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Abstract
Many commonly well-performing convolutional neural network models have shown to be 
susceptible to input data perturbations, indicating a low model robustness. To reveal model 
weaknesses, adversarial attacks are specifically optimized to generate small, barely per-
ceivable image perturbations that flip the model prediction. Robustness against attacks can 
be gained by using adversarial examples during training, which in most cases reduces the 
measurable model attackability. Unfortunately, this technique can lead to robust overfitting, 
which results in non-robust models. In this paper, we analyze adversarially trained, robust 
models in the context of a specific network operation, the downsampling layer, and provide 
evidence that robust models have learned to downsample more accurately and suffer sig-
nificantly less from downsampling artifacts, aka. aliasing, than baseline models. In the case 
of robust overfitting, we observe a strong increase in aliasing and propose a novel early 
stopping approach based on the measurement of aliasing.
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1  Introduction

Convolutional Neural Networks (CNNs) provide highly accurate predictions in a wide 
range of applications. Yet, to allow for practical applicability, CNN models should not be 
fooled by small image perturbations, as they are realized by adversarial attacks (Goodfel-
low et al., 2015a; Moosavi-Dezfooli et al., 2016; Rony et al., 2019). Such attacks are opti-
mized to find image perturbations such that the network makes incorrect predictions. Since 
the perturbations are small, human observers can usually still easily recognize the correct 
class label. Susceptibility to such perturbations is prohibitive for the applicability of CNN 
models in real world scenarios, as it indicates limited reliability and generalization of the 
model (Fig. 1).

To establish adversarial robustness many sophisticated methods have been developed 
(Goodfellow et al., 2015a; Rony et al., 2019; Kurakin et al., 2017). Some can defend only 
against one specific attack (Goodfellow et al., 2015a) while others propose more general 
defenses against diverse attacks. However, even those defenses suffer from a phenomenon 
called robust overfitting, the model confronted with adversarial examples overfits on the 
already seen examples and loses its general robustness against different/stronger attacks 
like PGD (Kurakin et al., 2017).

Another way to protect CNNs against adversarial examples is to detect them. Harder 
et al. (2021) as well as Lorenz et al. (2021) detect adversarial examples by inspecting each 
input image and its feature maps in the frequency domain. Similarly, Yin et  al. (2020) 
showed that natural images and adversarial examples differ significantly in their frequency 
spectra.

In fact, when considering the architecture of commonly employed CNN models, one 
could wonder why these models perform so well although they ignore basic sampling theo-
retic foundations. Concretely, most architectures sub-sample feature maps without ensuring 
to sample above the Nyquist rate  (Shannon 1949), such that, after each down-sampling 
operation, spectra of sub-sampled feature maps may overlap with their replica. This is 
called aliasing and implies that the network should be genuinely unable to fully restore 
an image from its feature maps. One can only hypothesize that common CNNs learn to 

Fig. 1   Illustration of down-
sampling, with (top right) and 
without anti-aliasing filter 
(bottom right) as well as an 
adversarial example (bottom 
left). The top left image shows 
the original. In the top right, the 
image is correctly down-sampled 
with an anti-aliasing filter. In 
the bottom right, no filter is 
applied, leading to aliasing. The 
adversarial example (bottom left) 
shows visually similar artifacts. 
In this paper, we investigate the 
role of aliasing for adversarial 
robustness

Downsampling
without Anti-Aliasing

Downsampling
with Anti-Aliasing

PGD 
Adversarial Example
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(partially) compensate for this effect by learning appropriate filters. Following this line of 
thought, recently, several publications suggest to improve CNNs by including anti-aliasing 
techniques during down-sampling in CNNs (Zhang 2019; Zou et al., 2020; Li et al., 2021b; 
Hossain et al., 2021). They aim to make the models more robust against image-translations, 
such that the class prediction does not suffer from small vertical or horizontal shifts of the 
content.

In this paper, we further investigate the relationship between adversarial robustness and 
aliases. While previous works (Yin et al., 2020; Harder et al., 2021; Lorenz et al., 2021) 
focused on adversarial examples, we systematically analyze potential aliasing effects inside 
CNNs. Specifically, we compare several recently proposed adversarially robust models to 
conventionally trained models in terms of aliasing. We inspect intermediate feature maps 
before and after the down-sampling operation at inference. Our first observation is that 
these models indeed fail to sub-sample according to the Nyquist Shannon Theorem (Shan-
non 1949): we observe severe aliasing. Further, our experiments reveal that adversarially 
trained networks exhibit less aliasing than standard trained networks, indicating that adver-
sarial training (AT) encourages CNNs to learn how to properly down-sample data without 
severe artifacts. Next, we visualize the frequency spectra of adversarial attacks on baseline 
models as well as on adversarially trained ones. Our experiments show that attacks behave 
in a less characteristic spectrum when attacked models are adversarially robust. This indi-
cates that adversarial attacks might employ network aliasing as a backdoor, such that high 
frequency changes can flip the network decision, while attacks on adversarially robust net-
works have to hamper with the low-frequency components of the image, i.e.  the coarse 
details. Finally, we investigate the behavior during training and observe a strong correla-
tion between robust overfitting during training and the amount of aliasing in the network’s 
downsampling operations. Specifically, the amount of aliasing increases significantly as the 
model overfits to AT. Based on these findings we propose a new early stopping criterion 
based on the measurement of aliasing, to prevent robust overfitting during AT.

In summary, our contributions are:

•	 We introduce a novel measure for aliasing and show that common CNN down-sam-
pling layers fail to sub-sample their feature maps in a Nyquist-Shannon conform way.

•	 We analyze various adversarially trained models, that are robust against a strong 
ensemble of adversarial attacks, AutoAttack (Croce and Hein 2020), and show that they 
exhibit significantly less aliasing than standard models.

•	 We show strong evidence that robust overfitting coincides with an increased amount of 
aliasing for several network architectures.

•	 We introduce a new early stopping criterion for FGSM AT based on our aliasing meas-
urement.

2 � Related work

2.1 � Downsampling attack

Xiao et al. (2017) demonstrated the power of down-sampling attacks. These attacks modify 
the images such that their original size is too big for the network and they need to be down-
sampled in the pre-processing step. Thereby, one can hide a completely new image in the 
bigger one. This new image is only visible after down-sampling and will determine the 
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predicted class label. Later, Lohn (2020) re-raised this issue and proposed a defense for 
such attacks, since they can still be realized due to vulnerable down-scaling in common 
python libraries like Tensorflow and OpenCV.

2.2 � Adversarial attacks

While CNNs are known for their excellent performance on image classification tasks, they 
are susceptible to adversarial attacks (Moosavi-Dezfooli et  al., 2016; Goodfellow et  al., 
2015a; Szegedy et al., 2014), i.e. to intentional image perturbations. Recently, many differ-
ent adversarial attacks as well as defenses have been developed. One of the earliest attacks 
is the Fast Gradient Sign Method (FGSM) by Goodfellow et al. (2015a), followed by more 
sophisticated methods like Projected Gradient Descent (PGD) (Kurakin et al., 2017), Deep-
Fool (DF) (Moosavi-Dezfooli et al., 2016), Carlini and Wagner (CW) (Carlini and Wagner 
2017) or Decoupling Direction and Norm (DDN) (Rony et  al., 2019). While single step 
adversarial examples, like FGSM, take the full possible perturbation step in the range of � 
in one step, PGD iteratively searches for the best step over a maximal number of iterations. 
Yet, instead of creating each adversarial example with the same strength, PGD adapts the 
amount of perturbed pixels by iteratively checking the current class prediction. Recently, 
AutoAttack (Croce and Hein 2020), an ensemble of different attacks including an adaptive 
version of PGD, has become the baseline for adversarial robustness.

2.2.1 � Adversarial training

Most proposed attacks come with a dedicated defense, to counter their adversarial exam-
ples (Goodfellow et al., 2015a; Rony et al., 2019). There are many more adversarial train-
ing (AT) schemes which typically consist of either adding a second loss term to be more 
robust against a special type of adversarial noise (Engstrom et al., 2019; Zhang et al., 2019) 
or add additional data (Carmon et al., 2019; Sehwag et al., 2021). Some approaches also 
combine both (Wang et al., 2020c). RobustBench (Croce et al., 2020) evaluates of a variety 
of models w.r.t. their adversarial robustness.

2.2.2 � Robust overfitting

Rice et  al. (2020) showed that simple defense methods for examples based on FGSM 
adversarial examples suffer from robust overfitting, the phenomenon that the model overfits 
to the seen adversarial examples and shows decreased robust accuracy against other attacks 
like PGD (Kurakin et al., 2017). Therefore they introduce early stopping based on more 
expensive PGD adversarial examples to find a good trade-off between the model’s perfor-
mance and robustness. Further, Chen et al. (2021) suggest to prevent overfitting by forc-
ing the network to more learned smoothing during AT. Therefore they perform stochastic 
weight averaging as well as smoothing of the logits.

2.3 � Frequency analysis

Several recent works considered the frequency spectra of images at the input of CNNs and 
deeper layers, which we briefly summarize below.
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2.3.1 � Robustness, attack detection and image generation

Yin et al. (2020) could show that conventional CNNs are sensitive to changes in the high 
frequencies of an image, like Gaussian noise, while most CNNs are robust against changes 
in the low frequencies, i.e.  in the coarse structures. In contrast, when models are trained 
using additional data augmentation techniques, they are less sensitive to high frequency 
changes but sacrifice their robustness in the low frequency domain (Yin et  al., 2020). 
Recently, et al. Hossain et al. (2021) analyzed the frequency spectrum of adversarial exam-
ples and observed that adversarial perturbations are not exclusively affecting high frequen-
cies, which was assumed before (Wang et al., 2020a). Hossain et al. (2021) observe that the 
perturbations spectrum highly depends on the dataset used, i.e. CIFAR-10 or ImageNet. 
These works aim to improve CNNs by reducing aliasing. However, they do not system-
atically investigate the effects on adversarial robustness and they do not provide an actual 
measure for aliasing. Also Bernhard et al. (2021) highlight the fact that adversarial attacks 
do not exclusively hurt the high frequency components by incorporating a frequency con-
straint which needs to be adapted on the frequency features of the data. Harder et al. (2021) 
use the spectrum of the adversarial examples to detect them, i.e. Lorenz et al. (2021) train a 
classifier to detect adversarial examples and defend CNNs. These works indicate that there 
is a severe domain shift between the frequency distribution of genuine images and adver-
sarial attacks.

Durall et al. (2020) observed that CNN generated images fail to reproduce the spectral 
distribution of original images, making them easy to detect in practice. Similar to the here 
addressed aliasing in classifier models during downsampling, Frank et al. (2020) indicate 
that generative models inherently suffer from aliasing during their upsampling operation. 
This observation has recently lead to a vast amount of research in the area of fake image 
detection (Frank et al., 2020; Chandrasegaran et al., 2021; Durall et al., 2020; Dzanic et al., 
2020; Wang et al., 2020b) and especially face forgery detection (Li et al., 2021a; Luo et al., 
2021). Both benefit from frequency domain representations. He et al. (2021) employ a sys-
tematic domain shift in the frequency domain to propose better generalizable deep fake 
detectors.

2.3.2 � Frequency biased models

Saikia et al. (2021) proposed a method to boost adversarial robustness by training a low 
and a high frequency expert. They suggest training two different models, one that should 
only use low frequencies for prediction and one for only high frequencies. Both models 
give a joint prediction and can achieve much higher robustness than standard trained mod-
els. This way they bypass the time and computational resources consuming AT. But still 
they need to train both experts separately.

2.3.3 � Domain adaptation and generalization

Yang and Soatto (2020) showed that the Fourier phase and amplitude of an image can be 
adapted for data augmentation. Thus, they trained a better generalizing model in the con-
text of domain adaptation. Similarly, Xu et al. (2021) use the Fourier phase and shuffled the 
amplitude of images to train for higher domain generalization.
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2.3.4 � Anti‑aliasing

Azulay and Weiss (2018) discussed the question of why CNNs can not learn invariances 
to small image transformations (such as shifts) from training data and argue that aliasing 
during downsampling is causing this behavior. Since then, Anti-Aliasing filters are becom-
ing more and more important for the Deep Learning community. Zhang (2019) established 
Anti-Aliasing filter in CNNs for shift-invariance for classification tasks. This approach 
has been further improved by Zou et al. (2020) by adaptive Anti-Aliasing filters depend-
ing on the image patch. Li et al. (2021b) use the low frequency components of wavelets 
in their pooling to increase robustness against common image corruptions by suppressing 
the effects of aliasing. Here, we show that aliasing is not only relevant for robustness to 
common corruptions but also affects adversarial robustness. Hossain et al. (2021) propose 
not only a depth adaptive blurring filter before pooling but also an anti-aliasing activation 
function. This activation function is inspired by C-ReLu but uses a smooth roll-off phase 
instead of the sharp cutoff at threshold t. Also, Karras et al. (2021) achieve aliasing free 
generators for GANs by blurring before sampling and non-linearities, like ReLu, whereas 
Jung and Keuper (2021) address aliasing in GANs by employing a frequency space dis-
criminator. In contrast to previous work which focused on fixing shift-invariance and 
model robustness by incorporating anti-aliasing techniques, we are the first focusing on the 
analysis of aliasing, to obtain a distinct aliasing measurement.

3 � Aliasing in CNNs

CNNs usually have a pyramidal structure in which the data is progressively sub-sampled 
in order to aggregate spatial information while the number of channels increases. During 
sub-sampling, no explicit precautions are taken to avoid aliases, which arise from under-
sampling. Specifically, when sub-sampling with stride 2, any frequency larger than N/2, 
where N is the size of the original data, will cause pathological overlaps in the frequency 
spectra (Fig. 2). Those overlaps in the frequency spectra cause ambiguities such that high 
frequency components appear as low frequency components. Hence, local image perturba-
tions can become indistinguishable from global manipulations.

F(x) F(x) F(x)

Aliasing

Oversampled
Signal

xmax xmax

Undersampled
Signal

Continous Signal in
the Fourier domain

xmax

Fig. 2   Abstract example of aliasing in the frequency domain. Left a 1D signal with the x
max

 as maximal 
width is shown in the frequency domain. When this signal is down-sampled, the original signal is replicated 
and placed next to each other, depending on the sampling rate. If we sample at a sufficiently large sampling 
rate, the distance between the replica is large and the signals will not overlap (middle). If the sampling rate 
is too small we under-sample the signal and get aliases due to the overlapping replica (right)
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3.1 � Aliasing metric

To measure the possible amount of aliasing appearing after down-sampling we compare each 
down-sampled feature map in the Fourier domain with its aliasing-free counterpart. To this 
end, we consider a feature map f(x) of size 2N × 2N before down-sampling. We compute 
an "aliasing-free" down-sampling by extracting the N lowest frequencies along both axes in 
Fourier space. W.l.o.G., we consider specifically down-sampling operations by strided con-
volutions, since these are predominantly used in adversarially robust models (Zagoruyko and 
Komodakis 2017).

In each strided convolution, the input feature map f(x) is convolved with the learned 
weights w and downsampled by strides, thus potentially introducing frequency replica 
(i.e. aliases) in the downsampled signal f̂s2.

To measure the amount of aliasing, we explicitly construct feature map frequency repre-
sentations without such aliases. Therefore, the original feature map f(x) is convolved with 
the learned weights w of the strided convolution without applying the stride g(w,  1) to 
obtain f̂s1.

Afterwards the 2D FFT of the new feature maps f̂s2 is computed, which we denote Fs2.

for k, l = 0,… ,N − 1 . For the non-down-sampled feature maps f̂s1 , we proceed similarly 
and compute for k, l = 0,… , 2 ⋅ N − 1

The aliasing free version Fs1 can be obtained by setting all frequencies above the Nyquist 
rate to zero before down-sampling,

for k ∈ [N∕2, 3N∕2] and for l ∈ [N∕2, 3N∕2] . Then the down-sampled version in the fre-
quency domain corresponds to extracting the four corners of F↑

s1
 and reassembling them as 

shown in Fig. 3,
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This way we guarantee that there are no overlaps, i.e. aliases, in the frequency spectra. Fig-
ure 3 illustrates the computing process of the aliasing free down-sampling in the frequency 
domain. The aliasing free feature map can be compared to the actual feature map in the 
frequency domain to measure the degree of aliasing. The full procedure is shown in Fig. 4, 
where we start on the left with the original feature map. Then we obtain the two down-
sampled versions (with and without aliases) and compute their L1 difference.

The overall aliasing metric AM for a down-sampling operation is calculated by the 
L1 distance between downsampled and alias-free feature maps fk in the Fourier domain, 
averaged over K generated feature maps,

The proposed AM measure is zero if aliasing is visible in none of the down-sampled feature 
maps, i.e. if sampling has been performed above the Nyquist rate. Whenever AM is greater 
than 0, this is not the case and we should, from a theoretic point of view, expect the model 
to be easy to attack since it can not reliably distinguish between fine details and coarse 
input structures.

(7)AM =
1

K

K�

k=0

‖Fs1,k − Fs2,k‖.

Fig. 3   Step by step computation of the aliasing free version of a feature map. The left image shows the 
magnitude of the Fourier representation of a feature map with the zero-frequency in the upper left corner, 
i.e. high frequencies are in the center. Alias-free downsampling suppresses high frequencies prior to sam-
pling. This can be implemented efficiently in the Fourier domain by cropping and reassembling the low-
frequency regions of the Fourier representations, i.e. its four corners. Aliasing would correspond to folding 
the deleted high frequency components into the constructed representation

Fig. 4   FFT (Fast Fourier Transformation) of a feature map in the original resolution (left). This feature map 
is downsampled by striding with a factor of two after aliasing suppression (middle left) and with aliasing 
(middle right). The difference between the original and aliasing-free FFT of the down-sampled feature map 
(right)
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4 � Experiments

4.1 � Aliasing in existing models

We conducted an extensive analysis of already existing adversarially robust mod-
els trained on CIFAR-10  (Krizhevsky 2012) with two different architectures, namely 
WideResNet-28-10  (WRN-28-10)  (Zagoruyko and Komodakis 2017) and Preact 
ResNet-18  (PRN-18)  (He et  al., 2016). Both architectures are commonly supported by 
many AT approaches. As baseline, we trained a plain WRN-28-10 and PRN-18, both 
with similar training schemes. Each model is trained with 200 epochs, a batch size of 512, 
CrossEntropy loss and stochastic gradient descent (SGD) with an adaptive learning rate 
starting at 0.1 and reducing it at 100 and 150 epochs by a factor of 10, a momentum of 0.9 
and a weight-decay of 5e-4. All adversarially trained networks are pre-trained models pro-
vided by RobustBench (Croce et al., 2020).

The WRN-28-10 networks have four operations in which down-sampling is performed. 
These operations are located in the second and third block of the network. In comparison, 
the PRN-18 networks have six down-sampling operations, located in the second, third and 
fourth layers of the network.

Both architectures have similar building blocks and the key operations including down-
sampling are shown abstractly in Fig. 5. Each block starts with a convolution with stride 
two followed by additional operations like ReLu and convolutions with stride one. The 
characteristic skip connection of ResNet architectures also needs to be implemented with 
stride two if down-sampling is applied in the according block. Consequently, we need to 
analyze all down-sampling units and skip connections before they are summed up to form 
the output feature map.

4.1.1 � WideResNet 28‑10

In the following, differently trained WRN-28-10 networks are compared in terms of their 
robust accuracy against AutoAttack (Croce and Hein 2020) and the amount of aliasing in 
their down-sampling layer.

Downsampling
Conv( stride=2)

ShortCut
Conv( stride=2)additional operations

+

Conv( stride=1)

ShortCut
Conv( stride=1)/Identityadditional operations

+
Fig. 5   Abstract Illustration of a building block in PRN-18 and WRN-28-10. The first operation in a block 
is a convolution, executed with a stride of either one or two. For a stride of one (left) the shortcut simply 
passes the identity of the feature maps forward. If the first convolution is done with a stride of two, the 
shortcut needs to have a stride of two (right) too, to guarantee that both representations can be added at the 
end of the building block
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Figure 6 indicates significant differences between adversarially trained and standard 
trained networks. First, the networks trained without AT are not able to reach any robust 
accuracy, meaning their accuracy under adversarial attacks is equal to zero. Second, and 
this is most interesting for our investigation, standard trained networks exhibit much 
more aliasing during their down-sampling layers than adversarially trained networks. 
Through all layers and operations in which down-sampling is applied, the adversarially 
trained networks (blue dots Fig.  6) have much higher robust accuracy and much less 
aliasing compared to the standard trained networks. We indicate the Pearson correlation 
r between aliasing and robust accuracy above each scatter plot in Fig.  6, indicating a 
significant negative correlation.

When comparing the conventionally trained network against each other it can be seen 
that also the specific training scheme used for training the network can have an influence 
on the amount of aliasing of the network. Concretely, the standard baseline model pro-
vided by RobustBench (Croce et al., 2020) exhibits less aliasing than the one trained by 
us. Unfortunately, there is no further information about the exact training schedule from 
RobustBench, such that we can not make any assumptions on the interplay between 
model hyperparameters and aliasing.

0 10 20 30 40 50 60

4

5

6

7

8

9

10

11

A
lia

si
ng

RobustBench Baseline

Baseline

Carmon et al., 2019
Wang et al., 2020

Hendrycks et al., 2019

Layer2 Downsampling, r=-0.8710

Adversarial
Normal

0 10 20 30 40 50 60

2

4

6

8

10 RobustBench Baseline

Baseline

Carmon et al., 2019

Wang et al., 2020
Hendrycks et al., 2019

Layer2 Shortcut, r=-0-9663

Adversarial
Normal

0 10 20 30 40 50 60
AutoAttack robust accuracy

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

A
lia

si
ng

RobustBench Baseline

Baseline

Carmon et al., 2019

Wang et al., 2020

Hendrycks et al., 2019

Layer3 Downsampling, r=-0.7677

Adversarial
Normal

0 10 20 30 40 50 60
AutoAttack robust accuracy

2.0

2.5

3.0

3.5

4.0

RobustBench Baseline

Baseline

Carmon et al., 2019

Wang et al., 2020

Hendrycks et al., 2019

Layer3 Shortcut, r=-0.9091

Adversarial
Normal

Fig. 6   Adversarial robustness versus aliasing and the according correlation r, evaluated on different pre-
trained WRN-28-10 models from RobustBench (Croce et al., 2020) as well as two baseline models without 
AT, one from RobustBench (RobustBench Baseline) and one trained by us (Baseline). All blue dots repre-
sent adversarially trained networks for the purpose of clarity we marked three popular models from Carmon 
et al. (2019), Wang et al. (2020c) and Hendrycks et al. (2019) by name (Color figure online)
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4.1.2 � Preact ResNet‑18

We conducted the same measurements for the PRN-18 as we did for the WRN-28-10 and 
used the same training procedure. Additionally, we needed to account for one more layer 
with two additional down-sampling operations.

The overall results, presented in Fig. 7, are similar to the ones for the WRN-28-10 net-
works, most adversarially trained networks exhibit significantly less aliasing and higher 
robustness than conventionally trained ones. Yet, the additional down-sampling layer 
allows one further observation. While the absolute aliasing metric is overall lower, the 
robust networks reduce the aliasing predominantly in the earlier layers, the second and 
third layers. The aliasing in the fourth layer of adversarially robust models is not signifi-
cantly different from the aliasing in conventionally trained models in the same layer. This 
phenomenon might be explained by the sparsity of the deeper layers. While the earlier 
feature maps represent the spatial properties of input images, deeper layers rather encode 

Fig. 7   Adversarial robustness versus aliasing and the according correlation r, exemplary evaluated on dif-
ferent pre-trained PRN-18 models. The blue dots represent adversarial trained networks, trained with the 
training schemes of Wong et al. (2020), Rice et al. (2020) and Sehwag et al. (2021) provided by Robust-
Bench (Croce et al. 2020). The orange dot is the baseline, trained by us without AT (Color figure online)
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semantic properties that are sparsely encoded and therefore might be harder to affect. Yet, 
this aspect needs further investigation for a better understanding, which goes beyond the 
scope of this work.

4.1.3 � Spectrum of adversarial perturbations

Further we analyze the spectrum of the perturbations created by adversarial examples, 
i.e. perturbations created by AutoAttack (Croce and Hein 2020).

Firstly, we compare the spectrum of the perturbations created by the AutoAttack stand-
ard attack on our baseline model as well as on the robust models which we already eval-
uated in Sect. 4.1. We compute the perturbations as differences between adversarial and 
clean images. Afterwards we transform each perturbation into the Fourier space and take 
each of the three channels, RGB. The results are shown in Fig. 8.

We can see that the frequencies in which adversarial attacks like AutoAttack attack, 
vary and this is in line with (Maiya et al., 2021). Here we can see that the spectrum of the 
attack, not only varies w.r.t.  the dataset but also w.r.t. the specific model architecture.

4.2 � Aliasing during training

Next, we consider the amount of aliasing during training of adversarially robust and con-
ventional models. We trained five PRN-18 models with different training schemes and one 
PRN-18 without AT as baseline, using the same training parameters described in Sect. 4.1. 
The training schemes provided by Wong et  al. (2020) and Rice et  al. (2020) were used 
for the AT. During each training run, we computed the amount of aliasing in each down-
sampling and shortcut layer for each epoch from 100 randomly picked CIFAR-10 training 
samples.

(a) WRN (b) PRN

Fig. 8   Spectrum of the RGB perturbations created by AutoAttack (Croce and Hein 2020) on the baseline 
model (top row) and three different robust models from RobustBench Croce et al. (2020)
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Figure 9 shows the amount of aliasing for the second layer in total, which is com-
puted as the mean between the aliasing of the down-sampling and shortcut layer for the 
different AT training schemes as well as the baseline. We can observe that the adversar-
ial trained networks produce a lower amount of aliasing during the entire training pro-
cedure. The final results for all adversarial trained models for different training schemes 
are presented in Table 1. All models trained with AT exhibit less aliasing and higher 
robust accuracy than the baseline.

Further, we can observe that early stopping for FGSM plays a crucial role for the 
robust accuracy as well as for the aliasing. Table 1 shows that FGSM without early stop-
ping performs nearly as poorly as training without any adversaries. Figure 9 indicates 
that the model trained with FGSM without early stopping has a high increase in alias-
ing at the end of the training. The models which include early stopping stop before and 
thus exhibit no increased aliasing. The training without early stopping continues and 
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Fig. 9   Amount of aliasing in the second layer of different PRN-18 (an overview over all layers can be found 
in appendix 1, Fig. 16) during training over 100 random images of the CIFAR-10 training set for the base-
line and AT training provided by Wong et  al. (2020) and Rice et  al. (2020). The aliasing measure is the 
mean value between the aliasing of the down-sampling and the shortcut layer. All networks are trained for 
200 epochs, except FGSM training including early stopping. There the training is stopped earlier based on 
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and mark the point of early stopping by the dashed lines, to demonstrate the relationship between aliasing 
and early stopping.

Table 1   Clean and robust accuracy against PGD (higher is better) and the amount of aliasing in the second 
layer (lower is better) of the baseline and adversarial trained networks with the training scheme provided by 
Wong et al. (2020) and Rice et al. (2020) as well as FGSM with the training schedule of Wong et al. (2020) 
including early stopping criteria based on our aliasing measurement

Bold values highlight the low/highest value for each column
Underlined values highlight the second best value for each column

Method Clean Acc ↑ PGD Acc ↑ Aliasing ↓

Baseline 93.29 0.00 12.12
FGSM (Wong et al., 2020) 90.85 7.05 9.31
early-stopping FGSM (Wong et al., 2020) 80.16 39.76 6.14
Free (Wong et al., 2020) 83.86 48.10 5.62
PGD (Wong et al., 2020) 85.06 56.37 6.30
Robust Overfitting (Rice et al., 2020) 84.58 46.70 3.99
Aliasing FGSM (ours) 82.91 52.43 5.78
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increases the amount of aliasing while losing its robust accuracy. This indicates that 
aliasing and adversarial robustness are highly related.

This behavior of FGSM without early stopping is commonly referred to as robust over-
fitting. The standard way to overcome this effect is to evaluate the model after each epoch 
with PGD attacks and to compare the robust accuracy to the previous robust accuracy to 
note if the performance drops in this respect. Hence, the training is not as expensive as a 
full training with PGD but almost as good as PGD training.

4.3 � Robust overfitting

Following, we aim to explore the relation between robust overfitting and aliasing further.

4.3.1 � Aliasing versus PGD accuracy

To emphasize our findings we investigate the direct correlation between aliasing and the 
PGD attackability of the model during training. Figure 10 for a WRN-28-10 and Fig. 11 
for a PRN-18 show the amount of aliasing during training as well as the PGD accuracy for 
each training epoch. For both networks, we can see that at the point at which robust overfit-
ting occurs, i.e. PGD accuracy drops to zero, the amount of aliasing increases significantly 
and remains high.

Fig. 10   Aliasing, clean accuracy and PGD accuracy during training of a WRN-28-10 with FGSM AT and 
cycling learning rate. The model starts to exhibit robust overfitting in epoch 70, i.e. the PGD accuracy drops 
to zero and the amount of aliasing increases significantly

Fig. 11   Aliasing, clean accuracy and PGD accuracy during training of a PRN-18 with FGSM AT and 
cycling learning rate. The model starts to exhibit robust overfitting in epoch 180, i.e. the PGD accuracy 
drops to zero and the amount of aliasing increases significantly
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Figure 10 as well as Fig. 11 show that as soon as the robust accuracy against PGD 
drops, i.e. robust overfitting takes place, the amount of aliasing increases significantly. 
While the WRN-28-10 suffers from robust overfitting already at epoch ca 60 the PRN-
18 needs to be trained at least 180 epochs to exhibit robust overfitting and an increased 
amount of aliasing. While the clean accuracy for the WRN is highest right before the 
increase in aliasing, i.e. the robust overfitting, and stays further below, the PRN clean 
accuracy increases right after the increase in aliasing.

4.3.2 � Spectrum of adversarial perturbations during training

Next, we visualize the spectrum of attacks on our robust models before and after robust 
overfitting. The results for the attacks are shown in Fig.  13. While the perturbations 
of the robust models, before robust overfitting, exhibit the same spectral characteristics 
like the robust models from RobustBench (Croce et al., 2020), the perturbations for the 
models after robust overfitting lie more in the higher frequency spectrum. While they do 
not lie in the middle frequency spectrum like it is for the baseline model.

4.3.3 � Effect on Network Confidences

To investigate further into the co-occurrence of aliasing and robust overfitting, we 
take a look at the predicted confidence of the network. Therefore we calculate the 
overall confidence of the network predictions on the clean and PGD perturbed data as 
well as the confidence on the false predictions caused by PGD which we call bad pgd 
confidence.

Figure 12 shows the networks’ confidences in the clean and PGD data as well as the 
confidence in the wrong predictions caused by PGD and the amount of aliasing. We 
can observe for both, WRN-28-10 and PRN-18, the models confidence in the clean and 
adversarial test data increases significantly when aliasing increases, i.e. robust overfit-
ting takes place. Interestingly, the false confidence on PGD perturbations is relatively 
low before the increase in aliasing but gets highest after the increase. We assume that 
the network is not only not robust but much more confident with its false predictions 
after robust overfitting (Fig. 13).

Fig. 12   Aliasing of the second layer (red) and confidence of a WRN-28-10 (left) and PRN-18 (right) model 
trained with FGSM AT. In red the amount of aliasing, the dotted lines represent the confidences overall in 
the clean (yellow) and adversarial data (blue) as well as the confidence in the false predictions caused by 
the adversaries (black) (Color figure online)
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Fig. 13   Spectrum of the RGB perturbations created by AutoAttack at different epochs of a model training, 
before (two top rows, epoch 179 and 180) and after robust overfitting (bottom rows, epoch 181 and 182) 
(Color figure online)
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5 � Aliasing early stopping

In Sect. 4.3, we showed that the model’s robust overfitting with FGSM training (Good-
fellow et  al., 2015a) coincides with a sudden increase in aliasing in the models’ feature 
maps. Now, we investigate whether we can exactly determine this overfitting point using 
the aliasing measure. Robust overfitting mainly occurs for AT with FGSM consequently we 
will perform our early stopping criteria with aliasing on FGSM AT.

We investigate whether we can exactly determine the point of robust overfitting using 
the aliasing measure. Thus, we define a threshold for the gap in aliasing between two 
epochs. This is similar to the procedure proposed by Wong et  al. (2020) who determine 
such a threshold for the gap in the robust accuracy of PGD (Kurakin et al., 2017) between 
two epochs.

In this experiment, we only employ the aliasing measure computed from the features 
maps in the second layer. One PRN-18 layer with down-sampling includes two down-sam-
pling operations, so we build the mean between their aliasing measures as done before. 
However, the aliasing also depends on the images in each specific batch, i.e.aliasing will 
be low for feature maps computed on very smooth input images while it will be larger for 
textured input data. To reduce noise, we apply a median filter to the aliasing measurements. 
This median filtered version is represented by the orange line in Fig. 14.

On the median filtered aliasing curves, we simply compare each new aliasing measure 
to the median and predict a high loss in PGD accuracy when the aliasing measure increases 
by more than 33% (see Algorithm 1). Figure 15 evaluates, for five different FGSM training 
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runs, the early stopping points computed by Algorithm  1 for varying thresholds t. We 
report the distance (in epochs) of our predicted stopping point to the best early stopping 
point predicted using PGD. For thresholds t between 0.3 and 0.35, the PGD stopping point 
is correctly predicted for all training runs. It could even be used to determine the early 
stopping point in FGSM "on the fly" without explicit robustness tests. The computation 
of the early stopping point with our aliasing measurement takes only around 903.44 mil-
liseconds per epoch while PGD takes around 1315.89 milliseconds per epoch. The results 
on FGSM training can be seen in Table 1. When compared with FGSM and FGSM with 
early stopping based on PGD provided by Wong et al. (2020) we can see that our aliasing 
early stopping is able to find the best trade-off between clean accuracy and robust accuracy, 
while keeping the amount of aliasing low.

6 � Discussion

Our experiments reveal that common CNNs fail to sub-sample their feature maps in a 
Nyquist-Shannon conform way and consequently introduce aliasing artifacts. Further, we 
can give strong evidence that aliasing and adversarial robustness are highly related. All 
evaluated robust models exhibit significantly less aliasing than standard trained models.

We also gave an example use case for this finding, i.e.we showed that an aliasing based 
measure could replace the explicit evaluation of network robustness as an early stop-
ping criterion in FGSM  (Goodfellow et  al., 2015a). We will discuss both aspects in the 
following.

6.1 � Aliasing in pre‑trained models

After the application of down-sampling operations in standard CNNs all feature maps suf-
fer from aliasing artifacts occurring due to insufficient sub-sampling.

Adversarially trained networks exhibit significantly less aliasing in their feature maps 
than standard trained networks with the same architecture. As shown in Sect. 4.1 this is 
valid for different model architectures and training schemes. It raises the question whether 
models with a low amount of aliasing are necessarily more robust.

We already observed in Sect. 4.1 that low aliasing is especially important in the earlier 
layers. This can likely be explained by the fact that information is spatially more and more 
compressed as it is propagated to deeper layers. Therefore, deep layers require sparsity in 
the feature maps to be expressive. Thus we hypothesize that deeper layers are less vul-
nerable to aliasing and early layers are more vulnerable. Hence, the difference in aliasing 
between robust and non-robust models is most visible in the early layers.

6.2 � Aliasing and robust overfitting

We provide strong evidence that robust overfitting in FGSM AT is negatively correlated 
with the amount of aliasing after down-sampling. Whenever a model experiences robust 
overfitting during training, the amount of aliasing increases significantly, i.e.the increase in 
aliasing marks the point at which the model loses it’s robust generalization ability.
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6.3 � Aliasing as early stopping indication

We could show that our aliasing metric can be an indication for the early stopping point, 
which is needed to prevent robust overfitting on single-step AT schemes like FGSM. 
Thereby, we choose our hyperparameter, the relative increase in aliasing t at which to stop 
to be 33%. This threshold is chosen by comparing different trained networks and their 
aliasing measurements during network training. With this setting we can not guarantee 
transferability of the approach to different network architectures and datasets.

Yet, the same issue exists for previous approaches where some threshold had to be 
determined (Wong et al., 2020). In contrast to the explicit robustness evaluation in Wong 
et al. (2020), the aliasing base indicator does not depend on specific, externally computed 
perturbations but it can be evaluated during each training iteration on the training batch.

6.4 � Spectrum of adversarial perturbations

We could show that adversarial perturbations of robust models dominantly lie in the low 
frequency spectrum, while the perturbations of non-robust models can lie in the low as 
well as in the middle or high frequencies. For models that exhibit robust overfitting the 
generated perturbations dominantly lie in the high frequent spectrum. These findings go 

Fig. 14   Aliasing metric in the 
second layer during training of 
a PRN-18 with FGSM AT. In 
epoch 182, the PDG robustness 
measure as well as the proposed 
aliasing measure predict the best 
early stopping point
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in line with Maiya et al. (2021) in such a way that we suggest that the frequency spectrum 
in which the perturbations can lie are not only depending on the dataset, but also on the 
specific model architecture as well as the specific training scheme. Further we assume that 
aliasing is one of the main backdoors which enables adversarial attacks to succeed.

7 � Conclusion

Concluding, we provide strong evidence that aliasing and adversarial robustness of CNNs 
are highly correlated. In particular, we can show that the increase in aliasing is correlated 
with the decrease of robustness against PGD, when robust overfitting during FGSM AT 
takes place. Further, we are able to tackle the problem of robust overfitting via early stop-
ping based on our aliasing measurement. We hypothesize that aliasing is one of the main 
underlying factors that lead to the vulnerability of CNNs. Recent methods to increase 
model robustness rather heal the symptoms of the underlying problem than investigate its 
origins. To overcome this challenge we might need to start thinking about CNNs in a more 
signal processing manner and account for basic principles from this field, like the Nyquist-
Shannon theorem, which gives us clear instructions on how to prevent aliasing. Besides 
downsampling, also padding can lead to unwanted aliasing effects. Still, it is not straight-
forward to incorporate this knowledge into the architecture and structure of common CNN 
designs as we have many components to account for. We aim to give a new and more tra-
ditional perspective on CNNs to help improve their performance and reliability to enable 
their application in real world use cases.

Appendix 1

Aliasing during training

Figure 16 shows the amount of aliasing in each layer of the network during baseline train-
ing as well as during different AT training schemes.
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Appendix 2

Pooling variation

Additionally to our observation on robust and non-robust networks on CIFAR-10, we con-
ducted a small experiment on MNIST to inspect the influence of different pooling methods. 
Therefore we trained six small CNNs that all have the same architecture and only differ 
in the downsampling operation. Either we downsample by using Max- or AvgeragePool-
ing, or we use a convolution with stride two, as it was done for the models provided by 
RobustBench Croce et al. (2020). We trained each network for 10 epochs with the Adam 
optimizer and a cycling learning rate and a maximal learning rate of 5e − 3 . As criterion 
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Fig. 16   Amount of aliasing in all layers of PRN-18 during training over 100 random images of CIFAR-10 
training set for the baseline and AT training provided by Wong et  al. (2020) and Rice et  al. (2020). The 
aliasing measure is the mean value between the aliasing of the down-sampling and the shortcut layer. All 
networks are trained for 200 epochs, except FGSM training including early stopping. There the training is 
stopped earlier based on the evaluation of the model on PGD or our aliasing measure. Still, we record the 
epochs after early stopping and mark the point of early stopping by the dashed lines, to demonstrate the 
relationship between aliasing and early stopping



3946	 Machine Learning (2022) 111:3925–3951

1 3

we use CrossEntropy and batch size is chosen to be 100. For the adversarial training, we 
used FGSM adversaries with � = 0.3 and � = 3.75.

MaxPooling exhibits the strongest aliasing and also struggles the most with the adver-
sarial attack. While the downsampling via convolution and average pooling is much more 
able to prevent the attack. AveragePooling can be interpreted as blurring before downsam-
pling, thus helping against aliasing.

Appendix 3

CNN versus FCN

Fully connected neural network classifiers (FCN) as well as CNN-classifiers map the input 
data into some latent space and finally onto a lower dimensional class label. Thereby, the 
spatial resolution is usually compressed along the network - not only in the final decision 
layer. Thereby, dense architectures do not offer an intuitive understanding of the spatial 
information represented by a hidden variable - nonetheless, spatial compression is implied 
whenever mapping from a (high dimensional) image space to a semantic label. In contrast, 
in convolutional networks with systematically defined spatial compression (i.e. sampling), 
we can systematically measure sampling artifacts (aliasing). For dense networks, this is 
harder to measure. To shed more light onto the different behavior of convolutions and 
dense neural networks (FCNs), we conducted a small experiment on the MNIST dataset. 
We trained a fully connected network without convolutional layers with the same amount 
of layers, three, and approximate the same number of parameters,  40000, clean and with 
FGSM adversarial training. The cleanly trained network can achieve a clean accuracy of 
97.68% and no robust accuracy ( 0% ). These results are similar to the CNN results (reported 
in table 2).

Attack structures

Further, we visualize the adversarial examples created on the CNN compared to the FCN 
shown in Figs. 17 and 18. In Figure 17 we randomly picked six samples from MNIST to 
investigate into the difference of the perturbations on FCN and CNN. We can see that the 

Table 2   Clean and robust 
accuracy against AutoAttack 
Croce and Hein (2020) with 
� = 0.3 for different pooling 
variations in the same network 
architecture on MNIST. As 
well as the amount of aliasing 
encountered in the downsampling 
layers

Pooling Training Clean Acc ↑ PGD Acc ↑ Aliasing ↓

Convolution Clean 99.09 0.00 7.18
MaxPooling Clean 99.39 0.00 27.06
AvgPooling Clean 99.33 0.00 7.92
Convolution FGSM 98.94 83.27 5.21
MaxPooling FGSM 98.20 37.69 12.06
AvgPooling FGSM 98.82 78.45 4.36
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perturbations for the CNNs are more in fine structures organized, like artifacts. While, the 
adversaries for the FCN are more organized in blocks. Figure 18 shows the mean over all 
MNIST samples split into the separate classes. While the mean over each class for the per-
turbations for the FCN are much more centered on the objects/numbers which should be 
recognized. The mean perturbations for the CNN are much more distributed in the whole 
image and look much more noisy.

Fig. 17   Comparison of adversarial examples generated for a CNN and FCN. The top row shows the original 
image without perturbations. The second,third and fourth row show the adversaries generated for the CNN 
as well as the absolute and normal difference between the original and the adversaries generated for the 
CNN, the pure perturbations. The bottom three rows show the adversaries generated for the FCN as well as 
the absolute and normal difference between the original and the adversaries generated for the FCN
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Intrinsic robustness

Finally, we measure the robustness of CNN and FCN with respect to varying epsilons. We 
compare the standard trained FCN with the CNN. The results are reported in Figure 19. 
For small epsilons, the CNN is more robust, but after an epsilon of 0.07 this trend switches 
and the FCN is more robust. Both networks can approximately be completely fooled when 
𝜖 > 0.1.

Fig. 18   Mean images over each class on MNIST for the original images as well as the perturbed images 
created for the FCN and CNN. The top two rows show the clean images, the middle two rows the mean 
adversarial images on the CNN and the last two rows the mean adversarial images on the FCN. While the 
numbers are still visible for the mean original images as well as the perturbations on the CNN, the perturba-
tions on the FCN seem much more related to the objects/numbers that should be recognized in the MNIST 
task
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