constants �1, �2, �3 be independent
of the policy parameters and the state. For this reason, the existence of such constants

(19)sup
s∈S

�a∼��(⋅|s)
[‖‖∇ log��(a|s)‖‖

] ≤ �1,

(20)sup
s∈S

�a∼��(⋅|s)
[‖‖∇ log��(a|s)‖‖2

] ≤ �2,

(21)sup
s∈S

�a∼��(⋅|s)
[‖‖‖∇

2 log��(a|s)‖‖‖
] ≤ �3,

Table 1   Smoothing constants �1, �2, �3 and smoothness constant L for Gaussian and Softmax policies,
where M is an upper bound on the Euclidean norm of the feature function, R is the maximum absolute-
value reward, � is the discount factor, � is the standard deviation of the Gaussian policy and � is the temper-
ature of the Softmax policy. We also report the improved smoothness constant by Yuan et al. (2021) as L⋆

Gaussian Softmax

�1
2M√
2��

2M

�

�2 M2

�2

4M2

�2

�3 M2

�2

2M2

�2

L 2M2R

�2(1−�)2

(
1 +

2�

�(1−�)

)
2M2R

�2(1−�)2

(
3 +

4�

1−�

)

L⋆ 2M2R

�2(1−�)2
6M2R

�2(1−�)2

4091Machine Learning (2022) 111:4081–4137	

1 3

depends on the policy parameterization.13 We call a policy class (�1, �2, �3)-smoothing
when we want to specify the bounding constants. In "Appendix B", we show that some of
the most commonly used policies, such as the Gaussian policy for continuous actions and
the Softmax policy for discrete actions, are smoothing. The smoothing constants for these
classes are reported in Table 1. In the following sections, we will exploit the smoothness
of the performance measure induced by smoothing policies to develop a monotonically
improving policy gradient algorithm. However, smoothing policies have other interesting
properties. For instance, variance upper bounds for REINFORCE/G(PO)MDP with Gauss-
ian policies (Zhao et al., 2011; Pirotta et al., 2013) can be generalized to smoothing poli-
cies (see "Appendix D" for details). Other nice properties of smoothing policies, such as
Lipschitzness of the performance measure, are discussed in Yuan et al. (2021, Lemma D.1)

3.2 � Policy Hessian

We now show that the Hessian of the performance measure ∇2J(�) for a smoothing policy
has bounded spectral norm. We start by writing the policy Hessian for a general paramet-
ric policy as follows. The result is well known (Kakade, 2001), but we report a proof in
"Appendix A.4" for completeness. Also, note that our smoothing-policy assumption is
weaker than the typical one (uniformly bounded policy derivatives). See "Appendix A.3"
for details.

Proposition 4  Let �� be a smoothing policy. The Hessian of the performance measure is:

For smoothing policies, we can bound the policy Hessian in terms of the constants from
Definition 1:

Lemma 5  Given a (�1, �2, �3)-smoothing policy �� , the spectral norm of the policy Hessian
can be upper-bounded as follows:

Proof  By the Policy Gradient Theorem (see the proof of Theorem 1 by, (Sutton et al.,
2000)):

∇2J(�) =
1

1 − 𝛾
�

s ∼ 𝜌�

a ∼ 𝜋�(⋅|s)

[
∇ log𝜋�(a|s)∇⊤Q�(s, a) + ∇Q�(s, a)∇⊤ log𝜋�(a|s)

+
(
∇ log𝜋�(a|s)∇⊤ log𝜋�(a|s) + ∇2 log𝜋�(a|s)

)
Q�(s, a)

]
.

‖‖‖∇
2J(�)

‖‖‖ ≤ R

(1 − �)2

(
2��2

1

1 − �
+ �2 + �3

)
.

(22)∇V�(s) =
1

1 − � ∫
S

��
s
(s�)∫

A

��(a|s�)∇ log��(a|s�)Q�(s, a) da ds�.

13  Notice that, by Jensen’s inequality, one can always remove the first requirement (19) by letting �1 =
√
�2 ,

as observed by Yuan et al. (2021). However, a smaller value of �1 can sometimes be obtained. See
Lemma 23 for an example.

4092	 Machine Learning (2022) 111:4081–4137

1 3

Using (22), we bound the gradient of the value function in Euclidean norm:

where (23) is from the Cauchy-Schwarz inequality and (8), and (24) is from the smoothing-
policy assumption. Next, we bound the gradient of the action-value function. From (7):

where the interchange of gradient and expectation in (26) is justified by the smoothing-
policy assumption (see "Appendix A.3" for details) and (27) is from (24). Finally, from
Proposition 4:

(23)

‖‖‖∇V
�(s)

‖‖‖ ≤ 1

1 − �
�

s� ∼ ��
s

a ∼ ��(⋅|s�)

[‖‖‖∇ log��(a|s�)Q�(s�, a)
‖‖‖
]

≤ R

(1 − �)2
�

s� ∼ ��
s

a ∼ ��(⋅|s�)

[‖‖∇ log��(a|s�)‖‖
]

(24)
≤ R

(1 − �)2
sup
s�∈S

�
a∼��(⋅|s�)

[‖‖∇ log��(a|s�)‖‖
]

≤ �1R

(1 − �)2
,

(25)
‖‖‖∇Q

�(s, a)
‖‖‖ =

‖‖‖‖‖
∇

(
r(s, a) + � �

s�∼p(⋅|s,a)
[
V�(s�)

])‖‖‖‖‖

(26)= �
‖‖‖‖ �
s�∼p(⋅|s,a)

[
∇V�(s�)

]‖‖‖‖

(27)≤ � �
s�∼p(⋅|s,a)

[‖‖‖∇V
�(s)

‖‖‖
] ≤ ��1R

(1 − �)2
,

(28)

(1 − 𝛾)
‖‖‖∇

2J(�)
‖‖‖ ≤ �

s ∼ 𝜌�

a ∼ 𝜋�(⋅|s)

[‖‖‖∇ log𝜋�(a|s)∇⊤Q�(s, a)
‖‖‖
]

+ �

s ∼ 𝜌�

a ∼ 𝜋�(⋅|s)

[‖‖‖∇Q
�(s, a)∇⊤ log𝜋�(a|s)‖‖‖

]

+ �

s ∼ 𝜌�

a ∼ 𝜋�(⋅|s)

[‖‖‖∇ log𝜋�(a|s)∇⊤ log𝜋�(a|s)Q�(s, a)
‖‖‖
]

+ �

s ∼ 𝜌�

a ∼ 𝜋�(⋅|s)

[‖‖‖∇
2 log𝜋�(a|s)Q�(s, a)

‖‖‖
]

4093Machine Learning (2022) 111:4081–4137	

1 3

where (28) is from Jensen inequality (all norms are convex) and the triangle inequality,
(29) is from ��xy⊤�� = ‖x‖‖y‖ for any two vectors x and y , (30) is from (8) and (27), and the
last inequality is from the smoothing-policy assumption. 	� ◻

3.3 � Smooth performance

For a smoothing policy, the performance measure J(�) is Lipschitz smooth with a smooth-
ness constant that only depends on the smoothing constants, the reward magnitude, and the
discount factor. This result is of independent interest as it can be used to establish conver-
gence rates for policy gradient algorithms (Yuan et al., 2021).

Lemma 6  Given a (�1, �2, �3)-smoothing policy class ΠΘ , the performance measure J(�) is
L-smooth with the following smoothness constant:

Proof  From Lemma 5, L is a bound on the spectral norm of the policy Hessian. From
Lemma 2, this is a valid Lipschitz constant for the policy gradient, hence the performance
measure is L-smooth. 	� ◻

(29)

≤ 2 �

s ∼ ��

a ∼ ��(⋅|s)

[‖‖∇ log��(a|s)‖‖‖‖‖∇Q
�(s, a)

‖‖‖
]

+ �

s ∼ ��

a ∼ ��(⋅|s)

[‖‖∇ log��(a|s)‖‖2|||Q
�(s, a)

|||
]

+ �

s ∼ ��

a ∼ ��(⋅|s)

[‖‖‖∇
2 log��(a|s)‖‖‖

|||Q
�(s, a)

|||
]

(30)

≤ 2��1R

(1 − �)2
�

s ∼ ��

a ∼ ��(⋅|s)

[‖‖∇ log��(a|s)‖‖
]

+
R

1 − �
�

s ∼ ��

a ∼ ��(⋅|s)

[‖‖∇ log��(a|s)‖‖2
]

+
R

1 − �
�

s ∼ ��

a ∼ ��(⋅|s)

[‖‖‖∇
2 log��(a|s)‖‖‖

]

(31)≤ R

(1 − �)

(
2��2

1

1 − �
+ �2 + �3

)
,

(32)L =
R

(1 − �)2

(
2��2

1

1 − �
+ �2 + �3

)
.

4094	 Machine Learning (2022) 111:4081–4137

1 3

The smoothness of the performance measure, in turn, yields the following property on
the guaranteed performance improvement:

Theorem 7  Let ΠΘ be a (�1, �2, �3)-smoothing policy class. For every �,�� ∈ Θ:

where Δ� = �� − � and L =
R

(1−�)2

(
2��2

1

1−�
+ �2 + �3

)
.

Proof  It suffices to apply Lemma 3 with the Lipschitz constant from Lemma 6. 	� ◻

The smoothness constant L for Gaussian and Softmax policies is reported in Table 1.
In the following, we will exploit this property of smoothing policies to enforce safety

guarantees on the policy updates performed by Algorithm 1, i.e., stochastic gradient
ascent updates. However, Theorem 7 applies to any policy update Δ� ∈ ℝ

d as long as
� + Δ� ∈ Θ.

Very recently, R. Yuan et al. (2021, Lemma4.4) provided an improved smoothness con-
stant for smoothing policies:

This is a significant step forward since it improves the dependence on the effective horizon
by a (1 − �)−1 factor. In Table 1 we report explicit expressions for L⋆ in the case of lin-
ear Gaussian and Softmax policies. We will use these superior smoothness constant in the
numerical simulations of Sect. 7.

4 � Optimal safe meta‑parameters

In this section, we provide a step size for Algorithm 1 that maximizes a lower bound on
the performance improvement for smoothing policies. This yields safety in the sense of
Monotonic Improvement (MI), i.e., non-negative performance improvements at each pol-
icy update:

at least with high probability.
In policy optimization, at each learning iteration k, we ideally want to find the policy

update Δ� that maximizes the new performance J(�k + Δ�) , or equivalently:

since J(�k) is fixed. Unfortunately, the performance of the updated policy cannot be known
in advance.14 For this reason, we replace the optimization objective in (35) with a lower

J(��) − J(�) ≥ ⟨Δ�,∇J(�)⟩ − L

2
‖Δ�‖2,

(33)L⋆ =
R(𝜉2 + 𝜉3)

(1 − 𝛾)2
.

(34)J(�k) − J(�k+1) ≥ 0,

(35)max
Δ�

J(�k + Δ�) − J(�k),

14  The performance of the updated policy could be estimated with off-policy evaluation techniques, but this
would introduce an additional, non-negligible source of variance. The idea of using off-policy evaluation to
select meta-parameters was explored by Paul et al. (2019).

4095Machine Learning (2022) 111:4081–4137	

1 3

bound, i.e., a guaranteed improvement. In particular, taking Algorithm 1 as our starting
point, we maximize the guaranteed improvement of a policy gradient update (line 5) by
selecting optimal meta-parameters. The solution of this meta-optimization problem pro-
vides a lower bound on the actual performance improvement. As long as this is always
non-negative, MI is guaranteed.

4.1 � Adaptive step size: exact framework

To decouple the pure optimization aspects of this problem from gradient estimation
issues, we first consider an exact policy gradient update, i.e., �k+1 ← �k + �∇J(�k) ,
where we assume to have a first-order oracle, i.e., to be able to compute the exact
policy gradient ∇J(�k) . This assumption is clearly not realistic, and will be removed
in Sect. 4.2. In this simplified framework, performance improvement can be guar-
anteed deterministically. Furthermore, the only relevant meta-parameter is the step
size � of the update. We first need a lower bound on the performance improvement
J(�k+1) − J(�k) . For a smoothing policy, we can use the following:

Theorem 8  Let ΠΘ be a (�1, �2, �3)-smoothing policy class. Let �k ∈ Θ and
�k+1 = �k + �∇J(�k) , where 𝛼 > 0 . Provided �k+1 ∈ Θ , the performance improvement of
�k+1 w.r.t. �k can be lower bounded as follows:

where L =
R

(1−�)2

(
2��2

1

1−�
+ �2 + �3

)
.

Proof  This is a direct consequence of Theorem 7 with Δ� = �∇J(�k) . 	� ◻

This bound is in the typical form of performance improvement bounds (e.g., (Kakade
& Langford, 2002; Pirotta et al., 2013; Schulman et al., 2015; Cohen et al., 2018)): a
positive term accounting for the anticipated advantage of �k+1 over �k , and a penalty
term accounting for the mismatch between the two policies, which makes the antici-
pated advantage less reliable. In our case, the mismatch is measured by the curvature
of the performance measure w.r.t. the policy parameters, via the smoothness constant
L. This lower bound is quadratic in � , hence we can easily find the optimal step size �∗.

Corollary 9  Let B(�;�k) be the guaranteed performance improvement of an exact policy
gradient update, as defined in Theorem 8. Under the same assumptions, B(�;�k) is maxi-
mized by the constant step size �∗ =

1

L
 , which guarantees the following non-negative per-

formance improvement:

Proof  We just maximize B(�;�k) as a (quadratic) function of � . The global optimum

B(�∗;�k) =
‖∇J(�k)‖2

2L
 is attained by �∗ =

1

L
 . The improvement guarantee follows from Theo-

rem 8. 	� ◻

J(�k+1) − J(�k) ≥ �‖‖∇J(�k)
‖‖2 − �2 L

2
‖‖∇J(�k)

‖‖2∶=B(�;�k),

J(�k+1) − J(�k) ≥
‖‖∇J(�k)

‖‖2
2L

.

4096	 Machine Learning (2022) 111:4081–4137

1 3

4.2 � Adaptive step size: approximate framework

In practice, we cannot compute the exact gradient ∇J(�k) , but only an estimate ∇̂J(�;D)
obtained from a finite dataset D of trajectories. In this section, N denotes the fixed size of
D . To find the optimal step size, we just need to adapt the performance-improvement lower
bound of Theorem 8 to stochastic-gradient updates. Since sample trajectories are involved,
this new lower bound will only hold with high probability. To establish statistical guaran-
tees, we make the following assumption on how the (unbiased) gradient estimate concen-
trates around its expected value:

Assumption 1  Fixed a parameter � ∈ Θ , a batch size N ∈ ℕ and a failure probability
� ∈ (0, 1) , with probability at least 1 − �:

where |D| is a dataset of N i.i.d. trajectories collected with �� and � ∶ (0, 1) → ℝ is a known
function.

We will discuss how this assumption is satisfied in cases of interest in Sect. 5 and
"Appendix C". Under the above assumption, we can adapt Theorem 8 to the stochastic-
gradient case as follows:

Theorem 10  Let ΠΘ be a (�1, �2, �3)-smoothing policy class. Let �k ∈ Θ ⊆ ℝ
d and

�k+1 = �k + �∇̂J(�k;Dk) , where � ≥ 0 , N = |Dk| ≥ 1 . Under Assumption 1, provided
�k+1 ∈ Θ , the performance improvement of �k+1 w.r.t. �k can be lower bounded, with prob-
ability at least 1 − �k , as follows:

where L =
R

(1−�)2

(
2��2

1

1−�
+ �2 + �3

)
.

Proof  Consider the good event Ek =
����∇̂J(�;D) − ∇J(�)

��� ≤ �(�k)∕
√
N
�

 . By Assump-
tion 1, Ek holds with probability at least 1 − �k . For the rest of the proof, we will assume Ek
holds.

Let �k∶=�(�k)∕
√
N for short. Under Ek , by the triangular inequality:

���∇̂J(�;D) − ∇J(�)
��� ≤ �(�)√

N
,

J(�k+1) − J(�k) ≥ �

�
���∇̂J(�k;Dk)

��� −
�(�k)√

N

�

×max

⎧⎪⎨⎪⎩
���∇̂J(�k;Dk)

���,
���∇̂J(�k;Dk)

��� +
�(�k)√

N

2

⎫
⎪⎬⎪⎭

−
�2L

2

���∇̂J(�k;Dk)
���
2

∶=B̃k(�;N),

(36)
‖‖∇J(�k)

‖‖ ≥ ‖‖‖∇̂J(�k;Dk)
‖‖‖ −

‖‖‖∇J(�k) − ∇̂J(�k;Dk)
‖‖‖

≥ ‖‖‖∇̂J(�k;Dk)
‖‖‖ − �k,

4097Machine Learning (2022) 111:4081–4137	

1 3

thus:

Then, by the polarization identity:

where the latter inequality is from (37). We first consider the case in which ‖‖‖�∇J(�k;Dk)
‖‖‖ > 𝜖k:

Then, we consider the case in which ‖‖‖∇̂J(�k;Dk)
‖‖‖ ≤ �k:

The two cases can be unified as follows:

From Theorem 7 with Δ� = �∇̂J(�k;Dk) we obtain:

(37)‖‖∇J(�k)
‖‖2 ≥ max

{‖‖‖∇̂J(�k;Dk)
‖‖‖ − �k, 0

}2

.

⟨
∇̂J(�k;Dk),∇J(�k)

⟩
=

1

2

(‖‖‖∇̂J(�k;Dk)
‖‖‖
2

+ ‖‖∇J(�k)
‖‖2

−
‖‖‖∇J(�k) − ∇̂J(�k;Dk)

‖‖‖
2
)

≥ 1

2

(‖‖‖∇̂J(�k;Dk)
‖‖‖
2

+max
{‖‖‖∇̂J(�k;Dk)

‖‖‖ − �k, 0
}2

− �2
k

)
,

(38)

⟨
∇̂J(�k;Dk),∇J(�k)

⟩ ≥ 1

2

(‖‖‖∇̂J(�k;Dk)
‖‖‖
2

+
(‖‖‖∇̂J(�k;Dk)

‖‖‖ − �k

)2

− �2
k

)

=
(‖‖‖∇̂J(�k;Dk)

‖‖‖ − �k

)‖‖‖∇̂J(�k;Dk)
‖‖‖.

(39)
⟨
∇̂J(�k;Dk),∇J(�k)

⟩ ≥ 1

2

(‖‖‖∇̂J(�k;Dk)
‖‖‖
2

− �2
k

)

(40)=
(‖‖‖∇̂J(�k;Dk)

‖‖‖ − �k

)‖‖‖∇̂J(�k;Dk)
‖‖‖ + �k

2
.

(41)

�
∇̂J(�k;Dk),∇J(�k)

� ≥ ����∇̂J(�k;Dk)
��� − �k

�

×max

⎧⎪⎨⎪⎩
���∇̂J(�k;Dk)

���,
���∇̂J(�k;Dk)

��� + �k

2

⎫⎪⎬⎪⎭
.

4098	 Machine Learning (2022) 111:4081–4137

1 3

where the last inequality is from (41). 	� ◻

From Theorem 10 we can easily obtain an optimal step size, as done in the exact setting,
provided the batch size is sufficiently large:

Corollary 11  Let B̃(�,N;�k) be the guaranteed performance improvement of a stochastic
policy gradient update, as defined in Theorem 10. Under the same assumptions, provided
the batch size satisfies:

B̃(�,N;�k) is maximized by the following adaptive step size:

which guarantees, with probability at least 1 − �k , the following non-negative performance
improvement:

Proof  Let N0 = �2(�k)
‖‖‖∇̂J(�k;Dk)

‖‖‖
−2

 . When N ≤ N0 , the second argument of the max
operator in (41) is selected. In this case, no positive improvement can be guaranteed and
the optimal non-negative step size is � = 0 . Thus, we focus on the case N > N0 . In this
case, the first argument of the max operator is selected. Optimizing B̃(�,N) as a function of
� alone, which is again quadratic, yields (44) as the optimal step size and (45) as the
maximum guaranteed improvement. 	� ◻

In this case, the optimal step size is adaptive, i.e., time-varying and data-dependent. The
constant, optimal step size for the exact case (Corollary 9) is recovered in the limit of infi-
nite data, i.e., N → ∞ . In the following we discuss why this adaptive step size should not
be used in practice, and propose an alternative solution.

(42)

J(�k+1) − J(�k) ≥ �
�k+1 − �k,∇J(�k)

�
−

L

2
���k+1 − �k

��2

= �
�
∇̂J(�k;Dk),∇J(�k)

�
−

�2L

2

���∇̂J(�k;Dk)
���
2

≥ �
����∇̂J(�k;Dk)

��� − �k

�

×max

⎧
⎪⎨⎪⎩
���∇̂J(�k;Dk)

���,
���∇̂J(�k;Dk)

��� + �k

2

⎫
⎪⎬⎪⎭

−
�2L

2

���∇̂J(�k;Dk)
���
2

,

(43)N ≥ �2(�k)

‖‖‖∇̂J(�k;Dk)
‖‖‖
2
,

(44)�∗
k
=

1

L

⎛⎜⎜⎝
1 −

�(�k)√
N
���∇̂J(�k;Dk)

���

⎞⎟⎟⎠
,

(45)
J(�k+1) − J(�k) ≥

����∇̂J(�k;Dk)
��� −

�(�k)√
N

�2

2L
.

4099Machine Learning (2022) 111:4081–4137	

1 3

4.3 � Adaptive Batch Size

The safe step size from Corollary 11 requires the batch size to be large enough. As soon
as the condition (43) fails to hold, the user is left with the decision whether to interrupt
the learning process or collect more data — an undesirable property for a fully autono-
mous system. To avoid this, a large batch size must be selected from the start, which
results in a pointless waste of data in the early learning iterations. Even so, Eq. (43),
used as a stopping condition, would be susceptible to random oscillations of the sto-
chastic gradient magnitude, interrupting the learning process prematurely.

As observed in (Papini et al., 2017), controlling also the batch size N of the gradi-
ent estimation can be advantageous. Intuitively, a larger batch size yields a more reli-
able estimate, which in turn allows a safer policy gradient update. The larger the batch
size, the higher the guaranteed improvement, which would lead to selecting the highest
possible value of N. However, we must take into account the cost of collecting the tra-
jectories, which is non-negligible in real-world problems (e.g., robotics). For this rea-
son, we would like the meta-parameters to maximize the per-trajectory performance
improvement:

where D is a dataset of N i.i.d. trajectories sampled with ��k . We can then use the lower
bound from Theorem 10 to find the jointly optimal safe step size and batch size, similarly
to what was done in (Papini et al., 2017) for the special case of Gaussian policies:

Corollary 12  Let B̃k(�;N) be the lower bound on the performance improvement of a sto-
chastic policy gradient update, as defined in Theorem 10. Under the same assumptions, the
continuous relaxation of B̃k(�;N)∕N is maximized by the following step size �∗ and batch
size N∗

k
:

Using �∗ and ⌈N∗
k
⌉ in the stochastic gradient ascent update guarantees, with probability at

least 1 − �k , the following non-negative performance improvement:

Proof  Fix k and let Υ(�,N) = B̃k(�;N)∕N and N0 = �2(�k)
/‖‖‖∇̂J(�k;Dk)

‖‖‖
2

 . We consider the
continuous relaxation of Υ(�,N) , where N can be any positive real number. For N ≥ N0 ,
the first argument of the max operator in (36) can be selected. Note that the second argu-
ment is always a valid choice, since it is a lower bound on the first one for every N ≥ 1 .
Thus, we separately solve the following constrained optimization problems:

(46)�k,Nk = argmax
�,N

J(�k + �∇̂J(�k;D)) − J(�k)

N
,

(47)

⎧⎪⎨⎪⎩

�∗ =
1

2L

N∗
k
=

4�2(�k)

���∇̂J(�k ;Dk)
���
2 .

(48)
J(�k+1) − J(�k) ≥

‖‖‖∇̂J(�k;Dk)
‖‖‖
2

8L
.

4100	 Machine Learning (2022) 111:4081–4137

1 3

and:

Both problems can be solved in closed form using KKT conditions. The first one (49)
yields Υ∗ =

‖‖‖∇̂J(�k;Dk)
‖‖‖
4/(

32L�2(�k)
)
 with the values of �∗ and N∗

k
 given in (47). The

second one (50) yields a worse optimum Υ∗ =
‖‖‖∇̂J(�k;Dk)

‖‖‖
4/(

54L�2(�k)
)
 with � =

1

3L
 and

N = 3�2(�)
/‖‖‖∇̂J(�k;Dk)

‖‖‖
2

 . Hence, we keep the first solution. From Theorem 10, using �∗

and N∗
k
 would guarantee J(�k+1) − J(�k) ≥ ‖‖‖∇̂J(�k;Dk)

‖‖‖
2/
(8L) . Of course, only integer

batch sizes can be used. However, for N ≥ N0 , the right-hand side of (36) is monotonically
increasing in N. Since N∗

k
≥ N0 and ⌈N∗

k
⌉ ≥ N∗

k
 , the guarantee (48) is still valid when �∗ and

⌈N∗
k
⌉ are employed in the stochastic gradient ascent update. 	� ◻

In this case, the optimal step size is constant, and is exactly half the one for the exact case
(Corollary 9). In turn, the batch size is adaptive: when the norm of the (estimated) gradient is
small, a large batch size is selected. Intuitively, this allows to counteract the variance of the
estimator, which is large relatively to the gradient magnitude. One may worry about the recur-
sive dependence of N∗

k
 on itself through Dk . We will overcome this issue in the next section.

5 � Algorithm

In this section, we leverage the theoretical results of the previous sections to design a rein-
forcement learning algorithm with monotonic improvement guarantees. For the reasons
discussed above, we adopt the adaptive-batch-size approach from Sect. 4.3.

(49)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

max𝛼,N
1

N

�
𝛼
����∇J(�k;Dk)

���
�����∇J(�k;Dk)

��� −
𝜖(𝛿k)√

N

�

−𝛼2 L

2

����∇J(�k;Dk)
���
2
�

s.t. 𝛼 ≥ 0,

s.t. N >
𝜖2(𝛿k)

����∇J(�k ;Dk)
���
2 ,

(50)

⎧⎪⎨⎪⎩

max𝛼,N
1

N

�
𝛼

2

�����∇J(�k;Dk)
���
2

−
𝜖2(𝛿k)

N

�
− 𝛼2 L

2

����∇J(�k;Dk)
���
2
�

s.t. 𝛼 ≥ 0,

s.t. N > 0.

Table 2   Gradient estimation error bound �(�) for Gaussian and Softmax policies using REINFORCE (RE.),
GPOMDP (GP.), or the random-horizon estimator discussed in "Appendix C.2" (RH.) as gradient estima-
tor, where d is the dimension of the policy parameter, M is an upper bound on the max norm of the feature
function, R is the maximum absolute-valued reward, � is the discount factor, T is the task horizon, � is the
standard deviation of the Gaussian policy and � is the temperature of the Softmax policy

Gaussian Softmax

RE. 4MRT(1−𝛾⊤)

𝜎(1−𝛾)

√
14d log(6∕𝛿) 4MRT(1−𝛾⊤)

𝜏(1−𝛾)

√
2d log(6∕𝛿)

GP. 4MR[1−𝛾⊤−T(𝛾T−𝛾T+1)]

𝜎(1−𝛾)2

√
14d log(6∕𝛿) 4MR[1−𝛾⊤−T(𝛾T−𝛾T+1)]

𝜏(1−𝛾)2

√
2d log(6∕𝛿)

RH. 4MR

�(1−�1∕2)2

√
14d log(6∕�) 4MR

�(1−�1∕2)2

√
2d log(6∕�)

4101Machine Learning (2022) 111:4081–4137	

1 3

Corollary 12 provides a constant step size �∗ and a schedule for the batch size (⌈N∗
k
⌉)k≥1

that jointly maximize per-trajectory performance improvement under a monotonic-
improvement constraint. Plugging these meta-parameters into Algorithm 1, we could
obtain a safe policy gradient algorithm. Unfortunately, the closed-form expression for N∗

k

provided in (47) cannot be used directly. We must compute the batch size before collecting
the batch of trajectories Dk , but N∗

k
 depends on Dk itself. To overcome this issue, we collect

trajectories in an incremental fashion until the optimal batch size is achieved. We call this
algorithm Safe Policy Gradient (SPG), outlined in Algorithm 2. The user specifies the fail-
ure probability �k for each iteration k, while the smoothness constant L and the concentra-
tion bound � ∶ (0, 1) → ℝ can be computed depending on the policy class and the gradient
estimator (see Tables 1 and 2).

We can study the data-collecting process of SPG as a stopping problem. Fixed an
iteration k, let Fk,i = �({�k,1,… , �k,i−1}) be the sigma-algebra generated by the first
i trajectories collected at that iteration. Let �i[X] be short for �[X|Fi−1].15 In Sects. 4
and 4.3 we assumed the Euclidean norm of the gradient estimation error to be bounded by
�(�)∕

√
N with probability 1 − � for some function � ∶ (0, 1) → ℝ+ . For Algorithm 2 to be

well-behaved, we need gradient estimates to concentrate exponentially, which translates
into the following, stronger assumption:

Assumption 2  Fixed a parameter � ∈ Θ , a batch size N ∈ ℕ and a failure probability
� ∈ (0, 1) , with probability at least 1 − �:

���∇̂J(�;D) − ∇J(�)
��� ≤ �(�)√

N
,

15  In the analysis that follows, expectation without a subscript actually denotes �[⋅|�k
] for a fixed (outer)

iteration k of Algorithm 2. However, we do not need this level of detail since data are discarded at the end
of each iteration, dependence between different iterations is only through �

k
 , and we can analyze each itera-

tion in isolation until the very end of the section.

4102	 Machine Learning (2022) 111:4081–4137

1 3

where |D| is a dataset of N i.i.d. trajectories collected with �� and �(�) = C
√
d log(6∕�) for

some problem-dependent constant C that is independent of � , d and N.

This is satisfied by REINFORCE/G(PO)MDP with Softmax and Gaussian policies,
as shown in "Appendix C". In Table 2 we summarize the value of the error bound �(�)
to be used in the different scenarios. Equipped with this exponential tail bound we can
prove that, at any given (outer) iteration of SPG, the data-collecting process (inner loop)
terminates:

Lemma 13  Fix an iteration k of Algorithm 2 and let Nk the number of trajectories that are
collected at that iteration. Under Assumption 2, provided ‖‖∇J(�k)

‖‖ > 0 , �[Nk] < ∞.

Proof  First, note that Nk is a stopping time w.r.t. the filtration (Fk,i)i≥1 . Consider the event
Ek,i =

���gk,i − ∇J(�k)
�� ≤ �(�k,i)∕

√
i
�
 . By Assumption 2, ℙ(¬Ek,i) ≤ �k,i . This allows to

upper bound the expectation of Nk as follows:

where (56) is by Assumption 2 and the last inequality is by Lemma 21 assuming
‖‖∇J(�k)

‖‖ ≤ C . If the latter is not true, we still get:

(51)�[Nk] ≤ �

�
∞�
i=1

�

�√
i <

2𝜖(𝛿k,i)

��gk,i��

��

(52)= �

�
∞�
i=1

�

�√
i <

2𝜖(𝛿k,i)

��gk,i��
,Ek,i

��
+ �

�
∞�
i=1

�

�√
i <

2𝜖(𝛿k,i)

��gk,i��
,¬Ek,i

��

(53)≤
∞�
i=1

𝕀

�√
i <

2𝜖(𝛿k,i)

��∇J(�k)
�� − 𝜖(𝛿k,i)∕

√
i

�
+

∞�
i=1

ℙ(¬Ek,i)

(54)≤ min
i≥1

�√
i ≥ 2�(�k,i)

��∇J(�k)
�� − �(�k,i)∕

√
i

�
+

∞�
i=1

�k,i

(55)≤ min
i≥1

���∇J(�k)
��
√
i ≥ 3�(�k,i)

�
) + �k

∞�
i=1

1

i(i + 1)

(56)≤ min
i≥1

���∇J(�k)
��
√
i ≥ 3C

√
d log(6i(i + 1)∕�k)

�
+ 1

(57)≤ min
i≥1

{‖‖∇J(�k)
‖‖2i ≥ 18C2d log(6i∕�k)

}
+ 1

(58)≤
⌈

36C2d

‖‖∇J(�k)
‖‖2

log
108C2d

‖‖∇J(�k)
‖‖2�k

⌉
+ 1,

4103Machine Learning (2022) 111:4081–4137	

1 3

	� ◻

We can now prove that the policy updates of SPG are safe.

Theorem 14  Consider Algorithm 2 applied to a smoothing policy, where ∇̂J is an unbi-
ased policy gradient estimator. Under Assumption 2, for any iteration k ≥ 1 , provided
∇J(�k) ≠ 0 , with probability at least 1 − �k:

Proof  Fix an (outer) iteration k of Algorithm 2 and let gk,i = ∇̂J(�k;Dk,i) for short. Using an
unbiased policy gradient estimator we ensure �i[gk,i − ∇J(�k)] = 0 , so Xi = gk,i − ∇J(�k)
is a martingale difference sequence adapted to (Fk,i)i≥1 . We use an optional stopping argu-
ment to show that gk,Nk

 is an unbiased policy gradient estimate. Lemma 13 shows that Nk
is a stopping time w.r.t. the filtration (Fk,i)i≥1 that is finite in expectation. Furthermore, by
Assumption 2, integrating the tail:

Hence, by optional stopping (Lemma 22), �[XNk
] = 0 . Since XNk

= ∇̂J(�k;Dk) − ∇J(�k) ,
we have �[∇̂J(�k;Dk)] = ∇J(�k) . This shows that the policy update of Algorithm 2 is an
unbiased policy-gradient update. By the stopping condition:

Now consider the following good event:

Under Assumption 2, by union bound:

(59)�[Nk] ≤ min
i≥1

{‖‖∇J(�k)
‖‖2i ≥ 18C2d log(6i∕�k)

}
+ 1

(60)≤ min
i≥1

{
i ≥ 18d log(6i∕�k)

}
+ 1

(61)≤ ⌈36d log(108d∕�k)⌉ + 1.

J(�k+1) − J(�k) ≥
‖‖‖∇̂J(�k;Dk)

‖‖‖
2

8L
≥ 0.

(62)𝔼i[
��Xi

��] = ∫
∞

0

ℙ
�‖X‖ > x�Fk,i

�
dx

(63)≤ 6�
∞

0

exp(−x2i∕(C2d)) dx

(64)≤ 6C

√
�d
4i

≤ 6C

√
�d
4

for all i ≥ 1.

(65)Nk ≥
4�2(�k,Nk

)

‖‖‖∇̂J(�k;Dk)
‖‖‖
2
.

(66)Ek =
{
∀i ≥ 1 ∶ ‖‖gk,i − ∇J(�k)

‖‖ ≤ �(�k,i)∕i
}
.

4104	 Machine Learning (2022) 111:4081–4137

1 3

So Ek holds with probability at least 1 − �k . Under Ek , the performance improvement guar-
antee is by Corollary 12, Eq. (65), and the choice of the step size � . 	� ◻

We have shown that the policy updates of SPG are safe with probability 1 − �k , where
the failure probability �k can be specified by the user for each iteration k. Typically, one
would like to ensure monotonic improvement for the whole duration of the learning pro-
cess. This can be achieved by appropriate confidence schedules. If the number of updates K
is fixed a priori, �k = �∕K guarantees monotonic improvement with probability 1 − � . The
same can be obtained by using an adaptive confidence schedule �k =

�

k(k+1)
 , even when the

number of updates is not known in advance. Both results are easily shown by taking a
union bound over k ≥ 1 . Notice how having an exponential tail bound like the one from
Assumption 2 is fundamental for the batch size to have a logarithmic dependence on the
number of policy updates.

5.1 � Towards a practical algorithm

The version of SPG we have just analyzed is very conservative. The price for guaranteeing
monotonic improvement is slow convergence, even in small problems (see Sect. 7.1 for an
example). In this section, we discuss possible variants and generalizations of Algorithm 2
aimed at the development of a more practical method. In doing so, we still stay faithful to
the principle of satisfying the safety requirement specified by the user with no compro-
mises. We just list the changes here. See "Appendix E" for a more rigorous discussion.

Improved smoothness constant
As mentioned in Sect. 3.3, we can use the improved smoothness constant by Yuan et al.

(2021), denoted L⋆ in the following, which has a better dependence on the effective hori-
zon. This yields a larger step size with the same theoretical guarantees, and allows to tackle
problems with longer horizons in practice.

Mini-batches
In the inner loop of Algorithm 2, instead of just one trajectory at a time, we can collect

mini-batches of n independent trajectories. For instance, n ≥ 2 is required to employ the
variance-reducing baselines discussed in Sect. 2. Moreover, a carefully picked mini-batch
size n can make the early gradient estimates more stable, leading to an earlier stopping of
the inner loop and a smaller batch size Nk . We leave the investigation of the optimal value
of n to future work.

Largest safe step size
The meta parameters of Algorithm 2 were selected to maximize a lower bound on the

per-trajectory performance improvement. Although we believe this is the most theoreti-
cally justified choice, we could gain some convergence speed by using a larger step size.
From Theorem 10, it is easy to check that � = 1∕L is the largest constant step size we can
use with our choice of adaptive batch size from Algorithm 2. We leave the investigation of
alternative safe combinations of batch size and (possibly adaptive) step size to future work.

Empirical Bernstein bound
The stopping condition of Algorithm 2 (line 11) is based on a Hoeffding-style bound

on the gradient estimation error. In the case of policies with bounded score function, such

(67)ℙ
(
¬Ek

) ≤
∞∑
i=1

�k,i =
∞∑
i=1

�k
i(i + 1)

= �k.

4105Machine Learning (2022) 111:4081–4137	

1 3

as Softmax policies (see "Appendix B.2"), we can use an empirical Bernstein bound
instead (Maurer & Pontil, 2009). This requires some modifications to the algorithm, but
yields a smaller adaptive batch size with the same safety guarantees. See "Appendix E"
for details. Unfortunately, we cannot use the empirical Bernstein bound with the Gaussian
policy because of its unbounded score function (see "Appendix B.1").

Weaker safety requirements
Monotonic improvement is a very strong requirement, so we do expect an algorithm

with strict monotonic improvement guarantees like SPG to be very data-hungry and slow
to converge. However, with little effort, Algorithm 2 can be modified to handle weaker
safety requirements. A common one is the baseline constraint (Garcelon et al., 2020; Laro-
che et al., 2019), e.g.,), where the performance of the policy is required to never be (signifi-
cantly) lower than the performance of a baseline policy �b . In a real safety-critical applica-
tion, the reward could be designed so that policies with performance greater than J(�b) are
always safe. In other applications, �b can be an existing, reliable controller that the user
wants to replace with an adaptive RL agent. In this case, assuming ��0 = �b , the baseline
constraint guarantees that the learning agent never performs worse than the original con-
troller. In our numerical simulations of Sect. 7, we will consider a stronger version of the
baseline constraint that we call milestone constraint. In this case, the agent’s policy must
never perform (significantly) worse than the best performance observed so far. Formally,
for all k ≥ 1:

where � ∈ [0, 1] is a user-defined significance parameter. The idea is as follows: every time
the agent reaches a new level of performance (a milestone), it should never do significantly
worse than that. When � = 1 , this reduces to monotonic improvement. When 𝜆 < 1 , some
amount of performance oscillation is allowed, but this relaxation can significantly improve
the learning speed. Of course, the user has full control on this trade-off through the meta-
parameter � . In "Appendix E" we show that variants of Algorithm 2 satisfy the milestone
constraint (and other requirements, such as the baseline constraint) with probability 1 − �
for given significance � and failure probability � . We experiment with the milestone con-
straint in Sect. 7.2.

6 � Related works

In this section, we discuss previous results on MI guarantees for policy gradient algorithms.
The seminal work on monotonic performance improvement is by Kakade and Langford

(2002). In this work, policy gradient approaches are soon dismissed because of their lack
of exploration, although they guarantee MI in the limit of an infinitesimally small step size.
The authors hence focus on value-based RL, proposing the Conservative Policy Iteration
(CPI) algorithm, where the new policy is a mixture of the old policy and a greedy one. The
guaranteed improvement of this new policy (S. Kakade & Langford, 2002, Theorem 4.1)
depends on the coefficient of this convex combination, which plays a similar role as the
learning rate in our Theorem 8:

(68)J(�k+1) ≥ � max
j=1,2,…,k

{J(�j)},

4106	 Machine Learning (2022) 111:4081–4137

1 3

where � = maxs∈S |�a∼�+
k
(s,a) [A

�k (s, a)]| and A�(s, a) = Q�(s, a) − V�(s) denotes the advan-
tage function of policy � . In fact, both lower bounds have a positive term that accounts for
the expected improvement of the new policy w.r.t. the old one, and a penalization term due
to the mismatch between the two. The CPI approach is refined by Pirotta et al. (2013), who
propose the Safe Policy Iteration (SPI) algorithm (see also, (Metelli et al., 2021)).

Specific performance improvement bounds for policy gradient algorithms were first pro-
vided by Pirotta et al. (2013) by adapting previous results on policy iteration (Pirotta et al.,
2013) to continuous MDPs. However, the penalty term can only be computed for shallow
Gaussian policies ("Appendix B.1") in practice. The bound for the exact framework is:

where |A| denotes the volume of the action space. From Table 1, our bound for the same
setting is (Corollary 9):

which has the same dependence on the step size, the policy standard deviation � , the
effective horizon (1 − �)−1 , the maximum reward R and the maximum feature norm M .
Besides being more general, our penalty term does not depend on the problematic |A|
term (the action space is theoretically unbounded for Gaussian policies) and replaces
the l1 norm of (70) with the smaller l2 norm. Due to the different constants, we cannot
say our penalty is always smaller, but the change of norm could make a big difference in
practice, especially for large parameter dimension d. Pirotta et al. (2013) also study the
approximate framework. However, albeit formulated in terms of the estimated gradient,
their lower bound (Theorem 5.2) still pertains exact policy gradient updates, since �k+1 is
defined as �k + �k∇J(�k) . This easy-to-overlook observation makes our Theorem 10 the
first rigorous monotonic improvement guarantee for stochastic policy gradient updates of
the form �k+1 = �k + �k∇̂J(�k) . Pirotta et al. (2013) use their results to design an adaptive
step-size schedule for REINFORCE and G(PO)MDP, similarly to what we propose in this
paper, but limited to Gaussian policies. Papini et al. (2017) rely on the same improvement
lower bound (70) to design an adaptive-batch size algorithm, the most similar to our SPG.
Again, their monotonic improvement guarantees are limited to shallow Gaussian policies.

Another related family of performance improvement lower bounds, inspired once again
by Kakade and Langford (2002), is that of TRPO. These are very general results that
apply to arbitrary pairs of stochastic policies, although they are mostly used to construct
policy gradient algorithms in practice. Specializing Theorem 1 by Schulman et al. (2015)
to our setting and applying the KL lower bound suggested by the authors we can get the
following:

(69)
J(�k+1) − J(�k) ≥ �

(1 − �)
�

s ∼ ��k

a ∼ �+
k

[
A�k (s, a)

]
−

2�2��

(1 − �)2(1 − �)
,

(70)
J(�k+1) − J(�k) ≥ �k��∇J(�k)

��2 − �2
k

M2R

�2(1 − �)2

�
�A�√
2��

+
�

2(1 − �)

�

× ��∇J(�k)
��21,

J(�k+1) − J(�k) ≥ �k‖‖∇J(�k)
‖‖2 − �2

k

M2R

�2(1 − �)2

(
1 +

2�

�(1 − �)

)
‖‖∇J(�k)

‖‖2,

4107Machine Learning (2022) 111:4081–4137	

1 3

where �� is a stochastic policy. Unfortunately, the lower bound for a policy gradient update
(exact or stochastic) cannot be computed exactly. Approximations can lead to very good
practical algorithms such as TRPO, but not to actually implementable algorithms with
rigorous monotonic improvement guarantees like our SPG. Achiam et al. (2017) and
Pajarinen et al. (2019) are able to remove some approximations, but not all.16 If we were to
derive a computable worst-case lower bound starting from (71), we would get a result simi-
lar to (70). In fact, Pirotta et al. (2013) explicitly upper-bound the KL divergence in their
derivations, which is why the final result is limited to Gaussian policies. We overcome this
difficulty by directly upper-bounding the curvature of the objective function (Lemma 5).
Furthermore, Theorem 7 suggests that our theory is not limited to policy gradient updates.
Arbitrary update directions are considered in (Papini et al., 2020).

Pirotta et al. (2015) provide performance improvement lower bounds (Lemma 8) and
adaptive-step algorithms for policy gradients under Lipschitz continuity assumptions on
the MDP and the policy. Our assumptions on the environment are much weaker since we
only require boundedness of the reward. Intuitively, stochastic policies smooth out the
irregularities of the environment in computing expected return objectives. In turn, the
results of Pirotta et al. (2015) also apply to deterministic policies.

Cohen et al. (2018) provide a general safe policy improvement strategy that can be
applied also to policy gradient updates. However, it requires to maintain and evaluate a set
of policies per iteration instead of a single one.

As mentioned, R. Yuan et al. (2021, Lemma4.4) also study policy gradient with smooth-
ing policies, providing an improved smoothness constant and proving Lipschitz continuity
of the objective function. However, their main focus is sample complexity of vanilla policy
gradient.

7 � Experiments

In this section, we test our SPG algorithm on simulated control tasks. We first test Algo-
rithm 2 with monotonic improvement guarantees on a small continuous-control problem.
We then experiment with the milestone-constraint relaxation proposed in Sect. 5.1 on a
classic RL benchmark—cart-pole balancing.

7.1 � Linear‑quadratic regulator with Gaussian policy

The first task is a 1-dimensional Linear-Quadratic Regulator (LQR, Dorato et al.
(1994)), a typical continuous-control benchmark. See "Appendix F.1" for a detailed

(71)

J(�k+1) − J(�k) ≥ 1

1 − �
�

s ∼ ��k

a ∼ ��k+1

�
A�k (s, a)

�

−
2�R

(1 − �)3
max
s∈S

�
KL(��k (⋅�s)‖��k+1)(⋅�s)

�
,

16  This is not a critique of the TRPO algorithm per se. Besides the celebrated empirical results, TRPO is
also theoretically justified (Neu et al., 2017), only not best as a monotonically improving gradient-descent
algorithm (see also, (Shani et al., 2020)).

4108	 Machine Learning (2022) 111:4081–4137

1 3

task specification. We use a Gaussian policy ("Appendix B.1") that is linear in the state,
��(a|s) = N(a;�s, �2) . The task horizon is T = 10 and we use � = 0.9 as a discount factor.
The policy mean parameter is initialized to �0 = 0 and the variance is fixed as � = 1 . For
this task, the maximum reward (in absolute value) is R = 1 and the only feature is the state
itself, giving M = 1 . Hence, the smoothness constant L⋆ ≃ 200 is easily computed (see
Table 1). Similarly, the error bound can be retrieved from Table 2. We compare the SPG
(Algorithm 2) with an existing adaptive-batch-size policy gradient algorithm for Gaussian
policies (Papini et al., 2017), discussed in the previous section and labeled AdaBatch in
the plots. SPG is run with a mini-batch size of n = 100 (see Sect. 5.1), and AdaBatch (in
the version with Bernstein’s inequality as recommended in the original paper) with an ini-
tial batch size of N0 = 100 . Both use the adaptive confidence schedule �k = �∕(k ∗ (k + 1))
discussed in Sect. 5, with an overall failure probability of � = 0.05 . We also consider SPG
with a twice-as-large step size 𝛼 = 1∕L⋆ , as discussed in Sect. 5.1.

Figure 1 shows the expected performance of the algorithms on the LQR task. For this
task, we are able to compute the expected performance in closed form given the policy
parameters (Peters, 2002). This allows to filter out the oscillations due to the stochasticity
of policy and environment, focusing on actual (expected) performance oscillations. It is
also why the variability among different seeds is so small (note that, for this figure, shaded
areas correspond to 10 standard deviations. They correspond to a single standard devia-
tion in the other figures). Performance is plotted against the total number of collected tra-
jectories for fair comparison. The distribution of policy updates can be deduced from the
markers. We can see that indeed all the safe PG algorithms exhibit monotonic improve-
ment. SPG converges faster than AdaBatch. This is mostly due to the larger step size of
SPG (we observed that the step size of SPG was more than 100 times larger than the one
of AdaBatch in most of the updates). This allows SPG to converge faster even with fewer
policy updates. The variant of SPG with a larger step size ( 𝛼 = 1∕L⋆ ) converges faster to a

Fig. 1   Performance of SPG and
AdaBatch (Papini et al., 2017)
on the LQR task with Gaussian
policy. Results are averaged over
5 independent runs. The shaded
areas correspond to 10 standard
deviations. A marker corresponds
to 100 policy updates

Fig. 2   Batch size of SPG and
AdaBatch on the LQR task.
Results are averaged over 5
independent runs. The shaded
areas correspond to one standard
deviation. A marker corresponds
to 100 policy updates

4109Machine Learning (2022) 111:4081–4137	

1 3

good policy, but the original version from Algorithm 2 achieves higher performance on the
long run. This indicates that maximizing the lower bound on per-trajectory performance
improvement from Theorem 10 is indeed meaningful.

Figure 2 shows the batch size of the different algorithms. The batch size of SPG is
mostly larger than that of AdaBatch. From Sect. 6 we know that the monotonic improve-
ment guarantee of SPG is more rigorous, so a larger batch size is justified. Notice also that
the batch size of SPG is smaller than that of AdaBatch in the early iterations, suggesting
that the former is more adaptive.

7.2 � Cart‑pole with softmax policy

The second task is cart-pole (Barto et al., 1983). We use the implementation from ope-
nai/gym, which has 4-dimensional continuous states and finite actions, a ∈ {1, 2} . See
"Appendix F.2" for further details. The policy is Softmax ("Appendix B.2"), linear in the
state: 𝜋�(a|s) ∝ exp(�⊤

a
s) , with a separate parameter for each action ( � = [�1;�2] ). We use

a fixed temperature � = 1 , initial policy parameters set to zero (this corresponds to a uni-
form policy) and � = 0.9 as a discount factor. For SPG, we employ all the practical variants
proposed in Sect. 5.1. In particular, since the Softmax policy has a bounded score function,
we can use the empirical Bernstein bound. Note that we could not have done the same for
the LQG task since the score function of the Gaussian policy is unbounded (see "Appen-
dix C"). Moreover, we consider the relaxed milestone constraint for different values of
the significance parameter, � ∈ {0.1, 0.2, 0.4} . The overall failure probability is always

Fig. 3   Performance of GPOMDP
and SPG (for different values of
the significance parameter � ) on
the cart-pole task with Softmax
policy. Results are averaged over
5 independent runs. The shaded
areas correspond to one standard
deviation. A marker corresponds
to 1000 policy updates

Fig. 4   Further results for SPG on the cart-pole task. On the left, the batch size is plotted against the total
number of trajectories. A marker corresponds to 1000 policy updates. On the right, the performance at each
policy update (solid line) is compared with the performance threshold (dashed line) when � = 0.1 . In both
plots, shaded areas correspond to one standard deviation

4110	 Machine Learning (2022) 111:4081–4137

1 3

� = 0.2 , the mini-batch size is n = 100 , and the step size is 𝛼 = 1∕L⋆.17 We compare with
GPOMDP with the same step size but a fixed batch size of N = 100 , which comes with no
safety guarantees, and corresponds to � = 0 . In Fig. 3 we plot the performance against the
total number of collected trajectories. As expected, a more relaxed constraint yields faster
convergence. However, no significant performance oscillations are observed, not even in
the case of GPOMDP, suggesting that the choice of meta-parameters is still over-conserv-
ative. In Fig. 4 (left) we report the evolution of the batch size of SPG during the learning
process. Note how, in this case, the batch size seems to converge to a constant value. In
Fig. 4 (right) we illustrate the milestone constraint. The solid line is the performance of
SPG with � = 0.1 , while the dotted line is the performance lower-threshold enforced by
the milestone constraint, representing 90% of the highest performance achieved so far. As
desired, the actual performance never falls under the threshold.

8 � Conclusion

We have identified a general class of policies, called smoothing policies, for which the
performance measure (expected total reward) is a smooth function of policy parameters.
We have exploited this property to select meta-parameters for actor-only policy gradient
that guarantee monotonic performance improvement. We have shown that an adaptive
batch size can be used in combination with a constant step size for improved efficiency,
especially in the early stages of learning. We have designed a monotonically improving
policy gradient algorithm, called Safe Policy Gradient (SPG), with adaptive batch size. We
have shown how SPG can also be applied to weaker performance-improvement constraints.
Finally, we have tested SPG on simulated control tasks.

Albeit the safety motivations are clearly of practical interest, our contribution is mostly
theoretical. The meta-parameters proposed in Sect. 4 and used in SPG are based on worst-
case problem-dependent constants that are known and easy to compute, but can be very
large. This would lead to over-conservative behavior in most problems of interest. How-
ever, we believe that this work provides a solid starting point to develop safe and efficient
policy gradient algorithms that are rooted in theory.

To conclude, we propose some possible ideas for future work that are aimed to close this
gap between theory and practice. While we used the empirical Bernstein bound to character-
ize the gradient estimation error for Softmax policies, the same cannot be done for Gaussian
policies due to their unbounded score function. Tighter concentration inequalities should be
studied for this case. The convergence rate of SPG should also be studied. The main chal-
lenge here is the growing batch size. The numerical simulations of Sect. 7.1 suggest the the
growth is sublinear. Moreover, we have observed convergence to a fixed batch size under
the weaker milestone constraint in Sect. 7.2. It is also worth to investigate whether SPG
can be combined with stochastic variance-reduction techniques (e.g., (Papini et al., 2018;
Yuan et al., 2020)). Convergence to global optima should also be investigated, as is now
common in the policy optimization literature (Bhandari & Russo, 2019; Zhang et al., 2020;
Agarwal et al., 2020). Actor-critic algorithms (Konda & Tsitsiklis, 1999) are more used than
actor-only algorithms in practice (e.g., (Haarnoja et al., 2018)) due to their reduced vari-
ance. Thus, extending our improvement guarantees to this class of algorithms is also impor-
tant. The main challenge lies in handling the bias due to the critic. A promising first step is

17  Although both theory and our LQR experiments indicate that 𝛼 = 1∕(2L⋆) is ultimately the best choice,
we prioritize convergence speed over long-term performance on this larger task.

4111Machine Learning (2022) 111:4081–4137	

1 3

to consider compatible critics that yield unbiased gradient estimates (Sutton et al., 2000;
Konda & Tsitsiklis, 1999). Although the class of smoothing policies is very broad, we have
restricted our attention to Gaussian and Softmax policies with given features. Other policy
classes, such as beta policies (Chou et al., 2017) should be considered. Most importantly,
deep policies should be considered that also learn the features from data, especially given
their success in practice (Duan et al., 2016). See "Appendix B.3" for a brief discussion.
Other possible extensions include generalizing the monotonic improvement guarantees to
other concepts of safety, such as learning under constraints, or risk-averse RL (Bisi et al.,
2020). Finally, the conservative approach adopted in this work could prevent exploration,
making some tasks very hard to learn. We studied the case of Gaussian policies with adap-
tive standard deviation in (Papini et al., 2020). Future work should consider the trade-off
between safety, efficiency and exploration in greater generality.

Appendix A: Omitted proofs

A.1: Markov decision processes

Lemma 15  For all � ∶ S → ΔA and s0 ∈ S:

Proof 

	�

Proposition 16  Let � be any policy and f be any integrable function on S satisfying the fol-
lowing recursive equation:

��
s0
(⋅) = (1 − �)1

{
s = s0

}
+ � ∫

S

��
s0
(s)p(⋅|s) ds.

� ∫
S

��
s0
(s)p(⋅|s) ds = � ∫

S

(1 − �)
∞∑
t=0

� tpt�(s|s0)p�(⋅|s) ds

= �(1 − �)
∞∑
t=0

� t ∫
S

pt�(s|s0)p�(⋅|s) ds

= (1 − �)
∞∑
t=0

� t+1 ∫
S

pt�(s|s0)p�(⋅|s) ds

= (1 − �)
∞∑
t=0

� t+1pt+1� (⋅|s0)

= (1 − �)
∞∑
t=1

� tpt�(⋅|s0)

= (1 − �)
∞∑
t=0

� tpt�(⋅|s0) − (1 − �)

= ��
s0
(⋅) − (1 − �)1

{
s = s0

}
.

◻

4112	 Machine Learning (2022) 111:4081–4137

1 3

for all s ∈ S and some integrable function g on S . Then:

for all s ∈ S.

Proof 

where (A1) is from Lemma 15. 	� ◻

A.2: Lipschitz‑smooth functions

The following results, reported in Sect. 2, are well known in the literature (Nesterov, 1998),
but we also report proofs for the sake of completeness:

Proposition 17  Let X be a convex subset of ℝd and f ∶ X → ℝ be a twice-differen-
tiable function. If the Hessian is uniformly bounded in spectral norm by L > 0 , i.e.,
supx∈X

‖‖∇2f (x)‖‖2 ≤ L , then f is L-smooth.

Proof  Let x, x� ∈ X  , h∶=x� − x and g ∶ [0, 1] → ℝ , g(�) ≡ ∇xf (x + �h) . Convexity of X
guarantees x + �h ∈ X for � ∈ [0, 1] . Twice-differentiability of f implies ∇xf is continu-
ous, which in turn implies g is continuous. From the Fundamental Theorem of Calculus:

Hence:

f (s) = g(s) + � ∫
S

p�(s
�|s)f (s�) ds�,

f (s) =
1

1 − � ∫
S

��
s
(s�)g(s�) ds�,

(A1)

∫
S

��
s
(s�)g(s�) ds� = ∫

S

��
s
(s�)f (s�) ds� − ∫

S

��
s
(s�)� ∫

S

p�(s
��|s�)f (s��) ds�� ds�

= ∫
S

��
s
(s�)f (s�) ds� − ∫

S

� ∫
S

��
s
(s�)p�(s

��|s�) ds�f (s��) ds��

= ∫
S

��
s
(s�)f (s�) ds� − ∫

S

(
��
s
(s��) − (1 − �)1

{
s�� = s

})
f (s��) ds��

= (1 − �)f (s),

(A2)
∇xf (x

�) − ∇xf (x) = ∇xf (x + h) − ∇xf (x) = g(1) − g(0) = ∫
1

0

g�(𝜆) d𝜆

= ∫
1

0

h⊤∇2
x
f (x + 𝜆h) d𝜆.

4113Machine Learning (2022) 111:4081–4137	

1 3

where (A3) is from the consistency of induced norms, i.e., ‖Ax‖p ≤ ‖A‖p‖x‖p . 	� ◻

Proposition 18  (Quadratic Bound) Let X be a convex subset of ℝd and f ∶ X → ℝ be an
L-smooth function. Then, for every x, x� ∈ X :

where ⟨⋅, ⋅⟩ denotes the dot product.

Proof  Let x, x� ∈ X  , h∶=x� − x and g ∶ [0, 1] → ℝ , g(�) ≡ f (x + �h) . Convexity of X
guarantees x + �h ∈ X for � ∈ [0, 1] . Lipschitz smoothness implies continuity of f, which
in turn implies g is continuous. From the Fundamental Theorem of Calculus:

Hence:

where (A6) is from the Cauchy-Schwartz inequality and (A7) is from the Lipschitz smooth-
ness of f. 	� ◻

(A3)

��∇xf (x
�) − ∇xf (x)

�� =
������

1

0

h⊤∇2
x
f (x + 𝜆h) d𝜆

�����2
≤ �

1

0

���∇
2
x
f (x + 𝜆h)h

���2 d𝜆

≤ �
1

0

���∇
2
x
f (x + 𝜆h)

���2‖h‖2 d𝜆

(A4)≤ L‖h‖2 = L��x� − x��2,

(18)|||f (x
�) − f (x) −

⟨
x� − x,∇f (x)

⟩||| ≤ L

2
‖‖x� − x‖‖2,

(A5)f (x�) − f (x) = g(1) − g(0) = ∫
1

0

g�(�) d�.

(A6)

���f (x
�) − f (x) −

�
x�− x,∇xf (x)⟩�� =

������
1

0

g�(�) d� − ⟨h,∇xf (x)⟩
�����

=
������

1

0

⟨h,∇xf (x + �h)⟩ d� − ⟨h,∇xf (x)⟩
�����

=
������

1

0

⟨h,∇xf (x + �h) − ∇xf (x)⟩ d�
�����

≤ �
1

0

��⟨h,∇xf (x + �h) − ∇xf (x)⟩�� d�

≤ �
1

0

��∇xf (x + �h) − ∇xf (x)
��2‖h‖2 d�

(A7)
≤ L‖h‖2

2 �
1

0

� d�

=
L

2
��x� − x��22,

4114	 Machine Learning (2022) 111:4081–4137

1 3

A.3: Smoothing policies and differentiability

Our proofs of the results of Sect. 3.2 rely on the interchange of integrals (w.r.t. states
and actions) and derivatives (w.r.t. policy parameters). In the policy gradient literature
(cf.. (Sutton et al., 2000; Konda & Tsitsiklis, 1999; Kakade, 2001)), these are typically
justified by assuming the derivatives of the policy are bounded uniformly over states
and actions, that is:

for all s ∈ S , a ∈ A , � ∈ Θ ⊆ ℝ
d , and i, j = 1, 2,… , d . The policy gradient itself originally

relies on this assumption (Konda & Tsitsiklis, 1999), although weaker requirements are
possible (see (Bhandari & Russo, 2019), Sect. 5.1, for a recent discussion). The main prob-
lem with (A8) is that the uniform bounds may depend on huge quantities such as the diam-
eter of the parameter space. Even worse, for (linear) Gaussian policies, the first derivative
is unbounded:

even when �(s) is bounded, since a ∈ A = ℝ . However, these policies are smoothing (see
"Appendix B.1").

The following application of the Leibniz Integral Rule (cf. (Klenke, 2013), Theo-
rem6.28) shows that our smoothing-policy assumption (Definition 1), can replace the
stronger (A8) in differentiating expectations:

Lemma 19  Let {��|� ∈ Θ} , be a class of smoothing policies and f ∶ S ×A → ℝ be any
function such that supa∈A |f (s, a)| is integrable on S . Then ∫

S
∫
A
��(a|s)f (s, a) da ds is twice

differentiable and:

for all i, j = 1, 2,… , d.

Proof  Let Bs = supa∈A |f (s, a)| and fix an index i ≤ d . Let:

By definition:

(A8)
||||
�
��i

��(a|s)
|||| ≤ C1,

|||||
�2

��i��j
��(a|s)

|||||
≤ C2,

(A9)∇𝜋�(a|s) = 𝜋�(a|s)a − �⊤𝜙(s)

𝜎2
𝜙(s),

(A10)
�
��i ∫S

∫
A

��(a|s)f (s, a) da ds = ∫
S
∫
A

�
��i

��(a|s)f (s, a) da ds,

(A11)
�2

��i��j ∫S
∫
A

��(a|s)f (s, a) da ds = ∫
S
∫
A

�2

��i��j
��(a|s)f (s, a) da ds,

(A12)us(�) = ∫
A

��(a|s)f (s, a) da.

(A13)
�
��i

us(�) = lim
h→0

u(� + hei) − u(�)

h
,

4115Machine Learning (2022) 111:4081–4137	

1 3

where ei is the element of the canonical basis of ℝd corresponding to the i-th coordinate.
By linearity of integration:

By assumption, ��(a|s) is differentiable, so it is continuous. Fix an h ∈ ℝ . By the mean
value theorem, there exist a � on the segment connecting � and � + hei such that:

Hence, by upper bounding the l∞ norm with the l2 norm:

By the smoothing-policy assumption, Θ is convex, so � ∈ Θ , and again by the smoothing-
policy assumption:

showing that g�(s, a) is bounded by a function that is integrable w.r.t. a. By the dominated
convergence theorem, we can interchange the limit and the integral in (A14) to obtain:

By (A17) and Holder’s inequality, |�∕��ius(�)| ≤ Bs�1 , which is integrable on S . We can
then use the same interchange argument to show that:

For the second derivative, we can just repeat the whole argument from the previous para-
graph on �

��i
us(�) . Continuity of the integrand, which is necessary to apply the mean value

theorem, follows from twice differentiability of the policy. To apply the dominated conver-
gence theorem, we use the following:

by the triangular inequality and the smoothing-policy assumption. 	� ◻

With some work, one can use Lemma 19 to justify all the interchanges of differentiation
and integrals from Sect. 3.2 and "Appendix A.4", as the original derivations (Sutton et al.,
2000; Kakade, 2001) were justified by (A8).

(A14)
�
��i

us(�) = lim
h→0∫

A

��+hei (a|s) − ��(a|s)
h

f (s, a)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
g�(s,a)

da.

(A15)
��+hei (a|s) − ��(a|s)

h
=

�
��i

��(a|s)
|||||�=�

.

(A16)||g�(s, a)|| ≤ Bs
‖‖∇�

�
�
(a|s)‖‖.

(A17)�
A

‖‖∇�
�
�
(a|s)‖‖ da ≤ �

A

�
�
(a|s)‖‖∇�

log�
�
(a|s)‖‖ da ≤ �1,

�
��i

us(�) = ∫
A

lim
h→0

��+hei (a|s) − ��(a|s)
h

f (s, a) da = ∫
A

�
��i

��(a|s)f (s, a) da.

(A18)
�
��i ∫S

us(�) ds = ∫
S

�
��i

us(�) ds = ∫
S
∫
A

�
��i

��(a|s)f (s, a) da.

�
A

‖‖‖∇
2𝜋�(a|s)‖‖‖ da = �

A

𝜋�(a|s)‖‖‖∇ log𝜋�(a|s)∇⊤ log𝜋�(a|s) + ∇2 log𝜋�(a|s)‖‖‖ da

≤ �
A

𝜋�(a|s)‖‖∇ log𝜋�(a|s)‖‖2 da + �
A

𝜋�(a|s)‖‖‖∇
2 log𝜋�(a|s)‖‖‖ da

≤ 𝜉2 + 𝜉3,

4116	 Machine Learning (2022) 111:4081–4137

1 3

A.4 Policy Hessian

In the following, the interchange of differentiation and integrals is justified by our
smoothing-policy assumption. See "Appendix A.3" for details.

Proposition 20  Let �� be a smoothing policy. The Hessian of the performance measure is:

Proof  We first compute the Hessian of the state-value function:

where

∇2J(�) =
1

1 − 𝛾
�

s ∼ 𝜌�

a ∼ 𝜋�(⋅|s)

[
∇ log𝜋�(a|s)∇⊤Q�(s, a) + ∇Q�(s, a)∇⊤ log𝜋�(a|s)

+
(
∇ log𝜋�(a|s)∇⊤ log𝜋�(a|s) + ∇2 log𝜋�(a|s)

)
Q�(s, a)

]
.

(A19)
∇2V�(s) = ∇2 ∫

A

𝜋�(a|s)Q�(s, a) da

= ∫
A

∇
[
𝜋�(a|s)

(
∇⊤ log𝜋�(a|s)Q�(s, a) + ∇⊤Q�(s, a)

)]
da

(A20)
= ∫

A

𝜋�(a|s)
[
(∇2 log𝜋�(a|s) + ∇ log𝜋�(a|s)∇⊤ log𝜋�(a|s))Q�(s, a)

+∇ log𝜋�(a|s)∇⊤Q�(s, a) + ∇Q�(s, a)∇⊤ log𝜋�(a|s) + ∇2Q�(s, a)
]
da

(A21)

= ∫
A

𝜋�(a|s)
[
∫ (∇2 log𝜋�(a|s) + ∇ log𝜋�(a|s)∇⊤ log𝜋�(a|s))Q�(s, a)

+∇ log𝜋�(a|s)∇⊤Q�(s, a) + ∇Q�(s, a)∇⊤ log𝜋�(a|s)
+∇2

(
r(s, a) + 𝛾 ∫

S

p(s�|s, a)V�(s�) ds�
)]

da

(A22)

= ∫
A

𝜋�(a|s)
[
(∇2 log𝜋�(a|s) + ∇ log𝜋�(a|s)∇⊤ log𝜋�(a|s))Q�(s, a)

+∇ log𝜋�(a|s)∇⊤Q�(s, a) + ∇Q�(s, a)∇⊤ log𝜋�(a|s)
]
da

+ 𝛾 ∫
S

p�(s
�|s)∇2V�(s�) ds�

= g(s) +
𝛾

1 − 𝛾 ∫
S

𝜌�
s
(s�)g(s�) ds�,

g(s) = ∫
A

𝜋�(a|s)
[(
∇ log𝜋�(a|s)∇⊤ log𝜋�(a|s) + ∇2 log𝜋�(a|s)

)
Q�(s, a)

+∇ log𝜋�(a|s)∇⊤Q�(s, a) + ∇Q�(s, a)∇⊤ log𝜋�(a|s)
]
da,

4117Machine Learning (2022) 111:4081–4137	

1 3

(A19) is from the log-derivative trick, (A20) is from another application of the log-deriv-
ative trick, (A21) is from (5), and (A22) is from Lemma 1 with ∇2V�(s�) as the recursive
term. Computing the Hessian of the performance measure is then trivial:

where the first equality is from (9). Combining (A22), (A23) and (10) we obtain the state-
ment of the lemma. 	� ◻

A.5: Auxiliary lemmas

Lemma 21  For any a, b > 0 such that ab > 1 , a sufficient condition for x ≥ a log(bx) is
x ≥ 2a log(ab).

Proof  This can be deduced from the properties of the Lambert function. However, it is
easier to verify it directly. Letting x = 2a log(ab) , the first inequality becomes:

and log(2 log(y)) ≤ log y for any y > 1 . Finally, notice that x − a log(bx) is increasing for
x > a , and 2a log(ab) > a for ab > 1 . 	� ◻

Lemma 22  (Optional Stopping) Let (Xt)t≥1 be a d-dimensional vector-valued martingale
difference sequence and � be a stopping time, both with respect to a filtration (Ft)t≥0 . If
�[𝜏] < ∞ and there exists c ≥ 0 such that �[‖‖Xt

‖‖|Ft−1] ≤ c for every t ≥ 1 , then �[X�] = 0.

Proof  Consider any martingale Yt such that Xt = Yt − Yt−1 . We are going to apply Doob’s
optional stopping theorem (See Thm 12.5.9 from Grimmett & Stirzaker, 2020)18 to each
element Y (i)

t of Yt , where i = 1,… , d . Sufficient conditions for �[Y (i)
�] = �[Y

(i)

0
] are:

1.	 �[𝜏] < ∞,
2.	 �[|Y (i)

t+1
− Y

(i)
t | ∣ Ft] ≤ c for all t ≥ 0.

The first one is by hypothesis. For the second one:

where the last inequality is by hypothesis. So, by optional stopping,
�[Y (i)

�] = �[Y
(i)

0
] for all i ∈ [d] . We can repeat the same argument for � − 1 . Hence

�[X�] = �[Y�] − �[Y�−1] = �[Y0] − �[Y0] = 0 . 	� ◻

(A23)∇2J(�) = ∇2 ∫
S

�(s)V�(s) ds = ∫
S

�(s)∇2V�(s) ds,

(A24)2a log(ab) ≥ a log(2ab log(ab)) = a log(ab) + a log(2 log(ab)),

(A25)

max
i∈[d]

�[|Y (i)

t+1
− Y

(i)
t | ∣ Ft] = max

i∈[d]
�[|X(i)

t+1
| ∣ Ft]

≤ �[‖‖Xt+1
‖‖∞| ∣ Ft]

≤ �[‖‖Xt
‖‖2| ∣ Ft] ≤ c,

18  In the theorem, it is also required that ℙ(𝜏 < ∞) = 1 , but this is implied by �[𝜏] < ∞ since � is nonnega-
tive.

4118	 Machine Learning (2022) 111:4081–4137

1 3

Appendix B: Common smoothing policies

In this section, we show that some of the most commonly used parametric policies are
smoothing and provide the corresponding Lipschitz constants for the policy gradient.

B.1: Gaussian policy

Consider a scalar-action, fixed-variance, shallow Gaussian policy:19

where � ∈ Θ ⊆ ℝ
d , 𝜎 > 0 is the standard deviation, and � ∶ S → ℝ

d is a vector-valued fea-
ture function that is bounded in Euclidean norm, i.e., sups∈S ‖�(s)‖ < ∞ . This common
policy turns out to be smoothing.

Lemma 23  Let ΠΘ be the set of Gaussian policies defined in (B26), with parameter set Θ ,
standard deviation � and feature function � . Let M be a non-negative constant such that
sups∈S ‖�(s)‖ ≤ M . Then ΠΘ is (�1, �2, �3)-smoothing with the following constants:

The corresponding Lipschitz constant of the policy gradient is:

Proof  Fix a � ∈ Θ . Let x ≡ a−�⊤�(s)

𝜎
 . Note that A = ℝ and da = � dx . We need the follow-

ing derivatives:

First, we compute �1:

(B26)𝜋�(a�s) = N
�
a��⊤�(s), 𝜎2

�
=

1√
2𝜋𝜎

exp

�
−
1

2

�
a − �⊤�(s)

𝜎

�2
�

,

�1 =
2M√
2��

, �2 = �3 =
M2

�2
.

(B27)L =
2M2R

�2(1 − �)2

(
1 +

2�

�(1 − �)

)
.

(B28)∇ log��(a|s) = �(s)

�
x,

(B29)∇2 log𝜋�(a|s) = −
�(s)�(s)⊤

𝜎2
.

(B30)

𝔼
a∼��(⋅�s)

���∇ log��(a�s)��
�
= �

ℝ

1√
2��

e−
x2∕2

����
�(s)

�
x
����� dx

≤ M√
2�� �

ℝ

e−
x2∕2�x� dx

=
2M√
2��

∶=�1.

19  In this section, � with no subscript always denotes the mathematical constant.

4119Machine Learning (2022) 111:4081–4137	

1 3

Then, we compute �2:

Finally, we compute �3:

From these constants, the Lipschitz constant of the policy gradient is easily computed
(Lemma 6). 	� ◻

B.2 Softmax policy

Consider a fixed-temperature, shallow Softmax policy for a discrete action space:

where � ∈ Θ ⊆ ℝ
d , 𝜏 > 0 is the temperature, and � ∶ S ×A → ℝ

d is a vector-valued fea-
ture function that is bounded in Euclidean norm, i.e., sups∈S,a∈A ‖�(s, a)‖ < ∞ . This pol-
icy is smoothing.

Lemma 24  Let ΠΘ be the set of Softmax policies defined in (B33), with parameter set
Θ , temperature � and feature function � . Let M be a non-negative constant such that
sups∈S,a∈A ‖�(s, a)‖ ≤ M . Then, ΠΘ is ( �1, �2, �3)-smoothing with the following constants:

The corresponding Lipschitz constant of the policy gradient is:

Proof  In this case, we can simply bound ‖‖∇ log��(a|s)‖‖ and ‖‖∇2 log��(a|s)‖‖ uniformly
over states and actions. The smoothing conditions follow trivially. We need the following
derivatives:

(B31)

𝔼
a∼��(⋅�s)

���∇ log��(a�s)��2
�
= �

ℝ

1√
2��

e−
x2∕2

����
�(s)

�
x
����
2

� dx

≤ M2

√
2��2 �ℝ

e−
x2∕2x2 dx

=
M2

�2
∶=�2.

(B32)

𝔼
a∼��(⋅�s)

����∇
2 log��(a�s)���

�
= �

ℝ

1√
2��

e−
x2∕2

����
�(s)

�
x
����
2

� dx

≤ M2

√
2��2 �ℝ

e−
x2∕2x2 dx

=
M2

�2
∶=�3.

(B33)𝜋�(a�s) =
exp

�
�⊤�(s,a)

𝜏

�

∑
a�∈A exp

�
�⊤�(s,a�)

𝜏

� ,

�1 =
2M

�
, �2 =

4M2

�2
,�3 =

2M2

�2
.

(B34)L =
2M2R

�2(1 − �)2

(
3 +

4�

1 − �

)
.

4120	 Machine Learning (2022) 111:4081–4137

1 3

First, we compute �1 and �2:

hence sups∈S �a∼��

[‖‖∇ log��(a|s)‖‖
] ≤ 2M

�
∶=�1 and

sups∈S �a∼��

[‖‖∇ log��(a|s)‖‖2
] ≤ 4M2

�2
∶=�2.

Finally, we compute �3:

hence sups∈S �a∼��

[‖‖∇2 log��(a|s)‖‖
] ≤ 2M2

�2
∶=�3 . From these constants, the Lipschitz

constant of the policy gradient is easily computed (Lemma 6). 	� ◻

Note the similarity with the Gaussian constants from Lemma 23. The temperature
parameter � plays a similar role to the standard deviation �.

The smoothness constants for Gaussian and Softmax policies are summarized in
Table 1.

B.3 Preliminary results on deep policies

The policies we have considered so far rely on given feature maps from state (and action)
space to low-dimensional linear space. For many applications, a linear map is not expres-
sive enough to represent good policies. Deep policies (Duan et al., 2016) use Neural Net-
works (NN) to extract more powerful representations from data. Here we provide a first
analysis on how the properties of the NN affect the smoothing properties of the policy.

As an example, consider a Gaussian policy with mean parametrized by a NN, that is:

(B35)∇ log��(a|s) = 1

�

(
�(s, a) − �

a�∼��(⋅|s)
[
�(s, a�)

])
,

(B36)∇2 log𝜋�(a|s) = 1

𝜏2
�

a�∼𝜋�(⋅|s)

[
�(s, a�)

(
�

a��∼𝜋�(⋅|s)
[
�(s, a��)

]
− �(s, a�)

)⊤
]
.

(B37)
��∇ log��(a�s)�� ≤ 1

�

�
‖�(s, a)‖ +

�����
�

a�∼��(⋅�s)
�
�(s, a�)

������

�

≤ 2M

�
,

(B38)

‖‖‖∇
2 log𝜋�(a|s)‖‖‖ ≤ 1

𝜏2
�

a�∼𝜋�(⋅|s)

[‖‖‖‖‖
�(s, a�)

(
�

a��∼𝜋�(⋅|s)
[
�(s, a��)

]
− �(s, a�)

)⊤‖‖‖‖‖

]

≤ 1

𝜏2
�

a�∼𝜋�(⋅|s)

[
‖‖�(s, a�)‖‖

‖‖‖‖‖
�

a��∼𝜋�(⋅|s)
[
�(s, a��) − �(s, a�)

]‖‖‖‖‖

]

≤ 1

𝜏2
�

a�∼𝜋�(⋅|s)

[
‖‖�(s, a�)‖‖ �

a��∼𝜋�(⋅|s)
[‖‖�(s, a��)‖‖ + ‖‖�(s, a�)‖‖

]]

≤ 2M2

𝜏2
,

(B39)��(a|s) ∼ N(a|��(s), �
2),

4121Machine Learning (2022) 111:4081–4137	

1 3

where �� ∶ S → A is a NN with weights � . The score function is then:

and its second-order counterpart:

For the policy to be smoothing, we need bounds on the gradient and Hessian of the NN
w.r.t. its weights (in Euclidean and spectral norm, respectively), both uniformly over the
state space. This may suggest the use of activation functions that are smooth and have
bounded derivatives for any input, such as tanh or sigmoid activations. We shall study the
impact of the network architecture on the smoothing constants in future work.

Appendix C: Exponential concentration of policy gradient estimators

In this section, we provide exponential tail inequalities for REINFORCE and G(PO)MDP
(see Sect. 2) policy gradient estimators with policy classes of interest. For the G(PO)MDP
estimator, it is useful to notice that it can be equivalently written as (Sutton et al., 2000;
Peters & Schaal, 2008):

just by reordering. For simplicity, we will consider estimators without variance-reducing
baselines.

First, let us consider the case of a bounded score function:

Lemma 25  Let ‖‖∇ log��(a|s)‖‖ ≤ W for all � ∈ ℝ
d , s ∈ S and a ∈ A . Then, for any

� ∈ ℝ
d , with probability 1 − �:

where RT =
RT(1−𝛾⊤)

1−𝛾
 for REINFORCE and RT = R

1−𝛾⊤−T(𝛾T−𝛾T+1)

(1−𝛾)2
 for G(PO)MDP.

Proof  For REINFORCE let:

For G(PO)MDP, let:

(B40)∇� log��(a|s) =
a − ��(s)

�2
∇���(s),

(B41)∇� log𝜋�(a|s) =
a − 𝜇�(s)

𝜎2
∇2

�
𝜇�(s) −

∇�𝜇�(s)∇
⊤
�
𝜇�(s)

𝜎2
.

(C42)∇̂J(�;D) =
1

N

N∑
i=1

T−1∑
t=0

[
∇ log��(a

i
t
|si

t
)

T−1∑
h=t

�hR(ai
h
, si

h
)

]
,

(C43)‖‖‖∇̂J(�) − ∇J(�)
‖‖‖ ≤ 2WRT

√
2d log(6∕�)

N
,

(C44)Rt(𝜏)∶=
T−1∑
h=0

𝛾hrh ≤ R(1 − 𝛾⊤)

1 − 𝛾
∶=Rt for all t ≥ 0,

(C45)RT∶=

T−1∑
t=0

Rt =
RT(1 − 𝛾⊤)

1 − 𝛾
.

4122	 Machine Learning (2022) 111:4081–4137

1 3

Let Sd−1 = {v ∈ ℝ
d ∶ ‖v‖ = 1} be the unit sphere in ℝd . Fix a vector v ∈ Sd−1 and let

∇̂J(�) denote the policy gradient estimate obtained from a single trajectory � sampled from
p� . For both gradient estimators:

where the first inequality uses the fact that, for any x ∈ ℝ
d , ‖x‖ = maxv∈Sd−1⟨v, x⟩ . By line-

arity of expectation and unbiasedness of the gradient estimator, �[⟨v, ∇̂J(�)⟩] = ⟨v,∇J(�)⟩ .
Hence, by (C50) and Hoeffding’s inequality, with probability 1 − �v:

where N = |D| . To turn this into a bound on the Euclidean norm, we need a covering argu-
ment. For arbitrary 𝜂 > 0 , consider an �-cover C� of Sd−1 , that is:

It is a well known result that a finite cover C� exists such that |C�| ≤ (3∕�)d . Then, with
probability 1 − �:

(C46)Rt(𝜏)∶=
T−1∑
h=t

𝛾hrh ≤ R(𝛾 t − 𝛾⊤)

1 − 𝛾
∶=Rt,

(C47)RT∶=

T−1∑
t=0

Rt = R
1 − 𝛾⊤ − T(𝛾T − 𝛾T+1)

(1 − 𝛾)2
.

(C48)⟨v, ∇̂J(�)⟩ =
T−1�
t=0

⟨v,∇ log��(at�st)⟩Rt(�)

(C49)≤
T−1∑
t=0

‖‖∇ log��(at|st)‖‖Rt(�)

(C50)≤ WRT ,

(C51)⟨v, ∇̂J(�;D) − ∇J(�)⟩ ≤ WRT

�
2 log(1∕�v)

N
,

(C52)max
v∈Sd−1,w∈C�

‖v − w‖ ≤ �.

(C53)
���∇̂J(�) − ∇J(�)

��� = max
v∈Sd−1

⟨v, ∇̂J(�;D) − ∇J(�)⟩

(C54)≤ max
v∈C�

⟨v, ∇̂J(�;D) − ∇J(�)⟩ + �
���∇̂J(�) − ∇J(�)

���

(C55)≤ WRT

√
2 log(|C�|∕�)

N
+ �

‖‖‖∇̂J(�) − ∇J(�)
‖‖‖

(C56)≤ WRT

√√√√2d log
(

3

��

)

N
+ �

‖‖‖∇̂J(�) − ∇J(�)
‖‖‖,

4123Machine Learning (2022) 111:4081–4137	

1 3

where the first inequality is by Cauchy-Schwarz inequality and definition of C� , the second
one is by union bound over the finite elements of C� , and the last inequality uses the cover-
ing number of the sphere in ℝd . Finally, by letting � = 1∕2:

	� ◻

The Softmax policy described in "Appendix B.2" satisfies the assumption of
Lemma 25 with W =

2M

�
 where M is an upper bound on ‖�(s)‖ , as shown in the proof of

Lemma 24.
Unfortunately, the Gaussian policy class from "Appendix B.1" is not covered by

Lemma 25, since its score function is unbounded. Motivated by the broad use of Gauss-
ian policies in applications, we provide an ad-hoc bound for this class:

Lemma 26  Let ΠΘ be the class of shallow Gaussian policies from Lemma 23. Then, for any
� ∈ Θ , with probability 1 − �:

where RT =
RT(1−𝛾⊤)

1−𝛾
 for REINFORCE and RT = R

1−𝛾⊤−T(𝛾T−𝛾T+1)

(1−𝛾)2
 for G(PO)MDP.

Proof  Let Rt(�) , Rt , and RT be defined (differently for the two gradients estimators) as
in the proof of Lemma 25. Again, let Sd−1 be the unit sphere in ℝd , fix a vector v ∈ Sd−1
and let ∇̂J(�) denote the policy gradient estimate obtained from a single trajectory � sam-
pled from p� . Consider the filtration (Ft)

T−1
t=0

 where Ft = �(s0, a0,… , st) is the sigma-
algebra representing all the knowledge up to the t-th state included. Conditional on st ,
at ∼ N(�⊤𝜙(s), 𝜎2) . Hence, conditionally on Ft:

Let Xt = ⟨v,∇ log��(at�st)⟩ for brevity. Since Xt is Ft-measurable and �[Xt|Ft−1] = 0 , (Xt)t
is a martingale difference sequence adapted to (Ft)t . Furthermore, (C59) shows that, for
any 𝜆 > 0:

where the first inequality is by ‖x‖ = maxv∈Sd−1⟨v, x⟩ for any x ∈ ℝ
d . Hence, Xt is condi-

tionally (M∕�)-subgaussian and RtXt is conditionally (RtM∕�)-subgaussian. Using Azu-
ma’s inequality, for any b > 0:20

(C57)‖‖‖∇̂J(�) − ∇J(�)
‖‖‖ ≤ WRT

1 − �

√√√√2d log
(

3

��

)

N
= 2WRT

√
2d log(6∕�)

N
.

(C58)‖‖‖∇̂J(�) − ∇J(�)
‖‖‖ ≤ 4MRT

�

√
14d log(6∕�)

N
,

(C59)⟨v,∇ log𝜋�(at�st)⟩ =
at − �⊤𝜙(st)

𝜎2
⟨v,𝜙(st)⟩ ∼ N

�
0,

⟨v,𝜙(st)⟩2
𝜎2

�
.

(C60)�[exp(�Xt)�Ft] = exp

�
�⟨v,�(st)⟩2

2�2

�
≤ exp

�
����(st)��2

2�2

�
≤ exp

�
�M2

2�2

�
,

20  We use the version by Shamir (2011).

4124	 Machine Learning (2022) 111:4081–4137

1 3

showing that ⟨v, ∇̂J(�)⟩ is
√
28MRT∕�-subgaussian. From this and

�[⟨v, ∇̂J(�;D)⟩] = ⟨v,∇J(�)⟩ , using Hoeffding’s inequality for averages of i.i.d.
subgaussian random variables:

with probability 1 − �v . Finally, using the same covering argument as in the proof of
Lemma 25, with probability 1 − �:

	� ◻

The values of �(�) for Gaussian and Softmax policies are summarized in Table 2.

C.1: Empirical Bernstein bound

For bounded-score policies (such as the Softmax), we can improve Lemma 25 using an
empirical Bernstein inequality (Maurer & Pontil, 2009):

Lemma 27  Let ‖‖∇ log��(a|s)‖‖ ≤ W for all � ∈ ℝ
d , s ∈ S and a ∈ A . Then, for any

� ∈ ℝ
d , with probability 1 − �:

where V̂ =
1

N−1

∑N

i=1

����∇J(�;𝜏i) − �∇J(�;D)
���
2

 , and RT is defined as in Lemma 25.

Proof  Recall that D = {�1,… , �N} is a set of trajectories sampled independently from p� .
Let ∇̂J(�;�i) denote the policy gradient estimate obtained from trajectory �i , and recall

(C61)ℙ

�
⟨v, �∇J(�)⟩ > b

�
= ℙ

�
T−1�
t=0

XtRt(𝜏) > b

�

(C62)≤ ℙ

(
T−1∑
t=0

XtRt > b

)

(C63)≤ exp

⎛⎜⎜⎝
−

�2b2

56M2
∑T−1

t=0
R

2

t

⎞⎟⎟⎠

(C64)≤ exp

(
−

�2b2

56M2R2
T

)
,

(C65)⟨v, ∇̂J(�;D) − ∇J(�)⟩ ≤ MRT

�

�
56 log(1∕�v)

N
,

(C66)‖‖‖∇̂J(�) − ∇J(�)
‖‖‖ ≤ 2MRT

�

√
56d log(6∕�)

N
.

(C67)‖‖‖∇̂J(�;D) − ∇J(�)
‖‖‖ ≤

√
8dV̂ log(12∕�)

N
+

14dWRT log(6∕�)

3(N − 1)
.

4125Machine Learning (2022) 111:4081–4137	

1 3

J(�;D) =
1

N

∑N

i=1
∇̂J(�;�i) denotes the sample mean. Fix a vector v ∈ Sd−1 , the unit sphere

in ℝd , and let Xi = ⟨v, ∇̂J(�;�i)⟩ for short. Then, as shown in (C50):

and �[Xi] = ⟨v,∇J(�)⟩ . Moreover, (Xi)
N
i=1

 are i.i.d. (conditionally on � , which is fixed in
this case). By Theorem 4 from (Maurer & Pontil, 2009), with probability 1 − �v:

where and V̂v is the (unbiased) sample variance of the (Xi)
N
i=1

:

where the inequality is by Cauchy-Schwarz and ‖v‖ = 1 . Since V̂ does not depend on v,
we can use the same covering argument as in the proof of Lemma 25 to obtain the desired
result. 	� ◻

To use this concentration inequality in SPG, Algorithm 2 must be modified, as dis-
cussed in "Appendix E".

C.2: Infinite‑Horizon estimators

To obtain an unbiased estimate of the gradient for the original infinite-horizon perfor-
mance measure considered in the paper, we can modify our simulation protocol as sug-
gested in (Bedi et al., 2021). Consider a random-horizon G(PO)MDP estimator that, for
each episode:

1.	 Samples a random horizon T ∼ Geom(1 − � t∕2) from a geometric distribution;
2.	 Generates a trajectory � of length T with the current policy ��;
3.	 Outputs ∇̂J(�;�, T) =

∑T−1

t=0

�
� t∕2r(ai

t
, si

t
)
∑t

h=0
∇ log��(a

i
h
�si

h
)
�
.

The result can be averaged over a batch of independent trajectories, each with its own inde-
pendently sampled random length. This policy gradient estimator is unbiased (Bedi et al.,
2021, Lemma1). The random horizon should be accounted for in the concentration bounds
of Lemma 25, 26, and 27. However, note that the term RT , for the G(PO)MDP estimator, is
bounded as follows:

(C68)|Xi| ≤ WRT ,

(C69)⟨v, ∇̂J(�;D) − ∇J(�)⟩ ≤
�

2V̂v log(2∕�v)

N
+

7WRT log(2∕�v)

3(N − 1)
,

(C70)V̂v =
1

N − 1

N∑
i=1

⟨
v, ∇̂J(�;�i) − ∇̂J(�;D)

⟩2

(C71)≤ 1

N − 1

N∑
i=1

‖‖‖�∇J(�;𝜏i) − �∇J(�;D)
‖‖‖
2

∶=V̂ ,

(C72)RT = R
1 − 𝛾⊤ − T(𝛾T − 𝛾T+1)

(1 − 𝛾)2
≤ R

(1 − 𝛾)2
,

4126	 Machine Learning (2022) 111:4081–4137

1 3

for any T ≥ 0 . Hence, Lemma 25, 26, and 27 all hold for the random-horizon estimator
with RT = R∕(1 − �1∕2)2 . The corresponding error bounds are reported in Table 2. We
leave a more refined analysis of the variance and tail behavior of this random-horizon esti-
mator to future work.

Appendix D: Variance of policy gradient estimators

In this section, we provide upper bounds on the variance of the (finite-horizon) REIN-
FORCE and G(PO)MDP estimators, generalizing existing results for Gaussian poli-
cies (Zhao et al., 2011; Pirotta et al., 2013) to smoothing policies. We begin by bounding
the variance of the REINFORCE estimator:

Lemma 28  Given a (�1, �2, �3)-smoothing policy class ΠΘ and an effective task horizon T,
for every � ∈ Θ , the variance of the REINFORCE estimator (with zero baseline) is upper-
bounded as follows:

Proof  Let g�(�)∶=
�∑T−1

t=0
� tr(at, st)

��∑T−1

t=0
∇ log��(at�st)

�
 with st, at ∈ � for

t = 0,… , T − 1 . Using the definition of REINFORCE (14) with b = 0:

where (D74) is from the following:

(D73)�ar
[
�∇J(�;D)

] ≤ T𝜉2R
2(1 − 𝛾⊤)2

N(1 − 𝛾)2
.

(D74)

�ar
D∼p�

�
�∇J(�;D)

�
=

1

N
�ar
𝜏∼p�

�
g�(𝜏)

�

≤ 1

N
�

𝜏∼p�

���g�(𝜏)��2
�

≤ R2(1 − 𝛾⊤)2

N(1 − 𝛾)2
�

𝜏∼p�

⎡⎢⎢⎣

������

T−1�
t=0

∇ log𝜋�(at�st)
������

2⎤⎥⎥⎦

≤ R2(1 − 𝛾⊤)2

N(1 − 𝛾)2

m�
i=1

�
𝜏∼p�

�
T−1�
t=0

�
Di log𝜋�(at�st)

�2

+ 2

T−2�
t=0

T−1�
h=t+1

Di log𝜋�(at�st)Di log𝜋�(ah�sh)
�

=
R2(1 − 𝛾⊤)2

N(1 − 𝛾)2
�

𝜏∼p�

�
T−1�
t=0

��∇ log𝜋�(at�st)��2
�

(D75)
=

R2(1 − 𝛾⊤)2

N(1 − 𝛾)2

T−1∑
t=0

�
s0∼𝜇

[
… �

at∼𝜋�(⋅|st)

[‖‖∇ log𝜋�(at|st)‖‖2 ||| st
]
…

]

≤ T𝜉2R
2(1 − 𝛾⊤)2

N(1 − 𝛾)2
,

4127Machine Learning (2022) 111:4081–4137	

1 3

where the last equality is from �ah∼��(⋅|sh)
[
Di log��(ah|sh)

]
= 0 . 	� ◻

This is a generalization of Lemma 5.3 from Pirotta et al. (2013), which in turn is an adap-
tation of Theorem 2 from Zhao et al. (2011). In the Gaussian case, the original lemma is
recovered by plugging the smoothing constant �2 =

M2

�2
 from Lemma 23. Note also that, from

the definition of smoothing policy, only the second condition (20) is actually necessary for
Lemma 28 to hold.

For the G(PO)MDP estimator, we obtain an upper bound that does not grow linearly with
the horizon T:

Lemma 29  Given a (�1, �2, �3)-smoothing policy class ΠΘ and an effective task horizon T,
for every � ∈ Θ , the variance of the G(PO)MDP estimator (with zero baseline) is upper-
bounded as follows:

Proof  Let g�(�)∶=
∑T−1

t=0
� tr(at, st)

�∑t

h=0
∇ log��(ah�sh)

�
 with st, at ∈ � for

t = 0,… , T − 1 . Using the definition of G(PO)MDP (15) with b = 0:

(D76)

�
�∼p�

[
T−2∑
t=0

T−1∑
h=t+1

Di log��(at|st)Di log��(ah|sh)
]

=

T−2∑
t=0

�
s0∼�

[
… �

at∼��(⋅|st)
[
Di log��(at|st)

(D77)

T−1∑
h=t+1

�
st+1∼p(⋅|st ,at)

[
… �

ah∼��(⋅|sh)
[
Di log��(ah|sh) ||| sh

]
… ||| at

]
||| st

]
…

]

= 0,

(D78)
�ar

[
�∇J(�;D)

] ≤ 𝜉2R
2
(
1 − 𝛾⊤

)

N(1 − 𝛾)3
.

(D79)�ar
D∼p�

[
∇̂J(�;D)

]
=

1

N
�ar
�∼p�

[
T−1∑
t=0

� tr(at, st)

(
t∑

h=0

∇ log��(ah|sh)
)]

(D80)

≤ 1

N
�

�∼p�

⎡
⎢⎢⎣

�
T−1�
t=0

�
t∕2r(at, st)�

t∕2

�
t�

h=0

∇ log��(ah�sh)
��2⎤

⎥⎥⎦

≤ 1

N
�

�∼p�

⎡⎢⎢⎣

�
T−1�
t=0

� tr(at, st)
2

�⎛⎜⎜⎝

T−1�
t=0

� t

�
t�

h=0

∇ log��(ah�sh)
�2⎞⎟⎟⎠

⎤⎥⎥⎦

4128	 Machine Learning (2022) 111:4081–4137

1 3

where (D79) is from the fact that the trajectories are i.i.d., (D80) is from the Cauchy-
Schwarz inequality, (D81) is from the same argument used for (D74) in the proof of
Lemma 28, and (D82) is from the sum of the arithmetico-geometric sequence. 	� ◻

This is a generalization of Lemma 5.5 from Pirotta et al. (2013). Again, in the Gauss-
ian case, the original lemma is recovered by plugging the smoothing constant �2 =

M

�2
 from

Lemma 23 (Table 1). Note that this variance upper bound stays finite in the limit T → ∞ ,
which is not the case for REINFORCE. The variance upper bounds are summarized in
Table 3.

Appendix E: Analysis of relaxed algorithm

In this section, we will analyze in more detailed the variants of SPG introduced in Sect. 5.1.
In particular, we will consider a very general relaxed improvement guarantee, then we will
specialize it to the baseline and milestone constraints discussed in the main paper.

The pseudocode for the relaxed version of SPG is provided in Algorithm 3.

(D81)

≤ R2(1 − 𝛾⊤)

N(1 − 𝛾)
�

𝜏∼p�

⎡
⎢⎢⎣

T−1�
t=0

𝛾 t

�
t�

h=0

∇ log𝜋�(ah�sh)
�2⎤⎥⎥⎦

≤ 𝜉2R
2(1 − 𝛾⊤)

N(1 − 𝛾)

T−1�
t=0

𝛾 t(t + 1)

(D82)

=
𝜉2R

2(1 − 𝛾⊤)

N(1 − 𝛾)3

⎡
⎢⎢⎢⎣
1 − T

�
𝛾⊤ − 𝛾T+1
�������

≥0

�
− 𝛾⊤

⎤⎥⎥⎥⎦

≤ 𝜉2R
2
�
1 − 𝛾⊤

�

N(1 − 𝛾)3
,

Table 3   Upper bounds on the variance � (�) for common policy gradient estimators (single trajectory, no
baseline), assuming the policy is smoothing (Definition 1). Here R is the maximum absolute-valued reward,
� is the discount factor, T is the task horizon, and the smoothing constant �2 can be retrieved from Table 1
depending on the policy class

REINFORCE G(PO)MDP

T𝜉2R
2(1−𝛾⊤)2

(1−𝛾)2
𝜉2R

2(1−𝛾⊤)

(1−𝛾)3

4129Machine Learning (2022) 111:4081–4137	

1 3

The algorithm takes as additional inputs the mini-batch size n and a sequence of deg-
radation thresholds Δk ≥ 0 . Moreover, it assumes access to a generic gradient estimation
error function � with the following property:

Assumption 3  Fixed a parameter � ∈ Θ , a batch size N ∈ ℕ and a failure probability
� ∈ (0, 1) , with probability at least 1 − �:

where |D| is a dataset of N i.i.d. trajectories collected with �� and:

The assumption, as the analysis that will follow, is less precise than Assumption 2, but
more general. Indeed, it allows to use the empirical Bernstein bound from Lemma 27 for
Softmax and other bounded-score policies. We can prove that the per-iteration performance
degradation of Algorithm 3 is bounded by the user-defined threshold Δk with high prob-
ability. Of course, when Δk = 0 , this is still a monotonic improvement guarantee.

Theorem 30  Consider Algorithm 3 applied to a smoothing policy, where ∇̂J is an unbi-
ased policy gradient estimator. Under Assumption 3, for any iteration k ≥ 1 , provided
∇J(�k) ≠ 0 , with probability at least 1 − �k:

Proof  Let the filtration (Fk,i)i≥1 be defined as in Sect. 5 and note that Nk is a stopping time
w.r.t. this filtration. Consider the event Ek,i =

{‖‖gk,i − ∇J(�k)
‖‖ ≤ �(i, �k,i)

}
 . By Assump-

tion 2, ℙ(¬Ek,i) ≤ �k,i . Hence, by the same arguments used in the proof of Lemma 13:

‖‖‖∇̂J(�;D) − ∇J(�)
‖‖‖ ≤ �(N, �),

(E83)�(N, �) = O

�
log(1∕�)√

N

�
.

J(�k+1) − J(�k) ≥ −Δk.

(E84)�[Nk] ≤ �

[∞
∑

i=1
�

(

�(ni, �k,i) >
‖

‖

gk,i‖‖
2

+
LΔk
‖

‖

gk,i‖‖

)]

4130	 Machine Learning (2022) 111:4081–4137

1 3

which is finite since, by Assumption 3:

This shows that the inner loop of Algorithm 3 always terminates with a finite
batch size. By the same optional-stopping argument as in the proof of Theorem 14,
�[∇̂J(�k;Dk)] = ∇J(�k) , which means the gradient estimate is unbiased. By the stopping
condition, for all k:

with probability at least 1 −
∑∞

i=1
�k,i = 1 −

∑∞

i=1
�k∕(i(i + 1)) = 1 − �k . By Theorem 10

and the choice of step size � = 1∕L , with the same probability:

(E85)≤ �

[
∞∑
i=1

�

(
𝜖(ni, 𝛿k,i) >

‖‖gk,i‖‖
2

)]

(E86)

= �

[
∞∑
i=1

�

(
𝜖(ni, 𝛿k,i) >

‖‖gk,i‖‖
2

,Ek,i

)]

+ �

[
∞∑
i=1

�

(
𝜖(i, 𝛿k,i) >

‖‖gk,i‖‖
2

,¬Ek,i

)]

(E87)≤
∞∑
i=1

𝕀

(
𝜖(ni, 𝛿k,i) >

(‖‖∇J(�k)
‖‖ − 𝜖(ni, 𝛿k,i)

)
2

)
+

∞∑
i=1

ℙ(¬Ek,i)

(E88)≤ min
i≥1

{
�(ni, �k,i) ≤

(‖‖∇J(�k)
‖‖ − �(ni, �k,i)

)
2

}
+

∞∑
i=1

�k,i

(E89)≤ min
i≥1

{
�(ni, �k,i) ≤

‖‖∇J(�k)
‖‖

3

}
) + �k

∞∑
i=1

1

i(i + 1)

(E90)= min
i≥1

{
�(ni, �k,i) ≤

‖‖∇J(�k)
‖‖

3

}
) + �k,

(E91)�(ni, �k,i) = O

�
log(1∕�k,i)√

ni

�
= O

�
log i√

i

�
.

(E92)�(Nk, �k,Nk
) ≤

‖‖‖∇̂J(�k;Dk)
‖‖‖

2
+

LΔk

‖‖‖∇̂J(�k;Dk)
‖‖‖
,

(E93)J(�k+1) − J(�k) ≥
‖

‖

‖

∇̂J(�k;k)
‖

‖

‖

L

⎛

⎜

⎜

⎝

‖

‖

‖

∇̂J(�k;k)
‖

‖

‖

2
− �(Nk , �k,Nk

)
⎞

⎟

⎟

⎠

(E94)≥ −Δk,

4131Machine Learning (2022) 111:4081–4137	

1 3

where the last inequality is from (E92). 	� ◻

In the following we discuss some applications of Algorithm 3 to specific safety
requirements.

Baseline Constraint.
A common requirement is for the updated policy not to perform (significantly) worse

than a known baseline policy (e.g., Garcelon et al., 2020; Laroche et al. 2019). The safety
constraint is thus:

where Jb is the (discounted) performance of the baseline policy and � ∈ [0, 1] is a user-
defined significance parameter. Equivalently, J(�k+1) − J(�k) ≥ �Jb − J(�k) , and Algo-
rithm 3 satisfies this safety requirement if we set the degradation threshold as follows:

However, the performance of the current policy must also be estimated from data, and
accidentally over-estimating it may result in excessive performance degradation. Hence, we
replace it with a lower confidence bound based on the empirical Bernstein inequality (Maurer
& Pontil, 2009). See Algorithm 4 for details. Note how the failure probability in line 10 is
adjusted w.r.t. Algorithm 3 to account for this additional estimation step. With this small
caveat, the analysis of Algorithm 4 can be carried out analogously to the one of Algorithm 3.

 Milestone Constraint.
In our numerical simulations we consider the following safety constraint:

(E95)J(�k+1) ≥ �Jb,

(E96)Δk = max{J(�k) − �Jb, 0}.

4132	 Machine Learning (2022) 111:4081–4137

1 3

which can be enforced by setting the degradation threshold in Algorithm 3 as:

Again, we must replace the unknown performance J(�k) with a lower confidence bound.
In this case, we also need to overestimate the best historical performance. See Algorithm 5
for details. Note that this safety constraint reduces to monotonic improvement if the signifi-
cance parameter is set to � = 1 , since maxh=1,…,k J(�h) ≥ J(�k).

Appendix F: Task specifications

In this "Appendix", we provide detailed descriptions of the control tasks used in the
numerical simulations.

F.1 LQR

The LQR is a classical optimal control problem (Dorato et al., 1994). It models the very
general task of controlling a set of variables to zero with the minimum effort. Given a state

(E97)J(�k+1) ≥ � max
h=1,…,k

J(�h),

(E98)Δk = max

{
J(�k) − � max

h=1,…,k
J(�h), 0

}
.

4133Machine Learning (2022) 111:4081–4137	

1 3

space S ⊆ ℝ
n and an action space A ⊆ ℝ

m , the next state is a linear function of current
state and action:21

where A ∈ ℝ
n×n and B ∈ ℝ

n×m . The reward is quadratic in both state and action:

where C ∈ ℝ
n×n and D ∈ ℝ

m×m are positive definite matrices. A linear controller is optimal
for this task (Dorato et al., 1994) and can be computed in closed form with dynamic-pro-
gramming techniques. In our experiments, we always consider shallow Gaussian policies
of the form:

where � ∈ ℝ
n and 𝜎 > 0 can be fixed or learned as an additional policy parameter. This

version of LQR with Gaussian policies is also called LQG (Linear-Quadratic Gaussian
Regulator, Peters & Schaal 2008). States and actions are clipped in practice when they hap-
pen to fall outside S and A , respectively. We have ignored nonlinearities stemming from
this fact.

The LQR problem used in Sect. 7 is 1-dimensional with S = A = [−1, 1] ,
A = B = C = D = 1.

F.2 Cart‑pole

This is the CartPole-v1 environment from openai/gym (Brockman et al., 2016).
It has 4-dimensional continuous states and finite (two) actions. The goal is to keep a
pole balanced by controlling a cart to which the pole is attached. Reward is +1 for every
time-step until the pole falls. We set a maximum episode length of 100. See the official
documentation for more details (https://​gym.​openai.​com/​envs/​CartP​ole-​v1/).

Author contributions  All authors—Matteo Papini, Matteo Pirotta, and Marcello Restelli—have given sub-
stantial contributions to the conception and design of this work.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. There
has been no significant financial support for this work that could have influenced its outcome. M. Papini was
supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant agreement No.~950180).

(F99)st+1 = Ast + Bat,

(F100)rt+1 = s⊤
t
Cst + a⊤

t
Dat,

(F101)𝜋(⋅|st) = N(�⊤st, 𝜎
2
�),

21  A zero-mean Gaussian noise is typically added to the next state to model disturbances. However, since
we always consider Gaussian policies with fixed standard deviation, we can ignore the system noise with-
out loss of generality. Indeed, from linearity of the next state, said a

t
 the expected action under (F101),

s
t+1 = As

t
+ Ba

t
+ B� , where � ∼ N(0, �2

�) . From the property of Gaussians, we can write � = �
a
+ �

b

where �
a
∼ N(0, �2

a
�) is from the actual stochasticity of the agent and �

b
∼ N(0, �2

b
B†) is the system noise,

which can be subsumed by the policy noise in numerical simulations for simplicity.

https://gym.openai.com/envs/CartPole-v1/

4134	 Machine Learning (2022) 111:4081–4137

1 3

Availability of data and material  Not applicable.

Declarations 

Conflict of interest  There are no known conflicts of interest associated with this publication.

Ethics approval:  Not applicable.

Consent to participate:  Not applicable.

Consent for publication:  Not applicable.

Code availability  custom code was used for the numerical evaluations and is available at https://​github.​com/​
T3p/​potion.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abbeel, P., Coates, A., & Ng, A. Y. (2010). Autonomous helicopter aerobatics through apprenticeship
learning. The International Journal of Robotics Research, 29(13), 1608–1639.

Achiam, J., Held, D., Tamar, A., & Abbeel, P. (2017). Constrained policy optimization. ICML, 70,
22–31. PMLR.

Agarwal, A., Kakade, S. M., Lee, J. D., & Mahajan, G. (2020). Optimality and approximation with pol-
icy gradient methods in Markov decision processes. COLT, 125, 64–66. PMLR.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mane, D. (2016). Concrete problems
in ai safety. arXiv preprint arXiv:​1606.​06565 .

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve
dicult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13(5),
834–846.

Baxter, J., & Bartlett, P.L. (2001). Infinite-horizon policy-gradient estimation. Journal of Artificial Intel-
ligence Research, 15 .

Bedi, A.S., Parayil, A., Zhang, J.,Wang, M., & Koppel, A. (2021). On the sample complexity and meta-
stability of heavy-tailed policy search in continuous control. CoRR. https://​arxiv.​org/​abs/​2106.​08414 .

Berkenkamp, F. (2019). Safe exploration in reinforcement learning: Theory and applications in robotics
(Unpublished doctoral dissertation). ETH Zurich.

Berkenkamp, F., Turchetta, M., Schoellig, A.P., & Krause, A. (2017). Safe modelbased reinforcement learn-
ing with stability guarantees. NIPS (pp. 908– 919).

Bertsekas, D. P. (2011). Approximate policy iteration: A survey and some new methods. Journal of Control
Theory and Applications, 9(3), 310–335.

Bertsekas, D.P., & Shreve, S. (2004). Stochastic optimal control: the discrete- time case.
Bhandari, J., & Russo, D. (2019). Global optimality guarantees for policy gradient methods. CoRR. https://​

arxiv.​org/​abs/​1906.​01786.
Bisi, L., Sabbioni, L., Vittori, E., Papini, M., & Restelli, M. (2020). Risk-averse trust region optimization for

reward-volatility reduction. IJCAI (pp. 4583–4589). ijcai.org.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).

Openai gym.
Castro, D.D., Tamar, A., & Mannor, S. (2012). Policy gradients with variance related risk criteria. ICML.

icml.cc / Omnipress.
Chou, P., Maturana, D., & Scherer, S. A. (2017). Improving stochastic policy gradients in continuous con-

trol with deep reinforcement learning using the beta distribution. ICML, 70, 834–843. PMLR.

https://github.com/T3p/potion
https://github.com/T3p/potion
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2106.08414
https://arxiv.org/abs/1906.01786
https://arxiv.org/abs/1906.01786

4135Machine Learning (2022) 111:4081–4137	

1 3

Chow, Y., Nachum, O., Due nez-Guzman, E.A., & Ghavamzadeh, M. (2018). A lyapunov-based approach to
safe reinforcement learning. Neurips (pp. 8103–8112).

Ciosek, K., & Whiteson, S. (2020). Expected policy gradients for reinforcement learning. Journal of
Machine Learning Research 21, 52:1-52:51.

Clouse, J. A., & Utgo, P. E. (1992). A teaching method for reinforcement learning. Machine Learning Pro-
ceedings, 1992, 92–101. Elsevier.

Cohen, A., Yu, L., & Wright, R. (2018). Diverse exploration for fast and safe policy improvement. arXiv
preprint arXiv:​1802.​08331 .

Dalal, G., Dvijotham, K., Vecerk, M., Hester, T., Paduraru, C., & Tassa, Y. (2018). Safe exploration in con-
tinuous action spaces. CoRR. https://​arxiv.​org/​abs/​1801.​08757.

Deisenroth, M.P., Neumann, G., & Peters, J., et al. (2013). A survey on policy search for robotics. Founda-
tions and Trends®in Robotics, 2 (1-2), 1-142.

Dorato, P., Cerone, V., & Abdallah, C. (1994). Linear-quadratic control: an introduction. Simon & Schuster,
Inc.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking deep reinforcement
learning for continuous control. ICML, 48, 1329–1338. JMLR.org.

Fruit, R., Lazaric, A., & Pirotta, M. (2019). Regret minimization in infinite-horizon finite markov decision
processes. Tutorial at ALT’19. Retrieved from https://rlgammazero.github.io/

Furmston, T., & Barber, D. (2012). A unifying perspective of parametric policy search methods for markov
decision processes. Advances in neural information processing systems (pp. 2717-2725).

Garcelon, E., Ghavamzadeh, M., Lazaric, A., & Pirotta, M. (2020). Conservative exploration in reinforce-
ment learning. AISTATS, 108, 1431–1441. PMLR.

Garcelon, E., Ghavamzadeh, M., Lazaric, A., & Pirotta, M. (2020b). Improved algorithms for conservative
exploration in bandits. AAAI (pp. 3962– 3969). AAAI Press.

Garca, J., & Fernandez, F. (2015). A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research 16, 1437–1480.

Gehring, C., & Precup, D. (2013). Smart exploration in reinforcement learning using absolute temporal
difference errors. In Proceedings of the 2013 international conference on autonomous agents and
multi-agent systems (pp. 1037–1044).

Geibel, P., & Wysotzki, F. (2005). Risk-sensitive reinforcement learning applied to control under con-
straints. Journal of Artificial Intelligence Research, 24, 81–108.

Glynn, P.W. (1986). Stochastic approximation for monte carlo optimization. WSC (pp. 356–365).
Grimmett, G., & Stirzaker, D. (2020). Probability and random processes. Oxford University Press.
Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy

deep reinforcement learning with a stochastic actor. ICML, 80, 1856–1865. JMLR.org.
Hans, A., Schneega, D., Schäfer, A.M., & Udluft, S. (2008). Safe exploration for reinforcement learning.

Esann (pp. 143–148).
Kadota, Y., Kurano, M., & Yasuda, M. (2006). Discounted markov decision processes with utility con-

straints. Computers & Mathematics with Applications, 51(2), 279–284.
Kakade, S. (2001). Optimizing average reward using discounted rewards. Inter- national conference on

computational learning theory (pp. 605–615).
Kakade, S. (2002). A natural policy gradient. Advances in neural information processing systems (pp.

1531–1538).
Kakade, S., & Langford, J. (2002). Approximately optimal approximate reinforcement learning..
Kakade, S. M., et al. (2003). On the sample complexity of reinforcement learning (Unpublished doctoral

dissertation). England: University of London London.
Kazerouni, A., Ghavamzadeh, M., Abbasi, Y., & Roy, B.V. (2017). Conservative contextual linear ban-

dits. NIPS (pp. 3913–3922).
Klenke, A. (2013). Probability theory: A comprehensive course. Springer Science & Business Media.
Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The Interna-

tional Journal of Robotics Research, 32(11), 1238–1274.
Konda, V.R., & Tsitsiklis, J.N. (1999). Actor-critic algorithms. NeurIPS (pp. 1008–1014).
Laroche, R., Trichelair, P., & Des Combes, R.T. (2019). Safe policy improvement with baseline boot-

strapping. In International conference on machine learning (pp. 3652–3661).
Li, B., & Hoi, S. C. (2014). Online portfolio selection: A survey. ACM Computing Surveys (CSUR),

46(3), 35.
Maurer, A., & Pontil, M. (2009). Empirical Bernstein bounds and samplevariance penalization. COLT.
Metelli, A. M., Pirotta, M., Calandriello, D., & Restelli, M. (2021). Safe policy iteration: A monotoni-

cally improving approximate policy iteration approach. Journal of Machine Learning Research,
22(97), 1–83.

http://arxiv.org/abs/1802.08331
https://arxiv.org/abs/1801.08757

4136	 Machine Learning (2022) 111:4081–4137

1 3

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540), 529.

Moldovan, T.M., & Abbeel, P. (2012). Safe exploration in markov decision processes. In Proceed-
ings of the 29th international conference on international conference on machine learning (pp.
1451-+1458).

Nesterov, Y. (1998). Introductory lectures on convex programming volume i: Basic course. Lecture
notes.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course (Vol. 87). Springer
Science & Business Media.

Neu, G., Jonsson, A., & Gomez, V. (2017). A unified view of entropy-regularized markov decision pro-
cesses. CoRR. https://​arxiv.​org/​abs/​1705.​07798.

Nota, C., & Thomas, P.S. (2020). Is the policy gradient a gradient? AAMAS (pp. 939–947). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

Okuda, R., Kajiwara, Y., & Terashima, K. (2014). A survey of technical trend of adas and autonomous
driving. Technical papers of 2014 international symposium on VLSI design, automation and test
(pp. 1–4).

OpenAI (2018). Openai five. https://​blog.​openai.​com/​openai-​ve/.
Pajarinen, J., Thai, H.L., Akrour, R., Peters, J., & Neumann, G. (2019). Compatible natural gradient

policy search. arXiv preprint arXiv:​1902.​02823 .
Papini, M., Battistello, A., & Restelli, M. (2020). Balancing learning speed and stability in policy gradi-

ent via adaptive exploration. AISTATS, 108, 1188–1199. PMLR.
Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., & Restelli, M. (2018). Stochastic variance-reduced

policy gradient. ICML, 80, 4023–4032. JMLR.org.
Papini, M., Pirotta, M., & Restelli, M. (2017). Adaptive batch size for safe policy gradients. In Advances

in neural information processing systems (pp. 3591–3600).
Paul, S., Kurin, V., & Whiteson, S. (2019). Fast efficient hyperparameter tuning for policy gradients.

CoRR. https://​arxiv.​org/​abs/​1902.​06583.
Pecka, M., & Svoboda, T. (2014). Safe exploration techniques for reinforcement learning-an overview.

In: International workshop on modelling and simulation for autonomous systems (pp. 357–375).
Peters, J. (2002). Policy gradient methods for control applications (Tech. Rep.). Technical Report TR-

CLMC-2007-1,. University of Southern California.
Peters, J., & Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients. Neural

Networks, 21(4), 682–697.
Pirotta, M., Restelli, M., & Bascetta, L. (2013). Adaptive step-size for policy gradient methods.

Advances in Neural Information Processing Systems, 26, 1394–1402.
Pirotta, M., Restelli, M., & Bascetta, L. (2015). Policy gradient in Lipschitz Markov decision processes.

Machine Learning, 100(2–3), 255–283.
Pirotta, M., Restelli, M., Pecorino, A., & Calandriello, D. (2013). Safe policy iteration. In: International

conference on machine learning (pp. 307-315).
Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic programming. Wiley.
Recht, B. (2019). A tour of reinforcement learning: The view from continuous control. Annual Review of

Control, Robotics, and Autonomous Systems.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Sta-

tistics, 22, 400–407.
Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., & Moritz, P. (2015). Trust region policy optimiza-

tion. ICML, 37, 1889–1897. JMLR.org.
Shamir, O. (2011). A variant of Azuma’s inequality for martingales with subGaussian tails. CoRR.

https://​arxiv.​org/​abs/​1110.​2392.
Shani, L., Efroni, Y., & Mannor, S. (2020). Adaptive trust region policy optimization: Global conver-

gence and faster rates for regularized mdps. AAAI (pp. 5668–5675). AAAI Press.
Shen, Z., Ribeiro, A., Hassani, H., Qian, H., & Mi, C. (2019). Hessian aided policy gradient. ICML, 97,

5729–5738. PMLR.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al. (2018). A general

reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419), 1140–1144.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Sutton, R.S., McAllester, D.A., Singh, S.P., & Mansour, Y. (2000). Policy gradient methods for rein-

forcement learning with function approximation. Advances in neural information processing sys-
tems (pp. 1057–1063).

https://arxiv.org/abs/1705.07798
https://blog.openai.com/openai-ve/
http://arxiv.org/abs/1902.02823
https://arxiv.org/abs/1902.06583
https://arxiv.org/abs/1110.2392

4137Machine Learning (2022) 111:4081–4137	

1 3

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., . . . & Vanhoucke, V. (2018). Sim-to-real:
Learning agile locomotion for quadruped robots. arXiv preprint arXiv:​1804.​10332 .

Thomas, P. S., da Silva, B. C., Barto, A. G., Giguere, S., Brun, Y., & Brunskill, E. (2019). Preventing
undesirable behavior of intelligent machines. Science, 366(6468), 999–1004.

Thomas, P. S., Theocharous, G., & Ghavamzadeh, M. (2015). High confidence policy improvement.
ICML, 37, 2380–2388. JMLR.org.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., & Levine, S. (2018). The mirage of
action-dependent baselines in reinforcement learning. In International conference on machine
learning (pp. 5015–5024).

Turchetta, M., Berkenkamp, F., & Krause, A. (2016). Safe exploration in finite markov decision pro-
cesses with Gaussian processes. Advances in neural information processing systems (pp.
4312–4320).

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki, W.M., . . . & Silver, D.
(2019). AlphaStar: Mastering the real-time strategy game starCraft II. https://​deepm​ind.​com/​blog/​
alpha​star -​maste​ring-​real-​time-​strat​egy-​game-​starc​raft-​ii/.

Wagner, P. (2011). A reinterpretation of the policy oscillation phenomenon in approximate policy itera-
tion. Advances in neural information processing systems (pp. 2573–2581).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3–4), 229–256.

Wu, Y., Shari, R., Lattimore, T., & Szepesvari, C. (2016). Conservative bandits. ICML, 48, 1254–1262.
JMLR.org.

Xu, P., Gao, F., & Gu, Q. (2020). Sample efficient policy gradient methods with recursive variance
reduction. ICLR: OpenReview.net.

Yu, J., Aberdeen, D., & Schraudolph, N.N. (2006). Fast online policy gradient learning with SMD gain
vector adaptation. Advances in neural information processing systems (pp. 1185–1192).

Yuan, H., Lian, X., Liu, J., & Zhou, Y. (2020). Stochastic recursive momentum for policy gradient meth-
ods. CoRR. https://​arxiv.​org/​abs/​2003.​04302.

Yuan, R., Gower, R.M., & Lazaric, A. (2021). A general sample complexity analysis of vanilla policy
gradient. CoRR. https://​arxiv.​org/​abs/​2107.​11433.

Zhang, J., Kim, J., O’Donoghue, B., & Boyd, S.P. (2020). Sample efficient reinforcement learning with
REINFORCE. CoRR. https://​arxiv.​org/​abs/​2010.​11364.

Zhao, T., Hachiya, H., Niu, G., & Sugiyama, M. (2011). Analysis and improvement of policy gradient esti-
mation. NIPS (pp. 262–270).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1804.10332
https://deepmind.com/blog/alphastar%20-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar%20-mastering-real-time-strategy-game-starcraft-ii/
https://arxiv.org/abs/2003.04302
https://arxiv.org/abs/2107.11433
https://arxiv.org/abs/2010.11364

	Smoothing policies and safe policy gradients
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Markov decision processes
	2.2 Parametric policies
	2.3 Actor-only policy gradient
	2.4 Smooth functions

	3 Smooth policy gradient
	3.1 Smoothing policies
	3.2 Policy Hessian
	3.3 Smooth performance

	4 Optimal safe meta-parameters
	4.1 Adaptive step size: exact framework
	4.2 Adaptive step size: approximate framework
	4.3 Adaptive Batch Size

	5 Algorithm
	5.1 Towards a practical algorithm

	6 Related works
	7 Experiments
	7.1 Linear-quadratic regulator with Gaussian policy
	7.2 Cart-pole with softmax policy

	8 Conclusion
	References

