
Vol.:(0123456789)

Machine Learning (2022) 111:3953–3976
https://doi.org/10.1007/s10994-022-06228-2

1 3

Speeding‑up one‑versus‑all training for extreme
classification via mean‑separating initialization

Erik Schultheis1  · Rohit Babbar1

Received: 21 February 2022 / Revised: 14 June 2022 / Accepted: 22 July 2022 /
Published online: 18 October 2022
© The Author(s) 2022

Abstract
In this paper, we show that a simple, data dependent way of setting the initial vector can
be used to substantially speed up the training of linear one-versus-all classifiers in extreme
multi-label classification (XMC). We discuss the problem of choosing the initial weights
from the perspective of three goals. We want to start in a region of weight space (a) with
low loss value, (b) that is favourable for second-order optimization, and (c) where the con-
jugate-gradient (CG) calculations can be performed quickly. For margin losses, such an
initialization is achieved by selecting the initial vector such that it separates the mean of all
positive (relevant for a label) instances from the mean of all negatives – two quantities that
can be calculated quickly for the highly imbalanced binary problems occurring in XMC.
We demonstrate a training speedup of up to 5× on Amazon-670K dataset with 670,000
labels. This comes in part from the reduced number of iterations that need to be performed
due to starting closer to the solution, and in part from an implicit negative-mining effect
that allows to ignore easy negatives in the CG step. Because of the convex nature of the
optimization problem, the speedup is achieved without any degradation in classification
accuracy. The implementation can be found at https://​github.​com/​xmc-​aalto/​disme​cpp.

Keywords  Large-scale multi-label classification · Linear classification · 2nd order
optimization · Class imbalance · Weight initialization

1  Introduction

Extreme classification: In this work we consider extreme multi-label classification (XMC)
problems, where the number of labels l is very large, possibly in the millions. Such prob-
lems arise in various domains, such as annotating large encyclopedia (Partalas et al., 2015),

Editors: Krzysztof Dembczynski and Emilie Devijver.

 *	 Erik Schultheis
	 erik.schultheis@aalto.fi

	 Rohit Babbar
	 rohit.babbar@aalto.fi

1	 Department of Computer Science, Aalto University, Helsinki, Finland

http://orcid.org/0000-0003-1685-8397
https://github.com/xmc-aalto/dismecpp
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06228-2&domain=pdf

3954	 Machine Learning (2022) 111:3953–3976

1 3

image-classification (Deng et al., 2010), next word prediction (Mikolov et al., 2013; Mnih
et al., 2009), as well as recommendation systems, web-advertising and prediction of related
searches (Agrawal et al., 2013; Prabhu & Manik, 2014; Jain et al., 2019).

We assume that the fraction of positive training instances for most labels is very low
– the label frequency has a long-tailed distribution (Dekel et al., 2010). This is a good
approximation for the large dataset from the extreme classification repository (Bhatia et al.,
2016) (cf. Fig. 1 in Qaraei et al. (2021), Babbar & Schölkopf (2017), and Partalas et al.
(2015) for some examples), and for many types of data that are gathered at internet-scale
(Adamic et al., 2002).

One-versus-all classifiers: Many XMC methods employ some form of a One-versus-all
(OvA) classifier as the last stage of the classification procedure: For each label j ∈ [l] , a
score is calculated as w�

j
f (x) , and the k highest-scoring labels are selected as the prediction

of the classifier,

where wj is the weight vector for label j and f is a fixed function of the instance. The train-
ing objective is to minimize, with some additional regularization terms, a binary margin
loss � for each label j,

where yj ∈ {−1, 1} indicates whether the label is relevant to the instance.
Algorithms that follow this general structure are DiSMEC (Babbar & Schölkopf, 2017)

and ProXML (Babbar & Schölkopf, 2019) for sparse representations f, and Slice (Jain et al.,
2019) where f is some pre-trained mapping of instances to dense vectors. Other examples
are Parabel (Prabhu et al., 2018), Bonsai (Khandagale et al., 2020) and PPDSparse (Yen
et al., 2017). Embedding-based approaches where the mapping f itself is learnt, such as
XML-CNN (Liu et al., 2017) and AttentionXML (You et al., 2019) are incompatible with
the method presented in this paper. In some cases the training is organized in two phases,
first the deep network f is trained and then frozen, after which the OVA classifier can be
trained. This approach is taken e.g. by X-Transformer (Chang et al., 2020) and its successor
XR-Transformer (Zhang et al., 2021).

(1)ŷ = topk{w
�

j
f (x) ∶ j ∈ [l]},

(2)�(yjw
�

j
f (x)),

0

102

104

106

iteration

lo
ss

Zero

bias = -1
OvAP

05 10 15 5 10 15
iteration

bbias = -0.9
bbias = -1
bbias = -2

Fig. 1   Objective value at different iterations for starting with Zero vector, OvAP and with Bias-initiali-
zation w

b
 . The right side shows the progress for different values of the bias weight. The shaded area spans

the 5–95% quantiles. Note that the slight increase in objective for the later iterations is just an artifact due
to the fact that we plot the loss values averaged for the binary sub-problems that have not yet terminated at
the given iteration. The sub-problems with low loss value terminate earlier, causing an increase in average
of the remaining trajectories. Figure 12 shows the number of iterations until convergence for the different
bias values

3955Machine Learning (2022) 111:3953–3976	

1 3

Despite the substantial contemporary research effort on designing deep classifiers in the
XMC setting, efficient learning of sparse One-versus-rest linear classifiers remains use-
ful. This is attributed to their: (i) easier interpretability for explaining the model outputs
in terms of input features, (ii) comparable, and at times better performance, compared to
deeper methods in short-text XMC problems (DiSMEC vs AttentionXML in Table 1 of
Dahiya et al. (2021)), and (iii) complementary learning capabilities using sparse features
vis-à-vis dense representation using deep transformer models, as shown in the recent work
XR-Transformer (Zhang et al., 2021).

Fast training: Minimizing the objective in eq. (2) using a gradient-based iterative algo-
rithm is very computation-intensive. To reduce compute requirements – and thus energy
consumption – we can make use of three generic principles:

1.	 Try to achieve more progress per step, e.g. by using a second-order method (Babbar &
Schölkopf, 2017; Keerthi et al., 2005; Galli et al., 2021) or an adaptive step size. (Duchi
et al., 2011; Ruder, 2017)

2.	 Make the computations of each step faster, e.g. by approximating the true loss with
negative mining. (Jain et al., 2019; Dahiya et al., 2021; Prabhu et al., 2018; Yen et al.,
2017; Reddi et al., 2019).

3.	 Reducing the number of necessary steps by taking a good guess for the initial weight
vector in the iterative optimization process. (Fang et al., 2019; Keerthi et al., 2005).

In this work, we focus on the second-order optimization approach using a truncated conju-
gate-gradient (CG) Newton optimization, as it is used in recent versions of Liblinear (Galli
et al., 2021).1

Implicit negative-mining with hinge-like losses: To a degree, faster per-step calculations
are achieved implicitly when using a loss function that is zero for points classified correctly
with sufficient margin. Such a training point makes no contribution to the gradient or Hes-
sian, and thus can be skipped in the computations. This can be seen as a form of implicit
negative-mining, where the list of negatives is updated each iteration (similar to Yen et al.
(2017)) based on the values of yiw�f (xi) . Unlike explicit negative-mining, this process is
not an approximation. However, it does not enforce sparsity, but only exploits its existence.
Fortunately, close to convergence, when most instances are correctly classified, this leads
to very sparse computations for the CG procedure. Thus, one aim in choosing the initial
weights is to get into this fast regime as quickly as possible.

Choice of initial vector: The third idea, choosing a suitable starting weight, is used in
Liblinear to speed up hyperparameter sweeps. It is assumed that the solutions for two simi-
lar hyperparameter values are closely related, and as such the final weight vector of one
training run can be used to warm-start the next. The feasibility of this approach in cold-
start XMC has been shown in Fang et al. (2019), which presented OvA-Primal (OvAP) and
OvA-Primal++ (OvAP++) as two strategies for finding initial vectors that result in low
initial loss. We provide a short summary of these methods at the end of Sect. 2.

Shortcomings of the existing work: OvAP, though simple and easy to implement, com-
pletely ignores the positive instances for each label. We will show that there is a computa-
tionally cheap method that allows taking them into account.

1  Older versions (Fan et al., 2008) use a trust-region Newton method.

3956	 Machine Learning (2022) 111:3953–3976

1 3

In contrast, OvAP++ makes use of the positives, but requires much more care to imple-
ment, as it breaks the embarrassingly parallel nature of the original OvA approach. Hence,
the individual binary problems need to be solved in a certain (partial) order. This also
precludes the application of this strategy to situations where all labels have to be trained
simultaneously, e.g. when fine-tuning the feature representations f.

The existing analysis in Fang et al. (2019) focuses only on finding an initial weight
vector that has loss as low as possible. Important properties of the loss function (such as
local smoothness / Lipschitz constant) sometimes are more favourable after some training
epochs than right at initialization time, as evidenced e.g. by the success of cyclical learning
rates (Smith & Leslie, 2017) and warmup phases (Goyal et al., 2018). However, the impact
of these properties is not considered in Fang et al. (2019).

Contributions: Our contributions in this work are:

1.	 We explicate via extensive empirical evaluation that, when employed in conjunction
with the squared-hinge loss, the benefit of initialization methods is not limited to just
starting closer to the final weight vector. Good initialization also leads to much faster
computations in each training step, because of an implicit negative-mining effect.

2.	 We present a novel initialization strategy that is computationally efficient, keeps the
simplicity of OvAP, but incorporates information about the positive instances for each
label to find even better initial weights. This is achieved by selecting the initial vector
such that it separates the mean of all positive instances from the mean of all negatives.

3.	 We show experimentally that this leads to a speedup of up to 5× relative to Zero-
initialization for our code-base on the Amazon-670K dataset, and demonstrate that this
enables training of DiSMEC-style models with up to 3 million labels on a single 128-
core node in a reasonable amount of time.

4.	 We provide a new implementation of DiSMEC that can adapt to the NUMA charac-
teristics of modern many-core processors. Combined with the new choice of the initial
vector, this can lead to a speedup of up to 14× in wallclock time.

Outline: In Sect. 2, we formally introduce our learning setting and recap the key concept
of optimization using conjugate-gradients. This is followed by a presentation of the key
results from Fang et al. (2019), the OvAP and OvAP++ initialization methods. In Sect. 3,
we investigate which properties an initial weight vector needs to have to be beneficial for
optimization. In particular, we show that low loss alone is not a sufficient criterion by pro-
viding a counter-example. We investigate why it fails, and thus highlight the importance
of the local loss landscape and the implicit negative-mining effect. The description of our
proposed method is given in Sect. 4, together with an evaluation of its effect on the local
loss landscape and implicit negative-mining. In Sect. 5, an extensive empirical evaluation
of the new initialization method with a variety of datasets and settings is presented. Finally,
Sect. 6 discusses the limitations of our approach and given an outlook on how it could be
applied more broadly in XMC.

2 � Background

Setup: We are given a dataset D = {(xi, yi) ∶ i ∈ [n]} with n training instances xi ∈ X = ℝ
d

and their corresponding labels yi ∈ Y = {−1, 1}l . For a label j ∈ [l] we denote with
�(j)∶={xi ∶ y

(j)

i
= 1} the set of instances for which the label is relevant, and analogously

3957Machine Learning (2022) 111:3953–3976	

1 3

�(j)∶=� ⧵ �(j) , where �∶={xi ∶ i ∈ [n]} is the set of all training instances. This corresponds
to a label vector y(j) which has entries 1 for each positive instance, y(j)

i
= 1 ⇔ i ∈ 𝖯(j) , and −1

otherwise.
In the linear OVA setting, we have to solve l independent problems of size O(n) . We

assume that the number of labels l is large enough so that an additional O(n) computation does
not significantly influence the overall training time. In particular, the initialization method that
will be presented in Sect. 4 requires calculating the mean of all instances, x̄ =

∑n

i=1
xi , which

is a cheap operation compared to solving the l subproblems. In addition, we assume that the
labels are sparse, in the sense that for most j ∈ [l] we have |�(j)| ≪ |�(j)| . These two assump-
tions are part of the characterization of an XMC problem.

The goal in linear XMC is to find a weight vector w∗

j
 for each label j ∈ [l] that minimizes

the risk of the corresponding binary problem with some convex margin loss � , combined with
a regularizer R:

Throughout this paper, we use the L2-norm R[w] = 0.5‖w‖2
2
 as the regularizer. From

hereon, we will focus on the independent binary sub-problems, and consequently drop the
superscript y(j) and write y ∈ {−1, 1}n for the vector indicating the relevance of instances
for a given label. Following Jain et al. (2019), Babbar & Schölkopf (2017, 2019), as the
margin loss � we use the squared hinge-loss

Even though this function’s second derivative does not exist at m = 1 , it can be used for
second-order optimization (Galli et al., 2021).

Conjugate-gradient Newton optimization: The minimization of eq. (3) is carried out using
a CG Newton procedure inspired by Liblinear (Fan et al., 2008; Galli et al., 2021). The algo-
rithm works as follows: First, a descent direction p is determined by minimizing a local quad-
ratic approximation L̂ to the loss function

where � denotes the Hessian of L . The stationarity condition for a local minimum,

shows that the optimal change �∗ of weights – in quadratic approximation – can be found
by solving a system of linear equations. The conjugate-gradient algorithm provides a way
of solving the equations without ever requiring an explicit representation of the matrix �L .
Instead, only Hessian-vector products are needed, which can be calculated for a pointwise
regularization R[w] =

∑m

j=1
�(wj) as (Keerthi et al., 2005)

(3)L
[
w, y(j)

]
∶=

n∑

i=1

�

(
y
(j)

i
w�xi

)
+R[w]

(4)w∗

j
∶=w∗

(
�, y(j)

)
∶= argmin

w

L
[
w, y(j)

]
.

(5)�(m) = max(0, 1 − m)2.

(6)L̂(w + �) = L(w) + ∇L ⋅ � +
1

2
�
�
�L�,

(7)0 = ∇L + �L�
∗,

(8)�d =

(
n∑

i=1

∇
2
w
�(yiw

�xi) +

m∑

j=1

∇
2
w
�(wj)

)
d

3958	 Machine Learning (2022) 111:3953–3976

1 3

For the case of L2 regularization, the second term simplifies to diag(���(w)) = 1 . In prac-
tice, (7) need not be solved exactly, and the conjugate-gradient procedure can be termi-
nated after a few iterations.

Once the quadratically optimal step p has been found, a line-search using a backtracking
approach is carried out over w + �p , � ∈ (0, 1] . This ensures that the loss at the new weight
vector is actually an improvement, L[w + 𝜆∗p] < L[w] , even if the quadratic approximation
deviates from the true loss. If the new point fulfills the stopping criterion as discussed below,
the optimization terminates. Otherwise a new quadratic approximation around w + �∗p is
formed and the next update step is calculated.

Stopping criterion: Whether or not the optimization is stopped depends on the magnitude
of the gradient. We use the criterion given by Liblinear:

The scaling factor � depends on the imbalance in the data and is calculated through

This means that the convergence criterion gets stricter the more imbalanced the train-
ing data, which ensures that simply predicting the majority class for all instances is not
accepted as a solution. Unless otherwise noted, we use �0 = 0.01 , the default value of
Liblinear.

OvA-primal and OvA-primal++: In order to reduce the number of iterations needed to
achieve the stopping criterion, Fang et al. (2019) propose two schemes for selecting the initial
weights w0 , based on the following observation: For �-Lipschitz loss functions and bounded
weights ‖w‖2 < B , the optimal weight vector w∗

(y) for one label vector y results in good per-
formance also for a different label vector y′ if the two label vectors are close in Hamming
distance �H:

Given that for tail labels it holds that �H(y, -1n) ≪ n , they conclude that using w∗
(−1n)

makes the initial vector result in much lower loss than using Zero-initialized weights. For-
mally, the goal is to find the optimal weight for all-negative labels by solving

(9)=

(
n∑

i=1

yixi∇w�
�
(yiw

�xi)

)
d + diag(���(w))d

(10)=

(
n∑

i=1

y2
i
xix

�

i
���

(yiw
�xi)

)
d + diag(���(w))d

(11)=

n�

i=1

xi�
��
(yiw

�xi)⟨xid⟩ + diag(���(w))d

(12)‖∇L[w∗
]‖ ≤ �‖∇L[0]‖.

(13)� = �0 ⋅
max(1,min(|�|, |�|))

n
.

(14)L[w∗
(y), y�] − L[w∗

(y�), y�] ≤ const ⋅ 𝓁H(y, y
�
).

(15)w∗
(−1n) = argmin

w

n∑

i=1

�
(
−w�xi

)
+R[w].

3959Machine Learning (2022) 111:3953–3976	

1 3

This strategy is called OvA-Primal (OvAP). As discussed above, the number of labels l is
assumed to be large enough that this one additional training run will not take a significant
portion of the overall training time.

Then, based on convergence rates of iterative minimizers, they estimate the speedup that
OvA-Primal, given by w0 = w∗

(−1n) , provides over w0 = 0d . For an optimization algo-
rithm that has linear convergence, i.e. that needs

steps for training to precision � , the speedup in the asymptotic bound is log n (Fang et al.,
2019,Thm.3.2) if the average number of samples per label does not scale with n or l.

OvA-Primal++ (OvAP++) extends the idea of OvAP by additionally re-using the final
weight vectors w∗

j
 of one label j as the initial weights for similar labels j′ . To achieve this,

they first build a minimum spanning tree over the labels, including the virtual all-negative
label as the root, where the cost of an edge is given by the Hamming distance between the
label vectors. Starting from the root, one can initialize the descendants of a label by the
final weights of that label. Due to the low Hamming-distance, this should provide a good
starting point. This process is implemented as a blocked depth-first search over the tree as
a compromise between parallelism and memory requirements. OvAP++ provides further
speedups over OvAP, but at the cost of significantly increased implementation complexity.
In particular, the sub-problems can no longer be solved independently from each other.

3 � Analysis of criteria for initial weights

In this section, we investigate which properties an initial weight vector needs to fulfill in
order to improve the training speed. The first criterion – to start with a low loss value,
and correspondingly closer to the optimal weight vector – has been used to motivate the
OvA-Primal method described above. Here, we show that low initial loss alone is not a
sufficient criterion for successful initial weights. In particular, we present a counterexam-
ple, in which the weight vector leads to very low initial loss, orders of magnitude smaller
than initializing by zero, yet does not provide any significant speed-up. We identify two
reasons for this: First, the loss landscape around the initial vector needs to be favourable
for second-order optimization. Second, a significant part of the speed-up is in fact not due
to the reduced distance to the optimal vector and correspondingly smaller number of itera-
tions, but is instead caused by faster computations in each iteration, owing to an implicit
negative-mining effect.

To illustrate these phenomena, we take the AmazonCat-13K dataset (details in the
appendix) from the extreme classification repository (Bhatia et al., 2016; McAuley & Jure,
2013) as a running example in this section and the next.

Insufficiency of low loss: A simple way to calculate an approximation to w∗
(−1n) , the

optimal weight-vector that predicts the absence of the label for every instance, is to use a
weight vector w

b
= (−1, 0,…)

� , where we assume that the bias feature x0 = 1 is at index
0.2

(16)O

(
log

L[w0, y] − L[w∗
(y), y]

�

)

2  Such a strategy seems to have been considered by Fang et al. (2019), as it can be found in their code at
https://​github.​com/​fangh​git/​XMC, though it is not mentioned in the paper.

https://github.com/fanghgit/XMC

3960	 Machine Learning (2022) 111:3953–3976

1 3

Then, the score for any instance x will be m = w�

b
x = −1 , which means that it is clas-

sified as negative with margin one. Therefore, this weight vector is a minimizer of the
squared hinge-loss without regularization. As can be seen in Fig. 1 (left), the initial value
of the loss is decreased by three orders of magnitude, to a lower value than with the OvAP
initializer. Yet, after some iterations, the OvAP based optimization overtakes Bias. In par-
ticular, the Bias-initialized optimization does not make any substantial progress during
the first iteration.

This does not contradict the previous result, because the asymptotic convergence rate
based on the number of iterations does not need to agree with actual computation time, for
example if each iteration provides more progress towards the minimum due to a benign
loss landscape as described in the next paragraph, or if the computations for a single itera-
tion become faster due to implicit negative-mining.

Importance of loss landscape: Certain regions in the weight space may be more benign
towards the chosen minimization procedure than others. For example, in deep networks one
often chooses an initialization procedure that preserves variance and mean over layers, to pre-
vent vanishing or exploding gradients (Glorot et al., 2010). Such a technique does not provide
any reduced loss for the starting point, but can be very effective in speeding up the training.

For the concrete case of Newton optimization, this means that we require the local quad-
ratic approximation to fit the true loss well. As � is piecewise-quadratic, this is fulfilled
only when m is far from the discontinuity at m = 1 . Let 𝜙̂m0

 be the quadratic approximation,
then we can calculate the approximation error based on the step size as

Two examples are shown in Fig. 2. For an instance right at the discontinuity, improving the
classification margin to exceed one causes the quadratic approximation to over-estimate
the true loss value, leading to smaller proposed update vectors p . On the other hand, for
any instance classified with at least margin 1, the quadratic approximation cannot “see" the
increased error as the margin shrinks, and may propose overly large steps p that have to be
shrunk using line search.

By choosing −1 for the bias weight, the initial weights are exactly at the discontinuity
of the Hessian. This suggests that it might be beneficial to use a different value for the
bias, e.g. w0 = 0.9w

b
 or w0 = 2w

b
 . This intuition is confirmed by Fig. 1 (right), where

we can see that both variations make significant progress in the first iteration, with 2w
b

clearly outperforming w
b
 . A more detailed look at this phenomenon is provided by

Fig. 3, which shows that the acceptable step size along the chosen descent direction is
very small if w0 is close to w

b
 . This indicates that the quadratic approximation is overly

(17)e(𝛿;m0)∶=𝜙̂m0
(𝛿) − 𝜙(m0 + 𝛿),

(18)where𝜙̂m0
(𝛿) = 𝜙(m0) + 𝛿𝜙�||m0

+ 0.5𝛿2𝜙��||m0
.

Fig. 2   Approximation errors
e(�;m0) for m0 = 0 (solid blue)
and m0 = 1 (dashed red) over � ,
as described by eq. (17) (Color
figure online)

−2 −1 0 1 2 3
−4

−2

0

2

4

3961Machine Learning (2022) 111:3953–3976	

1 3

optimistic, and proposes much larger steps than optimal. This happens very strongly in
the first epoch of bias=-1 , and to some degree during the first few epochs of bias = −2.

For the squared hinge-loss, a vector that minimizes eq. (15) perfectly will have simi-
lar characteristics to the Bias initialization wb , in that for many instances the predic-
tion will be close to the hinge location. Thus the starting point will be in a location
unfavourable to the Newton optimizer. A remedy is to stop training of w∗

(−1n) early.
This results in larger initial loss, but makes the training progresses more smoothly. More
details on this phenomenon are presented in appendix 7.2.

Even though the local loss landscape can explain why the first Newton-optimization
step makes so little progress, this alone is not sufficient to explain the vastly different
training durations: For 2w

b
 , training takes only 558 seconds, much faster than w

b
 and

0.9w
b
 at 1161 and 995 seconds. In addition to fewer iterations, the initialization method

can also influence the amount of computation necessary during each iteration, through
an implicit negative-mining step as discussed below.

Implicit negative-mining: As the weight vector w approaches its optimum w∗ , the cal-
culations of Hessian-vector products become sparse, because only instances with non-
zero loss need to be taken into account: For m > 1 we have �(m) = ��

(m) = ���
(m) = 0 ,

which implies that the sum over all data points in eq. (11) can be replaced with a sum
over implicitly-mined hard instances

(19)A = {i ∶ 𝜙��
(x�

i
w ⋅ yi) ≠ 0} = {i ∶ x�

i
w ⋅ yi < 1}.

2 4 6 8 10 12 14 16 18 20

0

0.5

1

iteration

st
ep

m
ul
ti
pl
ie
r

biaaas = −0.9
biaas = −1.0
biaas = −2.0

Fig. 3   Multiplier found by backtracking line search, i.e. the fraction of the descent direction as found by the
CG solver that can be applied to the real objective function and still lead to sufficient reduction in loss. The
shaded area indicates ± one standard deviation. Having a value smaller than one indicates that the quadratic
approximation to the loss is overly optimistic in the given direction, and the real step has to be scaled down.
As discussed in the main text (Fig. 2), this happens when the direction in question is such that it reduces the
margin of an instance that is classified correctly with margin more than one. This effect can be seen here:
For bias = −0.9 , all the negative instances still have non-zero error, so the update will choose a direction
that makes them more negative, which is a direction in which the quadratic approximation is overestimating
the loss. On the other hand, with bias = −1 , the only nonzero signal is coming from the positive instances,
which will cause the bias to be reduced. Thus, most of the negative instances will get nonzero error, and
the quadratic approximation severely underestimates the true loss. Consequently, the line search shows that
only a minute step towards the desired direction is allowed. For bias = −2 , the situation is similar, but this
time the distance for each negative instance until it gets nonzero error is much larger, and as such the under-
estimation effect is reduced and larger step size multipliers are possible

3962	 Machine Learning (2022) 111:3953–3976

1 3

Therefore, the computations in eq. (11) can be written as

which can be computationally much more efficient than the full sum (Keerthi et al., 2005).
The active set A has to be re-calculated after each weight update. Because each weight
update requires multiple �d calculations for the conjugate-gradient procedure, this still
results in a net speed-up.

For different Bias-initializations �w
b
 , � ≥ 1 , the active set at the first iteration is given

by are all the negatives, A = � . However, for � = 1 the very first optimization step undoes
the sparsity, so even though the first iteration is fast, it does not make progress towards the
objective and makes the following iterations slow again, see Fig. 4. To a much lesser degree,
this also happens for � = 2 . For 𝜆 < 1 , the initial weights are not at the discontinuity of the
Hessian, but the quadratic approximation now overestimates the actual loss function. Further,
there is no sparsity in the first iteration, causing it to be very slow.

The implicit negative-mining effect, even though not explicitly considered by Fang et al.
(2019), still contributes to the speed-up of OvAP and OvAP++. The OvAP leads to significant
sparsity in the first iteration, as Fig. 6 below will indicate.

Thus, our goal is to find a new initialization method that starts with a high sparsity, in such
a way that the first optimization steps do not turn the Hessian computations dense again as is
the case with Bias. Such an initialization procedure is presented in the next section.

4 � Mean‑separating initialization

Motivation: In this section, we derive a simple way to generate an initial vector, motivated
by the following observation: If the data is linearly separable with margin, then the final
weight vector will separate the convex hull of the negatives � from that of the positives � ,
which in particular implies that it separates the centres of mass p̄ of the positives and n̄ of

(20)�d =

n�

i=1

xi�
��
(yiw

�xi)⟨xid⟩ + d =

�

i∈A

���
(x�

i
w ⋅ yi)yi⟨xi, d⟩ ⋅ xi + d,

Fig. 4   The average sparsity of Hessian-vector product computations, and corresponding duration of one
iteration of the Newton optimization. The averages are taken over the individual binary problems, and the
shaded area shows the 2� error of the mean. The total computation time includes a (sparse) matrix multi-
plication and a varying number of CG steps. As this data shows, even though bias = −1 and bias = −2 start
very sparse, much of the sparsity is lost during the first training steps. For the later iterations, −2 results in
slightly less sparsity and slower iterations, however the effect on total running time is far overshadowed
by the much faster earlier iterations (note the logarithmic axes). Furthermore, as indicated by Fig. 12, for
bias = −2 fewer iterations are needed, so the timings of iterations after the tenth are less important

3963Machine Learning (2022) 111:3953–3976	

1 3

the negatives. This means that we can restrict the search space of weight vectors to those
that separate p̄ and n̄ . A sketch of this situation is given in Fig. 5.

Even though perfect separability might not be achieved on real data, it needs to hold at
least approximately. Fortunately, the high-dimensional tf-idf3 text data that is commonly
used in XMC fulfills this property, as evidenced by the high performance achievable with
linear classifiers.

Derivation: Without making use of any additional information about the training data
(as we want a computationally cheap procedure), there are only very general conditions we
can impose to choose among these hyperplanes. As a first step, we can parameterize the
search space based on the margins of p̄ and n̄ , setting

for two hyperparameters s and t.
These are only two linear constraints in the high dimensional weight space. However,

for good generalization, we prefer weight vectors with minimal norm. If we want a min-
imum L2-norm solution, then the search space becomes restricted to span(p̄, n̄) , and we
can parameterize w0 = up̄ + ṽn̄ . This leads to a system of two linear equations in the two
unknowns u and ṽ , with a unique solution except in the unlikely event that p̄ and n̄ are lin-
early dependent.

Reparameterization for efficiency: Since most labels have only few positive instances,
their mean p̄ can be calculated quickly, but calculating n̄ directly would be an O(n) opera-
tion for each label. However, we can precompute the mean of all instances x̄ , and use the
property

(21)⟨w0, p̄⟩ = s, ⟨w0, n̄⟩ = t,

(22)|�|n̄ + |�|p̄ = |�|x̄.

optimal
boundary

mean of negatives
mean of positives

initial
boundary

s
t

Fig. 5   Motivation for the Average-of-Positives initialization. If the data is linearly separable, then the fea-
ture-means of the positives (blue) and the negatives (red) will lie on the correct side of the optimal separat-
ing hyperplane (black line). Thus we may restrict our search for the initial vector to the set of the separating
planes of p̄ and n̄ (orange). In order to achieve strong implicit negative mining in the first epoch, we choose
a solution where the center of mass of the negatives is classified correctly with a large margin (dashed
orange lines), so that most of the negatives (light red) will be classified correctly with a margin over 1 and
thus not enter the Hessian computation (Color figure online)

3  term-frequency-inverse-document-frequency. Each entry in the feature vector represents how often a term
appears in the source document, normalized by how often that term appears in the entire corpus, see e.g.
(Shalev-Shwartz et al., 2014,Chapter 17)

3964	 Machine Learning (2022) 111:3953–3976

1 3

Because span(p̄, n̄) = span(p̄, x̄) , we can make the equivalent parameterization
w0 = up̄ + vn̄ , leading to the equations

This is solved by

A short discussion on the situations if the denominators become zero is given in
appendix 7.3.

As we want the loss vector corresponding to the initial weights to be sparse, we want
the distance of n̄ to the decision boundary to be larger than that of p̄ . On the other hand,
it needs to be small enough that the resulting weight vector is not too far from the optimal
weights. Empirically, we found s = 1 , t = −2 (cf. appendix 7.3) to work well.

Evaluation: Does this initialization method work as we expect? As shown in Fig. 6, the
method induces loss vectors that are more sparse than the ones for OvAP, and keeps this
property over the course of training, resulting in faster update times for each iteration. As
expected, tail labels benefit most, because the situation depicted in Fig. 5 is better approxi-
mated in the tail than for head labels. Because most labels in XMC are tail labels, training
time improvements for them are most important for overall speed-up. Still, our method is
faster or at least as fast as any of the other methods across the entire range of number of
positives.

Figure 7 shows that using the MSI initialization drastically reduces the number of itera-
tions needed for convergence for tail labels. Whereas for Zero and OvAP initialization the
number of iterations increases as the number of positive instances decreases, for Bias and
MSI initialization it remains almost constant. This cannot be explained by looking only
at the distance the optimization algorithm has to travel, neither in terms of the initial loss
value, nor in terms of the distance between initial and final weight vector. The correspond-
ing graphs are presented in appendix 7.3.

s = ⟨w0, p̄⟩ = ⟨up̄ + vx̄, p̄⟩ = v⟨x̄, p̄⟩ + u⟨p̄, p̄⟩
���t = ���⟨w0, n̄⟩ = ⟨up̄ + vx̄, ���x̄ − ���p̄⟩.

(23)u =

⟨x̄, p̄⟩(t + (s − t)���∕���) − s⟨x̄, x̄⟩
⟨p̄, x̄⟩2 − ⟨p̄, p̄⟩⟨x̄, x̄⟩

(24)v = (s − u⟨p̄, p̄⟩)∕⟨x̄, p̄⟩.

0 2 4 6 8 10 12 14

10−1

101

iteration

no
nz

er
os

%

Zero
Bias
MSI
OvAP

Fig. 6   Sparsity of the Hessian calculation over different training epochs. Even though Bias-initialization
starts out very sparse, this property is lost after the first update step. In contrast, MSI maintains sparsity
over the entire range of training iterations

3965Machine Learning (2022) 111:3953–3976	

1 3

Until about iteration 8, the duration per iteration with MSI is faster than the other ini-
tialization methods, as depicted in Fig. 8. Because MSI very rarely needs more than 10
iterations of training, and on average if finished before 8 iterations (Fig. 7), the slight speed
advantage of the other methods for later iterations only applies to very few binary sub-
problems, and such has little effect on the overall training time.

5 � Benchmarks

In this section, we demonstrate the effectiveness of MSI initialization on a wide range of
datasets and settings. We first provide timings for training with sparse tf-idf data on a singe,
large compute node, the setting in which we expect linear OVA models to be run typi-
cally. We then show how changes in the training data affect the speed-up of our method:
In particular, we present timing for the case of training with a dense input representation,
and timings for training with the logistic loss, which does not admit the implicit negative-
mining effect. Finally, to allow for a meaningful comparison with the method by Fang et al.
(2019), we also run training on smaller hardware.

Infrastructure and training configuration: Our code is a re-implementation of the con-
jugate-gradient Newton procedure of recent versions of Liblinear (Galli et al., 2021). The
hyperparameters related to stopping condition for conjugate-gradient iterations ( � = 0.5 ),
preconditioner ( � = 0.01 ), back-tracking line search ( � = 0.5 , � = 0.01 , max_steps = 20 ),
and stopping condition for the optimization ( �0 = 0.01 ) have been taken from their code.
To reduce model size, all weights below a threshold of 0.01 have been clipped to zero.

100 101 102 103 104

10

20

positives

iterations

Zero
Bias
MSI
OvAP

100 101 102 103 104

5,000

10,000

15,000

20,000

positives

Duration [ms]

Fig. 7   Number of Newton optimization steps required for convergence (left) and training time for a single
label (right). The average and the 95% quantiles are plotted as a function of the number of positive instances

0 2 4 6 8 10 12 14

500

1,000

1,500

iteration

duration [ms]

Zero
Bias
MSI
OvAP

2 4 6 8 10 12 14

0

0.5

1

iteration

step multiplier

Zero
Bias
MSI
OvAP

Fig. 8   Duration per iteration (left), and line search step multiplier (right). The MSI initialization manages
to have the early iterations as fast as the later ones, while still working much better in terms of the quadratic
approximation than the Bias initialization. The decrease of the step multiplier, and the slight increase in
duration, for late iterations is not relevant, because as Fig. 7 shows most of the binary problems will have
finished by iteration 10

3966	 Machine Learning (2022) 111:3953–3976

1 3

Our main experiments were run on a single compute node equipped with two AMD
Rome 7H12 CPUs. The code is NUMA-aware and produces a copy of the training data
for each NUMA-node, but memory bandwidth still is the limiting factor in scalability. We
observed very good scaling for 64 cores, but sublinear improvements for more cores.

All nodes in the compute cluster have identical hardware and jobs were run with exclu-
sive access to the node. In the absence of any other user-jobs running on the same node,
and hence no significant randomness4 in the run times, we have not systematically col-
lected data from multiple runs of the same setting.

Sparse data: We tested the initialization methods on Eurlex-3k (Mencia & Loza,
2008), AmazonCat-13k (McAuley & Jure, 2013), WikiSeeAlsoTitles-350K,
WikiTitles-500k, Amazon-670k (McAuley & Jure, 2013), WikiLSHTC-325k
(Partalas et al., 2015), Amazon-3M (McAuley et al., 2015, 2015), and Delicious-200k
(Wetzker et al., 2008) in their train/test splits as available from Bhatia et al. (2016). The run-
time results are shown in the Tabel 1 under the columns Zero, Bias, OvAP, and MSI.

As shown in the Ratio column, the proposed method (MSI) is 3–4 times faster than
Zero initialization, and also significantly faster than Bias and OvAP initialization. For
Amazon-3M it is only possible to run the proposed MSI initializer due to the large com-
putational cost involved for the Zero initialization baseline. Therefore, the relative speed-
up cannot be reported. However, our training of 1360 minutes ( < 1 day), using MSI as a
starting point of the optimization process, shows that learning a DiSMEC-style (Babbar &
Schölkopf, 2017) model is feasible even for datasets with millions of labels, on a single
node.

The Zero setting corresponds to the vanilla DiSMEC algorithm, under our new and
faster implementation. Due to improvements in implementation quality, in particular the
NUMA-awareness of our code, our timings with this initialization are already much faster
than running original DiSMEC on the same node.

Because the optimization problem is convex, the minimum is not affected by the choice
of initial parameter. However, because in practice only an approximate minimum is found,
there are slight variations (around 0.1%) in precision@k metrics for the different methods.
The exact numbers can be found in Table 4.

Dense data: We also ran the tests on the same dataset of dense features as used for
slice5. The default setting for the stopping condition as specified by Liblinear, �0 = 0.01 ,
is far too strict in this setting. Therefore, we increased this parameter to �0 = 1 here. For
these settings, we observed larger variability in the classification accuracy, and a slightly
reduced, but still significant speed-up.

Logistic loss: We also ran a test where we replaced the squared hinge-loss with the
logistic loss. As the logistic loss only vanishes asymptotically, this is a setting that does not
benefit from implicit negative-mining. This means that later iterations will take approxi-
mately as long as earlier ones, and there is less benefit from being able to skip the first
iterations. The result is a much reduced benefit from our proposed initialization, as can be
seen in Table 2.

Due to the vast number of negatives (for a tail label), the loss function’s minimum will
not be achieved when the negatives are classified correctly with margin one as is the case
with squared-hinge, but will in fact train a larger margin for the negatives. This suggests
that by decreasing the t parameter further, our initial guess for the separating hyperplane
will be closer to the final weight vector. Thus we have used t = −3.

4  e.g. multiple runs of Delicious-200k with zero initialization fluctuate between 28236 and 28483 seconds.
5  http://​manik​varma.​org/​code/​Slice/​downl​oad.​html

http://manikvarma.org/code/Slice/download.html

3967Machine Learning (2022) 111:3953–3976	

1 3

Comparison with OvAP++: Finally, in order to allow for a meaningful comparison with
the code by Fang et al. (2019), we also ran trainings with the smaller datasets on a Xeon
Gold 6148 processor, with both our own implementation and with their code. For these
experiments, instead of taking the dataset directly from the XMC repository (Bhatia et al.,
2016), we applied their preprocessing script. Because the two methods still use slightly
different optimization procedures (theirs uses a trust-region instead of a line search, as in
older Liblinear versions) and implementations, we still need compare the relative speed-
ups between the different initialization methods. The results can be seen in Table 3. MSI
initialization consistently leads to more speed-up than OvAP++ initialization.

6 � Discussion

We have provided a way to initialize the weights of a linear OvA extreme classifier in such
a way as to reduce training times. Our experiments show that aside from the initial loss
value investigated in Fang et al. (2019), the implicit sparsity and local smoothness proper-
ties of the loss landscape also play an important role in the success of the method.

Limitations: The initialization method discussed in this work is mainly applicable to
linear One-versus-rest XMC algorithms. This rules out label-embedding schemes (Guo
et al., 2019; Bhatia et al., 2015), decision-tree based classifiers (Prabhu & Manik, 2014;
Majzoubi & Anna, 2020) and deep-learning methods in which the classifier is jointly learnt
with the intermediate representations (You et al., 2019).

Outlook: The choice of initial vector is an underexplored design tool in XMC that is
orthogonal to many other design choices such as explicit negative-mining (Reddi et al.,
2019; Jain et al., 2019), training meta classifiers over buckets of labels (Medini et al., 2019;
Dahiya et al., 2021), or the choice of regularizer. Future work should thus look into com-
bining these, for example integrating our initialization into the OvA parts of Slice (Jain
et al., 2019), Parabel (Prabhu et al., 2018) XR-Transformer (Zhang et al., 2021), Probabilis-
tic Label Trees (Wydmuch et al., 2018), or Astec (Dahiya et al., 2021).

Table 1   Training time (in minutes) for different datasets and initialization methods

The Ratio column denotes the speed-up of MSI-initialization over Zero-initialization under our imple-
mentation. Due to the sub-linear scaling beyond 64 cores, the reported times here cannot be directly con-
verted to single-core timings by multiplying with 128

Dataset Setting ���� ���� ���� ��� Ratio

Eurlex-4k tf-idf 0.1 0.1 0.1 0.1 1.8
Wiki10-31k tf-idf 3.2 3.1 2.6 1.9 1.6
Amazoncat-13k tf-idf 19.7 11.5 12.6 5.6 3.5
Amazoncat-14k tf-idf 78.8 34.0 48.0 23.2 3.4
WikiTitles-500k tf-idf 320.6 187.8 301.8 71.1 4.5
Amazon-670k tf-idf 409.1 337.3 259.4 81.3 5.0
Delicious-200k tf-idf 470.6 416.2 337.5 283.8 1.7
WikiLSHTC-350k tf-idf 1,111.0 479.5 634.8 310.5 3.6
Amazon-3M tf-idf – – – 1360.1 –
Eurlex-4k dense 0.1 0.1 0.1 0.0 2.7
Amazon-670k dense 782.4 376.5 489.1 321.2 2.4

3968	 Machine Learning (2022) 111:3953–3976

1 3

Appendix

Information on AmazonCat data

To evaluate the initialization methods and investigate their properties, we took the AmazonCat-
13K dataset from the extreme classification repository Bhatia et al. (2016); McAuley and Jure
(2013) as a running example during sects. 3 and 4. In this dataset the input features are sparse tf-
idf values of a bag-of-words representation augmented by an additional bias feature that is set to 1.
The train/test split is taken from the repository. The dataset consists of 1 186 239 training instances
and 306 782 test instances in a 203 882 dimensional feature space. These instances are mapped to
13 330 labels, with an average of 5 labels per instance.

Early stopping for OVA‑primal

For the squared-hinge loss, a vector that minimizes (15) perfectly will have similar char-
acteristics to the Bias initialization wb , in that for many instances the prediction will be
close to the hinge location. Thus the starting point will be in a location unfavourable to the
Newton optimizer. A remedy is to stop training of w∗

(−1) early. This results in larger initial
loss, but makes the training progresses more smoothly.

Since the label vector −1 is maximally imbalanced, according to equation (13) the weight
should be trained to high precision � = �0∕n . If instead we use the much less strict � = �0 , the
initial loss is much larger, but at the same time the training progresses more smoothly.

The resulting training durations are shown in Fig. 9. Overall, the loose stopping criterion
performs much better, except for labels with less than three positives. This is because for these

Table 2   Training time (in minutes) for different datasets and initialization methods when minimizing the
logistic loss

Dataset ���� ���� ���� ��� Ratio

Eurlex-4k 0.2 0.2 0.1 0.2 1.2
Wiki10-31k 4.1 3.4 2.4 3.5 1.2
Amazoncat-13k 35.6 28.2 24.8 28.2 1.4
Amazoncat-14k 160.1 127.6 111.3 125.3 1.3
WikiTitles-500k 366.8 311.0 270.4 315.7 1.2
Amazon-670k 633.6 522.8 420.4 525.5 1.2

Table 3   Training time (in minutes) and speed-up on smaller hardware comparing OvAP++ and MSI 

Dataset ���� ���� + + Ratio ���� ��� Ratio

Eurlex-4k 0.3 0.2 1.7 0.3 0.1 2.5
Wiki10-31k 9.7 5.7 1.7 7.3 3.1 2.4
Amazoncat-13k 61.7 30.6 2.0 39.7 10.5 3.8
Amazoncat-14k 208.0 94.8 2.2 145.7 39.2 3.7
WikiTitles-500k 521.9 236.4 2.2 535.2 114.9 4.7
Amazon-670k 1310.4 418.1 3.1 708.2 172.1 4.1

3969Machine Learning (2022) 111:3953–3976	

1 3

labels, the initial vector is very close to the final vector, and thus the number of iterations that are
required for training decreases, cf. Fig. 10. This is in contrast to the bias = −1 setting, which has
similar characteristics in the second-order optimization, but does not benefit from fewer itera-
tions and consequently does not show a decrease of overall training time for the extreme tail.

In Fig. 11 (left), the training progress over the iterations is shown. Here we can see that,
similar to Bias initialization, the strict setting results in very little progress in the first
iteration, and overall much slower progress also for the other iterations, such that loose
turns out to be the faster setting, even though its initial loss is an order of magnitude larger.
The right side of this figure shows the step multiplier during the line-search phase, which
shows that during the first iteration, for strict the second-order approximation is overly
optimistic and the real step size has to be much smaller than the CG procedure suggests.

Additional Results for Bias Initialization

Some additional graphs showing details about the training process with Bias initializa-
tion. In Fig. 12 the training duration of different Bias variations is shown in terms of

Fig. 9   Histogram (left) and average with 95% confidence interval in dependence of the number of positive
instance (right) of the training time, measured in milliseconds. Overall, the loose training configuration is
much faster, though for extreme tail labels with less than 3 positive instances, strict actually performs
slightly better

Fig. 10   Histogram (left) and average with 95% confidence interval in dependence of the number of positive
instance (right) of the number of weight updates until convergence

3970	 Machine Learning (2022) 111:3953–3976

1 3

training time for each individual binary problem. For bias = −1 , the binary problems
take roughly the same amount of time independent of the number of positives, but for
bias = −2 the tail labels can be trained much faster.

The training duration as measured in number of iterations is presented in Fig. 13.

Additional results for mean‑separating initialization

In Fig. 14 (left) we show how the initial loss depends on the number of positive
instances. For Bias and MSI, we can see that tail labels result in very low initial loss,
whereas for head labels MSI gives slightly larger loss than Bias and OvAP. On the
other hand, OvAP ’s loss remains significantly larger for tail labels. The right side of
Fig. 14 shows how that initial loss translates to initial distance in weight space. Here,

0 5 10 15
100

101

102

103

iteration

loss

5 10 15 20
0

0.2

0.4

0.6

0.8

1

iteration

step multiplier

OvAP-strict
OvAP-loose

Fig. 11   Letting the OvA-Primal initial vector be the result of training the all-zero-label problem until con-
vergence (strict) results in much worse performance than doing early stopping (loose). We suspect that this is
because strict training brings the weight vectors into a regime that is qualitatively similar to the bias = −1 set-
ting: All training instances will predict a negative label with a margin very close to 1. Even though this results
in much lower initial loss (left), it also leads to a useless first iteration in which little progress is made (right)

Fig. 12   Total duration of the individual binary problems when trained with different Bias-init variations.
The histogram on the left has bins corresponding to the number of binary problems taking a certain amount
of time, on the right the average time and 95% quantiles are shown in dependence of the number of positive
instances. Duration is measured in milliseconds. The graphs show that bias = −1 is a local maximum in
terms of computation time

3971Machine Learning (2022) 111:3953–3976	

1 3

we can see that for tail labels, OvAP ’s initial weight vector is an order of magnitude
further from the optimum than for the other methods.

What happens if the denominator of MSI is zero The expression in equation (23)
diverges if p̄ and x̄ are linearly dependent, which implies that the means of features for
negatives and positives only differs by a factor. In that case, we cannot (except in unlikely
special cases) find an initial vector that fulfills our condition, so we return the zero vector.

A second numerical instability occurs if �⟨x̄, p̄⟩� ≪ 1 , during the calculation of v. To
investigate this setting, we substitute ⟨x̄, p̄⟩ with 0 in (23) and (24).

(25)s = u⟨p̄, p̄⟩

(26)���t = v���⟨x̄, x̄⟩ − u���⟨p̄, p̄⟩

Fig. 13   Number of Newton optimization steps required for convergence. On the left, the data is shown as a
histogram, with the bins corresponding to the number of binary problems that required the corresponding
number of steps. On the right, the average number of steps, and the 95% quantiles, are plotted as a function
of the number of positive instances. The data shows that the benefit of the bias = −2 initialization is not
limited purely to faster iterations because of increased sparsity, but it also needs fewer steps, despite having
slightly larger initial loss than bias = −1 . This indicates that each step has to make more progress, i.e. the
loss landscape is more benign to the Newton optimization around the bias = −2 trajectory. The right-hand
graph also shows that most of the benefit comes from the tail labels

Fig. 14   Loss of the initial weight vector (left) and distance between initial and final vector (right). The
shaded area shows 95% quantiles. For all except Zero initialization, loss and distance are much lower for
tail labels than for head labels

3972	 Machine Learning (2022) 111:3953–3976

1 3

This leads to

Choice of hyperparameters for MSI As argued in the main text, in order to achieve spar-
sity in the Hessian calculations, having the average of the negative instances be classified
very strongly as a negative would be beneficial. Interestingly, Fig. 15 shows not only the
expected speedup in per-iteration time, but also that t = −1 requires significantly more iter-
ations than the other two settings.

This is not too surprising, given that we expect that the large number of negative
instances fill a larger proportion of the space than the few positives, so the separating hyper-
plane should be closer to the mean of the positives. One reason for this could be that t = −1
induces a higher initial loss than the other two settings, as shown in the bottom left graph.
However, if we measure the distance that the optimization procedure covers, i.e. the distance
between the initial and final weight vector, it turns out that t = −1 actually starts closest.

Full result table

Since the actual loss function is based on binary classification, we have also calculated the
precision and recall as averaged over the individal binary problems. The metrics remain

(27)u =
s

⟨p̄, p̄⟩ , v =
���t + ���s
���⟨x̄, x̄⟩ .

Fig. 15   Average duration of the iterations (top left, in � s), and number of iterations for different numbers
of positive instances (top right). The bottom left graph shows the development of the objective function. At
first glance, this seems paradoxical, as the algorithm is designed so that for each binary problem, the loss
strictly decreases over the iterations. The apparent increase is caused by the fact that the sample of binary
problems shrinks for later iterations, as the labels for which the loss is already low before will terminate the
optimization. Finally, the bottom right graph shows the Euclidian distance between the initial weight vec-
tor and the approximately optimal weight vector for which the minimization is terminated. The shaded area
marks the 95% quantile

3973Machine Learning (2022) 111:3953–3976	

1 3

Table 4   Durations (as given in main paper) and precision@{1,3,5} for training different datasets with the
given initialization methods

Dataset Setting Method P@1 P@3 P@5 Prec Rec Duration

Eurlex-4k tf-idf ���� 83.8 70.8 59.1 79.2 38.5 0.15
Eurlex-4k tf-idf ���� 83.7 70.8 59.1 79.2 38.4 0.13
Eurlex-4k tf-idf ��� 83.7 70.8 59.0 79.2 38.4 0.08
Eurlex-4k tf-idf ���� 84.0 70.7 59.1 79.2 38.4 0.10
Wiki10-31k tf-idf ���� 84.1 74.7 65.9 75.8 13.0 3.20
Wiki10-31k tf-idf ���� 84.1 74.6 65.9 75.7 13.0 3.10
Wiki10-31k tf-idf ��� 84.3 74.7 65.9 75.8 13.0 1.95
Wiki10-31k tf-idf ���� 84.1 74.7 65.9 75.7 13.0 2.60
Amazoncat-13k tf-idf ���� 93.2 78.9 64.2 84.9 58.2 19.75
Amazoncat-13k tf-idf ���� 93.2 78.9 64.2 84.9 58.1 11.50
Amazoncat-13k tf-idf ��� 93.0 78.9 64.1 84.9 58.0 5.60
Amazoncat-13k tf-idf ���� 93.2 78.9 64.2 85.0 58.1 12.58
Amazoncat-14k tf-idf ���� 89.7 69.5 54.9 87.3 66.1 78.81
Amazoncat-14k tf-idf ���� 89.6 69.5 54.9 87.3 66.0 34.02
Amazoncat-14k tf-idf ��� 89.5 69.5 54.9 87.3 65.8 23.25
Amazoncat-14k tf-idf ���� 89.7 69.5 54.9 87.3 66.2 48.03
Amazon-670k tf-idf ���� 45.7 40.7 37.2 82.0 17.6 409.05
Amazon-670k tf-idf ���� 45.7 40.7 37.2 82.0 17.6 337.30
Amazon-670k tf-idf ��� 45.7 40.7 37.2 82.0 17.6 81.31
Amazon-670k tf-idf ���� 45.6 40.7 37.2 82.0 17.6 259.42
WikiLSHTC tf-idf ���� 64.4 42.6 31.7 84.7 19.2 931.58
WikiLSHTC tf-idf ���� 64.4 42.6 31.6 84.7 19.2 803.45
WikiLSHTC tf-idf ��� 64.4 42.7 31.7 84.6 19.2 286.79
WikiLSHTC tf-idf ���� 64.4 42.6 31.7 84.7 19.2 634.76
Delicious-200k tf-idf ���� 46.4 39.3 35.7 29.2 1.7 470.58
Delicious-200k tf-idf ���� 46.4 39.3 35.7 29.5 1.7 416.20
Delicious-200k tf-idf ��� 46.2 39.1 35.6 29.0 1.7 283.82
Delicious-200k tf-idf ���� 46.4 39.3 46.4 29.2 1.7 337.47
WikiTitles-500k tf-idf ���� 40.1 21.4 15.0 68.0 5.6 320.59
WikiTitles-500k tf-idf ���� 40.1 21.4 15.0 68.2 5.6 187.78
WikiTitles-500k tf-idf ��� 40.1 21.4 15.0 68.2 5.6 71.13
WikiTitles-500k tf-idf ���� 40.1 21.4 15.0 68.1 5.6 301.80
Amazon-670k dense ���� 35.6 32.1 29.4 74.6 23.0 782.39
Amazon-670k dense ���� 34.2 31.0 28.5 69.4 22.4 376.02
Amazon-670k dense ��� 35.6 32.1 29.5 73.5 23.4 321.19
Amazon-670k dense ���� 35.6 32.0 29.4 74.5 23.0 489.15
Eurlex-4k dense ���� 77.2 63.4 51.3 72.8 36.3 0.13
Eurlex-4k dense ���� 75.3 62.1 50.2 76.0 26.4 0.07
Eurlex-4k dense ��� 76.6 63.0 51.4 67.7 39.1 0.05
Eurlex-4k dense ���� 76.9 63.5 51.4 72.5 36.4 0.07
Amazon-3M tf-idf ��� 47.8 45.0 42.9 67.1 14.0 1,360.10

3974	 Machine Learning (2022) 111:3953–3976

1 3

mostly unchanged for tf-idf data, but there is significant fluctuation when slice features
are used (Table 4).

Author Contributions  ES: Idea, Implementation, Writing RB: Supervision, Writing – Review & Editing,
Original DiSMEC implementation

Funding  Open Access funding provided by Aalto University. Academy of Finland (347707)

Data availibility  http://​manik​varma.​org/​downl​oads/​XC/​XMLRe​posit​ory.​html

Declarations 

 Conflict of interest  *.aalto.fi *.poznan.pl

Consent to participate  Not Applicable

Consent for publication  Not Applicable

Ethical approval  Not Applicable

Code  version.aalto.fi/gitlab/xmc/dismecpp

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Adamic, L. A., & Bernardo, A. H. (2002). Zipf’s law and the Internet. Glottometrics, 3(1), 143–150.
Agrawal, R., et al., (2013). “Multi-Label Learning with Millions of Labels: Recommending Advertiser Bid

Phrases for Web Pages”. In: Proceedings of the 22nd In- ternational Conference on World Wide Web.
WWW ’13. Rio de Janeiro, Brazil: Association for Computing Machinery, pp. 13-24.

Babbar, R., & Schölkopf, B. (2017). DiSMEC: Distributed sparse machines for extreme multi-label classi-
fication. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.
WSDM 17. Cambridge, United Kingdom: Association for Computing Machinery, pp. 721–729.

Babbar, R., & Schölkopf, B. (2019). Data scarcity, robustness and extreme multi-label classification.
Machine Learning, 108(8), 1329–1351.

Bhatia, K., et al. (2016). The extreme classification repository: Multi-label datasets and code. url: http://
manikvarma.org/downloads/XC/XMLRepository.html.

Bhatia, K., et al. (2015). Sparse local embeddings for extreme multi-label classification. NIPS, 29, 730–738.
Chang, W.-C. et al. (2020). Taming pretrained transformers for extreme multilabel text classification”. In:

KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, CA, USA, August 23–27, 2020. ACM, pp. 3163-3171.

Dahiya, K. et al. (2021). DeepXML: A deep extreme multi-label learning framework applied to short text
documents. In Proceedings of the 14th ACM Inter- national Conference on Web Search and Data Min-
ing, pp. 31-39.

Dekel, O., Ohad, S. (2010). Multiclass-multilabel classification with more classes than examples. In Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Ed. by
Yee, W. T., and Mike, T. Vol. 9. Proceedings of Machine Learning Research. Chia Laguna Resort,
Sardinia, Italy: PMLR, pp. 137-144.

Deng, J. et al. (2010). What does classifying more than 10,000 image categories tell us? In: ECCV.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://creativecommons.org/licenses/by/4.0/

3975Machine Learning (2022) 111:3953–3976	

1 3

Duchi, J., Elad, H., & Yoram, S. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(61), 2121–2159.

Fan, R.-E., et al. (2008). LIBLINEAR: A library for large linear classification. The Journal of machine
Learning research, 9, 1871–1874.

Fang, H. et al. (2019). Fast training for large-scale one-versus-all linear classifiers using tree-structured ini-
tialization. In Proceedings of the 2019 SIAM International Conference on Data Mining. SIAM, pp.
280–288.

Galli, Leonardo, Chih-Jen, Lin (2021). A study on truncated newton methods for linear classification. In
IEEE Transactions on Neural Networks and Learning Systems.

Glorot, X., Yoshua, B. (2010). Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, pp. 249–256.

Goyal, P. et al. (2018). Accurate, large minibatch SGD: Training ImageNet in 1 Hour. arXiv:​ 1706.​02677
[cs.CV].

Guo, C. et al. (2019). Breaking the glass ceiling for embedding-based classifiers for large output spaces.
Advances in Neural Information Processing Systems. In Wallach H. et al. (Eds.), Vol. 32. Curran Asso-
ciates, Inc.

Jain, H. et al. (2019). Slice: Scalable linear extreme classifiers trained on 100 million labels for related
searches. In WSDM, pp. 528–536.

Keerthi, S., Sathiya, D., DeCoste, T. J. (2005). A modified finite Newton method for fast solution of large
scale linear SVMs. Journal of Machine Learning Research 6(3).

Khandagale, S., Han, X., & Rohit, B. (2020). Bonsai: diverse and shallow trees for extreme multi-label clas-
sification. Machine Learning, 109(11), 2099–2119.

Liu, J., et al. (2017). Deep learning for extreme multi-label text classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information Retrieval.

Majzoubi, M., Anna, C. (2020). Ldsm: Logarithm-depth streaming multi-label decision trees. In Interna-
tional Conference on Artificial Intelli- gence and Statistics. PMLR, pp. 4247–4257.

McAuley, J., Jure, L. (2013). Hidden factors and hidden topics: understanding rating dimensions with
review text. In Proceedings of the 7th ACM conference on Recommender systems, pp. 165–172.

McAuley, J., Rahul, P., Jure, L. (2015). Inferring networks of substitutable and complementary products.
In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 785–794.

McAuley, J., et al. (2015). Image-based recommendations on styles and substitutes. In Proceedings of the
38th international ACM SIGIR conference on research and development in information retrieval, pp.
43–52.

Medini, T., et al. (2019). Extreme classification in log memory using count-min sketch: A case study of
amazon search with 50m products. arXiv preprint arXiv:​1910.​13830.

Mencia, E., Loza, J. F. (2008). Efficient pairwise multilabel classification for large-scale problems in the
legal domain. In Joint European Conference on Machine Learning and Knowledge Discovery in Data-
bases. Springer, pp. 50–65.

Mikolov, T., et al. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:​
1301.​3781.

Mnih, A., Geoffrey, E. H. (2009). A Scalable Hierarchical Distributed Language Model. In Advances in
Neural Information Processing Systems. Koller D. et al. (Eds.), Vol. 21. Curran Associates, Inc.

Partalas, I., et al. (2015). Lshtc: A benchmark for large-scale text classification. arXiv preprint arXiv:​1503.​
08581.

Prabhu, Y., et al. (2018). Parabel: Partitioned label trees for extreme classification with application to
dynamic search advertising. In Proceedings of the 2018 World Wide Web Conference, pp. 993–1002.

Prabhu, Y., Manik, V. (2014). Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label
learning. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 263–272.

Qaraei, M., et al. (2021). Convex surrogates for unbiased loss functions in extreme classification with miss-
ing labels. In Proceedings of The Web Con- ference 2021. WWW ’21. Ljubljana, Slovenia: Associa-
tion for Computing Machinery.

Reddi, S. J., et al. (2019). Stochastic negative mining for learning with large output spaces. In The 22nd
International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1940–1949.

Ruder, S. (2017). An overview of gradient descent optimization algorithms. arXiv:​ 1609.​04747 [cs.LG].
Shalev-Shwartz, S., Ben-David, S., (2014). Understanding machine learning: From theory to algorithms.

Cambridge university press.

http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1910.13830
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1503.08581
http://arxiv.org/abs/1503.08581
http://arxiv.org/abs/1609.04747

3976	 Machine Learning (2022) 111:3953–3976

1 3

Smith, L. N., (2017). Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV). IEEE, pp. 464–472.

Wetzker, R., Carsten, Z., Christian, B. (2008). Analyzing social bookmarking systems : A del. icio. us
Cookbook.

Wydmuch, M., et al. (2018). A no-regret generalization of hierarchical softmax to extreme multi-label clas-
sification. In Advances in Neural Information Processing Systems 31. Bengio S. et al. (Eds.), Curran
Associates, Inc., pp. 6355–6366.

Yen, I. E. H., et al. (2017). Ppdsparse: A parallel primal-dual sparse method for extreme classification. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 545–553.

You, R. et al. (2019). AttentionXML: Label tree-based attention-aware deep model for high-performance
extreme multi-label text classification. In Advances in Neural Information Processing Systems. Wal-
lach H. et al. (Eds.), Vol. 32. Curran Associates, Inc.

Zhang, J. et al. (2021). Fast multi-resolution transformer fine-tuning for extreme multi-label text classifica-
tion. In Advances in Neural Information Processing Systems 34.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Speeding-up one-versus-all training for extreme classification via mean-separating initialization
	Abstract
	1 Introduction
	2 Background
	3 Analysis of criteria for initial weights
	4 Mean-separating initialization
	5 Benchmarks
	6 Discussion
	References

