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Abstract
In this paper, we show that a simple, data dependent way of setting the initial vector can 
be used to substantially speed up the training of linear one-versus-all classifiers in extreme 
multi-label classification (XMC). We discuss the problem of choosing the initial weights 
from the perspective of three goals. We want to start in a region of weight space (a) with 
low loss value, (b) that is favourable for second-order optimization, and (c) where the con-
jugate-gradient (CG) calculations can be performed quickly. For margin losses, such an 
initialization is achieved by selecting the initial vector such that it separates the mean of all 
positive (relevant for a label) instances from the mean of all negatives – two quantities that 
can be calculated quickly for the highly imbalanced binary problems occurring in XMC. 
We demonstrate a training speedup of up to 5× on Amazon-670K dataset with 670,000 
labels. This comes in part from the reduced number of iterations that need to be performed 
due to starting closer to the solution, and in part from an implicit negative-mining effect 
that allows to ignore easy negatives in the CG step. Because of the convex nature of the 
optimization problem, the speedup is achieved without any degradation in classification 
accuracy. The implementation can be found at https://​github.​com/​xmc-​aalto/​disme​cpp.

Keywords  Large-scale multi-label classification · Linear classification · 2nd order 
optimization · Class imbalance · Weight initialization

1  Introduction

Extreme classification: In this work we consider extreme multi-label classification (XMC) 
problems, where the number of labels l is very large, possibly in the millions. Such prob-
lems arise in various domains, such as annotating large encyclopedia (Partalas et al., 2015), 
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image-classification (Deng et al., 2010), next word prediction (Mikolov et al., 2013; Mnih 
et al., 2009), as well as recommendation systems, web-advertising and prediction of related 
searches (Agrawal et al., 2013; Prabhu & Manik, 2014; Jain et al., 2019).

We assume that the fraction of positive training instances for most labels is very low 
– the label frequency has a long-tailed distribution (Dekel et  al., 2010). This is a good 
approximation for the large dataset from the extreme classification repository (Bhatia et al., 
2016) (cf. Fig. 1 in Qaraei et al. (2021), Babbar & Schölkopf (2017), and Partalas et al. 
(2015) for some examples), and for many types of data that are gathered at internet-scale 
(Adamic et al., 2002).

One-versus-all classifiers: Many XMC methods employ some form of a One-versus-all 
(OvA) classifier as the last stage of the classification procedure: For each label j ∈ [l] , a 
score is calculated as w�

j
f (x) , and the k highest-scoring labels are selected as the prediction 

of the classifier,

where wj is the weight vector for label j and f is a fixed function of the instance. The train-
ing objective is to minimize, with some additional regularization terms, a binary margin 
loss � for each label j,

where yj ∈ {−1, 1} indicates whether the label is relevant to the instance.
Algorithms that follow this general structure are DiSMEC (Babbar & Schölkopf, 2017) 

and ProXML (Babbar & Schölkopf, 2019) for sparse representations f, and Slice (Jain et al., 
2019) where f is some pre-trained mapping of instances to dense vectors. Other examples 
are Parabel (Prabhu et al., 2018), Bonsai (Khandagale et al., 2020) and PPDSparse (Yen 
et  al., 2017). Embedding-based approaches where the mapping f itself is learnt, such as 
XML-CNN (Liu et al., 2017) and AttentionXML (You et al., 2019) are incompatible with 
the method presented in this paper. In some cases the training is organized in two phases, 
first the deep network f is trained and then frozen, after which the OVA classifier can be 
trained. This approach is taken e.g. by X-Transformer (Chang et al., 2020) and its successor 
XR-Transformer (Zhang et al., 2021).

(1)ŷ = topk{w
�

j
f (x) ∶ j ∈ [l]},

(2)�(yjw
�

j
f (x)),
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Fig. 1   Objective value at different iterations for starting with Zero vector, OvAP and with Bias-initiali-
zation w

b
 . The right side shows the progress for different values of the bias weight. The shaded area spans 

the 5–95% quantiles. Note that the slight increase in objective for the later iterations is just an artifact due 
to the fact that we plot the loss values averaged for the binary sub-problems that have not yet terminated at 
the given iteration. The sub-problems with low loss value terminate earlier, causing an increase in average 
of the remaining trajectories. Figure 12 shows the number of iterations until convergence for the different 
bias values
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Despite the substantial contemporary research effort on designing deep classifiers in the 
XMC setting, efficient learning of sparse One-versus-rest linear classifiers remains use-
ful. This is attributed to their: (i) easier interpretability for explaining the model outputs 
in terms of input features, (ii) comparable, and at times better performance, compared to 
deeper methods in short-text XMC problems (DiSMEC vs AttentionXML in Table 1 of 
Dahiya et al. (2021)), and (iii) complementary learning capabilities using sparse features 
vis-à-vis dense representation using deep transformer models, as shown in the recent work 
XR-Transformer (Zhang et al., 2021).

Fast training: Minimizing the objective in eq. (2) using a gradient-based iterative algo-
rithm is very computation-intensive. To reduce compute requirements – and thus energy 
consumption – we can make use of three generic principles: 

1.	 Try to achieve more progress per step, e.g. by using a second-order method (Babbar & 
Schölkopf, 2017; Keerthi et al., 2005; Galli et al., 2021) or an adaptive step size. (Duchi 
et al., 2011; Ruder, 2017)

2.	 Make the computations of each step faster, e.g. by approximating the true loss with 
negative mining. (Jain et al., 2019; Dahiya et al., 2021; Prabhu et al., 2018; Yen et al., 
2017; Reddi et al., 2019).

3.	 Reducing the number of necessary steps by taking a good guess for the initial weight 
vector in the iterative optimization process. (Fang et al., 2019; Keerthi et al., 2005).

In this work, we focus on the second-order optimization approach using a truncated conju-
gate-gradient (CG) Newton optimization, as it is used in recent versions of Liblinear (Galli 
et al., 2021).1

Implicit negative-mining with hinge-like losses: To a degree, faster per-step calculations 
are achieved implicitly when using a loss function that is zero for points classified correctly 
with sufficient margin. Such a training point makes no contribution to the gradient or Hes-
sian, and thus can be skipped in the computations. This can be seen as a form of implicit 
negative-mining, where the list of negatives is updated each iteration (similar to Yen et al. 
(2017)) based on the values of yiw�f (xi) . Unlike explicit negative-mining, this process is 
not an approximation. However, it does not enforce sparsity, but only exploits its existence. 
Fortunately, close to convergence, when most instances are correctly classified, this leads 
to very sparse computations for the CG procedure. Thus, one aim in choosing the initial 
weights is to get into this fast regime as quickly as possible.

Choice of initial vector: The third idea, choosing a suitable starting weight, is used in 
Liblinear to speed up hyperparameter sweeps. It is assumed that the solutions for two simi-
lar hyperparameter values are closely related, and as such the final weight vector of one 
training run can be used to warm-start the next. The feasibility of this approach in cold-
start XMC has been shown in Fang et al. (2019), which presented OvA-Primal (OvAP) and 
OvA-Primal++ (OvAP++) as two strategies for finding initial vectors that result in low 
initial loss. We provide a short summary of these methods at the end of Sect. 2.

Shortcomings of the existing work: OvAP, though simple and easy to implement, com-
pletely ignores the positive instances for each label. We will show that there is a computa-
tionally cheap method that allows taking them into account.

1  Older versions (Fan et al., 2008) use a trust-region Newton method.
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In contrast, OvAP++ makes use of the positives, but requires much more care to imple-
ment, as it breaks the embarrassingly parallel nature of the original OvA approach. Hence, 
the individual binary problems need to be solved in a certain (partial) order. This also 
precludes the application of this strategy to situations where all labels have to be trained 
simultaneously, e.g. when fine-tuning the feature representations f.

The existing analysis in Fang et  al. (2019) focuses only on finding an initial weight 
vector that has loss as low as possible. Important properties of the loss function (such as 
local smoothness / Lipschitz constant) sometimes are more favourable after some training 
epochs than right at initialization time, as evidenced e.g. by the success of cyclical learning 
rates (Smith & Leslie, 2017) and warmup phases (Goyal et al., 2018). However, the impact 
of these properties is not considered in Fang et al. (2019).

Contributions: Our contributions in this work are: 

1.	 We explicate via extensive empirical evaluation that, when employed in conjunction 
with the squared-hinge loss, the benefit of initialization methods is not limited to just 
starting closer to the final weight vector. Good initialization also leads to much faster 
computations in each training step, because of an implicit negative-mining effect.

2.	 We present a novel initialization strategy that is computationally efficient, keeps the 
simplicity of OvAP, but incorporates information about the positive instances for each 
label to find even better initial weights. This is achieved by selecting the initial vector 
such that it separates the mean of all positive instances from the mean of all negatives.

3.	 We show experimentally that this leads to a speedup of up to 5× relative to Zero-
initialization for our code-base on the Amazon-670K dataset, and demonstrate that this 
enables training of DiSMEC-style models with up to 3 million labels on a single 128-
core node in a reasonable amount of time.

4.	 We provide a new implementation of DiSMEC that can adapt to the NUMA charac-
teristics of modern many-core processors. Combined with the new choice of the initial 
vector, this can lead to a speedup of up to 14× in wallclock time.

Outline: In Sect. 2, we formally introduce our learning setting and recap the key concept 
of optimization using conjugate-gradients. This is followed by a presentation of the key 
results from Fang et al. (2019), the OvAP and OvAP++ initialization methods. In Sect. 3, 
we investigate which properties an initial weight vector needs to have to be beneficial for 
optimization. In particular, we show that low loss alone is not a sufficient criterion by pro-
viding a counter-example. We investigate why it fails, and thus highlight the importance 
of the local loss landscape and the implicit negative-mining effect. The description of our 
proposed method is given in Sect. 4, together with an evaluation of its effect on the local 
loss landscape and implicit negative-mining. In Sect. 5, an extensive empirical evaluation 
of the new initialization method with a variety of datasets and settings is presented. Finally, 
Sect. 6 discusses the limitations of our approach and given an outlook on how it could be 
applied more broadly in XMC.

2 � Background

Setup: We are given a dataset D = {(xi, yi) ∶ i ∈ [n]} with n training instances xi ∈ X = ℝ
d 

and their corresponding labels yi ∈ Y = {−1, 1}l . For a label j ∈ [l] we denote with 
�(j)∶={xi ∶ y

(j)

i
= 1} the set of instances for which the label is relevant, and analogously 
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�(j)∶=� ⧵ �(j) , where �∶={xi ∶ i ∈ [n]} is the set of all training instances. This corresponds 
to a label vector y(j) which has entries 1 for each positive instance, y(j)

i
= 1 ⇔ i ∈ 𝖯(j) , and −1 

otherwise.
In the linear OVA setting, we have to solve l independent problems of size O(n) . We 

assume that the number of labels l is large enough so that an additional O(n) computation does 
not significantly influence the overall training time. In particular, the initialization method that 
will be presented in Sect. 4 requires calculating the mean of all instances, x̄ =

∑n

i=1
xi , which 

is a cheap operation compared to solving the l subproblems. In addition, we assume that the 
labels are sparse, in the sense that for most j ∈ [l] we have |�(j)| ≪ |�(j)| . These two assump-
tions are part of the characterization of an XMC problem.

The goal in linear XMC is to find a weight vector w∗

j
 for each label j ∈ [l] that minimizes 

the risk of the corresponding binary problem with some convex margin loss � , combined with 
a regularizer R:

Throughout this paper, we use the L2-norm R[w] = 0.5‖w‖2
2
 as the regularizer. From 

hereon, we will focus on the independent binary sub-problems, and consequently drop the 
superscript y(j) and write y ∈ {−1, 1}n for the vector indicating the relevance of instances 
for a given label. Following Jain et al. (2019), Babbar & Schölkopf (2017, 2019), as the 
margin loss � we use the squared hinge-loss

Even though this function’s second derivative does not exist at m = 1 , it can be used for 
second-order optimization (Galli et al., 2021).

Conjugate-gradient Newton optimization: The minimization of eq. (3) is carried out using 
a CG Newton procedure inspired by Liblinear (Fan et al., 2008; Galli et al., 2021). The algo-
rithm works as follows: First, a descent direction p is determined by minimizing a local quad-
ratic approximation L̂ to the loss function

where � denotes the Hessian of L . The stationarity condition for a local minimum,

shows that the optimal change �∗ of weights – in quadratic approximation – can be found 
by solving a system of linear equations. The conjugate-gradient algorithm provides a way 
of solving the equations without ever requiring an explicit representation of the matrix �L . 
Instead, only Hessian-vector products are needed, which can be calculated for a pointwise 
regularization R[w] =

∑m

j=1
�(wj) as (Keerthi et al., 2005)

(3)L
[
w, y(j)

]
∶=

n∑

i=1

�

(
y
(j)

i
w�xi

)
+R[w]

(4)w∗

j
∶=w∗

(
�, y(j)

)
∶= argmin

w

L
[
w, y(j)

]
.

(5)�(m) = max(0, 1 − m)2.

(6)L̂(w + �) = L(w) + ∇L ⋅ � +
1

2
�
�
�L�,

(7)0 = ∇L + �L�
∗,

(8)�d =

(
n∑

i=1

∇
2
w
�(yiw

�xi) +

m∑

j=1

∇
2
w
�(wj)

)
d
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For the case of L2 regularization, the second term simplifies to diag(���(w)) = 1 . In prac-
tice, (7) need not be solved exactly, and the conjugate-gradient procedure can be termi-
nated after a few iterations.

Once the quadratically optimal step p has been found, a line-search using a backtracking 
approach is carried out over w + �p , � ∈ (0, 1] . This ensures that the loss at the new weight 
vector is actually an improvement, L[w + 𝜆∗p] < L[w] , even if the quadratic approximation 
deviates from the true loss. If the new point fulfills the stopping criterion as discussed below, 
the optimization terminates. Otherwise a new quadratic approximation around w + �∗p is 
formed and the next update step is calculated.

Stopping criterion: Whether or not the optimization is stopped depends on the magnitude 
of the gradient. We use the criterion given by Liblinear:

The scaling factor � depends on the imbalance in the data and is calculated through

This means that the convergence criterion gets stricter the more imbalanced the train-
ing data, which ensures that simply predicting the majority class for all instances is not 
accepted as a solution. Unless otherwise noted, we use �0 = 0.01 , the default value of 
Liblinear.

OvA-primal and OvA-primal++: In order to reduce the number of iterations needed to 
achieve the stopping criterion, Fang et al. (2019) propose two schemes for selecting the initial 
weights w0 , based on the following observation: For �-Lipschitz loss functions and bounded 
weights ‖w‖2 < B , the optimal weight vector w∗

(y) for one label vector y results in good per-
formance also for a different label vector y′ if the two label vectors are close in Hamming 
distance �H:

Given that for tail labels it holds that �H(y, -1n) ≪ n , they conclude that using w∗
(−1n) 

makes the initial vector result in much lower loss than using Zero-initialized weights. For-
mally, the goal is to find the optimal weight for all-negative labels by solving

(9)=

(
n∑

i=1

yixi∇w�
�
(yiw

�xi)

)
d + diag(���(w))d

(10)=

(
n∑

i=1

y2
i
xix

�

i
���

(yiw
�xi)

)
d + diag(���(w))d

(11)=

n�

i=1

xi�
��
(yiw

�xi)⟨xid⟩ + diag(���(w))d

(12)‖∇L[w∗
]‖ ≤ �‖∇L[0]‖.

(13)� = �0 ⋅
max(1,min(|�|, |�|))

n
.

(14)L[w∗
(y), y�] − L[w∗

(y�), y�] ≤ const ⋅ 𝓁H(y, y
�
).

(15)w∗
(−1n) = argmin

w

n∑

i=1

�
(
−w�xi

)
+R[w].
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This strategy is called OvA-Primal (OvAP). As discussed above, the number of labels l is 
assumed to be large enough that this one additional training run will not take a significant 
portion of the overall training time.

Then, based on convergence rates of iterative minimizers, they estimate the speedup that 
OvA-Primal, given by w0 = w∗

(−1n) , provides over w0 = 0d . For an optimization algo-
rithm that has linear convergence, i.e. that needs

steps for training to precision � , the speedup in the asymptotic bound is log n (Fang et al., 
2019,Thm.3.2) if the average number of samples per label does not scale with n or l.

OvA-Primal++ (OvAP++) extends the idea of OvAP by additionally re-using the final 
weight vectors w∗

j
 of one label j as the initial weights for similar labels j′ . To achieve this, 

they first build a minimum spanning tree over the labels, including the virtual all-negative 
label as the root, where the cost of an edge is given by the Hamming distance between the 
label vectors. Starting from the root, one can initialize the descendants of a label by the 
final weights of that label. Due to the low Hamming-distance, this should provide a good 
starting point. This process is implemented as a blocked depth-first search over the tree as 
a compromise between parallelism and memory requirements. OvAP++ provides further 
speedups over OvAP, but at the cost of significantly increased implementation complexity. 
In particular, the sub-problems can no longer be solved independently from each other.

3 � Analysis of criteria for initial weights

In this section, we investigate which properties an initial weight vector needs to fulfill in 
order to improve the training speed. The first criterion – to start with a low loss value, 
and correspondingly closer to the optimal weight vector – has been used to motivate the 
OvA-Primal method described above. Here, we show that low initial loss alone is not a 
sufficient criterion for successful initial weights. In particular, we present a counterexam-
ple, in which the weight vector leads to very low initial loss, orders of magnitude smaller 
than initializing by zero, yet does not provide any significant speed-up. We identify two 
reasons for this: First, the loss landscape around the initial vector needs to be favourable 
for second-order optimization. Second, a significant part of the speed-up is in fact not due 
to the reduced distance to the optimal vector and correspondingly smaller number of itera-
tions, but is instead caused by faster computations in each iteration, owing to an implicit 
negative-mining effect.

To illustrate these phenomena, we take the AmazonCat-13K dataset (details in the 
appendix) from the extreme classification repository (Bhatia et al., 2016; McAuley & Jure, 
2013) as a running example in this section and the next.

Insufficiency of low loss: A simple way to calculate an approximation to w∗
(−1n) , the 

optimal weight-vector that predicts the absence of the label for every instance, is to use a 
weight vector w

b
= (−1, 0,…)

� , where we assume that the bias feature x0 = 1 is at index 
0.2

(16)O

(
log

L[w0, y] − L[w∗
(y), y]

�

)

2  Such a strategy seems to have been considered by Fang et al. (2019), as it can be found in their code at 
https://​github.​com/​fangh​git/​XMC, though it is not mentioned in the paper.

https://github.com/fanghgit/XMC
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Then, the score for any instance x will be m = w�

b
x = −1 , which means that it is clas-

sified as negative with margin one. Therefore, this weight vector is a minimizer of the 
squared hinge-loss without regularization. As can be seen in Fig. 1 (left), the initial value 
of the loss is decreased by three orders of magnitude, to a lower value than with the OvAP 
initializer. Yet, after some iterations, the OvAP based optimization overtakes Bias. In par-
ticular, the Bias-initialized optimization does not make any substantial progress during 
the first iteration.

This does not contradict the previous result, because the asymptotic convergence rate 
based on the number of iterations does not need to agree with actual computation time, for 
example if each iteration provides more progress towards the minimum due to a benign 
loss landscape as described in the next paragraph, or if the computations for a single itera-
tion become faster due to implicit negative-mining.

Importance of loss landscape: Certain regions in the weight space may be more benign 
towards the chosen minimization procedure than others. For example, in deep networks one 
often chooses an initialization procedure that preserves variance and mean over layers, to pre-
vent vanishing or exploding gradients (Glorot et al., 2010). Such a technique does not provide 
any reduced loss for the starting point, but can be very effective in speeding up the training.

For the concrete case of Newton optimization, this means that we require the local quad-
ratic approximation to fit the true loss well. As � is piecewise-quadratic, this is fulfilled 
only when m is far from the discontinuity at m = 1 . Let 𝜙̂m0

 be the quadratic approximation, 
then we can calculate the approximation error based on the step size as

Two examples are shown in Fig. 2. For an instance right at the discontinuity, improving the 
classification margin to exceed one causes the quadratic approximation to over-estimate 
the true loss value, leading to smaller proposed update vectors p . On the other hand, for 
any instance classified with at least margin 1, the quadratic approximation cannot “see" the 
increased error as the margin shrinks, and may propose overly large steps p that have to be 
shrunk using line search.

By choosing −1 for the bias weight, the initial weights are exactly at the discontinuity 
of the Hessian. This suggests that it might be beneficial to use a different value for the 
bias, e.g. w0 = 0.9w

b
 or w0 = 2w

b
 . This intuition is confirmed by Fig. 1 (right), where 

we can see that both variations make significant progress in the first iteration, with 2w
b
 

clearly outperforming w
b
 . A more detailed look at this phenomenon is provided by 

Fig. 3, which shows that the acceptable step size along the chosen descent direction is 
very small if w0 is close to w

b
 . This indicates that the quadratic approximation is overly 

(17)e(𝛿;m0)∶=𝜙̂m0
(𝛿) − 𝜙(m0 + 𝛿),

(18)where𝜙̂m0
(𝛿) = 𝜙(m0) + 𝛿𝜙�||m0

+ 0.5𝛿2𝜙��||m0
.

Fig. 2   Approximation errors 
e(�;m0) for m0 = 0 (solid blue) 
and m0 = 1 (dashed red) over � , 
as described by eq. (17) (Color 
figure online)
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optimistic, and proposes much larger steps than optimal. This happens very strongly in 
the first epoch of bias=-1 , and to some degree during the first few epochs of bias = −2.

For the squared hinge-loss, a vector that minimizes eq. (15) perfectly will have simi-
lar characteristics to the Bias initialization wb , in that for many instances the predic-
tion will be close to the hinge location. Thus the starting point will be in a location 
unfavourable to the Newton optimizer. A remedy is to stop training of w∗

(−1n) early. 
This results in larger initial loss, but makes the training progresses more smoothly. More 
details on this phenomenon are presented in appendix 7.2.

Even though the local loss landscape can explain why the first Newton-optimization 
step makes so little progress, this alone is not sufficient to explain the vastly different 
training durations: For 2w

b
 , training takes only 558 seconds, much faster than w

b
 and 

0.9w
b
 at 1161 and 995 seconds. In addition to fewer iterations, the initialization method 

can also influence the amount of computation necessary during each iteration, through 
an implicit negative-mining step as discussed below.

Implicit negative-mining: As the weight vector w approaches its optimum w∗ , the cal-
culations of Hessian-vector products become sparse, because only instances with non-
zero loss need to be taken into account: For m > 1 we have �(m) = ��

(m) = ���
(m) = 0 , 

which implies that the sum over all data points in eq. (11) can be replaced with a sum 
over implicitly-mined hard instances

(19)A = {i ∶ 𝜙��
(x�

i
w ⋅ yi) ≠ 0} = {i ∶ x�

i
w ⋅ yi < 1}.
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Fig. 3   Multiplier found by backtracking line search, i.e. the fraction of the descent direction as found by the 
CG solver that can be applied to the real objective function and still lead to sufficient reduction in loss. The 
shaded area indicates ± one standard deviation. Having a value smaller than one indicates that the quadratic 
approximation to the loss is overly optimistic in the given direction, and the real step has to be scaled down. 
As discussed in the main text (Fig. 2), this happens when the direction in question is such that it reduces the 
margin of an instance that is classified correctly with margin more than one. This effect can be seen here: 
For bias = −0.9 , all the negative instances still have non-zero error, so the update will choose a direction 
that makes them more negative, which is a direction in which the quadratic approximation is overestimating 
the loss. On the other hand, with bias = −1 , the only nonzero signal is coming from the positive instances, 
which will cause the bias to be reduced. Thus, most of the negative instances will get nonzero error, and 
the quadratic approximation severely underestimates the true loss. Consequently, the line search shows that 
only a minute step towards the desired direction is allowed. For bias = −2 , the situation is similar, but this 
time the distance for each negative instance until it gets nonzero error is much larger, and as such the under-
estimation effect is reduced and larger step size multipliers are possible
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Therefore, the computations in eq. (11) can be written as

which can be computationally much more efficient than the full sum (Keerthi et al., 2005). 
The active set A has to be re-calculated after each weight update. Because each weight 
update requires multiple �d calculations for the conjugate-gradient procedure, this still 
results in a net speed-up.

For different Bias-initializations �w
b
 , � ≥ 1 , the active set at the first iteration is given 

by are all the negatives, A = � . However, for � = 1 the very first optimization step undoes 
the sparsity, so even though the first iteration is fast, it does not make progress towards the 
objective and makes the following iterations slow again, see Fig. 4. To a much lesser degree, 
this also happens for � = 2 . For 𝜆 < 1 , the initial weights are not at the discontinuity of the 
Hessian, but the quadratic approximation now overestimates the actual loss function. Further, 
there is no sparsity in the first iteration, causing it to be very slow.

The implicit negative-mining effect, even though not explicitly considered by Fang et al. 
(2019), still contributes to the speed-up of OvAP and OvAP++. The OvAP leads to significant 
sparsity in the first iteration, as Fig. 6 below will indicate.

Thus, our goal is to find a new initialization method that starts with a high sparsity, in such 
a way that the first optimization steps do not turn the Hessian computations dense again as is 
the case with Bias. Such an initialization procedure is presented in the next section.

4 � Mean‑separating initialization

Motivation: In this section, we derive a simple way to generate an initial vector, motivated 
by the following observation: If the data is linearly separable with margin, then the final 
weight vector will separate the convex hull of the negatives � from that of the positives � , 
which in particular implies that it separates the centres of mass p̄ of the positives and n̄ of 

(20)�d =

n�

i=1

xi�
��
(yiw

�xi)⟨xid⟩ + d =

�

i∈A

���
(x�

i
w ⋅ yi)yi⟨xi, d⟩ ⋅ xi + d,

Fig. 4   The average sparsity of Hessian-vector product computations, and corresponding duration of one 
iteration of the Newton optimization. The averages are taken over the individual binary problems, and the 
shaded area shows the 2� error of the mean. The total computation time includes a (sparse) matrix multi-
plication and a varying number of CG steps. As this data shows, even though bias = −1 and bias = −2 start 
very sparse, much of the sparsity is lost during the first training steps. For the later iterations, −2 results in 
slightly less sparsity and slower iterations, however the effect on total running time is far overshadowed 
by the much faster earlier iterations (note the logarithmic axes). Furthermore, as indicated by Fig. 12, for 
bias = −2 fewer iterations are needed, so the timings of iterations after the tenth are less important
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the negatives. This means that we can restrict the search space of weight vectors to those 
that separate p̄ and n̄ . A sketch of this situation is given in Fig. 5.

Even though perfect separability might not be achieved on real data, it needs to hold at 
least approximately. Fortunately, the high-dimensional tf-idf3 text data that is commonly 
used in XMC fulfills this property, as evidenced by the high performance achievable with 
linear classifiers.

Derivation: Without making use of any additional information about the training data 
(as we want a computationally cheap procedure), there are only very general conditions we 
can impose to choose among these hyperplanes. As a first step, we can parameterize the 
search space based on the margins of p̄ and n̄ , setting

for two hyperparameters s and t.
These are only two linear constraints in the high dimensional weight space. However, 

for good generalization, we prefer weight vectors with minimal norm. If we want a min-
imum L2-norm solution, then the search space becomes restricted to span(p̄, n̄) , and we 
can parameterize w0 = up̄ + ṽn̄ . This leads to a system of two linear equations in the two 
unknowns u and ṽ , with a unique solution except in the unlikely event that p̄ and n̄ are lin-
early dependent.

Reparameterization for efficiency: Since most labels have only few positive instances, 
their mean p̄ can be calculated quickly, but calculating n̄ directly would be an O(n) opera-
tion for each label. However, we can precompute the mean of all instances x̄ , and use the 
property

(21)⟨w0, p̄⟩ = s, ⟨w0, n̄⟩ = t,

(22)|�|n̄ + |�|p̄ = |�|x̄.

optimal
boundary

mean of negatives
mean of positives

initial
boundary

s
t

Fig. 5   Motivation for the Average-of-Positives initialization. If the data is linearly separable, then the fea-
ture-means of the positives (blue) and the negatives (red) will lie on the correct side of the optimal separat-
ing hyperplane (black line). Thus we may restrict our search for the initial vector to the set of the separating 
planes of p̄ and n̄ (orange). In order to achieve strong implicit negative mining in the first epoch, we choose 
a solution where the center of mass of the negatives is classified correctly with a large margin (dashed 
orange lines), so that most of the negatives (light red) will be classified correctly with a margin over 1 and 
thus not enter the Hessian computation (Color figure online)

3  term-frequency-inverse-document-frequency. Each entry in the feature vector represents how often a term 
appears in the source document, normalized by how often that term appears in the entire corpus, see e.g. 
(Shalev-Shwartz et al., 2014,Chapter 17)
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Because span(p̄, n̄) = span(p̄, x̄) , we can make the equivalent parameterization 
w0 = up̄ + vn̄ , leading to the equations

This is solved by

A short discussion on the situations if the denominators become zero is given in 
appendix 7.3.

As we want the loss vector corresponding to the initial weights to be sparse, we want 
the distance of n̄ to the decision boundary to be larger than that of p̄ . On the other hand, 
it needs to be small enough that the resulting weight vector is not too far from the optimal 
weights. Empirically, we found s = 1 , t = −2 (cf. appendix 7.3) to work well.

Evaluation: Does this initialization method work as we expect? As shown in Fig. 6, the 
method induces loss vectors that are more sparse than the ones for OvAP, and keeps this 
property over the course of training, resulting in faster update times for each iteration. As 
expected, tail labels benefit most, because the situation depicted in Fig. 5 is better approxi-
mated in the tail than for head labels. Because most labels in XMC are tail labels, training 
time improvements for them are most important for overall speed-up. Still, our method is 
faster or at least as fast as any of the other methods across the entire range of number of 
positives.

Figure 7 shows that using the MSI initialization drastically reduces the number of itera-
tions needed for convergence for tail labels. Whereas for Zero and OvAP initialization the 
number of iterations increases as the number of positive instances decreases, for Bias and 
MSI initialization it remains almost constant. This cannot be explained by looking only 
at the distance the optimization algorithm has to travel, neither in terms of the initial loss 
value, nor in terms of the distance between initial and final weight vector. The correspond-
ing graphs are presented in appendix 7.3.

s = ⟨w0, p̄⟩ = ⟨up̄ + vx̄, p̄⟩ = v⟨x̄, p̄⟩ + u⟨p̄, p̄⟩
���t = ���⟨w0, n̄⟩ = ⟨up̄ + vx̄, ���x̄ − ���p̄⟩.

(23)u =

⟨x̄, p̄⟩(t + (s − t)���∕���) − s⟨x̄, x̄⟩
⟨p̄, x̄⟩2 − ⟨p̄, p̄⟩⟨x̄, x̄⟩

(24)v = (s − u⟨p̄, p̄⟩)∕⟨x̄, p̄⟩.
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Fig. 6   Sparsity of the Hessian calculation over different training epochs. Even though Bias-initialization 
starts out very sparse, this property is lost after the first update step. In contrast, MSI maintains sparsity 
over the entire range of training iterations
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Until about iteration 8, the duration per iteration with MSI is faster than the other ini-
tialization methods, as depicted in Fig. 8. Because MSI very rarely needs more than 10 
iterations of training, and on average if finished before 8 iterations (Fig. 7), the slight speed 
advantage of the other methods for later iterations only applies to very few binary sub-
problems, and such has little effect on the overall training time.

5 � Benchmarks

In this section, we demonstrate the effectiveness of MSI initialization on a wide range of 
datasets and settings. We first provide timings for training with sparse tf-idf data on a singe, 
large compute node, the setting in which we expect linear OVA models to be run typi-
cally. We then show how changes in the training data affect the speed-up of our method: 
In particular, we present timing for the case of training with a dense input representation, 
and timings for training with the logistic loss, which does not admit the implicit negative-
mining effect. Finally, to allow for a meaningful comparison with the method by Fang et al. 
(2019), we also run training on smaller hardware.

Infrastructure and training configuration: Our code is a re-implementation of the con-
jugate-gradient Newton procedure of recent versions of Liblinear (Galli et al., 2021). The 
hyperparameters related to stopping condition for conjugate-gradient iterations ( � = 0.5 ), 
preconditioner ( � = 0.01 ), back-tracking line search ( � = 0.5 , � = 0.01 , max_steps = 20 ), 
and stopping condition for the optimization ( �0 = 0.01 ) have been taken from their code. 
To reduce model size, all weights below a threshold of 0.01 have been clipped to zero.
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MSI
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Fig. 7   Number of Newton optimization steps required for convergence (left) and training time for a single 
label (right). The average and the 95% quantiles are plotted as a function of the number of positive instances
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Fig. 8   Duration per iteration (left), and line search step multiplier (right). The MSI initialization manages 
to have the early iterations as fast as the later ones, while still working much better in terms of the quadratic 
approximation than the Bias initialization. The decrease of the step multiplier, and the slight increase in 
duration, for late iterations is not relevant, because as Fig. 7 shows most of the binary problems will have 
finished by iteration 10
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Our main experiments were run on a single compute node equipped with two AMD 
Rome 7H12 CPUs. The code is NUMA-aware and produces a copy of the training data 
for each NUMA-node, but memory bandwidth still is the limiting factor in scalability. We 
observed very good scaling for 64 cores, but sublinear improvements for more cores.

All nodes in the compute cluster have identical hardware and jobs were run with exclu-
sive access to the node. In the absence of any other user-jobs running on the same node, 
and hence no significant randomness4 in the run times, we have not systematically col-
lected data from multiple runs of the same setting.

Sparse data: We tested the initialization methods on Eurlex-3k (Mencia & Loza, 
2008), AmazonCat-13k (McAuley & Jure, 2013), WikiSeeAlsoTitles-350K, 
WikiTitles-500k, Amazon-670k (McAuley & Jure, 2013), WikiLSHTC-325k 
(Partalas et al., 2015), Amazon-3M (McAuley et al., 2015, 2015), and Delicious-200k 
(Wetzker et al., 2008) in their train/test splits as available from Bhatia et al. (2016). The run-
time results are shown in the Tabel 1 under the columns Zero, Bias, OvAP, and MSI.

As shown in the Ratio column, the proposed method (MSI) is 3–4 times faster than 
Zero initialization, and also significantly faster than Bias and OvAP initialization. For 
Amazon-3M it is only possible to run the proposed MSI initializer due to the large com-
putational cost involved for the Zero initialization baseline. Therefore, the relative speed-
up cannot be reported. However, our training of 1360 minutes ( < 1 day), using MSI as a 
starting point of the optimization process, shows that learning a DiSMEC-style (Babbar & 
Schölkopf, 2017) model is feasible even for datasets with millions of labels, on a single 
node.

The Zero setting corresponds to the vanilla DiSMEC algorithm, under our new and 
faster implementation. Due to improvements in implementation quality, in particular the 
NUMA-awareness of our code, our timings with this initialization are already much faster 
than running original DiSMEC on the same node.

Because the optimization problem is convex, the minimum is not affected by the choice 
of initial parameter. However, because in practice only an approximate minimum is found, 
there are slight variations (around 0.1%) in precision@k metrics for the different methods. 
The exact numbers can be found in Table 4.

Dense data: We also ran the tests on the same dataset of dense features as used for 
slice5. The default setting for the stopping condition as specified by Liblinear, �0 = 0.01 , 
is far too strict in this setting. Therefore, we increased this parameter to �0 = 1 here. For 
these settings, we observed larger variability in the classification accuracy, and a slightly 
reduced, but still significant speed-up.

Logistic loss: We also ran a test where we replaced the squared hinge-loss with the 
logistic loss. As the logistic loss only vanishes asymptotically, this is a setting that does not 
benefit from implicit negative-mining. This means that later iterations will take approxi-
mately as long as earlier ones, and there is less benefit from being able to skip the first 
iterations. The result is a much reduced benefit from our proposed initialization, as can be 
seen in Table 2.

Due to the vast number of negatives (for a tail label), the loss function’s minimum will 
not be achieved when the negatives are classified correctly with margin one as is the case 
with squared-hinge, but will in fact train a larger margin for the negatives. This suggests 
that by decreasing the t parameter further, our initial guess for the separating hyperplane 
will be closer to the final weight vector. Thus we have used t = −3.

4  e.g. multiple runs of Delicious-200k with zero initialization fluctuate between 28236 and 28483 seconds.
5  http://​manik​varma.​org/​code/​Slice/​downl​oad.​html

http://manikvarma.org/code/Slice/download.html
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Comparison with OvAP++: Finally, in order to allow for a meaningful comparison with 
the code by Fang et al. (2019), we also ran trainings with the smaller datasets on a Xeon 
Gold 6148 processor, with both our own implementation and with their code. For these 
experiments, instead of taking the dataset directly from the XMC repository (Bhatia et al., 
2016), we applied their preprocessing script. Because the two methods still use slightly 
different optimization procedures (theirs uses a trust-region instead of a line search, as in 
older Liblinear versions) and implementations, we still need compare the relative speed-
ups between the different initialization methods. The results can be seen in Table 3. MSI 
initialization consistently leads to more speed-up than OvAP++ initialization.

6 � Discussion

We have provided a way to initialize the weights of a linear OvA extreme classifier in such 
a way as to reduce training times. Our experiments show that aside from the initial loss 
value investigated in Fang et al. (2019), the implicit sparsity and local smoothness proper-
ties of the loss landscape also play an important role in the success of the method.

Limitations: The initialization method discussed in this work is mainly applicable to 
linear One-versus-rest XMC algorithms. This rules out label-embedding schemes (Guo 
et al., 2019; Bhatia et al., 2015), decision-tree based classifiers (Prabhu & Manik, 2014; 
Majzoubi & Anna, 2020) and deep-learning methods in which the classifier is jointly learnt 
with the intermediate representations (You et al., 2019).

Outlook: The choice of initial vector is an underexplored design tool in XMC that is 
orthogonal to many other design choices such as explicit negative-mining (Reddi et  al., 
2019; Jain et al., 2019), training meta classifiers over buckets of labels (Medini et al., 2019; 
Dahiya et al., 2021), or the choice of regularizer. Future work should thus look into com-
bining these, for example integrating our initialization into the OvA parts of Slice (Jain 
et al., 2019), Parabel (Prabhu et al., 2018) XR-Transformer (Zhang et al., 2021), Probabilis-
tic Label Trees (Wydmuch et al., 2018), or Astec (Dahiya et al., 2021).

Table 1   Training time (in minutes) for different datasets and initialization methods

The Ratio column denotes the speed-up of MSI-initialization over Zero-initialization under our imple-
mentation. Due to the sub-linear scaling beyond 64 cores, the reported times here cannot be directly con-
verted to single-core timings by multiplying with 128

Dataset Setting ���� ���� ���� ��� Ratio

Eurlex-4k tf-idf 0.1 0.1 0.1 0.1 1.8
Wiki10-31k tf-idf 3.2 3.1 2.6 1.9 1.6
Amazoncat-13k tf-idf 19.7 11.5 12.6 5.6 3.5
Amazoncat-14k tf-idf 78.8 34.0 48.0 23.2 3.4
WikiTitles-500k tf-idf 320.6 187.8 301.8 71.1 4.5
Amazon-670k tf-idf 409.1 337.3 259.4 81.3 5.0
Delicious-200k tf-idf 470.6 416.2 337.5 283.8 1.7
WikiLSHTC-350k tf-idf 1,111.0 479.5 634.8 310.5 3.6
Amazon-3M tf-idf – – – 1360.1 –
Eurlex-4k dense 0.1 0.1 0.1 0.0 2.7
Amazon-670k dense 782.4 376.5 489.1 321.2 2.4
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Appendix

Information on AmazonCat data

To evaluate the initialization methods and investigate their properties, we took the AmazonCat-
13K dataset from the extreme classification repository Bhatia et al. (2016); McAuley and Jure 
(2013) as a running example during sects. 3 and 4. In this dataset the input features are sparse tf-
idf values of a bag-of-words representation augmented by an additional bias feature that is set to 1. 
The train/test split is taken from the repository. The dataset consists of 1 186 239 training instances 
and 306 782 test instances in a 203 882 dimensional feature space. These instances are mapped to 
13 330 labels, with an average of 5 labels per instance.

Early stopping for OVA‑primal

For the squared-hinge loss, a vector that minimizes (15) perfectly will have similar char-
acteristics to the Bias initialization wb , in that for many instances the prediction will be 
close to the hinge location. Thus the starting point will be in a location unfavourable to the 
Newton optimizer. A remedy is to stop training of w∗

(−1) early. This results in larger initial 
loss, but makes the training progresses more smoothly.

Since the label vector −1 is maximally imbalanced, according to equation (13) the weight 
should be trained to high precision � = �0∕n . If instead we use the much less strict � = �0 , the 
initial loss is much larger, but at the same time the training progresses more smoothly.

The resulting training durations are shown in Fig.  9. Overall, the loose stopping criterion 
performs much better, except for labels with less than three positives. This is because for these 

Table 2   Training time (in minutes) for different datasets and initialization methods when minimizing the 
logistic loss

Dataset ���� ���� ���� ��� Ratio

Eurlex-4k 0.2 0.2 0.1 0.2 1.2
Wiki10-31k 4.1 3.4 2.4 3.5 1.2
Amazoncat-13k 35.6 28.2 24.8 28.2 1.4
Amazoncat-14k 160.1 127.6 111.3 125.3 1.3
WikiTitles-500k 366.8 311.0 270.4 315.7 1.2
Amazon-670k 633.6 522.8 420.4 525.5 1.2

Table 3   Training time (in minutes) and speed-up on smaller hardware comparing OvAP++ and MSI 

Dataset ���� ���� + + Ratio ���� ��� Ratio

Eurlex-4k 0.3 0.2 1.7 0.3 0.1 2.5
Wiki10-31k 9.7 5.7 1.7 7.3 3.1 2.4
Amazoncat-13k 61.7 30.6 2.0 39.7 10.5 3.8
Amazoncat-14k 208.0 94.8 2.2 145.7 39.2 3.7
WikiTitles-500k 521.9 236.4 2.2 535.2 114.9 4.7
Amazon-670k 1310.4 418.1 3.1 708.2 172.1 4.1
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labels, the initial vector is very close to the final vector, and thus the number of iterations that are 
required for training decreases, cf. Fig. 10. This is in contrast to the bias = −1 setting, which has 
similar characteristics in the second-order optimization, but does not benefit from fewer itera-
tions and consequently does not show a decrease of overall training time for the extreme tail.

In Fig. 11 (left), the training progress over the iterations is shown. Here we can see that, 
similar to Bias initialization, the strict setting results in very little progress in the first 
iteration, and overall much slower progress also for the other iterations, such that loose 
turns out to be the faster setting, even though its initial loss is an order of magnitude larger. 
The right side of this figure shows the step multiplier during the line-search phase, which 
shows that during the first iteration, for strict the second-order approximation is overly 
optimistic and the real step size has to be much smaller than the CG procedure suggests.

Additional Results for Bias Initialization

Some additional graphs showing details about the training process with Bias initializa-
tion. In Fig. 12 the training duration of different Bias variations is shown in terms of 

Fig. 9   Histogram (left) and average with 95% confidence interval in dependence of the number of positive 
instance (right) of the training time, measured in milliseconds. Overall, the loose training configuration is 
much faster, though for extreme tail labels with less than 3 positive instances, strict actually performs 
slightly better

Fig. 10   Histogram (left) and average with 95% confidence interval in dependence of the number of positive 
instance (right) of the number of weight updates until convergence



3970	 Machine Learning (2022) 111:3953–3976

1 3

training time for each individual binary problem. For bias = −1 , the binary problems 
take roughly the same amount of time independent of the number of positives, but for 
bias = −2 the tail labels can be trained much faster.

The training duration as measured in number of iterations is presented in Fig. 13.

Additional results for mean‑separating initialization

In Fig.  14 (left) we show how the initial loss depends on the number of positive 
instances. For Bias and MSI, we can see that tail labels result in very low initial loss, 
whereas for head labels MSI gives slightly larger loss than Bias and OvAP. On the 
other hand, OvAP ’s loss remains significantly larger for tail labels. The right side of 
Fig. 14 shows how that initial loss translates to initial distance in weight space. Here, 
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Fig. 11   Letting the OvA-Primal initial vector be the result of training the all-zero-label problem until con-
vergence (strict) results in much worse performance than doing early stopping (loose). We suspect that this is 
because strict training brings the weight vectors into a regime that is qualitatively similar to the bias = −1 set-
ting: All training instances will predict a negative label with a margin very close to 1. Even though this results 
in much lower initial loss (left), it also leads to a useless first iteration in which little progress is made (right)

Fig. 12   Total duration of the individual binary problems when trained with different Bias-init variations. 
The histogram on the left has bins corresponding to the number of binary problems taking a certain amount 
of time, on the right the average time and 95% quantiles are shown in dependence of the number of positive 
instances. Duration is measured in milliseconds. The graphs show that bias = −1 is a local maximum in 
terms of computation time
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we can see that for tail labels, OvAP ’s initial weight vector is an order of magnitude 
further from the optimum than for the other methods.

What happens if the denominator of MSI is zero The expression in equation (23) 
diverges if p̄ and x̄ are linearly dependent, which implies that the means of features for 
negatives and positives only differs by a factor. In that case, we cannot (except in unlikely 
special cases) find an initial vector that fulfills our condition, so we return the zero vector.

A second numerical instability occurs if �⟨x̄, p̄⟩� ≪ 1 , during the calculation of v. To 
investigate this setting, we substitute ⟨x̄, p̄⟩ with 0 in (23) and (24).

(25)s = u⟨p̄, p̄⟩

(26)���t = v���⟨x̄, x̄⟩ − u���⟨p̄, p̄⟩

Fig. 13   Number of Newton optimization steps required for convergence. On the left, the data is shown as a 
histogram, with the bins corresponding to the number of binary problems that required the corresponding 
number of steps. On the right, the average number of steps, and the 95% quantiles, are plotted as a function 
of the number of positive instances. The data shows that the benefit of the bias = −2 initialization is not 
limited purely to faster iterations because of increased sparsity, but it also needs fewer steps, despite having 
slightly larger initial loss than bias = −1 . This indicates that each step has to make more progress, i.e. the 
loss landscape is more benign to the Newton optimization around the bias = −2 trajectory. The right-hand 
graph also shows that most of the benefit comes from the tail labels

Fig. 14   Loss of the initial weight vector (left) and distance between initial and final vector (right). The 
shaded area shows 95% quantiles. For all except Zero initialization, loss and distance are much lower for 
tail labels than for head labels
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This leads to

Choice of hyperparameters for MSI As argued in the main text, in order to achieve spar-
sity in the Hessian calculations, having the average of the negative instances be classified 
very strongly as a negative would be beneficial. Interestingly, Fig. 15 shows not only the 
expected speedup in per-iteration time, but also that t = −1 requires significantly more iter-
ations than the other two settings.

This is not too surprising, given that we expect that the large number of negative 
instances fill a larger proportion of the space than the few positives, so the separating hyper-
plane should be closer to the mean of the positives. One reason for this could be that t = −1 
induces a higher initial loss than the other two settings, as shown in the bottom left graph. 
However, if we measure the distance that the optimization procedure covers, i.e. the distance 
between the initial and final weight vector, it turns out that t = −1 actually starts closest.

Full result table

Since the actual loss function is based on binary classification, we have also calculated the 
precision and recall as averaged over the individal binary problems. The metrics remain 

(27)u =
s

⟨p̄, p̄⟩ , v =
���t + ���s
���⟨x̄, x̄⟩ .

Fig. 15   Average duration of the iterations (top left, in � s), and number of iterations for different numbers 
of positive instances (top right). The bottom left graph shows the development of the objective function. At 
first glance, this seems paradoxical, as the algorithm is designed so that for each binary problem, the loss 
strictly decreases over the iterations. The apparent increase is caused by the fact that the sample of binary 
problems shrinks for later iterations, as the labels for which the loss is already low before will terminate the 
optimization. Finally, the bottom right graph shows the Euclidian distance between the initial weight vec-
tor and the approximately optimal weight vector for which the minimization is terminated. The shaded area 
marks the 95% quantile
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Table 4   Durations (as given in main paper) and precision@{1,3,5} for training different datasets with the 
given initialization methods

Dataset Setting Method P@1 P@3 P@5 Prec Rec Duration

Eurlex-4k tf-idf ���� 83.8 70.8 59.1 79.2 38.5 0.15
Eurlex-4k tf-idf ���� 83.7 70.8 59.1 79.2 38.4 0.13
Eurlex-4k tf-idf ��� 83.7 70.8 59.0 79.2 38.4 0.08
Eurlex-4k tf-idf ���� 84.0 70.7 59.1 79.2 38.4 0.10
Wiki10-31k tf-idf ���� 84.1 74.7 65.9 75.8 13.0 3.20
Wiki10-31k tf-idf ���� 84.1 74.6 65.9 75.7 13.0 3.10
Wiki10-31k tf-idf ��� 84.3 74.7 65.9 75.8 13.0 1.95
Wiki10-31k tf-idf ���� 84.1 74.7 65.9 75.7 13.0 2.60
Amazoncat-13k tf-idf ���� 93.2 78.9 64.2 84.9 58.2 19.75
Amazoncat-13k tf-idf ���� 93.2 78.9 64.2 84.9 58.1 11.50
Amazoncat-13k tf-idf ��� 93.0 78.9 64.1 84.9 58.0 5.60
Amazoncat-13k tf-idf ���� 93.2 78.9 64.2 85.0 58.1 12.58
Amazoncat-14k tf-idf ���� 89.7 69.5 54.9 87.3 66.1 78.81
Amazoncat-14k tf-idf ���� 89.6 69.5 54.9 87.3 66.0 34.02
Amazoncat-14k tf-idf ��� 89.5 69.5 54.9 87.3 65.8 23.25
Amazoncat-14k tf-idf ���� 89.7 69.5 54.9 87.3 66.2 48.03
Amazon-670k tf-idf ���� 45.7 40.7 37.2 82.0 17.6 409.05
Amazon-670k tf-idf ���� 45.7 40.7 37.2 82.0 17.6 337.30
Amazon-670k tf-idf ��� 45.7 40.7 37.2 82.0 17.6 81.31
Amazon-670k tf-idf ���� 45.6 40.7 37.2 82.0 17.6 259.42
WikiLSHTC tf-idf ���� 64.4 42.6 31.7 84.7 19.2 931.58
WikiLSHTC tf-idf ���� 64.4 42.6 31.6 84.7 19.2 803.45
WikiLSHTC tf-idf ��� 64.4 42.7 31.7 84.6 19.2 286.79
WikiLSHTC tf-idf ���� 64.4 42.6 31.7 84.7 19.2 634.76
Delicious-200k tf-idf ���� 46.4 39.3 35.7 29.2 1.7 470.58
Delicious-200k tf-idf ���� 46.4 39.3 35.7 29.5 1.7 416.20
Delicious-200k tf-idf ��� 46.2 39.1 35.6 29.0 1.7 283.82
Delicious-200k tf-idf ���� 46.4 39.3 46.4 29.2 1.7 337.47
WikiTitles-500k tf-idf ���� 40.1 21.4 15.0 68.0 5.6 320.59
WikiTitles-500k tf-idf ���� 40.1 21.4 15.0 68.2 5.6 187.78
WikiTitles-500k tf-idf ��� 40.1 21.4 15.0 68.2 5.6 71.13
WikiTitles-500k tf-idf ���� 40.1 21.4 15.0 68.1 5.6 301.80
Amazon-670k dense ���� 35.6 32.1 29.4 74.6 23.0 782.39
Amazon-670k dense ���� 34.2 31.0 28.5 69.4 22.4 376.02
Amazon-670k dense ��� 35.6 32.1 29.5 73.5 23.4 321.19
Amazon-670k dense ���� 35.6 32.0 29.4 74.5 23.0 489.15
Eurlex-4k dense ���� 77.2 63.4 51.3 72.8 36.3 0.13
Eurlex-4k dense ���� 75.3 62.1 50.2 76.0 26.4 0.07
Eurlex-4k dense ��� 76.6 63.0 51.4 67.7 39.1 0.05
Eurlex-4k dense ���� 76.9 63.5 51.4 72.5 36.4 0.07
Amazon-3M tf-idf ��� 47.8 45.0 42.9 67.1 14.0 1,360.10
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mostly unchanged for tf-idf data, but there is significant fluctuation when slice features 
are used (Table 4).
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